1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ExternalSemaSource.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30#include "TypeLocBuilder.h"
31
32using namespace clang;
33
34/// Check whether the given method, which must be in the 'init'
35/// family, is a valid member of that family.
36///
37/// \param receiverTypeIfCall - if null, check this as if declaring it;
38///   if non-null, check this as if making a call to it with the given
39///   receiver type
40///
41/// \return true to indicate that there was an error and appropriate
42///   actions were taken
43bool Sema::checkInitMethod(ObjCMethodDecl *method,
44                           QualType receiverTypeIfCall) {
45  if (method->isInvalidDecl()) return true;
46
47  // This castAs is safe: methods that don't return an object
48  // pointer won't be inferred as inits and will reject an explicit
49  // objc_method_family(init).
50
51  // We ignore protocols here.  Should we?  What about Class?
52
53  const ObjCObjectType *result =
54      method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
55
56  if (result->isObjCId()) {
57    return false;
58  } else if (result->isObjCClass()) {
59    // fall through: always an error
60  } else {
61    ObjCInterfaceDecl *resultClass = result->getInterface();
62    assert(resultClass && "unexpected object type!");
63
64    // It's okay for the result type to still be a forward declaration
65    // if we're checking an interface declaration.
66    if (!resultClass->hasDefinition()) {
67      if (receiverTypeIfCall.isNull() &&
68          !isa<ObjCImplementationDecl>(method->getDeclContext()))
69        return false;
70
71    // Otherwise, we try to compare class types.
72    } else {
73      // If this method was declared in a protocol, we can't check
74      // anything unless we have a receiver type that's an interface.
75      const ObjCInterfaceDecl *receiverClass = nullptr;
76      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
77        if (receiverTypeIfCall.isNull())
78          return false;
79
80        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
81          ->getInterfaceDecl();
82
83        // This can be null for calls to e.g. id<Foo>.
84        if (!receiverClass) return false;
85      } else {
86        receiverClass = method->getClassInterface();
87        assert(receiverClass && "method not associated with a class!");
88      }
89
90      // If either class is a subclass of the other, it's fine.
91      if (receiverClass->isSuperClassOf(resultClass) ||
92          resultClass->isSuperClassOf(receiverClass))
93        return false;
94    }
95  }
96
97  SourceLocation loc = method->getLocation();
98
99  // If we're in a system header, and this is not a call, just make
100  // the method unusable.
101  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
102    method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
103                      UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
104    return true;
105  }
106
107  // Otherwise, it's an error.
108  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
109  method->setInvalidDecl();
110  return true;
111}
112
113void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
114                                   const ObjCMethodDecl *Overridden) {
115  if (Overridden->hasRelatedResultType() &&
116      !NewMethod->hasRelatedResultType()) {
117    // This can only happen when the method follows a naming convention that
118    // implies a related result type, and the original (overridden) method has
119    // a suitable return type, but the new (overriding) method does not have
120    // a suitable return type.
121    QualType ResultType = NewMethod->getReturnType();
122    SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
123
124    // Figure out which class this method is part of, if any.
125    ObjCInterfaceDecl *CurrentClass
126      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
127    if (!CurrentClass) {
128      DeclContext *DC = NewMethod->getDeclContext();
129      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
130        CurrentClass = Cat->getClassInterface();
131      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
132        CurrentClass = Impl->getClassInterface();
133      else if (ObjCCategoryImplDecl *CatImpl
134               = dyn_cast<ObjCCategoryImplDecl>(DC))
135        CurrentClass = CatImpl->getClassInterface();
136    }
137
138    if (CurrentClass) {
139      Diag(NewMethod->getLocation(),
140           diag::warn_related_result_type_compatibility_class)
141        << Context.getObjCInterfaceType(CurrentClass)
142        << ResultType
143        << ResultTypeRange;
144    } else {
145      Diag(NewMethod->getLocation(),
146           diag::warn_related_result_type_compatibility_protocol)
147        << ResultType
148        << ResultTypeRange;
149    }
150
151    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
152      Diag(Overridden->getLocation(),
153           diag::note_related_result_type_family)
154        << /*overridden method*/ 0
155        << Family;
156    else
157      Diag(Overridden->getLocation(),
158           diag::note_related_result_type_overridden);
159  }
160  if (getLangOpts().ObjCAutoRefCount) {
161    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
162         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
163        Diag(NewMethod->getLocation(),
164             diag::err_nsreturns_retained_attribute_mismatch) << 1;
165        Diag(Overridden->getLocation(), diag::note_previous_decl)
166        << "method";
167    }
168    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
169              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
170        Diag(NewMethod->getLocation(),
171             diag::err_nsreturns_retained_attribute_mismatch) << 0;
172        Diag(Overridden->getLocation(), diag::note_previous_decl)
173        << "method";
174    }
175    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
176                                         oe = Overridden->param_end();
177    for (ObjCMethodDecl::param_iterator
178           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
179         ni != ne && oi != oe; ++ni, ++oi) {
180      const ParmVarDecl *oldDecl = (*oi);
181      ParmVarDecl *newDecl = (*ni);
182      if (newDecl->hasAttr<NSConsumedAttr>() !=
183          oldDecl->hasAttr<NSConsumedAttr>()) {
184        Diag(newDecl->getLocation(),
185             diag::err_nsconsumed_attribute_mismatch);
186        Diag(oldDecl->getLocation(), diag::note_previous_decl)
187          << "parameter";
188      }
189    }
190  }
191}
192
193/// \brief Check a method declaration for compatibility with the Objective-C
194/// ARC conventions.
195bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
196  ObjCMethodFamily family = method->getMethodFamily();
197  switch (family) {
198  case OMF_None:
199  case OMF_finalize:
200  case OMF_retain:
201  case OMF_release:
202  case OMF_autorelease:
203  case OMF_retainCount:
204  case OMF_self:
205  case OMF_initialize:
206  case OMF_performSelector:
207    return false;
208
209  case OMF_dealloc:
210    if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
211      SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
212      if (ResultTypeRange.isInvalid())
213        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
214            << method->getReturnType()
215            << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
216      else
217        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
218            << method->getReturnType()
219            << FixItHint::CreateReplacement(ResultTypeRange, "void");
220      return true;
221    }
222    return false;
223
224  case OMF_init:
225    // If the method doesn't obey the init rules, don't bother annotating it.
226    if (checkInitMethod(method, QualType()))
227      return true;
228
229    method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
230
231    // Don't add a second copy of this attribute, but otherwise don't
232    // let it be suppressed.
233    if (method->hasAttr<NSReturnsRetainedAttr>())
234      return false;
235    break;
236
237  case OMF_alloc:
238  case OMF_copy:
239  case OMF_mutableCopy:
240  case OMF_new:
241    if (method->hasAttr<NSReturnsRetainedAttr>() ||
242        method->hasAttr<NSReturnsNotRetainedAttr>() ||
243        method->hasAttr<NSReturnsAutoreleasedAttr>())
244      return false;
245    break;
246  }
247
248  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
249  return false;
250}
251
252static void DiagnoseObjCImplementedDeprecations(Sema &S,
253                                                NamedDecl *ND,
254                                                SourceLocation ImplLoc,
255                                                int select) {
256  if (ND && ND->isDeprecated()) {
257    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
258    if (select == 0)
259      S.Diag(ND->getLocation(), diag::note_method_declared_at)
260        << ND->getDeclName();
261    else
262      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
263  }
264}
265
266/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
267/// pool.
268void Sema::AddAnyMethodToGlobalPool(Decl *D) {
269  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
270
271  // If we don't have a valid method decl, simply return.
272  if (!MDecl)
273    return;
274  if (MDecl->isInstanceMethod())
275    AddInstanceMethodToGlobalPool(MDecl, true);
276  else
277    AddFactoryMethodToGlobalPool(MDecl, true);
278}
279
280/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
281/// has explicit ownership attribute; false otherwise.
282static bool
283HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
284  QualType T = Param->getType();
285
286  if (const PointerType *PT = T->getAs<PointerType>()) {
287    T = PT->getPointeeType();
288  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
289    T = RT->getPointeeType();
290  } else {
291    return true;
292  }
293
294  // If we have a lifetime qualifier, but it's local, we must have
295  // inferred it. So, it is implicit.
296  return !T.getLocalQualifiers().hasObjCLifetime();
297}
298
299/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
300/// and user declared, in the method definition's AST.
301void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
302  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
303  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
304
305  // If we don't have a valid method decl, simply return.
306  if (!MDecl)
307    return;
308
309  // Allow all of Sema to see that we are entering a method definition.
310  PushDeclContext(FnBodyScope, MDecl);
311  PushFunctionScope();
312
313  // Create Decl objects for each parameter, entrring them in the scope for
314  // binding to their use.
315
316  // Insert the invisible arguments, self and _cmd!
317  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
318
319  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
320  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
321
322  // The ObjC parser requires parameter names so there's no need to check.
323  CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
324                           /*CheckParameterNames=*/false);
325
326  // Introduce all of the other parameters into this scope.
327  for (auto *Param : MDecl->params()) {
328    if (!Param->isInvalidDecl() &&
329        getLangOpts().ObjCAutoRefCount &&
330        !HasExplicitOwnershipAttr(*this, Param))
331      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
332            Param->getType();
333
334    if (Param->getIdentifier())
335      PushOnScopeChains(Param, FnBodyScope);
336  }
337
338  // In ARC, disallow definition of retain/release/autorelease/retainCount
339  if (getLangOpts().ObjCAutoRefCount) {
340    switch (MDecl->getMethodFamily()) {
341    case OMF_retain:
342    case OMF_retainCount:
343    case OMF_release:
344    case OMF_autorelease:
345      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
346        << 0 << MDecl->getSelector();
347      break;
348
349    case OMF_None:
350    case OMF_dealloc:
351    case OMF_finalize:
352    case OMF_alloc:
353    case OMF_init:
354    case OMF_mutableCopy:
355    case OMF_copy:
356    case OMF_new:
357    case OMF_self:
358    case OMF_initialize:
359    case OMF_performSelector:
360      break;
361    }
362  }
363
364  // Warn on deprecated methods under -Wdeprecated-implementations,
365  // and prepare for warning on missing super calls.
366  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
367    ObjCMethodDecl *IMD =
368      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
369
370    if (IMD) {
371      ObjCImplDecl *ImplDeclOfMethodDef =
372        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
373      ObjCContainerDecl *ContDeclOfMethodDecl =
374        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
375      ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
376      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
377        ImplDeclOfMethodDecl = OID->getImplementation();
378      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
379        if (CD->IsClassExtension()) {
380          if (ObjCInterfaceDecl *OID = CD->getClassInterface())
381            ImplDeclOfMethodDecl = OID->getImplementation();
382        } else
383            ImplDeclOfMethodDecl = CD->getImplementation();
384      }
385      // No need to issue deprecated warning if deprecated mehod in class/category
386      // is being implemented in its own implementation (no overriding is involved).
387      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
388        DiagnoseObjCImplementedDeprecations(*this,
389                                          dyn_cast<NamedDecl>(IMD),
390                                          MDecl->getLocation(), 0);
391    }
392
393    if (MDecl->getMethodFamily() == OMF_init) {
394      if (MDecl->isDesignatedInitializerForTheInterface()) {
395        getCurFunction()->ObjCIsDesignatedInit = true;
396        getCurFunction()->ObjCWarnForNoDesignatedInitChain =
397            IC->getSuperClass() != nullptr;
398      } else if (IC->hasDesignatedInitializers()) {
399        getCurFunction()->ObjCIsSecondaryInit = true;
400        getCurFunction()->ObjCWarnForNoInitDelegation = true;
401      }
402    }
403
404    // If this is "dealloc" or "finalize", set some bit here.
405    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
406    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
407    // Only do this if the current class actually has a superclass.
408    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
409      ObjCMethodFamily Family = MDecl->getMethodFamily();
410      if (Family == OMF_dealloc) {
411        if (!(getLangOpts().ObjCAutoRefCount ||
412              getLangOpts().getGC() == LangOptions::GCOnly))
413          getCurFunction()->ObjCShouldCallSuper = true;
414
415      } else if (Family == OMF_finalize) {
416        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
417          getCurFunction()->ObjCShouldCallSuper = true;
418
419      } else {
420        const ObjCMethodDecl *SuperMethod =
421          SuperClass->lookupMethod(MDecl->getSelector(),
422                                   MDecl->isInstanceMethod());
423        getCurFunction()->ObjCShouldCallSuper =
424          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
425      }
426    }
427  }
428}
429
430namespace {
431
432// Callback to only accept typo corrections that are Objective-C classes.
433// If an ObjCInterfaceDecl* is given to the constructor, then the validation
434// function will reject corrections to that class.
435class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
436 public:
437  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
438  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
439      : CurrentIDecl(IDecl) {}
440
441  bool ValidateCandidate(const TypoCorrection &candidate) override {
442    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
443    return ID && !declaresSameEntity(ID, CurrentIDecl);
444  }
445
446 private:
447  ObjCInterfaceDecl *CurrentIDecl;
448};
449
450} // end anonymous namespace
451
452static void diagnoseUseOfProtocols(Sema &TheSema,
453                                   ObjCContainerDecl *CD,
454                                   ObjCProtocolDecl *const *ProtoRefs,
455                                   unsigned NumProtoRefs,
456                                   const SourceLocation *ProtoLocs) {
457  assert(ProtoRefs);
458  // Diagnose availability in the context of the ObjC container.
459  Sema::ContextRAII SavedContext(TheSema, CD);
460  for (unsigned i = 0; i < NumProtoRefs; ++i) {
461    (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
462  }
463}
464
465void Sema::
466ActOnSuperClassOfClassInterface(Scope *S,
467                                SourceLocation AtInterfaceLoc,
468                                ObjCInterfaceDecl *IDecl,
469                                IdentifierInfo *ClassName,
470                                SourceLocation ClassLoc,
471                                IdentifierInfo *SuperName,
472                                SourceLocation SuperLoc,
473                                ArrayRef<ParsedType> SuperTypeArgs,
474                                SourceRange SuperTypeArgsRange) {
475  // Check if a different kind of symbol declared in this scope.
476  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
477                                         LookupOrdinaryName);
478
479  if (!PrevDecl) {
480    // Try to correct for a typo in the superclass name without correcting
481    // to the class we're defining.
482    if (TypoCorrection Corrected = CorrectTypo(
483            DeclarationNameInfo(SuperName, SuperLoc),
484            LookupOrdinaryName, TUScope,
485            nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
486            CTK_ErrorRecovery)) {
487      diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
488                   << SuperName << ClassName);
489      PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
490    }
491  }
492
493  if (declaresSameEntity(PrevDecl, IDecl)) {
494    Diag(SuperLoc, diag::err_recursive_superclass)
495      << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
496    IDecl->setEndOfDefinitionLoc(ClassLoc);
497  } else {
498    ObjCInterfaceDecl *SuperClassDecl =
499    dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
500    QualType SuperClassType;
501
502    // Diagnose classes that inherit from deprecated classes.
503    if (SuperClassDecl) {
504      (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
505      SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
506    }
507
508    if (PrevDecl && !SuperClassDecl) {
509      // The previous declaration was not a class decl. Check if we have a
510      // typedef. If we do, get the underlying class type.
511      if (const TypedefNameDecl *TDecl =
512          dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
513        QualType T = TDecl->getUnderlyingType();
514        if (T->isObjCObjectType()) {
515          if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
516            SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
517            SuperClassType = Context.getTypeDeclType(TDecl);
518
519            // This handles the following case:
520            // @interface NewI @end
521            // typedef NewI DeprI __attribute__((deprecated("blah")))
522            // @interface SI : DeprI /* warn here */ @end
523            (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
524          }
525        }
526      }
527
528      // This handles the following case:
529      //
530      // typedef int SuperClass;
531      // @interface MyClass : SuperClass {} @end
532      //
533      if (!SuperClassDecl) {
534        Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
535        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
536      }
537    }
538
539    if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
540      if (!SuperClassDecl)
541        Diag(SuperLoc, diag::err_undef_superclass)
542          << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
543      else if (RequireCompleteType(SuperLoc,
544                                   SuperClassType,
545                                   diag::err_forward_superclass,
546                                   SuperClassDecl->getDeclName(),
547                                   ClassName,
548                                   SourceRange(AtInterfaceLoc, ClassLoc))) {
549        SuperClassDecl = nullptr;
550        SuperClassType = QualType();
551      }
552    }
553
554    if (SuperClassType.isNull()) {
555      assert(!SuperClassDecl && "Failed to set SuperClassType?");
556      return;
557    }
558
559    // Handle type arguments on the superclass.
560    TypeSourceInfo *SuperClassTInfo = nullptr;
561    if (!SuperTypeArgs.empty()) {
562      TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
563                                        S,
564                                        SuperLoc,
565                                        CreateParsedType(SuperClassType,
566                                                         nullptr),
567                                        SuperTypeArgsRange.getBegin(),
568                                        SuperTypeArgs,
569                                        SuperTypeArgsRange.getEnd(),
570                                        SourceLocation(),
571                                        { },
572                                        { },
573                                        SourceLocation());
574      if (!fullSuperClassType.isUsable())
575        return;
576
577      SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
578                                         &SuperClassTInfo);
579    }
580
581    if (!SuperClassTInfo) {
582      SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
583                                                         SuperLoc);
584    }
585
586    IDecl->setSuperClass(SuperClassTInfo);
587    IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
588  }
589}
590
591DeclResult Sema::actOnObjCTypeParam(Scope *S,
592                                    ObjCTypeParamVariance variance,
593                                    SourceLocation varianceLoc,
594                                    unsigned index,
595                                    IdentifierInfo *paramName,
596                                    SourceLocation paramLoc,
597                                    SourceLocation colonLoc,
598                                    ParsedType parsedTypeBound) {
599  // If there was an explicitly-provided type bound, check it.
600  TypeSourceInfo *typeBoundInfo = nullptr;
601  if (parsedTypeBound) {
602    // The type bound can be any Objective-C pointer type.
603    QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
604    if (typeBound->isObjCObjectPointerType()) {
605      // okay
606    } else if (typeBound->isObjCObjectType()) {
607      // The user forgot the * on an Objective-C pointer type, e.g.,
608      // "T : NSView".
609      SourceLocation starLoc = getLocForEndOfToken(
610                                 typeBoundInfo->getTypeLoc().getEndLoc());
611      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
612           diag::err_objc_type_param_bound_missing_pointer)
613        << typeBound << paramName
614        << FixItHint::CreateInsertion(starLoc, " *");
615
616      // Create a new type location builder so we can update the type
617      // location information we have.
618      TypeLocBuilder builder;
619      builder.pushFullCopy(typeBoundInfo->getTypeLoc());
620
621      // Create the Objective-C pointer type.
622      typeBound = Context.getObjCObjectPointerType(typeBound);
623      ObjCObjectPointerTypeLoc newT
624        = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
625      newT.setStarLoc(starLoc);
626
627      // Form the new type source information.
628      typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
629    } else {
630      // Not a valid type bound.
631      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
632           diag::err_objc_type_param_bound_nonobject)
633        << typeBound << paramName;
634
635      // Forget the bound; we'll default to id later.
636      typeBoundInfo = nullptr;
637    }
638
639    // Type bounds cannot have qualifiers (even indirectly) or explicit
640    // nullability.
641    if (typeBoundInfo) {
642      QualType typeBound = typeBoundInfo->getType();
643      TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
644      if (qual || typeBound.hasQualifiers()) {
645        bool diagnosed = false;
646        SourceRange rangeToRemove;
647        if (qual) {
648          if (auto attr = qual.getAs<AttributedTypeLoc>()) {
649            rangeToRemove = attr.getLocalSourceRange();
650            if (attr.getTypePtr()->getImmediateNullability()) {
651              Diag(attr.getLocStart(),
652                   diag::err_objc_type_param_bound_explicit_nullability)
653                << paramName << typeBound
654                << FixItHint::CreateRemoval(rangeToRemove);
655              diagnosed = true;
656            }
657          }
658        }
659
660        if (!diagnosed) {
661          Diag(qual ? qual.getLocStart()
662                    : typeBoundInfo->getTypeLoc().getLocStart(),
663              diag::err_objc_type_param_bound_qualified)
664            << paramName << typeBound << typeBound.getQualifiers().getAsString()
665            << FixItHint::CreateRemoval(rangeToRemove);
666        }
667
668        // If the type bound has qualifiers other than CVR, we need to strip
669        // them or we'll probably assert later when trying to apply new
670        // qualifiers.
671        Qualifiers quals = typeBound.getQualifiers();
672        quals.removeCVRQualifiers();
673        if (!quals.empty()) {
674          typeBoundInfo =
675             Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
676        }
677      }
678    }
679  }
680
681  // If there was no explicit type bound (or we removed it due to an error),
682  // use 'id' instead.
683  if (!typeBoundInfo) {
684    colonLoc = SourceLocation();
685    typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
686  }
687
688  // Create the type parameter.
689  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
690                                   index, paramLoc, paramName, colonLoc,
691                                   typeBoundInfo);
692}
693
694ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
695                                                SourceLocation lAngleLoc,
696                                                ArrayRef<Decl *> typeParamsIn,
697                                                SourceLocation rAngleLoc) {
698  // We know that the array only contains Objective-C type parameters.
699  ArrayRef<ObjCTypeParamDecl *>
700    typeParams(
701      reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
702      typeParamsIn.size());
703
704  // Diagnose redeclarations of type parameters.
705  // We do this now because Objective-C type parameters aren't pushed into
706  // scope until later (after the instance variable block), but we want the
707  // diagnostics to occur right after we parse the type parameter list.
708  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
709  for (auto typeParam : typeParams) {
710    auto known = knownParams.find(typeParam->getIdentifier());
711    if (known != knownParams.end()) {
712      Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
713        << typeParam->getIdentifier()
714        << SourceRange(known->second->getLocation());
715
716      typeParam->setInvalidDecl();
717    } else {
718      knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
719
720      // Push the type parameter into scope.
721      PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
722    }
723  }
724
725  // Create the parameter list.
726  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
727}
728
729void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
730  for (auto typeParam : *typeParamList) {
731    if (!typeParam->isInvalidDecl()) {
732      S->RemoveDecl(typeParam);
733      IdResolver.RemoveDecl(typeParam);
734    }
735  }
736}
737
738namespace {
739  /// The context in which an Objective-C type parameter list occurs, for use
740  /// in diagnostics.
741  enum class TypeParamListContext {
742    ForwardDeclaration,
743    Definition,
744    Category,
745    Extension
746  };
747} // end anonymous namespace
748
749/// Check consistency between two Objective-C type parameter lists, e.g.,
750/// between a category/extension and an \@interface or between an \@class and an
751/// \@interface.
752static bool checkTypeParamListConsistency(Sema &S,
753                                          ObjCTypeParamList *prevTypeParams,
754                                          ObjCTypeParamList *newTypeParams,
755                                          TypeParamListContext newContext) {
756  // If the sizes don't match, complain about that.
757  if (prevTypeParams->size() != newTypeParams->size()) {
758    SourceLocation diagLoc;
759    if (newTypeParams->size() > prevTypeParams->size()) {
760      diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
761    } else {
762      diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
763    }
764
765    S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
766      << static_cast<unsigned>(newContext)
767      << (newTypeParams->size() > prevTypeParams->size())
768      << prevTypeParams->size()
769      << newTypeParams->size();
770
771    return true;
772  }
773
774  // Match up the type parameters.
775  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
776    ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
777    ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
778
779    // Check for consistency of the variance.
780    if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
781      if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
782          newContext != TypeParamListContext::Definition) {
783        // When the new type parameter is invariant and is not part
784        // of the definition, just propagate the variance.
785        newTypeParam->setVariance(prevTypeParam->getVariance());
786      } else if (prevTypeParam->getVariance()
787                   == ObjCTypeParamVariance::Invariant &&
788                 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
789                   cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
790                     ->getDefinition() == prevTypeParam->getDeclContext())) {
791        // When the old parameter is invariant and was not part of the
792        // definition, just ignore the difference because it doesn't
793        // matter.
794      } else {
795        {
796          // Diagnose the conflict and update the second declaration.
797          SourceLocation diagLoc = newTypeParam->getVarianceLoc();
798          if (diagLoc.isInvalid())
799            diagLoc = newTypeParam->getLocStart();
800
801          auto diag = S.Diag(diagLoc,
802                             diag::err_objc_type_param_variance_conflict)
803                        << static_cast<unsigned>(newTypeParam->getVariance())
804                        << newTypeParam->getDeclName()
805                        << static_cast<unsigned>(prevTypeParam->getVariance())
806                        << prevTypeParam->getDeclName();
807          switch (prevTypeParam->getVariance()) {
808          case ObjCTypeParamVariance::Invariant:
809            diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
810            break;
811
812          case ObjCTypeParamVariance::Covariant:
813          case ObjCTypeParamVariance::Contravariant: {
814            StringRef newVarianceStr
815               = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
816                   ? "__covariant"
817                   : "__contravariant";
818            if (newTypeParam->getVariance()
819                  == ObjCTypeParamVariance::Invariant) {
820              diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
821                                                 (newVarianceStr + " ").str());
822            } else {
823              diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
824                                               newVarianceStr);
825            }
826          }
827          }
828        }
829
830        S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
831          << prevTypeParam->getDeclName();
832
833        // Override the variance.
834        newTypeParam->setVariance(prevTypeParam->getVariance());
835      }
836    }
837
838    // If the bound types match, there's nothing to do.
839    if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
840                              newTypeParam->getUnderlyingType()))
841      continue;
842
843    // If the new type parameter's bound was explicit, complain about it being
844    // different from the original.
845    if (newTypeParam->hasExplicitBound()) {
846      SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
847                                    ->getTypeLoc().getSourceRange();
848      S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
849        << newTypeParam->getUnderlyingType()
850        << newTypeParam->getDeclName()
851        << prevTypeParam->hasExplicitBound()
852        << prevTypeParam->getUnderlyingType()
853        << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
854        << prevTypeParam->getDeclName()
855        << FixItHint::CreateReplacement(
856             newBoundRange,
857             prevTypeParam->getUnderlyingType().getAsString(
858               S.Context.getPrintingPolicy()));
859
860      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
861        << prevTypeParam->getDeclName();
862
863      // Override the new type parameter's bound type with the previous type,
864      // so that it's consistent.
865      newTypeParam->setTypeSourceInfo(
866        S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
867      continue;
868    }
869
870    // The new type parameter got the implicit bound of 'id'. That's okay for
871    // categories and extensions (overwrite it later), but not for forward
872    // declarations and @interfaces, because those must be standalone.
873    if (newContext == TypeParamListContext::ForwardDeclaration ||
874        newContext == TypeParamListContext::Definition) {
875      // Diagnose this problem for forward declarations and definitions.
876      SourceLocation insertionLoc
877        = S.getLocForEndOfToken(newTypeParam->getLocation());
878      std::string newCode
879        = " : " + prevTypeParam->getUnderlyingType().getAsString(
880                    S.Context.getPrintingPolicy());
881      S.Diag(newTypeParam->getLocation(),
882             diag::err_objc_type_param_bound_missing)
883        << prevTypeParam->getUnderlyingType()
884        << newTypeParam->getDeclName()
885        << (newContext == TypeParamListContext::ForwardDeclaration)
886        << FixItHint::CreateInsertion(insertionLoc, newCode);
887
888      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
889        << prevTypeParam->getDeclName();
890    }
891
892    // Update the new type parameter's bound to match the previous one.
893    newTypeParam->setTypeSourceInfo(
894      S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
895  }
896
897  return false;
898}
899
900Decl *Sema::
901ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
902                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
903                         ObjCTypeParamList *typeParamList,
904                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
905                         ArrayRef<ParsedType> SuperTypeArgs,
906                         SourceRange SuperTypeArgsRange,
907                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
908                         const SourceLocation *ProtoLocs,
909                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
910  assert(ClassName && "Missing class identifier");
911
912  // Check for another declaration kind with the same name.
913  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
914                                         LookupOrdinaryName, ForRedeclaration);
915
916  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
917    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
918    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
919  }
920
921  // Create a declaration to describe this @interface.
922  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
923
924  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
925    // A previous decl with a different name is because of
926    // @compatibility_alias, for example:
927    // \code
928    //   @class NewImage;
929    //   @compatibility_alias OldImage NewImage;
930    // \endcode
931    // A lookup for 'OldImage' will return the 'NewImage' decl.
932    //
933    // In such a case use the real declaration name, instead of the alias one,
934    // otherwise we will break IdentifierResolver and redecls-chain invariants.
935    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
936    // has been aliased.
937    ClassName = PrevIDecl->getIdentifier();
938  }
939
940  // If there was a forward declaration with type parameters, check
941  // for consistency.
942  if (PrevIDecl) {
943    if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
944      if (typeParamList) {
945        // Both have type parameter lists; check for consistency.
946        if (checkTypeParamListConsistency(*this, prevTypeParamList,
947                                          typeParamList,
948                                          TypeParamListContext::Definition)) {
949          typeParamList = nullptr;
950        }
951      } else {
952        Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
953          << ClassName;
954        Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
955          << ClassName;
956
957        // Clone the type parameter list.
958        SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
959        for (auto typeParam : *prevTypeParamList) {
960          clonedTypeParams.push_back(
961            ObjCTypeParamDecl::Create(
962              Context,
963              CurContext,
964              typeParam->getVariance(),
965              SourceLocation(),
966              typeParam->getIndex(),
967              SourceLocation(),
968              typeParam->getIdentifier(),
969              SourceLocation(),
970              Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
971        }
972
973        typeParamList = ObjCTypeParamList::create(Context,
974                                                  SourceLocation(),
975                                                  clonedTypeParams,
976                                                  SourceLocation());
977      }
978    }
979  }
980
981  ObjCInterfaceDecl *IDecl
982    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
983                                typeParamList, PrevIDecl, ClassLoc);
984  if (PrevIDecl) {
985    // Class already seen. Was it a definition?
986    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
987      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
988        << PrevIDecl->getDeclName();
989      Diag(Def->getLocation(), diag::note_previous_definition);
990      IDecl->setInvalidDecl();
991    }
992  }
993
994  if (AttrList)
995    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
996  PushOnScopeChains(IDecl, TUScope);
997
998  // Start the definition of this class. If we're in a redefinition case, there
999  // may already be a definition, so we'll end up adding to it.
1000  if (!IDecl->hasDefinition())
1001    IDecl->startDefinition();
1002
1003  if (SuperName) {
1004    // Diagnose availability in the context of the @interface.
1005    ContextRAII SavedContext(*this, IDecl);
1006
1007    ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1008                                    ClassName, ClassLoc,
1009                                    SuperName, SuperLoc, SuperTypeArgs,
1010                                    SuperTypeArgsRange);
1011  } else { // we have a root class.
1012    IDecl->setEndOfDefinitionLoc(ClassLoc);
1013  }
1014
1015  // Check then save referenced protocols.
1016  if (NumProtoRefs) {
1017    diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1018                           NumProtoRefs, ProtoLocs);
1019    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1020                           ProtoLocs, Context);
1021    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1022  }
1023
1024  CheckObjCDeclScope(IDecl);
1025  return ActOnObjCContainerStartDefinition(IDecl);
1026}
1027
1028/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1029/// typedef'ed use for a qualified super class and adds them to the list
1030/// of the protocols.
1031void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1032                                   IdentifierInfo *SuperName,
1033                                   SourceLocation SuperLoc) {
1034  if (!SuperName)
1035    return;
1036  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1037                                      LookupOrdinaryName);
1038  if (!IDecl)
1039    return;
1040
1041  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1042    QualType T = TDecl->getUnderlyingType();
1043    if (T->isObjCObjectType())
1044      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
1045        ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1046  }
1047}
1048
1049/// ActOnCompatibilityAlias - this action is called after complete parsing of
1050/// a \@compatibility_alias declaration. It sets up the alias relationships.
1051Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1052                                    IdentifierInfo *AliasName,
1053                                    SourceLocation AliasLocation,
1054                                    IdentifierInfo *ClassName,
1055                                    SourceLocation ClassLocation) {
1056  // Look for previous declaration of alias name
1057  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
1058                                      LookupOrdinaryName, ForRedeclaration);
1059  if (ADecl) {
1060    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1061    Diag(ADecl->getLocation(), diag::note_previous_declaration);
1062    return nullptr;
1063  }
1064  // Check for class declaration
1065  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1066                                       LookupOrdinaryName, ForRedeclaration);
1067  if (const TypedefNameDecl *TDecl =
1068        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1069    QualType T = TDecl->getUnderlyingType();
1070    if (T->isObjCObjectType()) {
1071      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1072        ClassName = IDecl->getIdentifier();
1073        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1074                                  LookupOrdinaryName, ForRedeclaration);
1075      }
1076    }
1077  }
1078  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1079  if (!CDecl) {
1080    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1081    if (CDeclU)
1082      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1083    return nullptr;
1084  }
1085
1086  // Everything checked out, instantiate a new alias declaration AST.
1087  ObjCCompatibleAliasDecl *AliasDecl =
1088    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1089
1090  if (!CheckObjCDeclScope(AliasDecl))
1091    PushOnScopeChains(AliasDecl, TUScope);
1092
1093  return AliasDecl;
1094}
1095
1096bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1097  IdentifierInfo *PName,
1098  SourceLocation &Ploc, SourceLocation PrevLoc,
1099  const ObjCList<ObjCProtocolDecl> &PList) {
1100
1101  bool res = false;
1102  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1103       E = PList.end(); I != E; ++I) {
1104    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1105                                                 Ploc)) {
1106      if (PDecl->getIdentifier() == PName) {
1107        Diag(Ploc, diag::err_protocol_has_circular_dependency);
1108        Diag(PrevLoc, diag::note_previous_definition);
1109        res = true;
1110      }
1111
1112      if (!PDecl->hasDefinition())
1113        continue;
1114
1115      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1116            PDecl->getLocation(), PDecl->getReferencedProtocols()))
1117        res = true;
1118    }
1119  }
1120  return res;
1121}
1122
1123Decl *
1124Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
1125                                  IdentifierInfo *ProtocolName,
1126                                  SourceLocation ProtocolLoc,
1127                                  Decl * const *ProtoRefs,
1128                                  unsigned NumProtoRefs,
1129                                  const SourceLocation *ProtoLocs,
1130                                  SourceLocation EndProtoLoc,
1131                                  AttributeList *AttrList) {
1132  bool err = false;
1133  // FIXME: Deal with AttrList.
1134  assert(ProtocolName && "Missing protocol identifier");
1135  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1136                                              ForRedeclaration);
1137  ObjCProtocolDecl *PDecl = nullptr;
1138  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1139    // If we already have a definition, complain.
1140    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1141    Diag(Def->getLocation(), diag::note_previous_definition);
1142
1143    // Create a new protocol that is completely distinct from previous
1144    // declarations, and do not make this protocol available for name lookup.
1145    // That way, we'll end up completely ignoring the duplicate.
1146    // FIXME: Can we turn this into an error?
1147    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1148                                     ProtocolLoc, AtProtoInterfaceLoc,
1149                                     /*PrevDecl=*/nullptr);
1150    PDecl->startDefinition();
1151  } else {
1152    if (PrevDecl) {
1153      // Check for circular dependencies among protocol declarations. This can
1154      // only happen if this protocol was forward-declared.
1155      ObjCList<ObjCProtocolDecl> PList;
1156      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1157      err = CheckForwardProtocolDeclarationForCircularDependency(
1158              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1159    }
1160
1161    // Create the new declaration.
1162    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1163                                     ProtocolLoc, AtProtoInterfaceLoc,
1164                                     /*PrevDecl=*/PrevDecl);
1165
1166    PushOnScopeChains(PDecl, TUScope);
1167    PDecl->startDefinition();
1168  }
1169
1170  if (AttrList)
1171    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1172
1173  // Merge attributes from previous declarations.
1174  if (PrevDecl)
1175    mergeDeclAttributes(PDecl, PrevDecl);
1176
1177  if (!err && NumProtoRefs ) {
1178    /// Check then save referenced protocols.
1179    diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1180                           NumProtoRefs, ProtoLocs);
1181    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1182                           ProtoLocs, Context);
1183  }
1184
1185  CheckObjCDeclScope(PDecl);
1186  return ActOnObjCContainerStartDefinition(PDecl);
1187}
1188
1189static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1190                                          ObjCProtocolDecl *&UndefinedProtocol) {
1191  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1192    UndefinedProtocol = PDecl;
1193    return true;
1194  }
1195
1196  for (auto *PI : PDecl->protocols())
1197    if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1198      UndefinedProtocol = PI;
1199      return true;
1200    }
1201  return false;
1202}
1203
1204/// FindProtocolDeclaration - This routine looks up protocols and
1205/// issues an error if they are not declared. It returns list of
1206/// protocol declarations in its 'Protocols' argument.
1207void
1208Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1209                              ArrayRef<IdentifierLocPair> ProtocolId,
1210                              SmallVectorImpl<Decl *> &Protocols) {
1211  for (const IdentifierLocPair &Pair : ProtocolId) {
1212    ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1213    if (!PDecl) {
1214      TypoCorrection Corrected = CorrectTypo(
1215          DeclarationNameInfo(Pair.first, Pair.second),
1216          LookupObjCProtocolName, TUScope, nullptr,
1217          llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1218          CTK_ErrorRecovery);
1219      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1220        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1221                                    << Pair.first);
1222    }
1223
1224    if (!PDecl) {
1225      Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1226      continue;
1227    }
1228    // If this is a forward protocol declaration, get its definition.
1229    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1230      PDecl = PDecl->getDefinition();
1231
1232    // For an objc container, delay protocol reference checking until after we
1233    // can set the objc decl as the availability context, otherwise check now.
1234    if (!ForObjCContainer) {
1235      (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1236    }
1237
1238    // If this is a forward declaration and we are supposed to warn in this
1239    // case, do it.
1240    // FIXME: Recover nicely in the hidden case.
1241    ObjCProtocolDecl *UndefinedProtocol;
1242
1243    if (WarnOnDeclarations &&
1244        NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1245      Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1246      Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1247        << UndefinedProtocol;
1248    }
1249    Protocols.push_back(PDecl);
1250  }
1251}
1252
1253namespace {
1254// Callback to only accept typo corrections that are either
1255// Objective-C protocols or valid Objective-C type arguments.
1256class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1257  ASTContext &Context;
1258  Sema::LookupNameKind LookupKind;
1259 public:
1260  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1261                                    Sema::LookupNameKind lookupKind)
1262    : Context(context), LookupKind(lookupKind) { }
1263
1264  bool ValidateCandidate(const TypoCorrection &candidate) override {
1265    // If we're allowed to find protocols and we have a protocol, accept it.
1266    if (LookupKind != Sema::LookupOrdinaryName) {
1267      if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1268        return true;
1269    }
1270
1271    // If we're allowed to find type names and we have one, accept it.
1272    if (LookupKind != Sema::LookupObjCProtocolName) {
1273      // If we have a type declaration, we might accept this result.
1274      if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1275        // If we found a tag declaration outside of C++, skip it. This
1276        // can happy because we look for any name when there is no
1277        // bias to protocol or type names.
1278        if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1279          return false;
1280
1281        // Make sure the type is something we would accept as a type
1282        // argument.
1283        auto type = Context.getTypeDeclType(typeDecl);
1284        if (type->isObjCObjectPointerType() ||
1285            type->isBlockPointerType() ||
1286            type->isDependentType() ||
1287            type->isObjCObjectType())
1288          return true;
1289
1290        return false;
1291      }
1292
1293      // If we have an Objective-C class type, accept it; there will
1294      // be another fix to add the '*'.
1295      if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1296        return true;
1297
1298      return false;
1299    }
1300
1301    return false;
1302  }
1303};
1304} // end anonymous namespace
1305
1306void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1307       Scope *S,
1308       ParsedType baseType,
1309       SourceLocation lAngleLoc,
1310       ArrayRef<IdentifierInfo *> identifiers,
1311       ArrayRef<SourceLocation> identifierLocs,
1312       SourceLocation rAngleLoc,
1313       SourceLocation &typeArgsLAngleLoc,
1314       SmallVectorImpl<ParsedType> &typeArgs,
1315       SourceLocation &typeArgsRAngleLoc,
1316       SourceLocation &protocolLAngleLoc,
1317       SmallVectorImpl<Decl *> &protocols,
1318       SourceLocation &protocolRAngleLoc,
1319       bool warnOnIncompleteProtocols) {
1320  // Local function that updates the declaration specifiers with
1321  // protocol information.
1322  unsigned numProtocolsResolved = 0;
1323  auto resolvedAsProtocols = [&] {
1324    assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1325
1326    // Determine whether the base type is a parameterized class, in
1327    // which case we want to warn about typos such as
1328    // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1329    ObjCInterfaceDecl *baseClass = nullptr;
1330    QualType base = GetTypeFromParser(baseType, nullptr);
1331    bool allAreTypeNames = false;
1332    SourceLocation firstClassNameLoc;
1333    if (!base.isNull()) {
1334      if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1335        baseClass = objcObjectType->getInterface();
1336        if (baseClass) {
1337          if (auto typeParams = baseClass->getTypeParamList()) {
1338            if (typeParams->size() == numProtocolsResolved) {
1339              // Note that we should be looking for type names, too.
1340              allAreTypeNames = true;
1341            }
1342          }
1343        }
1344      }
1345    }
1346
1347    for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1348      ObjCProtocolDecl *&proto
1349        = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1350      // For an objc container, delay protocol reference checking until after we
1351      // can set the objc decl as the availability context, otherwise check now.
1352      if (!warnOnIncompleteProtocols) {
1353        (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1354      }
1355
1356      // If this is a forward protocol declaration, get its definition.
1357      if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1358        proto = proto->getDefinition();
1359
1360      // If this is a forward declaration and we are supposed to warn in this
1361      // case, do it.
1362      // FIXME: Recover nicely in the hidden case.
1363      ObjCProtocolDecl *forwardDecl = nullptr;
1364      if (warnOnIncompleteProtocols &&
1365          NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1366        Diag(identifierLocs[i], diag::warn_undef_protocolref)
1367          << proto->getDeclName();
1368        Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1369          << forwardDecl;
1370      }
1371
1372      // If everything this far has been a type name (and we care
1373      // about such things), check whether this name refers to a type
1374      // as well.
1375      if (allAreTypeNames) {
1376        if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1377                                          LookupOrdinaryName)) {
1378          if (isa<ObjCInterfaceDecl>(decl)) {
1379            if (firstClassNameLoc.isInvalid())
1380              firstClassNameLoc = identifierLocs[i];
1381          } else if (!isa<TypeDecl>(decl)) {
1382            // Not a type.
1383            allAreTypeNames = false;
1384          }
1385        } else {
1386          allAreTypeNames = false;
1387        }
1388      }
1389    }
1390
1391    // All of the protocols listed also have type names, and at least
1392    // one is an Objective-C class name. Check whether all of the
1393    // protocol conformances are declared by the base class itself, in
1394    // which case we warn.
1395    if (allAreTypeNames && firstClassNameLoc.isValid()) {
1396      llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1397      Context.CollectInheritedProtocols(baseClass, knownProtocols);
1398      bool allProtocolsDeclared = true;
1399      for (auto proto : protocols) {
1400        if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1401          allProtocolsDeclared = false;
1402          break;
1403        }
1404      }
1405
1406      if (allProtocolsDeclared) {
1407        Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1408          << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1409          << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1410                                        " *");
1411      }
1412    }
1413
1414    protocolLAngleLoc = lAngleLoc;
1415    protocolRAngleLoc = rAngleLoc;
1416    assert(protocols.size() == identifierLocs.size());
1417  };
1418
1419  // Attempt to resolve all of the identifiers as protocols.
1420  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1421    ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1422    protocols.push_back(proto);
1423    if (proto)
1424      ++numProtocolsResolved;
1425  }
1426
1427  // If all of the names were protocols, these were protocol qualifiers.
1428  if (numProtocolsResolved == identifiers.size())
1429    return resolvedAsProtocols();
1430
1431  // Attempt to resolve all of the identifiers as type names or
1432  // Objective-C class names. The latter is technically ill-formed,
1433  // but is probably something like \c NSArray<NSView *> missing the
1434  // \c*.
1435  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1436  SmallVector<TypeOrClassDecl, 4> typeDecls;
1437  unsigned numTypeDeclsResolved = 0;
1438  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1439    NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1440                                       LookupOrdinaryName);
1441    if (!decl) {
1442      typeDecls.push_back(TypeOrClassDecl());
1443      continue;
1444    }
1445
1446    if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1447      typeDecls.push_back(typeDecl);
1448      ++numTypeDeclsResolved;
1449      continue;
1450    }
1451
1452    if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1453      typeDecls.push_back(objcClass);
1454      ++numTypeDeclsResolved;
1455      continue;
1456    }
1457
1458    typeDecls.push_back(TypeOrClassDecl());
1459  }
1460
1461  AttributeFactory attrFactory;
1462
1463  // Local function that forms a reference to the given type or
1464  // Objective-C class declaration.
1465  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1466                                -> TypeResult {
1467    // Form declaration specifiers. They simply refer to the type.
1468    DeclSpec DS(attrFactory);
1469    const char* prevSpec; // unused
1470    unsigned diagID; // unused
1471    QualType type;
1472    if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1473      type = Context.getTypeDeclType(actualTypeDecl);
1474    else
1475      type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1476    TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1477    ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1478    DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1479                       parsedType, Context.getPrintingPolicy());
1480    // Use the identifier location for the type source range.
1481    DS.SetRangeStart(loc);
1482    DS.SetRangeEnd(loc);
1483
1484    // Form the declarator.
1485    Declarator D(DS, Declarator::TypeNameContext);
1486
1487    // If we have a typedef of an Objective-C class type that is missing a '*',
1488    // add the '*'.
1489    if (type->getAs<ObjCInterfaceType>()) {
1490      SourceLocation starLoc = getLocForEndOfToken(loc);
1491      ParsedAttributes parsedAttrs(attrFactory);
1492      D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1493                                                SourceLocation(),
1494                                                SourceLocation(),
1495                                                SourceLocation(),
1496                                                SourceLocation()),
1497                                                parsedAttrs,
1498                                                starLoc);
1499
1500      // Diagnose the missing '*'.
1501      Diag(loc, diag::err_objc_type_arg_missing_star)
1502        << type
1503        << FixItHint::CreateInsertion(starLoc, " *");
1504    }
1505
1506    // Convert this to a type.
1507    return ActOnTypeName(S, D);
1508  };
1509
1510  // Local function that updates the declaration specifiers with
1511  // type argument information.
1512  auto resolvedAsTypeDecls = [&] {
1513    // We did not resolve these as protocols.
1514    protocols.clear();
1515
1516    assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1517    // Map type declarations to type arguments.
1518    for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1519      // Map type reference to a type.
1520      TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1521      if (!type.isUsable()) {
1522        typeArgs.clear();
1523        return;
1524      }
1525
1526      typeArgs.push_back(type.get());
1527    }
1528
1529    typeArgsLAngleLoc = lAngleLoc;
1530    typeArgsRAngleLoc = rAngleLoc;
1531  };
1532
1533  // If all of the identifiers can be resolved as type names or
1534  // Objective-C class names, we have type arguments.
1535  if (numTypeDeclsResolved == identifiers.size())
1536    return resolvedAsTypeDecls();
1537
1538  // Error recovery: some names weren't found, or we have a mix of
1539  // type and protocol names. Go resolve all of the unresolved names
1540  // and complain if we can't find a consistent answer.
1541  LookupNameKind lookupKind = LookupAnyName;
1542  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1543    // If we already have a protocol or type. Check whether it is the
1544    // right thing.
1545    if (protocols[i] || typeDecls[i]) {
1546      // If we haven't figured out whether we want types or protocols
1547      // yet, try to figure it out from this name.
1548      if (lookupKind == LookupAnyName) {
1549        // If this name refers to both a protocol and a type (e.g., \c
1550        // NSObject), don't conclude anything yet.
1551        if (protocols[i] && typeDecls[i])
1552          continue;
1553
1554        // Otherwise, let this name decide whether we'll be correcting
1555        // toward types or protocols.
1556        lookupKind = protocols[i] ? LookupObjCProtocolName
1557                                  : LookupOrdinaryName;
1558        continue;
1559      }
1560
1561      // If we want protocols and we have a protocol, there's nothing
1562      // more to do.
1563      if (lookupKind == LookupObjCProtocolName && protocols[i])
1564        continue;
1565
1566      // If we want types and we have a type declaration, there's
1567      // nothing more to do.
1568      if (lookupKind == LookupOrdinaryName && typeDecls[i])
1569        continue;
1570
1571      // We have a conflict: some names refer to protocols and others
1572      // refer to types.
1573      Diag(identifierLocs[i], diag::err_objc_type_args_and_protocols)
1574        << (protocols[i] != nullptr)
1575        << identifiers[i]
1576        << identifiers[0]
1577        << SourceRange(identifierLocs[0]);
1578
1579      protocols.clear();
1580      typeArgs.clear();
1581      return;
1582    }
1583
1584    // Perform typo correction on the name.
1585    TypoCorrection corrected = CorrectTypo(
1586        DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1587        nullptr,
1588        llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1589                                                             lookupKind),
1590        CTK_ErrorRecovery);
1591    if (corrected) {
1592      // Did we find a protocol?
1593      if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1594        diagnoseTypo(corrected,
1595                     PDiag(diag::err_undeclared_protocol_suggest)
1596                       << identifiers[i]);
1597        lookupKind = LookupObjCProtocolName;
1598        protocols[i] = proto;
1599        ++numProtocolsResolved;
1600        continue;
1601      }
1602
1603      // Did we find a type?
1604      if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1605        diagnoseTypo(corrected,
1606                     PDiag(diag::err_unknown_typename_suggest)
1607                       << identifiers[i]);
1608        lookupKind = LookupOrdinaryName;
1609        typeDecls[i] = typeDecl;
1610        ++numTypeDeclsResolved;
1611        continue;
1612      }
1613
1614      // Did we find an Objective-C class?
1615      if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1616        diagnoseTypo(corrected,
1617                     PDiag(diag::err_unknown_type_or_class_name_suggest)
1618                       << identifiers[i] << true);
1619        lookupKind = LookupOrdinaryName;
1620        typeDecls[i] = objcClass;
1621        ++numTypeDeclsResolved;
1622        continue;
1623      }
1624    }
1625
1626    // We couldn't find anything.
1627    Diag(identifierLocs[i],
1628         (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1629          : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1630          : diag::err_unknown_typename))
1631      << identifiers[i];
1632    protocols.clear();
1633    typeArgs.clear();
1634    return;
1635  }
1636
1637  // If all of the names were (corrected to) protocols, these were
1638  // protocol qualifiers.
1639  if (numProtocolsResolved == identifiers.size())
1640    return resolvedAsProtocols();
1641
1642  // Otherwise, all of the names were (corrected to) types.
1643  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1644  return resolvedAsTypeDecls();
1645}
1646
1647/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1648/// a class method in its extension.
1649///
1650void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1651                                            ObjCInterfaceDecl *ID) {
1652  if (!ID)
1653    return;  // Possibly due to previous error
1654
1655  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1656  for (auto *MD : ID->methods())
1657    MethodMap[MD->getSelector()] = MD;
1658
1659  if (MethodMap.empty())
1660    return;
1661  for (const auto *Method : CAT->methods()) {
1662    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1663    if (PrevMethod &&
1664        (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1665        !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1666      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1667            << Method->getDeclName();
1668      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1669    }
1670  }
1671}
1672
1673/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1674Sema::DeclGroupPtrTy
1675Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1676                                      ArrayRef<IdentifierLocPair> IdentList,
1677                                      AttributeList *attrList) {
1678  SmallVector<Decl *, 8> DeclsInGroup;
1679  for (const IdentifierLocPair &IdentPair : IdentList) {
1680    IdentifierInfo *Ident = IdentPair.first;
1681    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1682                                                ForRedeclaration);
1683    ObjCProtocolDecl *PDecl
1684      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1685                                 IdentPair.second, AtProtocolLoc,
1686                                 PrevDecl);
1687
1688    PushOnScopeChains(PDecl, TUScope);
1689    CheckObjCDeclScope(PDecl);
1690
1691    if (attrList)
1692      ProcessDeclAttributeList(TUScope, PDecl, attrList);
1693
1694    if (PrevDecl)
1695      mergeDeclAttributes(PDecl, PrevDecl);
1696
1697    DeclsInGroup.push_back(PDecl);
1698  }
1699
1700  return BuildDeclaratorGroup(DeclsInGroup, false);
1701}
1702
1703Decl *Sema::
1704ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
1705                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
1706                            ObjCTypeParamList *typeParamList,
1707                            IdentifierInfo *CategoryName,
1708                            SourceLocation CategoryLoc,
1709                            Decl * const *ProtoRefs,
1710                            unsigned NumProtoRefs,
1711                            const SourceLocation *ProtoLocs,
1712                            SourceLocation EndProtoLoc) {
1713  ObjCCategoryDecl *CDecl;
1714  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1715
1716  /// Check that class of this category is already completely declared.
1717
1718  if (!IDecl
1719      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1720                             diag::err_category_forward_interface,
1721                             CategoryName == nullptr)) {
1722    // Create an invalid ObjCCategoryDecl to serve as context for
1723    // the enclosing method declarations.  We mark the decl invalid
1724    // to make it clear that this isn't a valid AST.
1725    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1726                                     ClassLoc, CategoryLoc, CategoryName,
1727                                     IDecl, typeParamList);
1728    CDecl->setInvalidDecl();
1729    CurContext->addDecl(CDecl);
1730
1731    if (!IDecl)
1732      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1733    return ActOnObjCContainerStartDefinition(CDecl);
1734  }
1735
1736  if (!CategoryName && IDecl->getImplementation()) {
1737    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1738    Diag(IDecl->getImplementation()->getLocation(),
1739          diag::note_implementation_declared);
1740  }
1741
1742  if (CategoryName) {
1743    /// Check for duplicate interface declaration for this category
1744    if (ObjCCategoryDecl *Previous
1745          = IDecl->FindCategoryDeclaration(CategoryName)) {
1746      // Class extensions can be declared multiple times, categories cannot.
1747      Diag(CategoryLoc, diag::warn_dup_category_def)
1748        << ClassName << CategoryName;
1749      Diag(Previous->getLocation(), diag::note_previous_definition);
1750    }
1751  }
1752
1753  // If we have a type parameter list, check it.
1754  if (typeParamList) {
1755    if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1756      if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1757                                        CategoryName
1758                                          ? TypeParamListContext::Category
1759                                          : TypeParamListContext::Extension))
1760        typeParamList = nullptr;
1761    } else {
1762      Diag(typeParamList->getLAngleLoc(),
1763           diag::err_objc_parameterized_category_nonclass)
1764        << (CategoryName != nullptr)
1765        << ClassName
1766        << typeParamList->getSourceRange();
1767
1768      typeParamList = nullptr;
1769    }
1770  }
1771
1772  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1773                                   ClassLoc, CategoryLoc, CategoryName, IDecl,
1774                                   typeParamList);
1775  // FIXME: PushOnScopeChains?
1776  CurContext->addDecl(CDecl);
1777
1778  if (NumProtoRefs) {
1779    diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1780                           NumProtoRefs, ProtoLocs);
1781    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1782                           ProtoLocs, Context);
1783    // Protocols in the class extension belong to the class.
1784    if (CDecl->IsClassExtension())
1785     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1786                                            NumProtoRefs, Context);
1787  }
1788
1789  CheckObjCDeclScope(CDecl);
1790  return ActOnObjCContainerStartDefinition(CDecl);
1791}
1792
1793/// ActOnStartCategoryImplementation - Perform semantic checks on the
1794/// category implementation declaration and build an ObjCCategoryImplDecl
1795/// object.
1796Decl *Sema::ActOnStartCategoryImplementation(
1797                      SourceLocation AtCatImplLoc,
1798                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1799                      IdentifierInfo *CatName, SourceLocation CatLoc) {
1800  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1801  ObjCCategoryDecl *CatIDecl = nullptr;
1802  if (IDecl && IDecl->hasDefinition()) {
1803    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1804    if (!CatIDecl) {
1805      // Category @implementation with no corresponding @interface.
1806      // Create and install one.
1807      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1808                                          ClassLoc, CatLoc,
1809                                          CatName, IDecl,
1810                                          /*typeParamList=*/nullptr);
1811      CatIDecl->setImplicit();
1812    }
1813  }
1814
1815  ObjCCategoryImplDecl *CDecl =
1816    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1817                                 ClassLoc, AtCatImplLoc, CatLoc);
1818  /// Check that class of this category is already completely declared.
1819  if (!IDecl) {
1820    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1821    CDecl->setInvalidDecl();
1822  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1823                                 diag::err_undef_interface)) {
1824    CDecl->setInvalidDecl();
1825  }
1826
1827  // FIXME: PushOnScopeChains?
1828  CurContext->addDecl(CDecl);
1829
1830  // If the interface is deprecated/unavailable, warn/error about it.
1831  if (IDecl)
1832    DiagnoseUseOfDecl(IDecl, ClassLoc);
1833
1834  /// Check that CatName, category name, is not used in another implementation.
1835  if (CatIDecl) {
1836    if (CatIDecl->getImplementation()) {
1837      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1838        << CatName;
1839      Diag(CatIDecl->getImplementation()->getLocation(),
1840           diag::note_previous_definition);
1841      CDecl->setInvalidDecl();
1842    } else {
1843      CatIDecl->setImplementation(CDecl);
1844      // Warn on implementating category of deprecated class under
1845      // -Wdeprecated-implementations flag.
1846      DiagnoseObjCImplementedDeprecations(*this,
1847                                          dyn_cast<NamedDecl>(IDecl),
1848                                          CDecl->getLocation(), 2);
1849    }
1850  }
1851
1852  CheckObjCDeclScope(CDecl);
1853  return ActOnObjCContainerStartDefinition(CDecl);
1854}
1855
1856Decl *Sema::ActOnStartClassImplementation(
1857                      SourceLocation AtClassImplLoc,
1858                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1859                      IdentifierInfo *SuperClassname,
1860                      SourceLocation SuperClassLoc) {
1861  ObjCInterfaceDecl *IDecl = nullptr;
1862  // Check for another declaration kind with the same name.
1863  NamedDecl *PrevDecl
1864    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1865                       ForRedeclaration);
1866  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1867    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1868    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1869  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1870    // FIXME: This will produce an error if the definition of the interface has
1871    // been imported from a module but is not visible.
1872    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1873                        diag::warn_undef_interface);
1874  } else {
1875    // We did not find anything with the name ClassName; try to correct for
1876    // typos in the class name.
1877    TypoCorrection Corrected = CorrectTypo(
1878        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1879        nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1880    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1881      // Suggest the (potentially) correct interface name. Don't provide a
1882      // code-modification hint or use the typo name for recovery, because
1883      // this is just a warning. The program may actually be correct.
1884      diagnoseTypo(Corrected,
1885                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
1886                   /*ErrorRecovery*/false);
1887    } else {
1888      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1889    }
1890  }
1891
1892  // Check that super class name is valid class name
1893  ObjCInterfaceDecl *SDecl = nullptr;
1894  if (SuperClassname) {
1895    // Check if a different kind of symbol declared in this scope.
1896    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1897                                LookupOrdinaryName);
1898    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1899      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1900        << SuperClassname;
1901      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1902    } else {
1903      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1904      if (SDecl && !SDecl->hasDefinition())
1905        SDecl = nullptr;
1906      if (!SDecl)
1907        Diag(SuperClassLoc, diag::err_undef_superclass)
1908          << SuperClassname << ClassName;
1909      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1910        // This implementation and its interface do not have the same
1911        // super class.
1912        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1913          << SDecl->getDeclName();
1914        Diag(SDecl->getLocation(), diag::note_previous_definition);
1915      }
1916    }
1917  }
1918
1919  if (!IDecl) {
1920    // Legacy case of @implementation with no corresponding @interface.
1921    // Build, chain & install the interface decl into the identifier.
1922
1923    // FIXME: Do we support attributes on the @implementation? If so we should
1924    // copy them over.
1925    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1926                                      ClassName, /*typeParamList=*/nullptr,
1927                                      /*PrevDecl=*/nullptr, ClassLoc,
1928                                      true);
1929    IDecl->startDefinition();
1930    if (SDecl) {
1931      IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
1932                             Context.getObjCInterfaceType(SDecl),
1933                             SuperClassLoc));
1934      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1935    } else {
1936      IDecl->setEndOfDefinitionLoc(ClassLoc);
1937    }
1938
1939    PushOnScopeChains(IDecl, TUScope);
1940  } else {
1941    // Mark the interface as being completed, even if it was just as
1942    //   @class ....;
1943    // declaration; the user cannot reopen it.
1944    if (!IDecl->hasDefinition())
1945      IDecl->startDefinition();
1946  }
1947
1948  ObjCImplementationDecl* IMPDecl =
1949    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1950                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
1951
1952  if (CheckObjCDeclScope(IMPDecl))
1953    return ActOnObjCContainerStartDefinition(IMPDecl);
1954
1955  // Check that there is no duplicate implementation of this class.
1956  if (IDecl->getImplementation()) {
1957    // FIXME: Don't leak everything!
1958    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1959    Diag(IDecl->getImplementation()->getLocation(),
1960         diag::note_previous_definition);
1961    IMPDecl->setInvalidDecl();
1962  } else { // add it to the list.
1963    IDecl->setImplementation(IMPDecl);
1964    PushOnScopeChains(IMPDecl, TUScope);
1965    // Warn on implementating deprecated class under
1966    // -Wdeprecated-implementations flag.
1967    DiagnoseObjCImplementedDeprecations(*this,
1968                                        dyn_cast<NamedDecl>(IDecl),
1969                                        IMPDecl->getLocation(), 1);
1970  }
1971  return ActOnObjCContainerStartDefinition(IMPDecl);
1972}
1973
1974Sema::DeclGroupPtrTy
1975Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1976  SmallVector<Decl *, 64> DeclsInGroup;
1977  DeclsInGroup.reserve(Decls.size() + 1);
1978
1979  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1980    Decl *Dcl = Decls[i];
1981    if (!Dcl)
1982      continue;
1983    if (Dcl->getDeclContext()->isFileContext())
1984      Dcl->setTopLevelDeclInObjCContainer();
1985    DeclsInGroup.push_back(Dcl);
1986  }
1987
1988  DeclsInGroup.push_back(ObjCImpDecl);
1989
1990  return BuildDeclaratorGroup(DeclsInGroup, false);
1991}
1992
1993void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1994                                    ObjCIvarDecl **ivars, unsigned numIvars,
1995                                    SourceLocation RBrace) {
1996  assert(ImpDecl && "missing implementation decl");
1997  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1998  if (!IDecl)
1999    return;
2000  /// Check case of non-existing \@interface decl.
2001  /// (legacy objective-c \@implementation decl without an \@interface decl).
2002  /// Add implementations's ivar to the synthesize class's ivar list.
2003  if (IDecl->isImplicitInterfaceDecl()) {
2004    IDecl->setEndOfDefinitionLoc(RBrace);
2005    // Add ivar's to class's DeclContext.
2006    for (unsigned i = 0, e = numIvars; i != e; ++i) {
2007      ivars[i]->setLexicalDeclContext(ImpDecl);
2008      IDecl->makeDeclVisibleInContext(ivars[i]);
2009      ImpDecl->addDecl(ivars[i]);
2010    }
2011
2012    return;
2013  }
2014  // If implementation has empty ivar list, just return.
2015  if (numIvars == 0)
2016    return;
2017
2018  assert(ivars && "missing @implementation ivars");
2019  if (LangOpts.ObjCRuntime.isNonFragile()) {
2020    if (ImpDecl->getSuperClass())
2021      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2022    for (unsigned i = 0; i < numIvars; i++) {
2023      ObjCIvarDecl* ImplIvar = ivars[i];
2024      if (const ObjCIvarDecl *ClsIvar =
2025            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2026        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2027        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2028        continue;
2029      }
2030      // Check class extensions (unnamed categories) for duplicate ivars.
2031      for (const auto *CDecl : IDecl->visible_extensions()) {
2032        if (const ObjCIvarDecl *ClsExtIvar =
2033            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2034          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2035          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2036          continue;
2037        }
2038      }
2039      // Instance ivar to Implementation's DeclContext.
2040      ImplIvar->setLexicalDeclContext(ImpDecl);
2041      IDecl->makeDeclVisibleInContext(ImplIvar);
2042      ImpDecl->addDecl(ImplIvar);
2043    }
2044    return;
2045  }
2046  // Check interface's Ivar list against those in the implementation.
2047  // names and types must match.
2048  //
2049  unsigned j = 0;
2050  ObjCInterfaceDecl::ivar_iterator
2051    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2052  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2053    ObjCIvarDecl* ImplIvar = ivars[j++];
2054    ObjCIvarDecl* ClsIvar = *IVI;
2055    assert (ImplIvar && "missing implementation ivar");
2056    assert (ClsIvar && "missing class ivar");
2057
2058    // First, make sure the types match.
2059    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2060      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2061        << ImplIvar->getIdentifier()
2062        << ImplIvar->getType() << ClsIvar->getType();
2063      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2064    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2065               ImplIvar->getBitWidthValue(Context) !=
2066               ClsIvar->getBitWidthValue(Context)) {
2067      Diag(ImplIvar->getBitWidth()->getLocStart(),
2068           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2069      Diag(ClsIvar->getBitWidth()->getLocStart(),
2070           diag::note_previous_definition);
2071    }
2072    // Make sure the names are identical.
2073    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2074      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2075        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2076      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2077    }
2078    --numIvars;
2079  }
2080
2081  if (numIvars > 0)
2082    Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2083  else if (IVI != IVE)
2084    Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2085}
2086
2087static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2088                                ObjCMethodDecl *method,
2089                                bool &IncompleteImpl,
2090                                unsigned DiagID,
2091                                NamedDecl *NeededFor = nullptr) {
2092  // No point warning no definition of method which is 'unavailable'.
2093  switch (method->getAvailability()) {
2094  case AR_Available:
2095  case AR_Deprecated:
2096    break;
2097
2098      // Don't warn about unavailable or not-yet-introduced methods.
2099  case AR_NotYetIntroduced:
2100  case AR_Unavailable:
2101    return;
2102  }
2103
2104  // FIXME: For now ignore 'IncompleteImpl'.
2105  // Previously we grouped all unimplemented methods under a single
2106  // warning, but some users strongly voiced that they would prefer
2107  // separate warnings.  We will give that approach a try, as that
2108  // matches what we do with protocols.
2109  {
2110    const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2111    B << method;
2112    if (NeededFor)
2113      B << NeededFor;
2114  }
2115
2116  // Issue a note to the original declaration.
2117  SourceLocation MethodLoc = method->getLocStart();
2118  if (MethodLoc.isValid())
2119    S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2120}
2121
2122/// Determines if type B can be substituted for type A.  Returns true if we can
2123/// guarantee that anything that the user will do to an object of type A can
2124/// also be done to an object of type B.  This is trivially true if the two
2125/// types are the same, or if B is a subclass of A.  It becomes more complex
2126/// in cases where protocols are involved.
2127///
2128/// Object types in Objective-C describe the minimum requirements for an
2129/// object, rather than providing a complete description of a type.  For
2130/// example, if A is a subclass of B, then B* may refer to an instance of A.
2131/// The principle of substitutability means that we may use an instance of A
2132/// anywhere that we may use an instance of B - it will implement all of the
2133/// ivars of B and all of the methods of B.
2134///
2135/// This substitutability is important when type checking methods, because
2136/// the implementation may have stricter type definitions than the interface.
2137/// The interface specifies minimum requirements, but the implementation may
2138/// have more accurate ones.  For example, a method may privately accept
2139/// instances of B, but only publish that it accepts instances of A.  Any
2140/// object passed to it will be type checked against B, and so will implicitly
2141/// by a valid A*.  Similarly, a method may return a subclass of the class that
2142/// it is declared as returning.
2143///
2144/// This is most important when considering subclassing.  A method in a
2145/// subclass must accept any object as an argument that its superclass's
2146/// implementation accepts.  It may, however, accept a more general type
2147/// without breaking substitutability (i.e. you can still use the subclass
2148/// anywhere that you can use the superclass, but not vice versa).  The
2149/// converse requirement applies to return types: the return type for a
2150/// subclass method must be a valid object of the kind that the superclass
2151/// advertises, but it may be specified more accurately.  This avoids the need
2152/// for explicit down-casting by callers.
2153///
2154/// Note: This is a stricter requirement than for assignment.
2155static bool isObjCTypeSubstitutable(ASTContext &Context,
2156                                    const ObjCObjectPointerType *A,
2157                                    const ObjCObjectPointerType *B,
2158                                    bool rejectId) {
2159  // Reject a protocol-unqualified id.
2160  if (rejectId && B->isObjCIdType()) return false;
2161
2162  // If B is a qualified id, then A must also be a qualified id and it must
2163  // implement all of the protocols in B.  It may not be a qualified class.
2164  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2165  // stricter definition so it is not substitutable for id<A>.
2166  if (B->isObjCQualifiedIdType()) {
2167    return A->isObjCQualifiedIdType() &&
2168           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2169                                                     QualType(B,0),
2170                                                     false);
2171  }
2172
2173  /*
2174  // id is a special type that bypasses type checking completely.  We want a
2175  // warning when it is used in one place but not another.
2176  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2177
2178
2179  // If B is a qualified id, then A must also be a qualified id (which it isn't
2180  // if we've got this far)
2181  if (B->isObjCQualifiedIdType()) return false;
2182  */
2183
2184  // Now we know that A and B are (potentially-qualified) class types.  The
2185  // normal rules for assignment apply.
2186  return Context.canAssignObjCInterfaces(A, B);
2187}
2188
2189static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2190  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2191}
2192
2193/// Determine whether two set of Objective-C declaration qualifiers conflict.
2194static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2195                                  Decl::ObjCDeclQualifier y) {
2196  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2197         (y & ~Decl::OBJC_TQ_CSNullability);
2198}
2199
2200static bool CheckMethodOverrideReturn(Sema &S,
2201                                      ObjCMethodDecl *MethodImpl,
2202                                      ObjCMethodDecl *MethodDecl,
2203                                      bool IsProtocolMethodDecl,
2204                                      bool IsOverridingMode,
2205                                      bool Warn) {
2206  if (IsProtocolMethodDecl &&
2207      objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2208                            MethodImpl->getObjCDeclQualifier())) {
2209    if (Warn) {
2210      S.Diag(MethodImpl->getLocation(),
2211             (IsOverridingMode
2212                  ? diag::warn_conflicting_overriding_ret_type_modifiers
2213                  : diag::warn_conflicting_ret_type_modifiers))
2214          << MethodImpl->getDeclName()
2215          << MethodImpl->getReturnTypeSourceRange();
2216      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2217          << MethodDecl->getReturnTypeSourceRange();
2218    }
2219    else
2220      return false;
2221  }
2222  if (Warn && IsOverridingMode &&
2223      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2224      !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2225                                                 MethodDecl->getReturnType(),
2226                                                 false)) {
2227    auto nullabilityMethodImpl =
2228      *MethodImpl->getReturnType()->getNullability(S.Context);
2229    auto nullabilityMethodDecl =
2230      *MethodDecl->getReturnType()->getNullability(S.Context);
2231      S.Diag(MethodImpl->getLocation(),
2232             diag::warn_conflicting_nullability_attr_overriding_ret_types)
2233        << DiagNullabilityKind(
2234             nullabilityMethodImpl,
2235             ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2236              != 0))
2237        << DiagNullabilityKind(
2238             nullabilityMethodDecl,
2239             ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2240                != 0));
2241      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2242  }
2243
2244  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2245                                       MethodDecl->getReturnType()))
2246    return true;
2247  if (!Warn)
2248    return false;
2249
2250  unsigned DiagID =
2251    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2252                     : diag::warn_conflicting_ret_types;
2253
2254  // Mismatches between ObjC pointers go into a different warning
2255  // category, and sometimes they're even completely whitelisted.
2256  if (const ObjCObjectPointerType *ImplPtrTy =
2257          MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2258    if (const ObjCObjectPointerType *IfacePtrTy =
2259            MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2260      // Allow non-matching return types as long as they don't violate
2261      // the principle of substitutability.  Specifically, we permit
2262      // return types that are subclasses of the declared return type,
2263      // or that are more-qualified versions of the declared type.
2264      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2265        return false;
2266
2267      DiagID =
2268        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2269                         : diag::warn_non_covariant_ret_types;
2270    }
2271  }
2272
2273  S.Diag(MethodImpl->getLocation(), DiagID)
2274      << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2275      << MethodImpl->getReturnType()
2276      << MethodImpl->getReturnTypeSourceRange();
2277  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2278                                        ? diag::note_previous_declaration
2279                                        : diag::note_previous_definition)
2280      << MethodDecl->getReturnTypeSourceRange();
2281  return false;
2282}
2283
2284static bool CheckMethodOverrideParam(Sema &S,
2285                                     ObjCMethodDecl *MethodImpl,
2286                                     ObjCMethodDecl *MethodDecl,
2287                                     ParmVarDecl *ImplVar,
2288                                     ParmVarDecl *IfaceVar,
2289                                     bool IsProtocolMethodDecl,
2290                                     bool IsOverridingMode,
2291                                     bool Warn) {
2292  if (IsProtocolMethodDecl &&
2293      objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2294                            IfaceVar->getObjCDeclQualifier())) {
2295    if (Warn) {
2296      if (IsOverridingMode)
2297        S.Diag(ImplVar->getLocation(),
2298               diag::warn_conflicting_overriding_param_modifiers)
2299            << getTypeRange(ImplVar->getTypeSourceInfo())
2300            << MethodImpl->getDeclName();
2301      else S.Diag(ImplVar->getLocation(),
2302             diag::warn_conflicting_param_modifiers)
2303          << getTypeRange(ImplVar->getTypeSourceInfo())
2304          << MethodImpl->getDeclName();
2305      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2306          << getTypeRange(IfaceVar->getTypeSourceInfo());
2307    }
2308    else
2309      return false;
2310  }
2311
2312  QualType ImplTy = ImplVar->getType();
2313  QualType IfaceTy = IfaceVar->getType();
2314  if (Warn && IsOverridingMode &&
2315      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2316      !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2317    S.Diag(ImplVar->getLocation(),
2318           diag::warn_conflicting_nullability_attr_overriding_param_types)
2319      << DiagNullabilityKind(
2320           *ImplTy->getNullability(S.Context),
2321           ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2322            != 0))
2323      << DiagNullabilityKind(
2324           *IfaceTy->getNullability(S.Context),
2325           ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2326            != 0));
2327    S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2328  }
2329  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2330    return true;
2331
2332  if (!Warn)
2333    return false;
2334  unsigned DiagID =
2335    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2336                     : diag::warn_conflicting_param_types;
2337
2338  // Mismatches between ObjC pointers go into a different warning
2339  // category, and sometimes they're even completely whitelisted.
2340  if (const ObjCObjectPointerType *ImplPtrTy =
2341        ImplTy->getAs<ObjCObjectPointerType>()) {
2342    if (const ObjCObjectPointerType *IfacePtrTy =
2343          IfaceTy->getAs<ObjCObjectPointerType>()) {
2344      // Allow non-matching argument types as long as they don't
2345      // violate the principle of substitutability.  Specifically, the
2346      // implementation must accept any objects that the superclass
2347      // accepts, however it may also accept others.
2348      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2349        return false;
2350
2351      DiagID =
2352      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2353                       : diag::warn_non_contravariant_param_types;
2354    }
2355  }
2356
2357  S.Diag(ImplVar->getLocation(), DiagID)
2358    << getTypeRange(ImplVar->getTypeSourceInfo())
2359    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2360  S.Diag(IfaceVar->getLocation(),
2361         (IsOverridingMode ? diag::note_previous_declaration
2362                           : diag::note_previous_definition))
2363    << getTypeRange(IfaceVar->getTypeSourceInfo());
2364  return false;
2365}
2366
2367/// In ARC, check whether the conventional meanings of the two methods
2368/// match.  If they don't, it's a hard error.
2369static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2370                                      ObjCMethodDecl *decl) {
2371  ObjCMethodFamily implFamily = impl->getMethodFamily();
2372  ObjCMethodFamily declFamily = decl->getMethodFamily();
2373  if (implFamily == declFamily) return false;
2374
2375  // Since conventions are sorted by selector, the only possibility is
2376  // that the types differ enough to cause one selector or the other
2377  // to fall out of the family.
2378  assert(implFamily == OMF_None || declFamily == OMF_None);
2379
2380  // No further diagnostics required on invalid declarations.
2381  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2382
2383  const ObjCMethodDecl *unmatched = impl;
2384  ObjCMethodFamily family = declFamily;
2385  unsigned errorID = diag::err_arc_lost_method_convention;
2386  unsigned noteID = diag::note_arc_lost_method_convention;
2387  if (declFamily == OMF_None) {
2388    unmatched = decl;
2389    family = implFamily;
2390    errorID = diag::err_arc_gained_method_convention;
2391    noteID = diag::note_arc_gained_method_convention;
2392  }
2393
2394  // Indexes into a %select clause in the diagnostic.
2395  enum FamilySelector {
2396    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2397  };
2398  FamilySelector familySelector = FamilySelector();
2399
2400  switch (family) {
2401  case OMF_None: llvm_unreachable("logic error, no method convention");
2402  case OMF_retain:
2403  case OMF_release:
2404  case OMF_autorelease:
2405  case OMF_dealloc:
2406  case OMF_finalize:
2407  case OMF_retainCount:
2408  case OMF_self:
2409  case OMF_initialize:
2410  case OMF_performSelector:
2411    // Mismatches for these methods don't change ownership
2412    // conventions, so we don't care.
2413    return false;
2414
2415  case OMF_init: familySelector = F_init; break;
2416  case OMF_alloc: familySelector = F_alloc; break;
2417  case OMF_copy: familySelector = F_copy; break;
2418  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2419  case OMF_new: familySelector = F_new; break;
2420  }
2421
2422  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2423  ReasonSelector reasonSelector;
2424
2425  // The only reason these methods don't fall within their families is
2426  // due to unusual result types.
2427  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2428    reasonSelector = R_UnrelatedReturn;
2429  } else {
2430    reasonSelector = R_NonObjectReturn;
2431  }
2432
2433  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2434  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2435
2436  return true;
2437}
2438
2439void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2440                                       ObjCMethodDecl *MethodDecl,
2441                                       bool IsProtocolMethodDecl) {
2442  if (getLangOpts().ObjCAutoRefCount &&
2443      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2444    return;
2445
2446  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2447                            IsProtocolMethodDecl, false,
2448                            true);
2449
2450  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2451       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2452       EF = MethodDecl->param_end();
2453       IM != EM && IF != EF; ++IM, ++IF) {
2454    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2455                             IsProtocolMethodDecl, false, true);
2456  }
2457
2458  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2459    Diag(ImpMethodDecl->getLocation(),
2460         diag::warn_conflicting_variadic);
2461    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2462  }
2463}
2464
2465void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2466                                       ObjCMethodDecl *Overridden,
2467                                       bool IsProtocolMethodDecl) {
2468
2469  CheckMethodOverrideReturn(*this, Method, Overridden,
2470                            IsProtocolMethodDecl, true,
2471                            true);
2472
2473  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2474       IF = Overridden->param_begin(), EM = Method->param_end(),
2475       EF = Overridden->param_end();
2476       IM != EM && IF != EF; ++IM, ++IF) {
2477    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2478                             IsProtocolMethodDecl, true, true);
2479  }
2480
2481  if (Method->isVariadic() != Overridden->isVariadic()) {
2482    Diag(Method->getLocation(),
2483         diag::warn_conflicting_overriding_variadic);
2484    Diag(Overridden->getLocation(), diag::note_previous_declaration);
2485  }
2486}
2487
2488/// WarnExactTypedMethods - This routine issues a warning if method
2489/// implementation declaration matches exactly that of its declaration.
2490void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2491                                 ObjCMethodDecl *MethodDecl,
2492                                 bool IsProtocolMethodDecl) {
2493  // don't issue warning when protocol method is optional because primary
2494  // class is not required to implement it and it is safe for protocol
2495  // to implement it.
2496  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2497    return;
2498  // don't issue warning when primary class's method is
2499  // depecated/unavailable.
2500  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2501      MethodDecl->hasAttr<DeprecatedAttr>())
2502    return;
2503
2504  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2505                                      IsProtocolMethodDecl, false, false);
2506  if (match)
2507    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2508         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2509         EF = MethodDecl->param_end();
2510         IM != EM && IF != EF; ++IM, ++IF) {
2511      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2512                                       *IM, *IF,
2513                                       IsProtocolMethodDecl, false, false);
2514      if (!match)
2515        break;
2516    }
2517  if (match)
2518    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2519  if (match)
2520    match = !(MethodDecl->isClassMethod() &&
2521              MethodDecl->getSelector() == GetNullarySelector("load", Context));
2522
2523  if (match) {
2524    Diag(ImpMethodDecl->getLocation(),
2525         diag::warn_category_method_impl_match);
2526    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2527      << MethodDecl->getDeclName();
2528  }
2529}
2530
2531/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2532/// improve the efficiency of selector lookups and type checking by associating
2533/// with each protocol / interface / category the flattened instance tables. If
2534/// we used an immutable set to keep the table then it wouldn't add significant
2535/// memory cost and it would be handy for lookups.
2536
2537typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2538typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2539
2540static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2541                                           ProtocolNameSet &PNS) {
2542  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2543    PNS.insert(PDecl->getIdentifier());
2544  for (const auto *PI : PDecl->protocols())
2545    findProtocolsWithExplicitImpls(PI, PNS);
2546}
2547
2548/// Recursively populates a set with all conformed protocols in a class
2549/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2550/// attribute.
2551static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2552                                           ProtocolNameSet &PNS) {
2553  if (!Super)
2554    return;
2555
2556  for (const auto *I : Super->all_referenced_protocols())
2557    findProtocolsWithExplicitImpls(I, PNS);
2558
2559  findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2560}
2561
2562/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2563/// Declared in protocol, and those referenced by it.
2564static void CheckProtocolMethodDefs(Sema &S,
2565                                    SourceLocation ImpLoc,
2566                                    ObjCProtocolDecl *PDecl,
2567                                    bool& IncompleteImpl,
2568                                    const Sema::SelectorSet &InsMap,
2569                                    const Sema::SelectorSet &ClsMap,
2570                                    ObjCContainerDecl *CDecl,
2571                                    LazyProtocolNameSet &ProtocolsExplictImpl) {
2572  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2573  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2574                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
2575  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2576
2577  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2578  ObjCInterfaceDecl *NSIDecl = nullptr;
2579
2580  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2581  // then we should check if any class in the super class hierarchy also
2582  // conforms to this protocol, either directly or via protocol inheritance.
2583  // If so, we can skip checking this protocol completely because we
2584  // know that a parent class already satisfies this protocol.
2585  //
2586  // Note: we could generalize this logic for all protocols, and merely
2587  // add the limit on looking at the super class chain for just
2588  // specially marked protocols.  This may be a good optimization.  This
2589  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2590  // protocols for now for controlled evaluation.
2591  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2592    if (!ProtocolsExplictImpl) {
2593      ProtocolsExplictImpl.reset(new ProtocolNameSet);
2594      findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2595    }
2596    if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2597        ProtocolsExplictImpl->end())
2598      return;
2599
2600    // If no super class conforms to the protocol, we should not search
2601    // for methods in the super class to implicitly satisfy the protocol.
2602    Super = nullptr;
2603  }
2604
2605  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2606    // check to see if class implements forwardInvocation method and objects
2607    // of this class are derived from 'NSProxy' so that to forward requests
2608    // from one object to another.
2609    // Under such conditions, which means that every method possible is
2610    // implemented in the class, we should not issue "Method definition not
2611    // found" warnings.
2612    // FIXME: Use a general GetUnarySelector method for this.
2613    IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2614    Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2615    if (InsMap.count(fISelector))
2616      // Is IDecl derived from 'NSProxy'? If so, no instance methods
2617      // need be implemented in the implementation.
2618      NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2619  }
2620
2621  // If this is a forward protocol declaration, get its definition.
2622  if (!PDecl->isThisDeclarationADefinition() &&
2623      PDecl->getDefinition())
2624    PDecl = PDecl->getDefinition();
2625
2626  // If a method lookup fails locally we still need to look and see if
2627  // the method was implemented by a base class or an inherited
2628  // protocol. This lookup is slow, but occurs rarely in correct code
2629  // and otherwise would terminate in a warning.
2630
2631  // check unimplemented instance methods.
2632  if (!NSIDecl)
2633    for (auto *method : PDecl->instance_methods()) {
2634      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2635          !method->isPropertyAccessor() &&
2636          !InsMap.count(method->getSelector()) &&
2637          (!Super || !Super->lookupMethod(method->getSelector(),
2638                                          true /* instance */,
2639                                          false /* shallowCategory */,
2640                                          true /* followsSuper */,
2641                                          nullptr /* category */))) {
2642            // If a method is not implemented in the category implementation but
2643            // has been declared in its primary class, superclass,
2644            // or in one of their protocols, no need to issue the warning.
2645            // This is because method will be implemented in the primary class
2646            // or one of its super class implementation.
2647
2648            // Ugly, but necessary. Method declared in protcol might have
2649            // have been synthesized due to a property declared in the class which
2650            // uses the protocol.
2651            if (ObjCMethodDecl *MethodInClass =
2652                  IDecl->lookupMethod(method->getSelector(),
2653                                      true /* instance */,
2654                                      true /* shallowCategoryLookup */,
2655                                      false /* followSuper */))
2656              if (C || MethodInClass->isPropertyAccessor())
2657                continue;
2658            unsigned DIAG = diag::warn_unimplemented_protocol_method;
2659            if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2660              WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2661                                  PDecl);
2662            }
2663          }
2664    }
2665  // check unimplemented class methods
2666  for (auto *method : PDecl->class_methods()) {
2667    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2668        !ClsMap.count(method->getSelector()) &&
2669        (!Super || !Super->lookupMethod(method->getSelector(),
2670                                        false /* class method */,
2671                                        false /* shallowCategoryLookup */,
2672                                        true  /* followSuper */,
2673                                        nullptr /* category */))) {
2674      // See above comment for instance method lookups.
2675      if (C && IDecl->lookupMethod(method->getSelector(),
2676                                   false /* class */,
2677                                   true /* shallowCategoryLookup */,
2678                                   false /* followSuper */))
2679        continue;
2680
2681      unsigned DIAG = diag::warn_unimplemented_protocol_method;
2682      if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2683        WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2684      }
2685    }
2686  }
2687  // Check on this protocols's referenced protocols, recursively.
2688  for (auto *PI : PDecl->protocols())
2689    CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2690                            CDecl, ProtocolsExplictImpl);
2691}
2692
2693/// MatchAllMethodDeclarations - Check methods declared in interface
2694/// or protocol against those declared in their implementations.
2695///
2696void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2697                                      const SelectorSet &ClsMap,
2698                                      SelectorSet &InsMapSeen,
2699                                      SelectorSet &ClsMapSeen,
2700                                      ObjCImplDecl* IMPDecl,
2701                                      ObjCContainerDecl* CDecl,
2702                                      bool &IncompleteImpl,
2703                                      bool ImmediateClass,
2704                                      bool WarnCategoryMethodImpl) {
2705  // Check and see if instance methods in class interface have been
2706  // implemented in the implementation class. If so, their types match.
2707  for (auto *I : CDecl->instance_methods()) {
2708    if (!InsMapSeen.insert(I->getSelector()).second)
2709      continue;
2710    if (!I->isPropertyAccessor() &&
2711        !InsMap.count(I->getSelector())) {
2712      if (ImmediateClass)
2713        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2714                            diag::warn_undef_method_impl);
2715      continue;
2716    } else {
2717      ObjCMethodDecl *ImpMethodDecl =
2718        IMPDecl->getInstanceMethod(I->getSelector());
2719      assert(CDecl->getInstanceMethod(I->getSelector()) &&
2720             "Expected to find the method through lookup as well");
2721      // ImpMethodDecl may be null as in a @dynamic property.
2722      if (ImpMethodDecl) {
2723        if (!WarnCategoryMethodImpl)
2724          WarnConflictingTypedMethods(ImpMethodDecl, I,
2725                                      isa<ObjCProtocolDecl>(CDecl));
2726        else if (!I->isPropertyAccessor())
2727          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2728      }
2729    }
2730  }
2731
2732  // Check and see if class methods in class interface have been
2733  // implemented in the implementation class. If so, their types match.
2734  for (auto *I : CDecl->class_methods()) {
2735    if (!ClsMapSeen.insert(I->getSelector()).second)
2736      continue;
2737    if (!ClsMap.count(I->getSelector())) {
2738      if (ImmediateClass)
2739        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2740                            diag::warn_undef_method_impl);
2741    } else {
2742      ObjCMethodDecl *ImpMethodDecl =
2743        IMPDecl->getClassMethod(I->getSelector());
2744      assert(CDecl->getClassMethod(I->getSelector()) &&
2745             "Expected to find the method through lookup as well");
2746      if (!WarnCategoryMethodImpl)
2747        WarnConflictingTypedMethods(ImpMethodDecl, I,
2748                                    isa<ObjCProtocolDecl>(CDecl));
2749      else
2750        WarnExactTypedMethods(ImpMethodDecl, I,
2751                              isa<ObjCProtocolDecl>(CDecl));
2752    }
2753  }
2754
2755  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2756    // Also, check for methods declared in protocols inherited by
2757    // this protocol.
2758    for (auto *PI : PD->protocols())
2759      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2760                                 IMPDecl, PI, IncompleteImpl, false,
2761                                 WarnCategoryMethodImpl);
2762  }
2763
2764  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2765    // when checking that methods in implementation match their declaration,
2766    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2767    // extension; as well as those in categories.
2768    if (!WarnCategoryMethodImpl) {
2769      for (auto *Cat : I->visible_categories())
2770        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2771                                   IMPDecl, Cat, IncompleteImpl,
2772                                   ImmediateClass && Cat->IsClassExtension(),
2773                                   WarnCategoryMethodImpl);
2774    } else {
2775      // Also methods in class extensions need be looked at next.
2776      for (auto *Ext : I->visible_extensions())
2777        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2778                                   IMPDecl, Ext, IncompleteImpl, false,
2779                                   WarnCategoryMethodImpl);
2780    }
2781
2782    // Check for any implementation of a methods declared in protocol.
2783    for (auto *PI : I->all_referenced_protocols())
2784      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2785                                 IMPDecl, PI, IncompleteImpl, false,
2786                                 WarnCategoryMethodImpl);
2787
2788    // FIXME. For now, we are not checking for extact match of methods
2789    // in category implementation and its primary class's super class.
2790    if (!WarnCategoryMethodImpl && I->getSuperClass())
2791      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2792                                 IMPDecl,
2793                                 I->getSuperClass(), IncompleteImpl, false);
2794  }
2795}
2796
2797/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2798/// category matches with those implemented in its primary class and
2799/// warns each time an exact match is found.
2800void Sema::CheckCategoryVsClassMethodMatches(
2801                                  ObjCCategoryImplDecl *CatIMPDecl) {
2802  // Get category's primary class.
2803  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2804  if (!CatDecl)
2805    return;
2806  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2807  if (!IDecl)
2808    return;
2809  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2810  SelectorSet InsMap, ClsMap;
2811
2812  for (const auto *I : CatIMPDecl->instance_methods()) {
2813    Selector Sel = I->getSelector();
2814    // When checking for methods implemented in the category, skip over
2815    // those declared in category class's super class. This is because
2816    // the super class must implement the method.
2817    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2818      continue;
2819    InsMap.insert(Sel);
2820  }
2821
2822  for (const auto *I : CatIMPDecl->class_methods()) {
2823    Selector Sel = I->getSelector();
2824    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2825      continue;
2826    ClsMap.insert(Sel);
2827  }
2828  if (InsMap.empty() && ClsMap.empty())
2829    return;
2830
2831  SelectorSet InsMapSeen, ClsMapSeen;
2832  bool IncompleteImpl = false;
2833  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2834                             CatIMPDecl, IDecl,
2835                             IncompleteImpl, false,
2836                             true /*WarnCategoryMethodImpl*/);
2837}
2838
2839void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2840                                     ObjCContainerDecl* CDecl,
2841                                     bool IncompleteImpl) {
2842  SelectorSet InsMap;
2843  // Check and see if instance methods in class interface have been
2844  // implemented in the implementation class.
2845  for (const auto *I : IMPDecl->instance_methods())
2846    InsMap.insert(I->getSelector());
2847
2848  // Add the selectors for getters/setters of @dynamic properties.
2849  for (const auto *PImpl : IMPDecl->property_impls()) {
2850    // We only care about @dynamic implementations.
2851    if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2852      continue;
2853
2854    const auto *P = PImpl->getPropertyDecl();
2855    if (!P) continue;
2856
2857    InsMap.insert(P->getGetterName());
2858    if (!P->getSetterName().isNull())
2859      InsMap.insert(P->getSetterName());
2860  }
2861
2862  // Check and see if properties declared in the interface have either 1)
2863  // an implementation or 2) there is a @synthesize/@dynamic implementation
2864  // of the property in the @implementation.
2865  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2866    bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2867                                LangOpts.ObjCRuntime.isNonFragile() &&
2868                                !IDecl->isObjCRequiresPropertyDefs();
2869    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2870  }
2871
2872  // Diagnose null-resettable synthesized setters.
2873  diagnoseNullResettableSynthesizedSetters(IMPDecl);
2874
2875  SelectorSet ClsMap;
2876  for (const auto *I : IMPDecl->class_methods())
2877    ClsMap.insert(I->getSelector());
2878
2879  // Check for type conflict of methods declared in a class/protocol and
2880  // its implementation; if any.
2881  SelectorSet InsMapSeen, ClsMapSeen;
2882  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2883                             IMPDecl, CDecl,
2884                             IncompleteImpl, true);
2885
2886  // check all methods implemented in category against those declared
2887  // in its primary class.
2888  if (ObjCCategoryImplDecl *CatDecl =
2889        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2890    CheckCategoryVsClassMethodMatches(CatDecl);
2891
2892  // Check the protocol list for unimplemented methods in the @implementation
2893  // class.
2894  // Check and see if class methods in class interface have been
2895  // implemented in the implementation class.
2896
2897  LazyProtocolNameSet ExplicitImplProtocols;
2898
2899  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2900    for (auto *PI : I->all_referenced_protocols())
2901      CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2902                              InsMap, ClsMap, I, ExplicitImplProtocols);
2903  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2904    // For extended class, unimplemented methods in its protocols will
2905    // be reported in the primary class.
2906    if (!C->IsClassExtension()) {
2907      for (auto *P : C->protocols())
2908        CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2909                                IncompleteImpl, InsMap, ClsMap, CDecl,
2910                                ExplicitImplProtocols);
2911      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2912                                      /*SynthesizeProperties=*/false);
2913    }
2914  } else
2915    llvm_unreachable("invalid ObjCContainerDecl type.");
2916}
2917
2918Sema::DeclGroupPtrTy
2919Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2920                                   IdentifierInfo **IdentList,
2921                                   SourceLocation *IdentLocs,
2922                                   ArrayRef<ObjCTypeParamList *> TypeParamLists,
2923                                   unsigned NumElts) {
2924  SmallVector<Decl *, 8> DeclsInGroup;
2925  for (unsigned i = 0; i != NumElts; ++i) {
2926    // Check for another declaration kind with the same name.
2927    NamedDecl *PrevDecl
2928      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
2929                         LookupOrdinaryName, ForRedeclaration);
2930    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2931      // GCC apparently allows the following idiom:
2932      //
2933      // typedef NSObject < XCElementTogglerP > XCElementToggler;
2934      // @class XCElementToggler;
2935      //
2936      // Here we have chosen to ignore the forward class declaration
2937      // with a warning. Since this is the implied behavior.
2938      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2939      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2940        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2941        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2942      } else {
2943        // a forward class declaration matching a typedef name of a class refers
2944        // to the underlying class. Just ignore the forward class with a warning
2945        // as this will force the intended behavior which is to lookup the
2946        // typedef name.
2947        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2948          Diag(AtClassLoc, diag::warn_forward_class_redefinition)
2949              << IdentList[i];
2950          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2951          continue;
2952        }
2953      }
2954    }
2955
2956    // Create a declaration to describe this forward declaration.
2957    ObjCInterfaceDecl *PrevIDecl
2958      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2959
2960    IdentifierInfo *ClassName = IdentList[i];
2961    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2962      // A previous decl with a different name is because of
2963      // @compatibility_alias, for example:
2964      // \code
2965      //   @class NewImage;
2966      //   @compatibility_alias OldImage NewImage;
2967      // \endcode
2968      // A lookup for 'OldImage' will return the 'NewImage' decl.
2969      //
2970      // In such a case use the real declaration name, instead of the alias one,
2971      // otherwise we will break IdentifierResolver and redecls-chain invariants.
2972      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
2973      // has been aliased.
2974      ClassName = PrevIDecl->getIdentifier();
2975    }
2976
2977    // If this forward declaration has type parameters, compare them with the
2978    // type parameters of the previous declaration.
2979    ObjCTypeParamList *TypeParams = TypeParamLists[i];
2980    if (PrevIDecl && TypeParams) {
2981      if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
2982        // Check for consistency with the previous declaration.
2983        if (checkTypeParamListConsistency(
2984              *this, PrevTypeParams, TypeParams,
2985              TypeParamListContext::ForwardDeclaration)) {
2986          TypeParams = nullptr;
2987        }
2988      } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
2989        // The @interface does not have type parameters. Complain.
2990        Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
2991          << ClassName
2992          << TypeParams->getSourceRange();
2993        Diag(Def->getLocation(), diag::note_defined_here)
2994          << ClassName;
2995
2996        TypeParams = nullptr;
2997      }
2998    }
2999
3000    ObjCInterfaceDecl *IDecl
3001      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3002                                  ClassName, TypeParams, PrevIDecl,
3003                                  IdentLocs[i]);
3004    IDecl->setAtEndRange(IdentLocs[i]);
3005
3006    PushOnScopeChains(IDecl, TUScope);
3007    CheckObjCDeclScope(IDecl);
3008    DeclsInGroup.push_back(IDecl);
3009  }
3010
3011  return BuildDeclaratorGroup(DeclsInGroup, false);
3012}
3013
3014static bool tryMatchRecordTypes(ASTContext &Context,
3015                                Sema::MethodMatchStrategy strategy,
3016                                const Type *left, const Type *right);
3017
3018static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3019                       QualType leftQT, QualType rightQT) {
3020  const Type *left =
3021    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3022  const Type *right =
3023    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3024
3025  if (left == right) return true;
3026
3027  // If we're doing a strict match, the types have to match exactly.
3028  if (strategy == Sema::MMS_strict) return false;
3029
3030  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3031
3032  // Otherwise, use this absurdly complicated algorithm to try to
3033  // validate the basic, low-level compatibility of the two types.
3034
3035  // As a minimum, require the sizes and alignments to match.
3036  TypeInfo LeftTI = Context.getTypeInfo(left);
3037  TypeInfo RightTI = Context.getTypeInfo(right);
3038  if (LeftTI.Width != RightTI.Width)
3039    return false;
3040
3041  if (LeftTI.Align != RightTI.Align)
3042    return false;
3043
3044  // Consider all the kinds of non-dependent canonical types:
3045  // - functions and arrays aren't possible as return and parameter types
3046
3047  // - vector types of equal size can be arbitrarily mixed
3048  if (isa<VectorType>(left)) return isa<VectorType>(right);
3049  if (isa<VectorType>(right)) return false;
3050
3051  // - references should only match references of identical type
3052  // - structs, unions, and Objective-C objects must match more-or-less
3053  //   exactly
3054  // - everything else should be a scalar
3055  if (!left->isScalarType() || !right->isScalarType())
3056    return tryMatchRecordTypes(Context, strategy, left, right);
3057
3058  // Make scalars agree in kind, except count bools as chars, and group
3059  // all non-member pointers together.
3060  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3061  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3062  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3063  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3064  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3065    leftSK = Type::STK_ObjCObjectPointer;
3066  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3067    rightSK = Type::STK_ObjCObjectPointer;
3068
3069  // Note that data member pointers and function member pointers don't
3070  // intermix because of the size differences.
3071
3072  return (leftSK == rightSK);
3073}
3074
3075static bool tryMatchRecordTypes(ASTContext &Context,
3076                                Sema::MethodMatchStrategy strategy,
3077                                const Type *lt, const Type *rt) {
3078  assert(lt && rt && lt != rt);
3079
3080  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3081  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3082  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3083
3084  // Require union-hood to match.
3085  if (left->isUnion() != right->isUnion()) return false;
3086
3087  // Require an exact match if either is non-POD.
3088  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3089      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3090    return false;
3091
3092  // Require size and alignment to match.
3093  TypeInfo LeftTI = Context.getTypeInfo(lt);
3094  TypeInfo RightTI = Context.getTypeInfo(rt);
3095  if (LeftTI.Width != RightTI.Width)
3096    return false;
3097
3098  if (LeftTI.Align != RightTI.Align)
3099    return false;
3100
3101  // Require fields to match.
3102  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3103  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3104  for (; li != le && ri != re; ++li, ++ri) {
3105    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3106      return false;
3107  }
3108  return (li == le && ri == re);
3109}
3110
3111/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3112/// returns true, or false, accordingly.
3113/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3114bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3115                                      const ObjCMethodDecl *right,
3116                                      MethodMatchStrategy strategy) {
3117  if (!matchTypes(Context, strategy, left->getReturnType(),
3118                  right->getReturnType()))
3119    return false;
3120
3121  // If either is hidden, it is not considered to match.
3122  if (left->isHidden() || right->isHidden())
3123    return false;
3124
3125  if (getLangOpts().ObjCAutoRefCount &&
3126      (left->hasAttr<NSReturnsRetainedAttr>()
3127         != right->hasAttr<NSReturnsRetainedAttr>() ||
3128       left->hasAttr<NSConsumesSelfAttr>()
3129         != right->hasAttr<NSConsumesSelfAttr>()))
3130    return false;
3131
3132  ObjCMethodDecl::param_const_iterator
3133    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3134    re = right->param_end();
3135
3136  for (; li != le && ri != re; ++li, ++ri) {
3137    assert(ri != right->param_end() && "Param mismatch");
3138    const ParmVarDecl *lparm = *li, *rparm = *ri;
3139
3140    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3141      return false;
3142
3143    if (getLangOpts().ObjCAutoRefCount &&
3144        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3145      return false;
3146  }
3147  return true;
3148}
3149
3150void Sema::addMethodToGlobalList(ObjCMethodList *List,
3151                                 ObjCMethodDecl *Method) {
3152  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3153  // inside categories.
3154  if (ObjCCategoryDecl *CD =
3155          dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3156    if (!CD->IsClassExtension() && List->getBits() < 2)
3157      List->setBits(List->getBits() + 1);
3158
3159  // If the list is empty, make it a singleton list.
3160  if (List->getMethod() == nullptr) {
3161    List->setMethod(Method);
3162    List->setNext(nullptr);
3163    return;
3164  }
3165
3166  // We've seen a method with this name, see if we have already seen this type
3167  // signature.
3168  ObjCMethodList *Previous = List;
3169  for (; List; Previous = List, List = List->getNext()) {
3170    // If we are building a module, keep all of the methods.
3171    if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
3172      continue;
3173
3174    if (!MatchTwoMethodDeclarations(Method, List->getMethod())) {
3175      // Even if two method types do not match, we would like to say
3176      // there is more than one declaration so unavailability/deprecated
3177      // warning is not too noisy.
3178      if (!Method->isDefined())
3179        List->setHasMoreThanOneDecl(true);
3180      continue;
3181    }
3182
3183    ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3184
3185    // Propagate the 'defined' bit.
3186    if (Method->isDefined())
3187      PrevObjCMethod->setDefined(true);
3188    else {
3189      // Objective-C doesn't allow an @interface for a class after its
3190      // @implementation. So if Method is not defined and there already is
3191      // an entry for this type signature, Method has to be for a different
3192      // class than PrevObjCMethod.
3193      List->setHasMoreThanOneDecl(true);
3194    }
3195
3196    // If a method is deprecated, push it in the global pool.
3197    // This is used for better diagnostics.
3198    if (Method->isDeprecated()) {
3199      if (!PrevObjCMethod->isDeprecated())
3200        List->setMethod(Method);
3201    }
3202    // If the new method is unavailable, push it into global pool
3203    // unless previous one is deprecated.
3204    if (Method->isUnavailable()) {
3205      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3206        List->setMethod(Method);
3207    }
3208
3209    return;
3210  }
3211
3212  // We have a new signature for an existing method - add it.
3213  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3214  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3215  Previous->setNext(new (Mem) ObjCMethodList(Method));
3216}
3217
3218/// \brief Read the contents of the method pool for a given selector from
3219/// external storage.
3220void Sema::ReadMethodPool(Selector Sel) {
3221  assert(ExternalSource && "We need an external AST source");
3222  ExternalSource->ReadMethodPool(Sel);
3223}
3224
3225void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3226                                 bool instance) {
3227  // Ignore methods of invalid containers.
3228  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3229    return;
3230
3231  if (ExternalSource)
3232    ReadMethodPool(Method->getSelector());
3233
3234  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3235  if (Pos == MethodPool.end())
3236    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3237                                           GlobalMethods())).first;
3238
3239  Method->setDefined(impl);
3240
3241  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3242  addMethodToGlobalList(&Entry, Method);
3243}
3244
3245/// Determines if this is an "acceptable" loose mismatch in the global
3246/// method pool.  This exists mostly as a hack to get around certain
3247/// global mismatches which we can't afford to make warnings / errors.
3248/// Really, what we want is a way to take a method out of the global
3249/// method pool.
3250static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3251                                       ObjCMethodDecl *other) {
3252  if (!chosen->isInstanceMethod())
3253    return false;
3254
3255  Selector sel = chosen->getSelector();
3256  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3257    return false;
3258
3259  // Don't complain about mismatches for -length if the method we
3260  // chose has an integral result type.
3261  return (chosen->getReturnType()->isIntegerType());
3262}
3263
3264bool Sema::CollectMultipleMethodsInGlobalPool(
3265    Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
3266  if (ExternalSource)
3267    ReadMethodPool(Sel);
3268
3269  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3270  if (Pos == MethodPool.end())
3271    return false;
3272  // Gather the non-hidden methods.
3273  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3274  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3275    if (M->getMethod() && !M->getMethod()->isHidden())
3276      Methods.push_back(M->getMethod());
3277  return Methods.size() > 1;
3278}
3279
3280bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
3281                                          SourceRange R,
3282                                          bool receiverIdOrClass) {
3283  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3284  // Test for no method in the pool which should not trigger any warning by
3285  // caller.
3286  if (Pos == MethodPool.end())
3287    return true;
3288  ObjCMethodList &MethList =
3289    BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3290
3291  // Diagnose finding more than one method in global pool
3292  SmallVector<ObjCMethodDecl *, 4> Methods;
3293  Methods.push_back(BestMethod);
3294  for (ObjCMethodList *ML = &MethList; ML; ML = ML->getNext())
3295    if (ObjCMethodDecl *M = ML->getMethod())
3296      if (!M->isHidden() && M != BestMethod && !M->hasAttr<UnavailableAttr>())
3297        Methods.push_back(M);
3298  if (Methods.size() > 1)
3299    DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass);
3300
3301  return MethList.hasMoreThanOneDecl();
3302}
3303
3304ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3305                                               bool receiverIdOrClass,
3306                                               bool instance) {
3307  if (ExternalSource)
3308    ReadMethodPool(Sel);
3309
3310  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3311  if (Pos == MethodPool.end())
3312    return nullptr;
3313
3314  // Gather the non-hidden methods.
3315  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3316  SmallVector<ObjCMethodDecl *, 4> Methods;
3317  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3318    if (M->getMethod() && !M->getMethod()->isHidden())
3319      return M->getMethod();
3320  }
3321  return nullptr;
3322}
3323
3324void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3325                                              Selector Sel, SourceRange R,
3326                                              bool receiverIdOrClass) {
3327  // We found multiple methods, so we may have to complain.
3328  bool issueDiagnostic = false, issueError = false;
3329
3330  // We support a warning which complains about *any* difference in
3331  // method signature.
3332  bool strictSelectorMatch =
3333  receiverIdOrClass &&
3334  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3335  if (strictSelectorMatch) {
3336    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3337      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3338        issueDiagnostic = true;
3339        break;
3340      }
3341    }
3342  }
3343
3344  // If we didn't see any strict differences, we won't see any loose
3345  // differences.  In ARC, however, we also need to check for loose
3346  // mismatches, because most of them are errors.
3347  if (!strictSelectorMatch ||
3348      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3349    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3350      // This checks if the methods differ in type mismatch.
3351      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3352          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3353        issueDiagnostic = true;
3354        if (getLangOpts().ObjCAutoRefCount)
3355          issueError = true;
3356        break;
3357      }
3358    }
3359
3360  if (issueDiagnostic) {
3361    if (issueError)
3362      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3363    else if (strictSelectorMatch)
3364      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3365    else
3366      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3367
3368    Diag(Methods[0]->getLocStart(),
3369         issueError ? diag::note_possibility : diag::note_using)
3370    << Methods[0]->getSourceRange();
3371    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3372      Diag(Methods[I]->getLocStart(), diag::note_also_found)
3373      << Methods[I]->getSourceRange();
3374    }
3375  }
3376}
3377
3378ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3379  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3380  if (Pos == MethodPool.end())
3381    return nullptr;
3382
3383  GlobalMethods &Methods = Pos->second;
3384  for (const ObjCMethodList *Method = &Methods.first; Method;
3385       Method = Method->getNext())
3386    if (Method->getMethod() &&
3387        (Method->getMethod()->isDefined() ||
3388         Method->getMethod()->isPropertyAccessor()))
3389      return Method->getMethod();
3390
3391  for (const ObjCMethodList *Method = &Methods.second; Method;
3392       Method = Method->getNext())
3393    if (Method->getMethod() &&
3394        (Method->getMethod()->isDefined() ||
3395         Method->getMethod()->isPropertyAccessor()))
3396      return Method->getMethod();
3397  return nullptr;
3398}
3399
3400static void
3401HelperSelectorsForTypoCorrection(
3402                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3403                      StringRef Typo, const ObjCMethodDecl * Method) {
3404  const unsigned MaxEditDistance = 1;
3405  unsigned BestEditDistance = MaxEditDistance + 1;
3406  std::string MethodName = Method->getSelector().getAsString();
3407
3408  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3409  if (MinPossibleEditDistance > 0 &&
3410      Typo.size() / MinPossibleEditDistance < 1)
3411    return;
3412  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3413  if (EditDistance > MaxEditDistance)
3414    return;
3415  if (EditDistance == BestEditDistance)
3416    BestMethod.push_back(Method);
3417  else if (EditDistance < BestEditDistance) {
3418    BestMethod.clear();
3419    BestMethod.push_back(Method);
3420  }
3421}
3422
3423static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3424                                     QualType ObjectType) {
3425  if (ObjectType.isNull())
3426    return true;
3427  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3428    return true;
3429  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3430         nullptr;
3431}
3432
3433const ObjCMethodDecl *
3434Sema::SelectorsForTypoCorrection(Selector Sel,
3435                                 QualType ObjectType) {
3436  unsigned NumArgs = Sel.getNumArgs();
3437  SmallVector<const ObjCMethodDecl *, 8> Methods;
3438  bool ObjectIsId = true, ObjectIsClass = true;
3439  if (ObjectType.isNull())
3440    ObjectIsId = ObjectIsClass = false;
3441  else if (!ObjectType->isObjCObjectPointerType())
3442    return nullptr;
3443  else if (const ObjCObjectPointerType *ObjCPtr =
3444           ObjectType->getAsObjCInterfacePointerType()) {
3445    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3446    ObjectIsId = ObjectIsClass = false;
3447  }
3448  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3449    ObjectIsClass = false;
3450  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3451    ObjectIsId = false;
3452  else
3453    return nullptr;
3454
3455  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3456       e = MethodPool.end(); b != e; b++) {
3457    // instance methods
3458    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3459      if (M->getMethod() &&
3460          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3461          (M->getMethod()->getSelector() != Sel)) {
3462        if (ObjectIsId)
3463          Methods.push_back(M->getMethod());
3464        else if (!ObjectIsClass &&
3465                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3466                                          ObjectType))
3467          Methods.push_back(M->getMethod());
3468      }
3469    // class methods
3470    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3471      if (M->getMethod() &&
3472          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3473          (M->getMethod()->getSelector() != Sel)) {
3474        if (ObjectIsClass)
3475          Methods.push_back(M->getMethod());
3476        else if (!ObjectIsId &&
3477                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3478                                          ObjectType))
3479          Methods.push_back(M->getMethod());
3480      }
3481  }
3482
3483  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3484  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3485    HelperSelectorsForTypoCorrection(SelectedMethods,
3486                                     Sel.getAsString(), Methods[i]);
3487  }
3488  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3489}
3490
3491/// DiagnoseDuplicateIvars -
3492/// Check for duplicate ivars in the entire class at the start of
3493/// \@implementation. This becomes necesssary because class extension can
3494/// add ivars to a class in random order which will not be known until
3495/// class's \@implementation is seen.
3496void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3497                                  ObjCInterfaceDecl *SID) {
3498  for (auto *Ivar : ID->ivars()) {
3499    if (Ivar->isInvalidDecl())
3500      continue;
3501    if (IdentifierInfo *II = Ivar->getIdentifier()) {
3502      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3503      if (prevIvar) {
3504        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3505        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3506        Ivar->setInvalidDecl();
3507      }
3508    }
3509  }
3510}
3511
3512/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3513static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3514  if (S.getLangOpts().ObjCWeak) return;
3515
3516  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3517         ivar; ivar = ivar->getNextIvar()) {
3518    if (ivar->isInvalidDecl()) continue;
3519    if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3520      if (S.getLangOpts().ObjCWeakRuntime) {
3521        S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3522      } else {
3523        S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3524      }
3525    }
3526  }
3527}
3528
3529Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3530  switch (CurContext->getDeclKind()) {
3531    case Decl::ObjCInterface:
3532      return Sema::OCK_Interface;
3533    case Decl::ObjCProtocol:
3534      return Sema::OCK_Protocol;
3535    case Decl::ObjCCategory:
3536      if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3537        return Sema::OCK_ClassExtension;
3538      return Sema::OCK_Category;
3539    case Decl::ObjCImplementation:
3540      return Sema::OCK_Implementation;
3541    case Decl::ObjCCategoryImpl:
3542      return Sema::OCK_CategoryImplementation;
3543
3544    default:
3545      return Sema::OCK_None;
3546  }
3547}
3548
3549// Note: For class/category implementations, allMethods is always null.
3550Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3551                       ArrayRef<DeclGroupPtrTy> allTUVars) {
3552  if (getObjCContainerKind() == Sema::OCK_None)
3553    return nullptr;
3554
3555  assert(AtEnd.isValid() && "Invalid location for '@end'");
3556
3557  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3558  Decl *ClassDecl = cast<Decl>(OCD);
3559
3560  bool isInterfaceDeclKind =
3561        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3562         || isa<ObjCProtocolDecl>(ClassDecl);
3563  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3564
3565  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3566  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3567  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3568
3569  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3570    ObjCMethodDecl *Method =
3571      cast_or_null<ObjCMethodDecl>(allMethods[i]);
3572
3573    if (!Method) continue;  // Already issued a diagnostic.
3574    if (Method->isInstanceMethod()) {
3575      /// Check for instance method of the same name with incompatible types
3576      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3577      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3578                              : false;
3579      if ((isInterfaceDeclKind && PrevMethod && !match)
3580          || (checkIdenticalMethods && match)) {
3581          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3582            << Method->getDeclName();
3583          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3584        Method->setInvalidDecl();
3585      } else {
3586        if (PrevMethod) {
3587          Method->setAsRedeclaration(PrevMethod);
3588          if (!Context.getSourceManager().isInSystemHeader(
3589                 Method->getLocation()))
3590            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3591              << Method->getDeclName();
3592          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3593        }
3594        InsMap[Method->getSelector()] = Method;
3595        /// The following allows us to typecheck messages to "id".
3596        AddInstanceMethodToGlobalPool(Method);
3597      }
3598    } else {
3599      /// Check for class method of the same name with incompatible types
3600      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3601      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3602                              : false;
3603      if ((isInterfaceDeclKind && PrevMethod && !match)
3604          || (checkIdenticalMethods && match)) {
3605        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3606          << Method->getDeclName();
3607        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3608        Method->setInvalidDecl();
3609      } else {
3610        if (PrevMethod) {
3611          Method->setAsRedeclaration(PrevMethod);
3612          if (!Context.getSourceManager().isInSystemHeader(
3613                 Method->getLocation()))
3614            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3615              << Method->getDeclName();
3616          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3617        }
3618        ClsMap[Method->getSelector()] = Method;
3619        AddFactoryMethodToGlobalPool(Method);
3620      }
3621    }
3622  }
3623  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3624    // Nothing to do here.
3625  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3626    // Categories are used to extend the class by declaring new methods.
3627    // By the same token, they are also used to add new properties. No
3628    // need to compare the added property to those in the class.
3629
3630    if (C->IsClassExtension()) {
3631      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3632      DiagnoseClassExtensionDupMethods(C, CCPrimary);
3633    }
3634  }
3635  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3636    if (CDecl->getIdentifier())
3637      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3638      // user-defined setter/getter. It also synthesizes setter/getter methods
3639      // and adds them to the DeclContext and global method pools.
3640      for (auto *I : CDecl->properties())
3641        ProcessPropertyDecl(I);
3642    CDecl->setAtEndRange(AtEnd);
3643  }
3644  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3645    IC->setAtEndRange(AtEnd);
3646    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3647      // Any property declared in a class extension might have user
3648      // declared setter or getter in current class extension or one
3649      // of the other class extensions. Mark them as synthesized as
3650      // property will be synthesized when property with same name is
3651      // seen in the @implementation.
3652      for (const auto *Ext : IDecl->visible_extensions()) {
3653        for (const auto *Property : Ext->properties()) {
3654          // Skip over properties declared @dynamic
3655          if (const ObjCPropertyImplDecl *PIDecl
3656              = IC->FindPropertyImplDecl(Property->getIdentifier()))
3657            if (PIDecl->getPropertyImplementation()
3658                  == ObjCPropertyImplDecl::Dynamic)
3659              continue;
3660
3661          for (const auto *Ext : IDecl->visible_extensions()) {
3662            if (ObjCMethodDecl *GetterMethod
3663                  = Ext->getInstanceMethod(Property->getGetterName()))
3664              GetterMethod->setPropertyAccessor(true);
3665            if (!Property->isReadOnly())
3666              if (ObjCMethodDecl *SetterMethod
3667                    = Ext->getInstanceMethod(Property->getSetterName()))
3668                SetterMethod->setPropertyAccessor(true);
3669          }
3670        }
3671      }
3672      ImplMethodsVsClassMethods(S, IC, IDecl);
3673      AtomicPropertySetterGetterRules(IC, IDecl);
3674      DiagnoseOwningPropertyGetterSynthesis(IC);
3675      DiagnoseUnusedBackingIvarInAccessor(S, IC);
3676      if (IDecl->hasDesignatedInitializers())
3677        DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
3678      DiagnoseWeakIvars(*this, IC);
3679
3680      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3681      if (IDecl->getSuperClass() == nullptr) {
3682        // This class has no superclass, so check that it has been marked with
3683        // __attribute((objc_root_class)).
3684        if (!HasRootClassAttr) {
3685          SourceLocation DeclLoc(IDecl->getLocation());
3686          SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3687          Diag(DeclLoc, diag::warn_objc_root_class_missing)
3688            << IDecl->getIdentifier();
3689          // See if NSObject is in the current scope, and if it is, suggest
3690          // adding " : NSObject " to the class declaration.
3691          NamedDecl *IF = LookupSingleName(TUScope,
3692                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
3693                                           DeclLoc, LookupOrdinaryName);
3694          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
3695          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
3696            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
3697              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
3698          } else {
3699            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
3700          }
3701        }
3702      } else if (HasRootClassAttr) {
3703        // Complain that only root classes may have this attribute.
3704        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
3705      }
3706
3707      if (LangOpts.ObjCRuntime.isNonFragile()) {
3708        while (IDecl->getSuperClass()) {
3709          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
3710          IDecl = IDecl->getSuperClass();
3711        }
3712      }
3713    }
3714    SetIvarInitializers(IC);
3715  } else if (ObjCCategoryImplDecl* CatImplClass =
3716                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
3717    CatImplClass->setAtEndRange(AtEnd);
3718
3719    // Find category interface decl and then check that all methods declared
3720    // in this interface are implemented in the category @implementation.
3721    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
3722      if (ObjCCategoryDecl *Cat
3723            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
3724        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
3725      }
3726    }
3727  }
3728  if (isInterfaceDeclKind) {
3729    // Reject invalid vardecls.
3730    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3731      DeclGroupRef DG = allTUVars[i].get();
3732      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3733        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
3734          if (!VDecl->hasExternalStorage())
3735            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
3736        }
3737    }
3738  }
3739  ActOnObjCContainerFinishDefinition();
3740
3741  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3742    DeclGroupRef DG = allTUVars[i].get();
3743    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3744      (*I)->setTopLevelDeclInObjCContainer();
3745    Consumer.HandleTopLevelDeclInObjCContainer(DG);
3746  }
3747
3748  ActOnDocumentableDecl(ClassDecl);
3749  return ClassDecl;
3750}
3751
3752/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
3753/// objective-c's type qualifier from the parser version of the same info.
3754static Decl::ObjCDeclQualifier
3755CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
3756  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
3757}
3758
3759/// \brief Check whether the declared result type of the given Objective-C
3760/// method declaration is compatible with the method's class.
3761///
3762static Sema::ResultTypeCompatibilityKind
3763CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
3764                                    ObjCInterfaceDecl *CurrentClass) {
3765  QualType ResultType = Method->getReturnType();
3766
3767  // If an Objective-C method inherits its related result type, then its
3768  // declared result type must be compatible with its own class type. The
3769  // declared result type is compatible if:
3770  if (const ObjCObjectPointerType *ResultObjectType
3771                                = ResultType->getAs<ObjCObjectPointerType>()) {
3772    //   - it is id or qualified id, or
3773    if (ResultObjectType->isObjCIdType() ||
3774        ResultObjectType->isObjCQualifiedIdType())
3775      return Sema::RTC_Compatible;
3776
3777    if (CurrentClass) {
3778      if (ObjCInterfaceDecl *ResultClass
3779                                      = ResultObjectType->getInterfaceDecl()) {
3780        //   - it is the same as the method's class type, or
3781        if (declaresSameEntity(CurrentClass, ResultClass))
3782          return Sema::RTC_Compatible;
3783
3784        //   - it is a superclass of the method's class type
3785        if (ResultClass->isSuperClassOf(CurrentClass))
3786          return Sema::RTC_Compatible;
3787      }
3788    } else {
3789      // Any Objective-C pointer type might be acceptable for a protocol
3790      // method; we just don't know.
3791      return Sema::RTC_Unknown;
3792    }
3793  }
3794
3795  return Sema::RTC_Incompatible;
3796}
3797
3798namespace {
3799/// A helper class for searching for methods which a particular method
3800/// overrides.
3801class OverrideSearch {
3802public:
3803  Sema &S;
3804  ObjCMethodDecl *Method;
3805  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
3806  bool Recursive;
3807
3808public:
3809  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
3810    Selector selector = method->getSelector();
3811
3812    // Bypass this search if we've never seen an instance/class method
3813    // with this selector before.
3814    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
3815    if (it == S.MethodPool.end()) {
3816      if (!S.getExternalSource()) return;
3817      S.ReadMethodPool(selector);
3818
3819      it = S.MethodPool.find(selector);
3820      if (it == S.MethodPool.end())
3821        return;
3822    }
3823    ObjCMethodList &list =
3824      method->isInstanceMethod() ? it->second.first : it->second.second;
3825    if (!list.getMethod()) return;
3826
3827    ObjCContainerDecl *container
3828      = cast<ObjCContainerDecl>(method->getDeclContext());
3829
3830    // Prevent the search from reaching this container again.  This is
3831    // important with categories, which override methods from the
3832    // interface and each other.
3833    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
3834      searchFromContainer(container);
3835      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
3836        searchFromContainer(Interface);
3837    } else {
3838      searchFromContainer(container);
3839    }
3840  }
3841
3842  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
3843  iterator begin() const { return Overridden.begin(); }
3844  iterator end() const { return Overridden.end(); }
3845
3846private:
3847  void searchFromContainer(ObjCContainerDecl *container) {
3848    if (container->isInvalidDecl()) return;
3849
3850    switch (container->getDeclKind()) {
3851#define OBJCCONTAINER(type, base) \
3852    case Decl::type: \
3853      searchFrom(cast<type##Decl>(container)); \
3854      break;
3855#define ABSTRACT_DECL(expansion)
3856#define DECL(type, base) \
3857    case Decl::type:
3858#include "clang/AST/DeclNodes.inc"
3859      llvm_unreachable("not an ObjC container!");
3860    }
3861  }
3862
3863  void searchFrom(ObjCProtocolDecl *protocol) {
3864    if (!protocol->hasDefinition())
3865      return;
3866
3867    // A method in a protocol declaration overrides declarations from
3868    // referenced ("parent") protocols.
3869    search(protocol->getReferencedProtocols());
3870  }
3871
3872  void searchFrom(ObjCCategoryDecl *category) {
3873    // A method in a category declaration overrides declarations from
3874    // the main class and from protocols the category references.
3875    // The main class is handled in the constructor.
3876    search(category->getReferencedProtocols());
3877  }
3878
3879  void searchFrom(ObjCCategoryImplDecl *impl) {
3880    // A method in a category definition that has a category
3881    // declaration overrides declarations from the category
3882    // declaration.
3883    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
3884      search(category);
3885      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
3886        search(Interface);
3887
3888    // Otherwise it overrides declarations from the class.
3889    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
3890      search(Interface);
3891    }
3892  }
3893
3894  void searchFrom(ObjCInterfaceDecl *iface) {
3895    // A method in a class declaration overrides declarations from
3896    if (!iface->hasDefinition())
3897      return;
3898
3899    //   - categories,
3900    for (auto *Cat : iface->known_categories())
3901      search(Cat);
3902
3903    //   - the super class, and
3904    if (ObjCInterfaceDecl *super = iface->getSuperClass())
3905      search(super);
3906
3907    //   - any referenced protocols.
3908    search(iface->getReferencedProtocols());
3909  }
3910
3911  void searchFrom(ObjCImplementationDecl *impl) {
3912    // A method in a class implementation overrides declarations from
3913    // the class interface.
3914    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
3915      search(Interface);
3916  }
3917
3918  void search(const ObjCProtocolList &protocols) {
3919    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
3920         i != e; ++i)
3921      search(*i);
3922  }
3923
3924  void search(ObjCContainerDecl *container) {
3925    // Check for a method in this container which matches this selector.
3926    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
3927                                                Method->isInstanceMethod(),
3928                                                /*AllowHidden=*/true);
3929
3930    // If we find one, record it and bail out.
3931    if (meth) {
3932      Overridden.insert(meth);
3933      return;
3934    }
3935
3936    // Otherwise, search for methods that a hypothetical method here
3937    // would have overridden.
3938
3939    // Note that we're now in a recursive case.
3940    Recursive = true;
3941
3942    searchFromContainer(container);
3943  }
3944};
3945} // end anonymous namespace
3946
3947void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
3948                                    ObjCInterfaceDecl *CurrentClass,
3949                                    ResultTypeCompatibilityKind RTC) {
3950  // Search for overridden methods and merge information down from them.
3951  OverrideSearch overrides(*this, ObjCMethod);
3952  // Keep track if the method overrides any method in the class's base classes,
3953  // its protocols, or its categories' protocols; we will keep that info
3954  // in the ObjCMethodDecl.
3955  // For this info, a method in an implementation is not considered as
3956  // overriding the same method in the interface or its categories.
3957  bool hasOverriddenMethodsInBaseOrProtocol = false;
3958  for (OverrideSearch::iterator
3959         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
3960    ObjCMethodDecl *overridden = *i;
3961
3962    if (!hasOverriddenMethodsInBaseOrProtocol) {
3963      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
3964          CurrentClass != overridden->getClassInterface() ||
3965          overridden->isOverriding()) {
3966        hasOverriddenMethodsInBaseOrProtocol = true;
3967
3968      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
3969        // OverrideSearch will return as "overridden" the same method in the
3970        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
3971        // check whether a category of a base class introduced a method with the
3972        // same selector, after the interface method declaration.
3973        // To avoid unnecessary lookups in the majority of cases, we use the
3974        // extra info bits in GlobalMethodPool to check whether there were any
3975        // category methods with this selector.
3976        GlobalMethodPool::iterator It =
3977            MethodPool.find(ObjCMethod->getSelector());
3978        if (It != MethodPool.end()) {
3979          ObjCMethodList &List =
3980            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
3981          unsigned CategCount = List.getBits();
3982          if (CategCount > 0) {
3983            // If the method is in a category we'll do lookup if there were at
3984            // least 2 category methods recorded, otherwise only one will do.
3985            if (CategCount > 1 ||
3986                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3987              OverrideSearch overrides(*this, overridden);
3988              for (OverrideSearch::iterator
3989                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3990                ObjCMethodDecl *SuperOverridden = *OI;
3991                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3992                    CurrentClass != SuperOverridden->getClassInterface()) {
3993                  hasOverriddenMethodsInBaseOrProtocol = true;
3994                  overridden->setOverriding(true);
3995                  break;
3996                }
3997              }
3998            }
3999          }
4000        }
4001      }
4002    }
4003
4004    // Propagate down the 'related result type' bit from overridden methods.
4005    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4006      ObjCMethod->SetRelatedResultType();
4007
4008    // Then merge the declarations.
4009    mergeObjCMethodDecls(ObjCMethod, overridden);
4010
4011    if (ObjCMethod->isImplicit() && overridden->isImplicit())
4012      continue; // Conflicting properties are detected elsewhere.
4013
4014    // Check for overriding methods
4015    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4016        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4017      CheckConflictingOverridingMethod(ObjCMethod, overridden,
4018              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4019
4020    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4021        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4022        !overridden->isImplicit() /* not meant for properties */) {
4023      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4024                                          E = ObjCMethod->param_end();
4025      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4026                                     PrevE = overridden->param_end();
4027      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4028        assert(PrevI != overridden->param_end() && "Param mismatch");
4029        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4030        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4031        // If type of argument of method in this class does not match its
4032        // respective argument type in the super class method, issue warning;
4033        if (!Context.typesAreCompatible(T1, T2)) {
4034          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4035            << T1 << T2;
4036          Diag(overridden->getLocation(), diag::note_previous_declaration);
4037          break;
4038        }
4039      }
4040    }
4041  }
4042
4043  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4044}
4045
4046/// Merge type nullability from for a redeclaration of the same entity,
4047/// producing the updated type of the redeclared entity.
4048static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4049                                              QualType type,
4050                                              bool usesCSKeyword,
4051                                              SourceLocation prevLoc,
4052                                              QualType prevType,
4053                                              bool prevUsesCSKeyword) {
4054  // Determine the nullability of both types.
4055  auto nullability = type->getNullability(S.Context);
4056  auto prevNullability = prevType->getNullability(S.Context);
4057
4058  // Easy case: both have nullability.
4059  if (nullability.hasValue() == prevNullability.hasValue()) {
4060    // Neither has nullability; continue.
4061    if (!nullability)
4062      return type;
4063
4064    // The nullabilities are equivalent; do nothing.
4065    if (*nullability == *prevNullability)
4066      return type;
4067
4068    // Complain about mismatched nullability.
4069    S.Diag(loc, diag::err_nullability_conflicting)
4070      << DiagNullabilityKind(*nullability, usesCSKeyword)
4071      << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4072    return type;
4073  }
4074
4075  // If it's the redeclaration that has nullability, don't change anything.
4076  if (nullability)
4077    return type;
4078
4079  // Otherwise, provide the result with the same nullability.
4080  return S.Context.getAttributedType(
4081           AttributedType::getNullabilityAttrKind(*prevNullability),
4082           type, type);
4083}
4084
4085/// Merge information from the declaration of a method in the \@interface
4086/// (or a category/extension) into the corresponding method in the
4087/// @implementation (for a class or category).
4088static void mergeInterfaceMethodToImpl(Sema &S,
4089                                       ObjCMethodDecl *method,
4090                                       ObjCMethodDecl *prevMethod) {
4091  // Merge the objc_requires_super attribute.
4092  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4093      !method->hasAttr<ObjCRequiresSuperAttr>()) {
4094    // merge the attribute into implementation.
4095    method->addAttr(
4096      ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4097                                            method->getLocation()));
4098  }
4099
4100  // Merge nullability of the result type.
4101  QualType newReturnType
4102    = mergeTypeNullabilityForRedecl(
4103        S, method->getReturnTypeSourceRange().getBegin(),
4104        method->getReturnType(),
4105        method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4106        prevMethod->getReturnTypeSourceRange().getBegin(),
4107        prevMethod->getReturnType(),
4108        prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4109  method->setReturnType(newReturnType);
4110
4111  // Handle each of the parameters.
4112  unsigned numParams = method->param_size();
4113  unsigned numPrevParams = prevMethod->param_size();
4114  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4115    ParmVarDecl *param = method->param_begin()[i];
4116    ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4117
4118    // Merge nullability.
4119    QualType newParamType
4120      = mergeTypeNullabilityForRedecl(
4121          S, param->getLocation(), param->getType(),
4122          param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4123          prevParam->getLocation(), prevParam->getType(),
4124          prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4125    param->setType(newParamType);
4126  }
4127}
4128
4129Decl *Sema::ActOnMethodDeclaration(
4130    Scope *S,
4131    SourceLocation MethodLoc, SourceLocation EndLoc,
4132    tok::TokenKind MethodType,
4133    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4134    ArrayRef<SourceLocation> SelectorLocs,
4135    Selector Sel,
4136    // optional arguments. The number of types/arguments is obtained
4137    // from the Sel.getNumArgs().
4138    ObjCArgInfo *ArgInfo,
4139    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4140    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4141    bool isVariadic, bool MethodDefinition) {
4142  // Make sure we can establish a context for the method.
4143  if (!CurContext->isObjCContainer()) {
4144    Diag(MethodLoc, diag::error_missing_method_context);
4145    return nullptr;
4146  }
4147  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
4148  Decl *ClassDecl = cast<Decl>(OCD);
4149  QualType resultDeclType;
4150
4151  bool HasRelatedResultType = false;
4152  TypeSourceInfo *ReturnTInfo = nullptr;
4153  if (ReturnType) {
4154    resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4155
4156    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4157      return nullptr;
4158
4159    QualType bareResultType = resultDeclType;
4160    (void)AttributedType::stripOuterNullability(bareResultType);
4161    HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4162  } else { // get the type for "id".
4163    resultDeclType = Context.getObjCIdType();
4164    Diag(MethodLoc, diag::warn_missing_method_return_type)
4165      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4166  }
4167
4168  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4169      Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4170      MethodType == tok::minus, isVariadic,
4171      /*isPropertyAccessor=*/false,
4172      /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4173      MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4174                                           : ObjCMethodDecl::Required,
4175      HasRelatedResultType);
4176
4177  SmallVector<ParmVarDecl*, 16> Params;
4178
4179  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4180    QualType ArgType;
4181    TypeSourceInfo *DI;
4182
4183    if (!ArgInfo[i].Type) {
4184      ArgType = Context.getObjCIdType();
4185      DI = nullptr;
4186    } else {
4187      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4188    }
4189
4190    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4191                   LookupOrdinaryName, ForRedeclaration);
4192    LookupName(R, S);
4193    if (R.isSingleResult()) {
4194      NamedDecl *PrevDecl = R.getFoundDecl();
4195      if (S->isDeclScope(PrevDecl)) {
4196        Diag(ArgInfo[i].NameLoc,
4197             (MethodDefinition ? diag::warn_method_param_redefinition
4198                               : diag::warn_method_param_declaration))
4199          << ArgInfo[i].Name;
4200        Diag(PrevDecl->getLocation(),
4201             diag::note_previous_declaration);
4202      }
4203    }
4204
4205    SourceLocation StartLoc = DI
4206      ? DI->getTypeLoc().getBeginLoc()
4207      : ArgInfo[i].NameLoc;
4208
4209    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4210                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
4211                                        ArgType, DI, SC_None);
4212
4213    Param->setObjCMethodScopeInfo(i);
4214
4215    Param->setObjCDeclQualifier(
4216      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4217
4218    // Apply the attributes to the parameter.
4219    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4220
4221    if (Param->hasAttr<BlocksAttr>()) {
4222      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4223      Param->setInvalidDecl();
4224    }
4225    S->AddDecl(Param);
4226    IdResolver.AddDecl(Param);
4227
4228    Params.push_back(Param);
4229  }
4230
4231  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4232    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4233    QualType ArgType = Param->getType();
4234    if (ArgType.isNull())
4235      ArgType = Context.getObjCIdType();
4236    else
4237      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4238      ArgType = Context.getAdjustedParameterType(ArgType);
4239
4240    Param->setDeclContext(ObjCMethod);
4241    Params.push_back(Param);
4242  }
4243
4244  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4245  ObjCMethod->setObjCDeclQualifier(
4246    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4247
4248  if (AttrList)
4249    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4250
4251  // Add the method now.
4252  const ObjCMethodDecl *PrevMethod = nullptr;
4253  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4254    if (MethodType == tok::minus) {
4255      PrevMethod = ImpDecl->getInstanceMethod(Sel);
4256      ImpDecl->addInstanceMethod(ObjCMethod);
4257    } else {
4258      PrevMethod = ImpDecl->getClassMethod(Sel);
4259      ImpDecl->addClassMethod(ObjCMethod);
4260    }
4261
4262    // Merge information from the @interface declaration into the
4263    // @implementation.
4264    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4265      if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4266                                          ObjCMethod->isInstanceMethod())) {
4267        mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4268
4269        // Warn about defining -dealloc in a category.
4270        if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4271            ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4272          Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4273            << ObjCMethod->getDeclName();
4274        }
4275      }
4276    }
4277  } else {
4278    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4279  }
4280
4281  if (PrevMethod) {
4282    // You can never have two method definitions with the same name.
4283    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4284      << ObjCMethod->getDeclName();
4285    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4286    ObjCMethod->setInvalidDecl();
4287    return ObjCMethod;
4288  }
4289
4290  // If this Objective-C method does not have a related result type, but we
4291  // are allowed to infer related result types, try to do so based on the
4292  // method family.
4293  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4294  if (!CurrentClass) {
4295    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4296      CurrentClass = Cat->getClassInterface();
4297    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4298      CurrentClass = Impl->getClassInterface();
4299    else if (ObjCCategoryImplDecl *CatImpl
4300                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4301      CurrentClass = CatImpl->getClassInterface();
4302  }
4303
4304  ResultTypeCompatibilityKind RTC
4305    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4306
4307  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4308
4309  bool ARCError = false;
4310  if (getLangOpts().ObjCAutoRefCount)
4311    ARCError = CheckARCMethodDecl(ObjCMethod);
4312
4313  // Infer the related result type when possible.
4314  if (!ARCError && RTC == Sema::RTC_Compatible &&
4315      !ObjCMethod->hasRelatedResultType() &&
4316      LangOpts.ObjCInferRelatedResultType) {
4317    bool InferRelatedResultType = false;
4318    switch (ObjCMethod->getMethodFamily()) {
4319    case OMF_None:
4320    case OMF_copy:
4321    case OMF_dealloc:
4322    case OMF_finalize:
4323    case OMF_mutableCopy:
4324    case OMF_release:
4325    case OMF_retainCount:
4326    case OMF_initialize:
4327    case OMF_performSelector:
4328      break;
4329
4330    case OMF_alloc:
4331    case OMF_new:
4332        InferRelatedResultType = ObjCMethod->isClassMethod();
4333      break;
4334
4335    case OMF_init:
4336    case OMF_autorelease:
4337    case OMF_retain:
4338    case OMF_self:
4339      InferRelatedResultType = ObjCMethod->isInstanceMethod();
4340      break;
4341    }
4342
4343    if (InferRelatedResultType &&
4344        !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4345      ObjCMethod->SetRelatedResultType();
4346  }
4347
4348  ActOnDocumentableDecl(ObjCMethod);
4349
4350  return ObjCMethod;
4351}
4352
4353bool Sema::CheckObjCDeclScope(Decl *D) {
4354  // Following is also an error. But it is caused by a missing @end
4355  // and diagnostic is issued elsewhere.
4356  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4357    return false;
4358
4359  // If we switched context to translation unit while we are still lexically in
4360  // an objc container, it means the parser missed emitting an error.
4361  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4362    return false;
4363
4364  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4365  D->setInvalidDecl();
4366
4367  return true;
4368}
4369
4370/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
4371/// instance variables of ClassName into Decls.
4372void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4373                     IdentifierInfo *ClassName,
4374                     SmallVectorImpl<Decl*> &Decls) {
4375  // Check that ClassName is a valid class
4376  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4377  if (!Class) {
4378    Diag(DeclStart, diag::err_undef_interface) << ClassName;
4379    return;
4380  }
4381  if (LangOpts.ObjCRuntime.isNonFragile()) {
4382    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4383    return;
4384  }
4385
4386  // Collect the instance variables
4387  SmallVector<const ObjCIvarDecl*, 32> Ivars;
4388  Context.DeepCollectObjCIvars(Class, true, Ivars);
4389  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4390  for (unsigned i = 0; i < Ivars.size(); i++) {
4391    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
4392    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4393    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4394                                           /*FIXME: StartL=*/ID->getLocation(),
4395                                           ID->getLocation(),
4396                                           ID->getIdentifier(), ID->getType(),
4397                                           ID->getBitWidth());
4398    Decls.push_back(FD);
4399  }
4400
4401  // Introduce all of these fields into the appropriate scope.
4402  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4403       D != Decls.end(); ++D) {
4404    FieldDecl *FD = cast<FieldDecl>(*D);
4405    if (getLangOpts().CPlusPlus)
4406      PushOnScopeChains(cast<FieldDecl>(FD), S);
4407    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4408      Record->addDecl(FD);
4409  }
4410}
4411
4412/// \brief Build a type-check a new Objective-C exception variable declaration.
4413VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4414                                      SourceLocation StartLoc,
4415                                      SourceLocation IdLoc,
4416                                      IdentifierInfo *Id,
4417                                      bool Invalid) {
4418  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4419  // duration shall not be qualified by an address-space qualifier."
4420  // Since all parameters have automatic store duration, they can not have
4421  // an address space.
4422  if (T.getAddressSpace() != 0) {
4423    Diag(IdLoc, diag::err_arg_with_address_space);
4424    Invalid = true;
4425  }
4426
4427  // An @catch parameter must be an unqualified object pointer type;
4428  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4429  if (Invalid) {
4430    // Don't do any further checking.
4431  } else if (T->isDependentType()) {
4432    // Okay: we don't know what this type will instantiate to.
4433  } else if (!T->isObjCObjectPointerType()) {
4434    Invalid = true;
4435    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4436  } else if (T->isObjCQualifiedIdType()) {
4437    Invalid = true;
4438    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4439  }
4440
4441  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4442                                 T, TInfo, SC_None);
4443  New->setExceptionVariable(true);
4444
4445  // In ARC, infer 'retaining' for variables of retainable type.
4446  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4447    Invalid = true;
4448
4449  if (Invalid)
4450    New->setInvalidDecl();
4451  return New;
4452}
4453
4454Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4455  const DeclSpec &DS = D.getDeclSpec();
4456
4457  // We allow the "register" storage class on exception variables because
4458  // GCC did, but we drop it completely. Any other storage class is an error.
4459  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4460    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4461      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4462  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4463    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4464      << DeclSpec::getSpecifierName(SCS);
4465  }
4466  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4467    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4468         diag::err_invalid_thread)
4469     << DeclSpec::getSpecifierName(TSCS);
4470  D.getMutableDeclSpec().ClearStorageClassSpecs();
4471
4472  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4473
4474  // Check that there are no default arguments inside the type of this
4475  // exception object (C++ only).
4476  if (getLangOpts().CPlusPlus)
4477    CheckExtraCXXDefaultArguments(D);
4478
4479  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4480  QualType ExceptionType = TInfo->getType();
4481
4482  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4483                                        D.getSourceRange().getBegin(),
4484                                        D.getIdentifierLoc(),
4485                                        D.getIdentifier(),
4486                                        D.isInvalidType());
4487
4488  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4489  if (D.getCXXScopeSpec().isSet()) {
4490    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4491      << D.getCXXScopeSpec().getRange();
4492    New->setInvalidDecl();
4493  }
4494
4495  // Add the parameter declaration into this scope.
4496  S->AddDecl(New);
4497  if (D.getIdentifier())
4498    IdResolver.AddDecl(New);
4499
4500  ProcessDeclAttributes(S, New, D);
4501
4502  if (New->hasAttr<BlocksAttr>())
4503    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4504  return New;
4505}
4506
4507/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4508/// initialization.
4509void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4510                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4511  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4512       Iv= Iv->getNextIvar()) {
4513    QualType QT = Context.getBaseElementType(Iv->getType());
4514    if (QT->isRecordType())
4515      Ivars.push_back(Iv);
4516  }
4517}
4518
4519void Sema::DiagnoseUseOfUnimplementedSelectors() {
4520  // Load referenced selectors from the external source.
4521  if (ExternalSource) {
4522    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4523    ExternalSource->ReadReferencedSelectors(Sels);
4524    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4525      ReferencedSelectors[Sels[I].first] = Sels[I].second;
4526  }
4527
4528  // Warning will be issued only when selector table is
4529  // generated (which means there is at lease one implementation
4530  // in the TU). This is to match gcc's behavior.
4531  if (ReferencedSelectors.empty() ||
4532      !Context.AnyObjCImplementation())
4533    return;
4534  for (auto &SelectorAndLocation : ReferencedSelectors) {
4535    Selector Sel = SelectorAndLocation.first;
4536    SourceLocation Loc = SelectorAndLocation.second;
4537    if (!LookupImplementedMethodInGlobalPool(Sel))
4538      Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4539  }
4540}
4541
4542ObjCIvarDecl *
4543Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4544                                     const ObjCPropertyDecl *&PDecl) const {
4545  if (Method->isClassMethod())
4546    return nullptr;
4547  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4548  if (!IDecl)
4549    return nullptr;
4550  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4551                               /*shallowCategoryLookup=*/false,
4552                               /*followSuper=*/false);
4553  if (!Method || !Method->isPropertyAccessor())
4554    return nullptr;
4555  if ((PDecl = Method->findPropertyDecl()))
4556    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4557      // property backing ivar must belong to property's class
4558      // or be a private ivar in class's implementation.
4559      // FIXME. fix the const-ness issue.
4560      IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4561                                                        IV->getIdentifier());
4562      return IV;
4563    }
4564  return nullptr;
4565}
4566
4567namespace {
4568  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4569  /// accessor references the backing ivar.
4570  class UnusedBackingIvarChecker :
4571      public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4572  public:
4573    Sema &S;
4574    const ObjCMethodDecl *Method;
4575    const ObjCIvarDecl *IvarD;
4576    bool AccessedIvar;
4577    bool InvokedSelfMethod;
4578
4579    UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4580                             const ObjCIvarDecl *IvarD)
4581      : S(S), Method(Method), IvarD(IvarD),
4582        AccessedIvar(false), InvokedSelfMethod(false) {
4583      assert(IvarD);
4584    }
4585
4586    bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4587      if (E->getDecl() == IvarD) {
4588        AccessedIvar = true;
4589        return false;
4590      }
4591      return true;
4592    }
4593
4594    bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4595      if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
4596          S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4597        InvokedSelfMethod = true;
4598      }
4599      return true;
4600    }
4601  };
4602} // end anonymous namespace
4603
4604void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4605                                          const ObjCImplementationDecl *ImplD) {
4606  if (S->hasUnrecoverableErrorOccurred())
4607    return;
4608
4609  for (const auto *CurMethod : ImplD->instance_methods()) {
4610    unsigned DIAG = diag::warn_unused_property_backing_ivar;
4611    SourceLocation Loc = CurMethod->getLocation();
4612    if (Diags.isIgnored(DIAG, Loc))
4613      continue;
4614
4615    const ObjCPropertyDecl *PDecl;
4616    const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
4617    if (!IV)
4618      continue;
4619
4620    UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
4621    Checker.TraverseStmt(CurMethod->getBody());
4622    if (Checker.AccessedIvar)
4623      continue;
4624
4625    // Do not issue this warning if backing ivar is used somewhere and accessor
4626    // implementation makes a self call. This is to prevent false positive in
4627    // cases where the ivar is accessed by another method that the accessor
4628    // delegates to.
4629    if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
4630      Diag(Loc, DIAG) << IV;
4631      Diag(PDecl->getLocation(), diag::note_property_declare);
4632    }
4633  }
4634}
4635