AnalysisBasedWarnings.cpp revision b4d0a9678f8c592990593233e64c59247f40a74a
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Basic/SourceManager.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/Analysis/AnalysisContext.h"
30#include "clang/Analysis/CFG.h"
31#include "clang/Analysis/Analyses/ReachableCode.h"
32#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
33#include "clang/Analysis/CFGStmtMap.h"
34#include "clang/Analysis/Analyses/UninitializedValues.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/ImmutableMap.h"
38#include "llvm/ADT/PostOrderIterator.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Support/Casting.h"
41#include <algorithm>
42#include <vector>
43
44using namespace clang;
45
46//===----------------------------------------------------------------------===//
47// Unreachable code analysis.
48//===----------------------------------------------------------------------===//
49
50namespace {
51  class UnreachableCodeHandler : public reachable_code::Callback {
52    Sema &S;
53  public:
54    UnreachableCodeHandler(Sema &s) : S(s) {}
55
56    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
57      S.Diag(L, diag::warn_unreachable) << R1 << R2;
58    }
59  };
60}
61
62/// CheckUnreachable - Check for unreachable code.
63static void CheckUnreachable(Sema &S, AnalysisContext &AC) {
64  UnreachableCodeHandler UC(S);
65  reachable_code::FindUnreachableCode(AC, UC);
66}
67
68//===----------------------------------------------------------------------===//
69// Check for missing return value.
70//===----------------------------------------------------------------------===//
71
72enum ControlFlowKind {
73  UnknownFallThrough,
74  NeverFallThrough,
75  MaybeFallThrough,
76  AlwaysFallThrough,
77  NeverFallThroughOrReturn
78};
79
80/// CheckFallThrough - Check that we don't fall off the end of a
81/// Statement that should return a value.
82///
83/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
84/// MaybeFallThrough iff we might or might not fall off the end,
85/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
86/// return.  We assume NeverFallThrough iff we never fall off the end of the
87/// statement but we may return.  We assume that functions not marked noreturn
88/// will return.
89static ControlFlowKind CheckFallThrough(AnalysisContext &AC) {
90  CFG *cfg = AC.getCFG();
91  if (cfg == 0) return UnknownFallThrough;
92
93  // The CFG leaves in dead things, and we don't want the dead code paths to
94  // confuse us, so we mark all live things first.
95  llvm::BitVector live(cfg->getNumBlockIDs());
96  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
97                                                          live);
98
99  bool AddEHEdges = AC.getAddEHEdges();
100  if (!AddEHEdges && count != cfg->getNumBlockIDs())
101    // When there are things remaining dead, and we didn't add EH edges
102    // from CallExprs to the catch clauses, we have to go back and
103    // mark them as live.
104    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
105      CFGBlock &b = **I;
106      if (!live[b.getBlockID()]) {
107        if (b.pred_begin() == b.pred_end()) {
108          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
109            // When not adding EH edges from calls, catch clauses
110            // can otherwise seem dead.  Avoid noting them as dead.
111            count += reachable_code::ScanReachableFromBlock(&b, live);
112          continue;
113        }
114      }
115    }
116
117  // Now we know what is live, we check the live precessors of the exit block
118  // and look for fall through paths, being careful to ignore normal returns,
119  // and exceptional paths.
120  bool HasLiveReturn = false;
121  bool HasFakeEdge = false;
122  bool HasPlainEdge = false;
123  bool HasAbnormalEdge = false;
124
125  // Ignore default cases that aren't likely to be reachable because all
126  // enums in a switch(X) have explicit case statements.
127  CFGBlock::FilterOptions FO;
128  FO.IgnoreDefaultsWithCoveredEnums = 1;
129
130  for (CFGBlock::filtered_pred_iterator
131	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
132    const CFGBlock& B = **I;
133    if (!live[B.getBlockID()])
134      continue;
135
136    // Destructors can appear after the 'return' in the CFG.  This is
137    // normal.  We need to look pass the destructors for the return
138    // statement (if it exists).
139    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
140    bool hasNoReturnDtor = false;
141
142    for ( ; ri != re ; ++ri) {
143      CFGElement CE = *ri;
144
145      // FIXME: The right solution is to just sever the edges in the
146      // CFG itself.
147      if (const CFGImplicitDtor *iDtor = ri->getAs<CFGImplicitDtor>())
148        if (iDtor->isNoReturn(AC.getASTContext())) {
149          hasNoReturnDtor = true;
150          HasFakeEdge = true;
151          break;
152        }
153
154      if (isa<CFGStmt>(CE))
155        break;
156    }
157
158    if (hasNoReturnDtor)
159      continue;
160
161    // No more CFGElements in the block?
162    if (ri == re) {
163      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
164        HasAbnormalEdge = true;
165        continue;
166      }
167      // A labeled empty statement, or the entry block...
168      HasPlainEdge = true;
169      continue;
170    }
171
172    CFGStmt CS = cast<CFGStmt>(*ri);
173    const Stmt *S = CS.getStmt();
174    if (isa<ReturnStmt>(S)) {
175      HasLiveReturn = true;
176      continue;
177    }
178    if (isa<ObjCAtThrowStmt>(S)) {
179      HasFakeEdge = true;
180      continue;
181    }
182    if (isa<CXXThrowExpr>(S)) {
183      HasFakeEdge = true;
184      continue;
185    }
186    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
187      if (AS->isMSAsm()) {
188        HasFakeEdge = true;
189        HasLiveReturn = true;
190        continue;
191      }
192    }
193    if (isa<CXXTryStmt>(S)) {
194      HasAbnormalEdge = true;
195      continue;
196    }
197
198    bool NoReturnEdge = false;
199    if (const CallExpr *C = dyn_cast<CallExpr>(S)) {
200      if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
201            == B.succ_end()) {
202        HasAbnormalEdge = true;
203        continue;
204      }
205      const Expr *CEE = C->getCallee()->IgnoreParenCasts();
206      QualType calleeType = CEE->getType();
207      if (calleeType == AC.getASTContext().BoundMemberTy) {
208        calleeType = Expr::findBoundMemberType(CEE);
209        assert(!calleeType.isNull() && "analyzing unresolved call?");
210      }
211      if (getFunctionExtInfo(calleeType).getNoReturn()) {
212        NoReturnEdge = true;
213        HasFakeEdge = true;
214      } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
215        const ValueDecl *VD = DRE->getDecl();
216        if (VD->hasAttr<NoReturnAttr>()) {
217          NoReturnEdge = true;
218          HasFakeEdge = true;
219        }
220      }
221    }
222    // FIXME: Add noreturn message sends.
223    if (NoReturnEdge == false)
224      HasPlainEdge = true;
225  }
226  if (!HasPlainEdge) {
227    if (HasLiveReturn)
228      return NeverFallThrough;
229    return NeverFallThroughOrReturn;
230  }
231  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
232    return MaybeFallThrough;
233  // This says AlwaysFallThrough for calls to functions that are not marked
234  // noreturn, that don't return.  If people would like this warning to be more
235  // accurate, such functions should be marked as noreturn.
236  return AlwaysFallThrough;
237}
238
239namespace {
240
241struct CheckFallThroughDiagnostics {
242  unsigned diag_MaybeFallThrough_HasNoReturn;
243  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
244  unsigned diag_AlwaysFallThrough_HasNoReturn;
245  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
246  unsigned diag_NeverFallThroughOrReturn;
247  bool funMode;
248  SourceLocation FuncLoc;
249
250  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
251    CheckFallThroughDiagnostics D;
252    D.FuncLoc = Func->getLocation();
253    D.diag_MaybeFallThrough_HasNoReturn =
254      diag::warn_falloff_noreturn_function;
255    D.diag_MaybeFallThrough_ReturnsNonVoid =
256      diag::warn_maybe_falloff_nonvoid_function;
257    D.diag_AlwaysFallThrough_HasNoReturn =
258      diag::warn_falloff_noreturn_function;
259    D.diag_AlwaysFallThrough_ReturnsNonVoid =
260      diag::warn_falloff_nonvoid_function;
261
262    // Don't suggest that virtual functions be marked "noreturn", since they
263    // might be overridden by non-noreturn functions.
264    bool isVirtualMethod = false;
265    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
266      isVirtualMethod = Method->isVirtual();
267
268    if (!isVirtualMethod)
269      D.diag_NeverFallThroughOrReturn =
270        diag::warn_suggest_noreturn_function;
271    else
272      D.diag_NeverFallThroughOrReturn = 0;
273
274    D.funMode = true;
275    return D;
276  }
277
278  static CheckFallThroughDiagnostics MakeForBlock() {
279    CheckFallThroughDiagnostics D;
280    D.diag_MaybeFallThrough_HasNoReturn =
281      diag::err_noreturn_block_has_return_expr;
282    D.diag_MaybeFallThrough_ReturnsNonVoid =
283      diag::err_maybe_falloff_nonvoid_block;
284    D.diag_AlwaysFallThrough_HasNoReturn =
285      diag::err_noreturn_block_has_return_expr;
286    D.diag_AlwaysFallThrough_ReturnsNonVoid =
287      diag::err_falloff_nonvoid_block;
288    D.diag_NeverFallThroughOrReturn =
289      diag::warn_suggest_noreturn_block;
290    D.funMode = false;
291    return D;
292  }
293
294  bool checkDiagnostics(Diagnostic &D, bool ReturnsVoid,
295                        bool HasNoReturn) const {
296    if (funMode) {
297      return (ReturnsVoid ||
298              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
299                                   FuncLoc) == Diagnostic::Ignored)
300        && (!HasNoReturn ||
301            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
302                                 FuncLoc) == Diagnostic::Ignored)
303        && (!ReturnsVoid ||
304            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
305              == Diagnostic::Ignored);
306    }
307
308    // For blocks.
309    return  ReturnsVoid && !HasNoReturn
310            && (!ReturnsVoid ||
311                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
312                  == Diagnostic::Ignored);
313  }
314};
315
316}
317
318/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
319/// function that should return a value.  Check that we don't fall off the end
320/// of a noreturn function.  We assume that functions and blocks not marked
321/// noreturn will return.
322static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
323                                    const BlockExpr *blkExpr,
324                                    const CheckFallThroughDiagnostics& CD,
325                                    AnalysisContext &AC) {
326
327  bool ReturnsVoid = false;
328  bool HasNoReturn = false;
329
330  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
331    ReturnsVoid = FD->getResultType()->isVoidType();
332    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
333       FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
334  }
335  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
336    ReturnsVoid = MD->getResultType()->isVoidType();
337    HasNoReturn = MD->hasAttr<NoReturnAttr>();
338  }
339  else if (isa<BlockDecl>(D)) {
340    QualType BlockTy = blkExpr->getType();
341    if (const FunctionType *FT =
342          BlockTy->getPointeeType()->getAs<FunctionType>()) {
343      if (FT->getResultType()->isVoidType())
344        ReturnsVoid = true;
345      if (FT->getNoReturnAttr())
346        HasNoReturn = true;
347    }
348  }
349
350  Diagnostic &Diags = S.getDiagnostics();
351
352  // Short circuit for compilation speed.
353  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
354      return;
355
356  // FIXME: Function try block
357  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
358    switch (CheckFallThrough(AC)) {
359      case UnknownFallThrough:
360        break;
361
362      case MaybeFallThrough:
363        if (HasNoReturn)
364          S.Diag(Compound->getRBracLoc(),
365                 CD.diag_MaybeFallThrough_HasNoReturn);
366        else if (!ReturnsVoid)
367          S.Diag(Compound->getRBracLoc(),
368                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
369        break;
370      case AlwaysFallThrough:
371        if (HasNoReturn)
372          S.Diag(Compound->getRBracLoc(),
373                 CD.diag_AlwaysFallThrough_HasNoReturn);
374        else if (!ReturnsVoid)
375          S.Diag(Compound->getRBracLoc(),
376                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
377        break;
378      case NeverFallThroughOrReturn:
379        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn)
380          S.Diag(Compound->getLBracLoc(),
381                 CD.diag_NeverFallThroughOrReturn);
382        break;
383      case NeverFallThrough:
384        break;
385    }
386  }
387}
388
389//===----------------------------------------------------------------------===//
390// -Wuninitialized
391//===----------------------------------------------------------------------===//
392
393namespace {
394/// ContainsReference - A visitor class to search for references to
395/// a particular declaration (the needle) within any evaluated component of an
396/// expression (recursively).
397class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
398  bool FoundReference;
399  const DeclRefExpr *Needle;
400
401public:
402  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
403    : EvaluatedExprVisitor<ContainsReference>(Context),
404      FoundReference(false), Needle(Needle) {}
405
406  void VisitExpr(Expr *E) {
407    // Stop evaluating if we already have a reference.
408    if (FoundReference)
409      return;
410
411    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
412  }
413
414  void VisitDeclRefExpr(DeclRefExpr *E) {
415    if (E == Needle)
416      FoundReference = true;
417    else
418      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
419  }
420
421  bool doesContainReference() const { return FoundReference; }
422};
423}
424
425/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
426/// uninitialized variable. This manages the different forms of diagnostic
427/// emitted for particular types of uses. Returns true if the use was diagnosed
428/// as a warning. If a pariticular use is one we omit warnings for, returns
429/// false.
430static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
431                                     const Expr *E, bool isAlwaysUninit) {
432  bool isSelfInit = false;
433
434  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
435    if (isAlwaysUninit) {
436      // Inspect the initializer of the variable declaration which is
437      // being referenced prior to its initialization. We emit
438      // specialized diagnostics for self-initialization, and we
439      // specifically avoid warning about self references which take the
440      // form of:
441      //
442      //   int x = x;
443      //
444      // This is used to indicate to GCC that 'x' is intentionally left
445      // uninitialized. Proven code paths which access 'x' in
446      // an uninitialized state after this will still warn.
447      //
448      // TODO: Should we suppress maybe-uninitialized warnings for
449      // variables initialized in this way?
450      if (const Expr *Initializer = VD->getInit()) {
451        if (DRE == Initializer->IgnoreParenImpCasts())
452          return false;
453
454        ContainsReference CR(S.Context, DRE);
455        CR.Visit(const_cast<Expr*>(Initializer));
456        isSelfInit = CR.doesContainReference();
457      }
458      if (isSelfInit) {
459        S.Diag(DRE->getLocStart(),
460               diag::warn_uninit_self_reference_in_init)
461        << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
462      } else {
463        S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
464          << VD->getDeclName() << DRE->getSourceRange();
465      }
466    } else {
467      S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
468        << VD->getDeclName() << DRE->getSourceRange();
469    }
470  } else {
471    const BlockExpr *BE = cast<BlockExpr>(E);
472    S.Diag(BE->getLocStart(),
473           isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
474                          : diag::warn_maybe_uninit_var_captured_by_block)
475      << VD->getDeclName();
476  }
477
478  // Report where the variable was declared when the use wasn't within
479  // the initializer of that declaration.
480  if (!isSelfInit)
481    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
482      << VD->getDeclName();
483
484  return true;
485}
486
487static void SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
488  // Don't issue a fixit if there is already an initializer.
489  if (VD->getInit())
490    return;
491
492  // Suggest possible initialization (if any).
493  const char *initialization = 0;
494  QualType VariableTy = VD->getType().getCanonicalType();
495
496  if (VariableTy->isObjCObjectPointerType() ||
497      VariableTy->isBlockPointerType()) {
498    // Check if 'nil' is defined.
499    if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil")))
500      initialization = " = nil";
501    else
502      initialization = " = 0";
503  }
504  else if (VariableTy->isRealFloatingType())
505    initialization = " = 0.0";
506  else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus)
507    initialization = " = false";
508  else if (VariableTy->isEnumeralType())
509    return;
510  else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) {
511    if (S.Context.getLangOptions().CPlusPlus0x)
512      initialization = " = nullptr";
513    // Check if 'NULL' is defined.
514    else if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL")))
515      initialization = " = NULL";
516    else
517      initialization = " = 0";
518  }
519  else if (VariableTy->isScalarType())
520    initialization = " = 0";
521
522  if (initialization) {
523    SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
524    S.Diag(loc, diag::note_var_fixit_add_initialization)
525      << FixItHint::CreateInsertion(loc, initialization);
526  }
527}
528
529typedef std::pair<const Expr*, bool> UninitUse;
530
531namespace {
532struct SLocSort {
533  bool operator()(const UninitUse &a, const UninitUse &b) {
534    SourceLocation aLoc = a.first->getLocStart();
535    SourceLocation bLoc = b.first->getLocStart();
536    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
537  }
538};
539
540class UninitValsDiagReporter : public UninitVariablesHandler {
541  Sema &S;
542  typedef SmallVector<UninitUse, 2> UsesVec;
543  typedef llvm::DenseMap<const VarDecl *, UsesVec*> UsesMap;
544  UsesMap *uses;
545
546public:
547  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
548  ~UninitValsDiagReporter() {
549    flushDiagnostics();
550  }
551
552  void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
553                                 bool isAlwaysUninit) {
554    if (!uses)
555      uses = new UsesMap();
556
557    UsesVec *&vec = (*uses)[vd];
558    if (!vec)
559      vec = new UsesVec();
560
561    vec->push_back(std::make_pair(ex, isAlwaysUninit));
562  }
563
564  void flushDiagnostics() {
565    if (!uses)
566      return;
567
568    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
569      const VarDecl *vd = i->first;
570      UsesVec *vec = i->second;
571
572      // Sort the uses by their SourceLocations.  While not strictly
573      // guaranteed to produce them in line/column order, this will provide
574      // a stable ordering.
575      std::sort(vec->begin(), vec->end(), SLocSort());
576
577      for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
578           ++vi) {
579        if (!DiagnoseUninitializedUse(S, vd, vi->first,
580                                      /*isAlwaysUninit=*/vi->second))
581          continue;
582
583        SuggestInitializationFixit(S, vd);
584
585        // Skip further diagnostics for this variable. We try to warn only on
586        // the first point at which a variable is used uninitialized.
587        break;
588      }
589
590      delete vec;
591    }
592    delete uses;
593  }
594};
595}
596
597
598//===----------------------------------------------------------------------===//
599// -Wthread-safety
600//===----------------------------------------------------------------------===//
601
602namespace {
603/// \brief Implements a set of CFGBlocks using a BitVector.
604///
605/// This class contains a minimal interface, primarily dictated by the SetType
606/// template parameter of the llvm::po_iterator template, as used with external
607/// storage. We also use this set to keep track of which CFGBlocks we visit
608/// during the analysis.
609class CFGBlockSet {
610  llvm::BitVector VisitedBlockIDs;
611
612public:
613  // po_iterator requires this iterator, but the only interface needed is the
614  // value_type typedef.
615  struct iterator {
616    typedef const CFGBlock *value_type;
617  };
618
619  CFGBlockSet() {}
620  CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
621
622  /// \brief Set the bit associated with a particular CFGBlock.
623  /// This is the important method for the SetType template parameter.
624  bool insert(const CFGBlock *Block) {
625    // Note that insert() is called by po_iterator, which doesn't check to make
626    // sure that Block is non-null.  Moreover, the CFGBlock iterator will
627    // occasionally hand out null pointers for pruned edges, so we catch those
628    // here.
629    if (Block == 0)
630      return false;  // if an edge is trivially false.
631    if (VisitedBlockIDs.test(Block->getBlockID()))
632      return false;
633    VisitedBlockIDs.set(Block->getBlockID());
634    return true;
635  }
636
637  /// \brief Check if the bit for a CFGBlock has been already set.
638  /// This method is for tracking visited blocks in the main threadsafety loop.
639  /// Block must not be null.
640  bool alreadySet(const CFGBlock *Block) {
641    return VisitedBlockIDs.test(Block->getBlockID());
642  }
643};
644
645/// \brief We create a helper class which we use to iterate through CFGBlocks in
646/// the topological order.
647class TopologicallySortedCFG {
648  typedef llvm::po_iterator<const CFG*, CFGBlockSet, true>  po_iterator;
649
650  std::vector<const CFGBlock*> Blocks;
651
652public:
653  typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
654
655  TopologicallySortedCFG(const CFG *CFGraph) {
656    Blocks.reserve(CFGraph->getNumBlockIDs());
657    CFGBlockSet BSet(CFGraph);
658
659    for (po_iterator I = po_iterator::begin(CFGraph, BSet),
660         E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
661      Blocks.push_back(*I);
662    }
663  }
664
665  iterator begin() {
666    return Blocks.rbegin();
667  }
668
669  iterator end() {
670    return Blocks.rend();
671  }
672};
673
674/// \brief A LockID object uniquely identifies a particular lock acquired, and
675/// is built from an Expr* (i.e. calling a lock function).
676///
677/// Thread-safety analysis works by comparing lock expressions.  Within the
678/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
679/// a particular lock object at run-time.  Subsequent occurrences of the same
680/// expression (where "same" means syntactic equality) will refer to the same
681/// run-time object if three conditions hold:
682/// (1) Local variables in the expression, such as "x" have not changed.
683/// (2) Values on the heap that affect the expression have not changed.
684/// (3) The expression involves only pure function calls.
685/// The current implementation assumes, but does not verify, that multiple uses
686/// of the same lock expression satisfies these criteria.
687///
688/// Clang introduces an additional wrinkle, which is that it is difficult to
689/// derive canonical expressions, or compare expressions directly for equality.
690/// Thus, we identify a lock not by an Expr, but by the set of named
691/// declarations that are referenced by the Expr.  In other words,
692/// x->foo->bar.mu will be a four element vector with the Decls for
693/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
694/// for all practical purposes.
695///
696/// Note we will need to perform substitution on "this" and function parameter
697/// names when constructing a lock expression.
698///
699/// For example:
700/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
701/// void myFunc(C *X) { ... X->lock() ... }
702/// The original expression for the lock acquired by myFunc is "this->Mu", but
703/// "X" is substituted for "this" so we get X->Mu();
704///
705/// For another example:
706/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
707/// MyList *MyL;
708/// foo(MyL);  // requires lock MyL->Mu to be held
709///
710/// FIXME: In C++0x Mutexes are the objects that control access to shared
711/// variables, while Locks are the objects that acquire and release Mutexes. We
712/// may want to switch to this new terminology soon, in which case we should
713/// rename this class "Mutex" and rename "LockId" to "MutexId", as well as
714/// making sure that the terms Lock and Mutex throughout this code are
715/// consistent with C++0x
716///
717/// FIXME: We should also pick one and canonicalize all usage of lock vs acquire
718/// and unlock vs release as verbs.
719class LockID {
720  SmallVector<NamedDecl*, 2> DeclSeq;
721
722  /// Build a Decl sequence representing the lock from the given expression.
723  /// Recursive function that bottoms out when the final DeclRefExpr is reached.
724  void buildLock(Expr *Exp) {
725    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
726      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
727      DeclSeq.push_back(ND);
728    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
729      NamedDecl *ND = ME->getMemberDecl();
730      DeclSeq.push_back(ND);
731      buildLock(ME->getBase());
732    } else {
733      // FIXME: add diagnostic
734      llvm::report_fatal_error("Expected lock expression!");
735    }
736  }
737
738public:
739  LockID(Expr *LExpr) {
740    buildLock(LExpr);
741    assert(!DeclSeq.empty());
742  }
743
744  bool operator==(const LockID &other) const {
745    return DeclSeq == other.DeclSeq;
746  }
747
748  bool operator!=(const LockID &other) const {
749    return !(*this == other);
750  }
751
752  // SmallVector overloads Operator< to do lexicographic ordering. Note that
753  // we use pointer equality (and <) to compare NamedDecls. This means the order
754  // of LockIDs in a lockset is nondeterministic. In order to output
755  // diagnostics in a deterministic ordering, we must order all diagnostics to
756  // output by SourceLocation when iterating through this lockset.
757  bool operator<(const LockID &other) const {
758    return DeclSeq < other.DeclSeq;
759  }
760
761  /// \brief Returns the name of the first Decl in the list for a given LockID;
762  /// e.g. the lock expression foo.bar() has name "bar".
763  /// The caret will point unambiguously to the lock expression, so using this
764  /// name in diagnostics is a way to get simple, and consistent, lock names.
765  /// We do not want to output the entire expression text for security reasons.
766  StringRef getName() const {
767    return DeclSeq.front()->getName();
768  }
769
770  void Profile(llvm::FoldingSetNodeID &ID) const {
771    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
772         E = DeclSeq.end(); I != E; ++I) {
773      ID.AddPointer(*I);
774    }
775  }
776};
777
778/// \brief This is a helper class that stores info about the most recent
779/// accquire of a Lock.
780///
781/// The main body of the analysis maps LockIDs to LockDatas.
782struct LockData {
783  SourceLocation AcquireLoc;
784
785  LockData(SourceLocation Loc) : AcquireLoc(Loc) {}
786
787  bool operator==(const LockData &other) const {
788    return AcquireLoc == other.AcquireLoc;
789  }
790
791  bool operator!=(const LockData &other) const {
792    return !(*this == other);
793  }
794
795  void Profile(llvm::FoldingSetNodeID &ID) const {
796    ID.AddInteger(AcquireLoc.getRawEncoding());
797  }
798};
799
800/// A Lockset maps each LockID (defined above) to information about how it has
801/// been locked.
802typedef llvm::ImmutableMap<LockID, LockData> Lockset;
803
804/// \brief We use this class to visit different types of expressions in
805/// CFGBlocks, and build up the lockset.
806/// An expression may cause us to add or remove locks from the lockset, or else
807/// output error messages related to missing locks.
808/// FIXME: In future, we may be able to not inherit from a visitor.
809class BuildLockset : public StmtVisitor<BuildLockset> {
810  Sema &S;
811  Lockset LSet;
812  Lockset::Factory &LocksetFactory;
813
814  // Helper functions
815  void removeLock(SourceLocation UnlockLoc, Expr *LockExp);
816  void addLock(SourceLocation LockLoc, Expr *LockExp);
817
818public:
819  BuildLockset(Sema &S, Lockset LS, Lockset::Factory &F)
820    : StmtVisitor<BuildLockset>(), S(S), LSet(LS),
821      LocksetFactory(F) {}
822
823  Lockset getLockset() {
824    return LSet;
825  }
826
827  void VisitDeclRefExpr(DeclRefExpr *Exp);
828  void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
829};
830
831/// \brief Add a new lock to the lockset, warning if the lock is already there.
832/// \param LockExp The lock expression corresponding to the lock to be added
833/// \param LockLoc The source location of the acquire
834void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp) {
835  LockID Lock(LockExp);
836  LockData NewLockData(LockLoc);
837
838  if (LSet.contains(Lock))
839    S.Diag(LockLoc, diag::warn_double_lock) << Lock.getName();
840
841  LSet = LocksetFactory.add(LSet, Lock, NewLockData);
842}
843
844/// \brief Remove a lock from the lockset, warning if the lock is not there.
845/// \param LockExp The lock expression corresponding to the lock to be removed
846/// \param UnlockLoc The source location of the unlock (only used in error msg)
847void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp) {
848  LockID Lock(LockExp);
849
850  Lockset NewLSet = LocksetFactory.remove(LSet, Lock);
851  if(NewLSet == LSet)
852    S.Diag(UnlockLoc, diag::warn_unlock_but_no_acquire) << Lock.getName();
853
854  LSet = NewLSet;
855}
856
857void BuildLockset::VisitDeclRefExpr(DeclRefExpr *Exp) {
858  // FIXME: checking for guarded_by/var and pt_guarded_by/var
859}
860
861/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
862/// the method that is being called and add, remove or check locks in the
863/// lockset accordingly.
864void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
865  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
866
867  SourceLocation ExpLocation = Exp->getExprLoc();
868  Expr *Parent = Exp->getImplicitObjectArgument();
869
870  if(!D || !D->hasAttrs())
871    return;
872
873  AttrVec &ArgAttrs = D->getAttrs();
874  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
875    Attr *Attr = ArgAttrs[i];
876    switch (Attr->getKind()) {
877      // When we encounter an exclusive lock function, we need to add the lock
878      // to our lockset.
879      case attr::ExclusiveLockFunction: {
880        ExclusiveLockFunctionAttr *ELFAttr =
881          cast<ExclusiveLockFunctionAttr>(Attr);
882
883        if (ELFAttr->args_size() == 0) {// The lock held is the "this" object.
884          addLock(ExpLocation, Parent);
885          break;
886        }
887
888        for (ExclusiveLockFunctionAttr::args_iterator I = ELFAttr->args_begin(),
889             E = ELFAttr->args_end(); I != E; ++I)
890          addLock(ExpLocation, *I);
891        // FIXME: acquired_after/acquired_before annotations
892        break;
893      }
894
895      // When we encounter an unlock function, we need to remove unlocked locks
896      // from the lockset, and flag a warning if they are not there.
897      case attr::UnlockFunction: {
898        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
899
900        if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
901          removeLock(ExpLocation, Parent);
902          break;
903        }
904
905        for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
906            E = UFAttr->args_end(); I != E; ++I)
907          removeLock(ExpLocation, *I);
908        break;
909      }
910
911      // Ignore other (non thread-safety) attributes
912      default:
913        break;
914    }
915  }
916}
917
918typedef std::pair<SourceLocation, PartialDiagnostic> DelayedDiag;
919typedef llvm::SmallVector<DelayedDiag, 4> DiagList;
920
921struct SortDiagBySourceLocation {
922  Sema &S;
923
924  SortDiagBySourceLocation(Sema &S) : S(S) {}
925
926  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
927    // Although this call will be slow, this is only called when outputting
928    // multiple warnings.
929    return S.getSourceManager().isBeforeInTranslationUnit(left.first,
930                                                          right.first);
931  }
932};
933} // end anonymous namespace
934
935/// \brief Emit all buffered diagnostics in order of sourcelocation.
936/// We need to output diagnostics produced while iterating through
937/// the lockset in deterministic order, so this function orders diagnostics
938/// and outputs them.
939static void EmitDiagnostics(Sema &S, DiagList &D) {
940  SortDiagBySourceLocation SortDiagBySL(S);
941  sort(D.begin(), D.end(), SortDiagBySL);
942  for (DiagList::iterator I = D.begin(), E = D.end(); I != E; ++I)
943    S.Diag(I->first, I->second);
944}
945
946/// \brief Compute the intersection of two locksets and issue warnings for any
947/// locks in the symmetric difference.
948///
949/// This function is used at a merge point in the CFG when comparing the lockset
950/// of each branch being merged. For example, given the following sequence:
951/// A; if () then B; else C; D; we need to check that the lockset after B and C
952/// are the same. In the event of a difference, we use the intersection of these
953/// two locksets at the start of D.
954static Lockset intersectAndWarn(Sema &S, Lockset LSet1, Lockset LSet2,
955                                Lockset::Factory &Fact) {
956  Lockset Intersection = LSet1;
957  DiagList Warnings;
958
959  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
960    if (!LSet1.contains(I.getKey())) {
961      const LockID &MissingLock = I.getKey();
962      const LockData &MissingLockData = I.getData();
963      PartialDiagnostic Warning =
964        S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
965      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
966    }
967  }
968
969  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
970    if (!LSet2.contains(I.getKey())) {
971      const LockID &MissingLock = I.getKey();
972      const LockData &MissingLockData = I.getData();
973      PartialDiagnostic Warning =
974        S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
975      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
976      Intersection = Fact.remove(Intersection, MissingLock);
977    }
978  }
979
980  EmitDiagnostics(S, Warnings);
981  return Intersection;
982}
983
984/// \brief Returns the location of the first Stmt in a Block.
985static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
986  SourceLocation Loc;
987  for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
988       BI != BE; ++BI) {
989    if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
990      Loc = CfgStmt->getStmt()->getLocStart();
991      if (Loc.isValid()) return Loc;
992    }
993  }
994  if (Stmt *S = Block->getTerminator().getStmt()) {
995    Loc = S->getLocStart();
996    if (Loc.isValid()) return Loc;
997  }
998  return Loc;
999}
1000
1001/// \brief Warn about different locksets along backedges of loops.
1002/// This function is called when we encounter a back edge. At that point,
1003/// we need to verify that the lockset before taking the backedge is the
1004/// same as the lockset before entering the loop.
1005///
1006/// \param LoopEntrySet Locks held before starting the loop
1007/// \param LoopReentrySet Locks held in the last CFG block of the loop
1008static void warnBackEdgeUnequalLocksets(Sema &S, const Lockset LoopReentrySet,
1009                                        const Lockset LoopEntrySet,
1010                                        SourceLocation FirstLocInLoop) {
1011  assert(FirstLocInLoop.isValid());
1012  DiagList Warnings;
1013
1014  // Warn for locks held at the start of the loop, but not the end.
1015  for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
1016       I != E; ++I) {
1017    if (!LoopReentrySet.contains(I.getKey())) {
1018      const LockID &MissingLock = I.getKey();
1019      // We report this error at the location of the first statement in a loop
1020      PartialDiagnostic Warning =
1021        S.PDiag(diag::warn_expecting_lock_held_on_loop)
1022          << MissingLock.getName();
1023      Warnings.push_back(DelayedDiag(FirstLocInLoop, Warning));
1024    }
1025  }
1026
1027  // Warn for locks held at the end of the loop, but not at the start.
1028  for (Lockset::iterator I = LoopReentrySet.begin(), E = LoopReentrySet.end();
1029       I != E; ++I) {
1030    if (!LoopEntrySet.contains(I.getKey())) {
1031      const LockID &MissingLock = I.getKey();
1032      const LockData &MissingLockData = I.getData();
1033      PartialDiagnostic Warning =
1034        S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
1035      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
1036    }
1037  }
1038
1039  EmitDiagnostics(S, Warnings);
1040}
1041
1042/// \brief Check a function's CFG for thread-safety violations.
1043///
1044/// We traverse the blocks in the CFG, compute the set of locks that are held
1045/// at the end of each block, and issue warnings for thread safety violations.
1046/// Each block in the CFG is traversed exactly once.
1047static void checkThreadSafety(Sema &S, AnalysisContext &AC) {
1048  CFG *CFGraph = AC.getCFG();
1049  if (!CFGraph) return;
1050
1051  Lockset::Factory LocksetFactory;
1052
1053  // FIXME: Swith to SmallVector? Otherwise improve performance impact?
1054  std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
1055                                     LocksetFactory.getEmptyMap());
1056  std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
1057                                    LocksetFactory.getEmptyMap());
1058
1059  // We need to explore the CFG via a "topological" ordering.
1060  // That way, we will be guaranteed to have information about required
1061  // predecessor locksets when exploring a new block.
1062  TopologicallySortedCFG SortedGraph(CFGraph);
1063  CFGBlockSet VisitedBlocks(CFGraph);
1064
1065  for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
1066       E = SortedGraph.end(); I!= E; ++I) {
1067    const CFGBlock *CurrBlock = *I;
1068    int CurrBlockID = CurrBlock->getBlockID();
1069
1070    VisitedBlocks.insert(CurrBlock);
1071
1072    // Use the default initial lockset in case there are no predecessors.
1073    Lockset &Entryset = EntryLocksets[CurrBlockID];
1074    Lockset &Exitset = ExitLocksets[CurrBlockID];
1075
1076    // Iterate through the predecessor blocks and warn if the lockset for all
1077    // predecessors is not the same. We take the entry lockset of the current
1078    // block to be the intersection of all previous locksets.
1079    // FIXME: By keeping the intersection, we may output more errors in future
1080    // for a lock which is not in the intersection, but was in the union. We
1081    // may want to also keep the union in future. As an example, let's say
1082    // the intersection contains Lock L, and the union contains L and M.
1083    // Later we unlock M. At this point, we would output an error because we
1084    // never locked M; although the real error is probably that we forgot to
1085    // lock M on all code paths. Conversely, let's say that later we lock M.
1086    // In this case, we should compare against the intersection instead of the
1087    // union because the real error is probably that we forgot to unlock M on
1088    // all code paths.
1089    bool LocksetInitialized = false;
1090    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1091         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1092
1093      // if *PI -> CurrBlock is a back edge
1094      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
1095        continue;
1096
1097      int PrevBlockID = (*PI)->getBlockID();
1098      if (!LocksetInitialized) {
1099        Entryset = ExitLocksets[PrevBlockID];
1100        LocksetInitialized = true;
1101      } else {
1102        Entryset = intersectAndWarn(S, Entryset, ExitLocksets[PrevBlockID],
1103                                LocksetFactory);
1104      }
1105    }
1106
1107    BuildLockset LocksetBuilder(S, Entryset, LocksetFactory);
1108    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1109         BE = CurrBlock->end(); BI != BE; ++BI) {
1110      if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
1111        LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
1112    }
1113    Exitset = LocksetBuilder.getLockset();
1114
1115    // For every back edge from CurrBlock (the end of the loop) to another block
1116    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
1117    // the one held at the beginning of FirstLoopBlock. We can look up the
1118    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
1119    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1120         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1121
1122      // if CurrBlock -> *SI is *not* a back edge
1123      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1124        continue;
1125
1126      CFGBlock *FirstLoopBlock = *SI;
1127      SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
1128
1129      assert(FirstLoopLocation.isValid());
1130      // Fail gracefully in release code.
1131      if (!FirstLoopLocation.isValid())
1132        continue;
1133
1134      Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
1135      Lockset LoopEnd = ExitLocksets[CurrBlockID];
1136      warnBackEdgeUnequalLocksets(S, LoopEnd, PreLoop, FirstLoopLocation);
1137    }
1138  }
1139
1140  Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
1141  if (!FinalLockset.isEmpty()) {
1142    DiagList Warnings;
1143    for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
1144         I != E; ++I) {
1145      const LockID &MissingLock = I.getKey();
1146      const LockData &MissingLockData = I.getData();
1147
1148      std::string FunName = "<unknown>";
1149      if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
1150        FunName = ContextDecl->getDeclName().getAsString();
1151      }
1152
1153      PartialDiagnostic Warning =
1154        S.PDiag(diag::warn_locks_not_released)
1155          << MissingLock.getName() << FunName;
1156      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
1157    }
1158    EmitDiagnostics(S, Warnings);
1159  }
1160}
1161
1162
1163//===----------------------------------------------------------------------===//
1164// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1165//  warnings on a function, method, or block.
1166//===----------------------------------------------------------------------===//
1167
1168clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1169  enableCheckFallThrough = 1;
1170  enableCheckUnreachable = 0;
1171  enableThreadSafetyAnalysis = 0;
1172}
1173
1174clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1175  : S(s),
1176    NumFunctionsAnalyzed(0),
1177    NumFunctionsWithBadCFGs(0),
1178    NumCFGBlocks(0),
1179    MaxCFGBlocksPerFunction(0),
1180    NumUninitAnalysisFunctions(0),
1181    NumUninitAnalysisVariables(0),
1182    MaxUninitAnalysisVariablesPerFunction(0),
1183    NumUninitAnalysisBlockVisits(0),
1184    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1185  Diagnostic &D = S.getDiagnostics();
1186  DefaultPolicy.enableCheckUnreachable = (unsigned)
1187    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1188        Diagnostic::Ignored);
1189  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1190    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1191     Diagnostic::Ignored);
1192
1193}
1194
1195static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1196  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1197       i = fscope->PossiblyUnreachableDiags.begin(),
1198       e = fscope->PossiblyUnreachableDiags.end();
1199       i != e; ++i) {
1200    const sema::PossiblyUnreachableDiag &D = *i;
1201    S.Diag(D.Loc, D.PD);
1202  }
1203}
1204
1205void clang::sema::
1206AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1207                                     sema::FunctionScopeInfo *fscope,
1208                                     const Decl *D, const BlockExpr *blkExpr) {
1209
1210  // We avoid doing analysis-based warnings when there are errors for
1211  // two reasons:
1212  // (1) The CFGs often can't be constructed (if the body is invalid), so
1213  //     don't bother trying.
1214  // (2) The code already has problems; running the analysis just takes more
1215  //     time.
1216  Diagnostic &Diags = S.getDiagnostics();
1217
1218  // Do not do any analysis for declarations in system headers if we are
1219  // going to just ignore them.
1220  if (Diags.getSuppressSystemWarnings() &&
1221      S.SourceMgr.isInSystemHeader(D->getLocation()))
1222    return;
1223
1224  // For code in dependent contexts, we'll do this at instantiation time.
1225  if (cast<DeclContext>(D)->isDependentContext())
1226    return;
1227
1228  if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1229    // Flush out any possibly unreachable diagnostics.
1230    flushDiagnostics(S, fscope);
1231    return;
1232  }
1233
1234  const Stmt *Body = D->getBody();
1235  assert(Body);
1236
1237  AnalysisContext AC(D, 0);
1238
1239  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1240  // explosion for destrutors that can result and the compile time hit.
1241  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1242  AC.getCFGBuildOptions().AddEHEdges = false;
1243  AC.getCFGBuildOptions().AddInitializers = true;
1244  AC.getCFGBuildOptions().AddImplicitDtors = true;
1245
1246  // Force that certain expressions appear as CFGElements in the CFG.  This
1247  // is used to speed up various analyses.
1248  // FIXME: This isn't the right factoring.  This is here for initial
1249  // prototyping, but we need a way for analyses to say what expressions they
1250  // expect to always be CFGElements and then fill in the BuildOptions
1251  // appropriately.  This is essentially a layering violation.
1252  if (P.enableCheckUnreachable) {
1253    // Unreachable code analysis requires a linearized CFG.
1254    AC.getCFGBuildOptions().setAllAlwaysAdd();
1255  }
1256  else {
1257    AC.getCFGBuildOptions()
1258      .setAlwaysAdd(Stmt::BinaryOperatorClass)
1259      .setAlwaysAdd(Stmt::BlockExprClass)
1260      .setAlwaysAdd(Stmt::CStyleCastExprClass)
1261      .setAlwaysAdd(Stmt::DeclRefExprClass)
1262      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1263      .setAlwaysAdd(Stmt::UnaryOperatorClass);
1264  }
1265
1266  // Construct the analysis context with the specified CFG build options.
1267
1268  // Emit delayed diagnostics.
1269  if (!fscope->PossiblyUnreachableDiags.empty()) {
1270    bool analyzed = false;
1271
1272    // Register the expressions with the CFGBuilder.
1273    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1274         i = fscope->PossiblyUnreachableDiags.begin(),
1275         e = fscope->PossiblyUnreachableDiags.end();
1276         i != e; ++i) {
1277      if (const Stmt *stmt = i->stmt)
1278        AC.registerForcedBlockExpression(stmt);
1279    }
1280
1281    if (AC.getCFG()) {
1282      analyzed = true;
1283      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1284            i = fscope->PossiblyUnreachableDiags.begin(),
1285            e = fscope->PossiblyUnreachableDiags.end();
1286            i != e; ++i)
1287      {
1288        const sema::PossiblyUnreachableDiag &D = *i;
1289        bool processed = false;
1290        if (const Stmt *stmt = i->stmt) {
1291          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1292          assert(block);
1293          if (CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis()) {
1294            // Can this block be reached from the entrance?
1295            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1296              S.Diag(D.Loc, D.PD);
1297            processed = true;
1298          }
1299        }
1300        if (!processed) {
1301          // Emit the warning anyway if we cannot map to a basic block.
1302          S.Diag(D.Loc, D.PD);
1303        }
1304      }
1305    }
1306
1307    if (!analyzed)
1308      flushDiagnostics(S, fscope);
1309  }
1310
1311
1312  // Warning: check missing 'return'
1313  if (P.enableCheckFallThrough) {
1314    const CheckFallThroughDiagnostics &CD =
1315      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1316                         : CheckFallThroughDiagnostics::MakeForFunction(D));
1317    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1318  }
1319
1320  // Warning: check for unreachable code
1321  if (P.enableCheckUnreachable)
1322    CheckUnreachable(S, AC);
1323
1324  // Check for thread safety violations
1325  if (P.enableThreadSafetyAnalysis)
1326    checkThreadSafety(S, AC);
1327
1328  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1329      != Diagnostic::Ignored ||
1330      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1331      != Diagnostic::Ignored) {
1332    if (CFG *cfg = AC.getCFG()) {
1333      UninitValsDiagReporter reporter(S);
1334      UninitVariablesAnalysisStats stats;
1335      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1336      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1337                                        reporter, stats);
1338
1339      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1340        ++NumUninitAnalysisFunctions;
1341        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1342        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1343        MaxUninitAnalysisVariablesPerFunction =
1344            std::max(MaxUninitAnalysisVariablesPerFunction,
1345                     stats.NumVariablesAnalyzed);
1346        MaxUninitAnalysisBlockVisitsPerFunction =
1347            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1348                     stats.NumBlockVisits);
1349      }
1350    }
1351  }
1352
1353  // Collect statistics about the CFG if it was built.
1354  if (S.CollectStats && AC.isCFGBuilt()) {
1355    ++NumFunctionsAnalyzed;
1356    if (CFG *cfg = AC.getCFG()) {
1357      // If we successfully built a CFG for this context, record some more
1358      // detail information about it.
1359      NumCFGBlocks += cfg->getNumBlockIDs();
1360      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1361                                         cfg->getNumBlockIDs());
1362    } else {
1363      ++NumFunctionsWithBadCFGs;
1364    }
1365  }
1366}
1367
1368void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1369  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1370
1371  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1372  unsigned AvgCFGBlocksPerFunction =
1373      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1374  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1375               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1376               << "  " << NumCFGBlocks << " CFG blocks built.\n"
1377               << "  " << AvgCFGBlocksPerFunction
1378               << " average CFG blocks per function.\n"
1379               << "  " << MaxCFGBlocksPerFunction
1380               << " max CFG blocks per function.\n";
1381
1382  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1383      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1384  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1385      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1386  llvm::errs() << NumUninitAnalysisFunctions
1387               << " functions analyzed for uninitialiazed variables\n"
1388               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
1389               << "  " << AvgUninitVariablesPerFunction
1390               << " average variables per function.\n"
1391               << "  " << MaxUninitAnalysisVariablesPerFunction
1392               << " max variables per function.\n"
1393               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
1394               << "  " << AvgUninitBlockVisitsPerFunction
1395               << " average block visits per function.\n"
1396               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
1397               << " max block visits per function.\n";
1398}
1399