SemaExprObjC.cpp revision dc84cd5efdd3430efb22546b4ac656aa0540b210
1//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective-C expressions. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/DeclObjC.h" 17#include "clang/AST/ExprObjC.h" 18#include "clang/AST/StmtVisitor.h" 19#include "clang/AST/TypeLoc.h" 20#include "clang/Analysis/DomainSpecific/CocoaConventions.h" 21#include "clang/Edit/Commit.h" 22#include "clang/Edit/Rewriters.h" 23#include "clang/Lex/Preprocessor.h" 24#include "clang/Sema/Initialization.h" 25#include "clang/Sema/Lookup.h" 26#include "clang/Sema/Scope.h" 27#include "clang/Sema/ScopeInfo.h" 28#include "llvm/ADT/SmallString.h" 29 30using namespace clang; 31using namespace sema; 32using llvm::makeArrayRef; 33 34ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 35 Expr **strings, 36 unsigned NumStrings) { 37 StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings); 38 39 // Most ObjC strings are formed out of a single piece. However, we *can* 40 // have strings formed out of multiple @ strings with multiple pptokens in 41 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 42 // StringLiteral for ObjCStringLiteral to hold onto. 43 StringLiteral *S = Strings[0]; 44 45 // If we have a multi-part string, merge it all together. 46 if (NumStrings != 1) { 47 // Concatenate objc strings. 48 SmallString<128> StrBuf; 49 SmallVector<SourceLocation, 8> StrLocs; 50 51 for (unsigned i = 0; i != NumStrings; ++i) { 52 S = Strings[i]; 53 54 // ObjC strings can't be wide or UTF. 55 if (!S->isAscii()) { 56 Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) 57 << S->getSourceRange(); 58 return true; 59 } 60 61 // Append the string. 62 StrBuf += S->getString(); 63 64 // Get the locations of the string tokens. 65 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 66 } 67 68 // Create the aggregate string with the appropriate content and location 69 // information. 70 S = StringLiteral::Create(Context, StrBuf, 71 StringLiteral::Ascii, /*Pascal=*/false, 72 Context.getPointerType(Context.CharTy), 73 &StrLocs[0], StrLocs.size()); 74 } 75 76 return BuildObjCStringLiteral(AtLocs[0], S); 77} 78 79ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 80 // Verify that this composite string is acceptable for ObjC strings. 81 if (CheckObjCString(S)) 82 return true; 83 84 // Initialize the constant string interface lazily. This assumes 85 // the NSString interface is seen in this translation unit. Note: We 86 // don't use NSConstantString, since the runtime team considers this 87 // interface private (even though it appears in the header files). 88 QualType Ty = Context.getObjCConstantStringInterface(); 89 if (!Ty.isNull()) { 90 Ty = Context.getObjCObjectPointerType(Ty); 91 } else if (getLangOpts().NoConstantCFStrings) { 92 IdentifierInfo *NSIdent=0; 93 std::string StringClass(getLangOpts().ObjCConstantStringClass); 94 95 if (StringClass.empty()) 96 NSIdent = &Context.Idents.get("NSConstantString"); 97 else 98 NSIdent = &Context.Idents.get(StringClass); 99 100 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 101 LookupOrdinaryName); 102 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 103 Context.setObjCConstantStringInterface(StrIF); 104 Ty = Context.getObjCConstantStringInterface(); 105 Ty = Context.getObjCObjectPointerType(Ty); 106 } else { 107 // If there is no NSConstantString interface defined then treat this 108 // as error and recover from it. 109 Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent 110 << S->getSourceRange(); 111 Ty = Context.getObjCIdType(); 112 } 113 } else { 114 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 115 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 116 LookupOrdinaryName); 117 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 118 Context.setObjCConstantStringInterface(StrIF); 119 Ty = Context.getObjCConstantStringInterface(); 120 Ty = Context.getObjCObjectPointerType(Ty); 121 } else { 122 // If there is no NSString interface defined, implicitly declare 123 // a @class NSString; and use that instead. This is to make sure 124 // type of an NSString literal is represented correctly, instead of 125 // being an 'id' type. 126 Ty = Context.getObjCNSStringType(); 127 if (Ty.isNull()) { 128 ObjCInterfaceDecl *NSStringIDecl = 129 ObjCInterfaceDecl::Create (Context, 130 Context.getTranslationUnitDecl(), 131 SourceLocation(), NSIdent, 132 0, SourceLocation()); 133 Ty = Context.getObjCInterfaceType(NSStringIDecl); 134 Context.setObjCNSStringType(Ty); 135 } 136 Ty = Context.getObjCObjectPointerType(Ty); 137 } 138 } 139 140 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 141} 142 143/// \brief Emits an error if the given method does not exist, or if the return 144/// type is not an Objective-C object. 145static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 146 const ObjCInterfaceDecl *Class, 147 Selector Sel, const ObjCMethodDecl *Method) { 148 if (!Method) { 149 // FIXME: Is there a better way to avoid quotes than using getName()? 150 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 151 return false; 152 } 153 154 // Make sure the return type is reasonable. 155 QualType ReturnType = Method->getResultType(); 156 if (!ReturnType->isObjCObjectPointerType()) { 157 S.Diag(Loc, diag::err_objc_literal_method_sig) 158 << Sel; 159 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 160 << ReturnType; 161 return false; 162 } 163 164 return true; 165} 166 167/// \brief Retrieve the NSNumber factory method that should be used to create 168/// an Objective-C literal for the given type. 169static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 170 QualType NumberType, 171 bool isLiteral = false, 172 SourceRange R = SourceRange()) { 173 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 174 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 175 176 if (!Kind) { 177 if (isLiteral) { 178 S.Diag(Loc, diag::err_invalid_nsnumber_type) 179 << NumberType << R; 180 } 181 return 0; 182 } 183 184 // If we already looked up this method, we're done. 185 if (S.NSNumberLiteralMethods[*Kind]) 186 return S.NSNumberLiteralMethods[*Kind]; 187 188 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 189 /*Instance=*/false); 190 191 ASTContext &CX = S.Context; 192 193 // Look up the NSNumber class, if we haven't done so already. It's cached 194 // in the Sema instance. 195 if (!S.NSNumberDecl) { 196 IdentifierInfo *NSNumberId = 197 S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber); 198 NamedDecl *IF = S.LookupSingleName(S.TUScope, NSNumberId, 199 Loc, Sema::LookupOrdinaryName); 200 S.NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 201 if (!S.NSNumberDecl) { 202 if (S.getLangOpts().DebuggerObjCLiteral) { 203 // Create a stub definition of NSNumber. 204 S.NSNumberDecl = ObjCInterfaceDecl::Create(CX, 205 CX.getTranslationUnitDecl(), 206 SourceLocation(), NSNumberId, 207 0, SourceLocation()); 208 } else { 209 // Otherwise, require a declaration of NSNumber. 210 S.Diag(Loc, diag::err_undeclared_nsnumber); 211 return 0; 212 } 213 } else if (!S.NSNumberDecl->hasDefinition()) { 214 S.Diag(Loc, diag::err_undeclared_nsnumber); 215 return 0; 216 } 217 218 // generate the pointer to NSNumber type. 219 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 220 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 221 } 222 223 // Look for the appropriate method within NSNumber. 224 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 225 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 226 // create a stub definition this NSNumber factory method. 227 TypeSourceInfo *ResultTInfo = 0; 228 Method = ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 229 S.NSNumberPointer, ResultTInfo, 230 S.NSNumberDecl, 231 /*isInstance=*/false, /*isVariadic=*/false, 232 /*isPropertyAccessor=*/false, 233 /*isImplicitlyDeclared=*/true, 234 /*isDefined=*/false, 235 ObjCMethodDecl::Required, 236 /*HasRelatedResultType=*/false); 237 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 238 SourceLocation(), SourceLocation(), 239 &CX.Idents.get("value"), 240 NumberType, /*TInfo=*/0, SC_None, 241 SC_None, 0); 242 Method->setMethodParams(S.Context, value, ArrayRef<SourceLocation>()); 243 } 244 245 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 246 return 0; 247 248 // Note: if the parameter type is out-of-line, we'll catch it later in the 249 // implicit conversion. 250 251 S.NSNumberLiteralMethods[*Kind] = Method; 252 return Method; 253} 254 255/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 256/// numeric literal expression. Type of the expression will be "NSNumber *". 257ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 258 // Determine the type of the literal. 259 QualType NumberType = Number->getType(); 260 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 261 // In C, character literals have type 'int'. That's not the type we want 262 // to use to determine the Objective-c literal kind. 263 switch (Char->getKind()) { 264 case CharacterLiteral::Ascii: 265 NumberType = Context.CharTy; 266 break; 267 268 case CharacterLiteral::Wide: 269 NumberType = Context.getWCharType(); 270 break; 271 272 case CharacterLiteral::UTF16: 273 NumberType = Context.Char16Ty; 274 break; 275 276 case CharacterLiteral::UTF32: 277 NumberType = Context.Char32Ty; 278 break; 279 } 280 } 281 282 // Look for the appropriate method within NSNumber. 283 // Construct the literal. 284 SourceRange NR(Number->getSourceRange()); 285 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 286 true, NR); 287 if (!Method) 288 return ExprError(); 289 290 // Convert the number to the type that the parameter expects. 291 ParmVarDecl *ParamDecl = Method->param_begin()[0]; 292 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 293 ParamDecl); 294 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 295 SourceLocation(), 296 Owned(Number)); 297 if (ConvertedNumber.isInvalid()) 298 return ExprError(); 299 Number = ConvertedNumber.get(); 300 301 // Use the effective source range of the literal, including the leading '@'. 302 return MaybeBindToTemporary( 303 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 304 SourceRange(AtLoc, NR.getEnd()))); 305} 306 307ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 308 SourceLocation ValueLoc, 309 bool Value) { 310 ExprResult Inner; 311 if (getLangOpts().CPlusPlus) { 312 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 313 } else { 314 // C doesn't actually have a way to represent literal values of type 315 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 316 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 317 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 318 CK_IntegralToBoolean); 319 } 320 321 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 322} 323 324/// \brief Check that the given expression is a valid element of an Objective-C 325/// collection literal. 326static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 327 QualType T) { 328 // If the expression is type-dependent, there's nothing for us to do. 329 if (Element->isTypeDependent()) 330 return Element; 331 332 ExprResult Result = S.CheckPlaceholderExpr(Element); 333 if (Result.isInvalid()) 334 return ExprError(); 335 Element = Result.get(); 336 337 // In C++, check for an implicit conversion to an Objective-C object pointer 338 // type. 339 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 340 InitializedEntity Entity 341 = InitializedEntity::InitializeParameter(S.Context, T, 342 /*Consumed=*/false); 343 InitializationKind Kind 344 = InitializationKind::CreateCopy(Element->getLocStart(), 345 SourceLocation()); 346 InitializationSequence Seq(S, Entity, Kind, &Element, 1); 347 if (!Seq.Failed()) 348 return Seq.Perform(S, Entity, Kind, Element); 349 } 350 351 Expr *OrigElement = Element; 352 353 // Perform lvalue-to-rvalue conversion. 354 Result = S.DefaultLvalueConversion(Element); 355 if (Result.isInvalid()) 356 return ExprError(); 357 Element = Result.get(); 358 359 // Make sure that we have an Objective-C pointer type or block. 360 if (!Element->getType()->isObjCObjectPointerType() && 361 !Element->getType()->isBlockPointerType()) { 362 bool Recovered = false; 363 364 // If this is potentially an Objective-C numeric literal, add the '@'. 365 if (isa<IntegerLiteral>(OrigElement) || 366 isa<CharacterLiteral>(OrigElement) || 367 isa<FloatingLiteral>(OrigElement) || 368 isa<ObjCBoolLiteralExpr>(OrigElement) || 369 isa<CXXBoolLiteralExpr>(OrigElement)) { 370 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 371 int Which = isa<CharacterLiteral>(OrigElement) ? 1 372 : (isa<CXXBoolLiteralExpr>(OrigElement) || 373 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 374 : 3; 375 376 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 377 << Which << OrigElement->getSourceRange() 378 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 379 380 Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(), 381 OrigElement); 382 if (Result.isInvalid()) 383 return ExprError(); 384 385 Element = Result.get(); 386 Recovered = true; 387 } 388 } 389 // If this is potentially an Objective-C string literal, add the '@'. 390 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 391 if (String->isAscii()) { 392 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 393 << 0 << OrigElement->getSourceRange() 394 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 395 396 Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String); 397 if (Result.isInvalid()) 398 return ExprError(); 399 400 Element = Result.get(); 401 Recovered = true; 402 } 403 } 404 405 if (!Recovered) { 406 S.Diag(Element->getLocStart(), diag::err_invalid_collection_element) 407 << Element->getType(); 408 return ExprError(); 409 } 410 } 411 412 // Make sure that the element has the type that the container factory 413 // function expects. 414 return S.PerformCopyInitialization( 415 InitializedEntity::InitializeParameter(S.Context, T, 416 /*Consumed=*/false), 417 Element->getLocStart(), Element); 418} 419 420ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 421 if (ValueExpr->isTypeDependent()) { 422 ObjCBoxedExpr *BoxedExpr = 423 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, NULL, SR); 424 return Owned(BoxedExpr); 425 } 426 ObjCMethodDecl *BoxingMethod = NULL; 427 QualType BoxedType; 428 // Convert the expression to an RValue, so we can check for pointer types... 429 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 430 if (RValue.isInvalid()) { 431 return ExprError(); 432 } 433 ValueExpr = RValue.get(); 434 QualType ValueType(ValueExpr->getType()); 435 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 436 QualType PointeeType = PT->getPointeeType(); 437 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 438 439 if (!NSStringDecl) { 440 IdentifierInfo *NSStringId = 441 NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 442 NamedDecl *Decl = LookupSingleName(TUScope, NSStringId, 443 SR.getBegin(), LookupOrdinaryName); 444 NSStringDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Decl); 445 if (!NSStringDecl) { 446 if (getLangOpts().DebuggerObjCLiteral) { 447 // Support boxed expressions in the debugger w/o NSString declaration. 448 DeclContext *TU = Context.getTranslationUnitDecl(); 449 NSStringDecl = ObjCInterfaceDecl::Create(Context, TU, 450 SourceLocation(), 451 NSStringId, 452 0, SourceLocation()); 453 } else { 454 Diag(SR.getBegin(), diag::err_undeclared_nsstring); 455 return ExprError(); 456 } 457 } else if (!NSStringDecl->hasDefinition()) { 458 Diag(SR.getBegin(), diag::err_undeclared_nsstring); 459 return ExprError(); 460 } 461 assert(NSStringDecl && "NSStringDecl should not be NULL"); 462 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 463 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 464 } 465 466 if (!StringWithUTF8StringMethod) { 467 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 468 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 469 470 // Look for the appropriate method within NSString. 471 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 472 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 473 // Debugger needs to work even if NSString hasn't been defined. 474 TypeSourceInfo *ResultTInfo = 0; 475 ObjCMethodDecl *M = 476 ObjCMethodDecl::Create(Context, SourceLocation(), SourceLocation(), 477 stringWithUTF8String, NSStringPointer, 478 ResultTInfo, NSStringDecl, 479 /*isInstance=*/false, /*isVariadic=*/false, 480 /*isPropertyAccessor=*/false, 481 /*isImplicitlyDeclared=*/true, 482 /*isDefined=*/false, 483 ObjCMethodDecl::Required, 484 /*HasRelatedResultType=*/false); 485 QualType ConstCharType = Context.CharTy.withConst(); 486 ParmVarDecl *value = 487 ParmVarDecl::Create(Context, M, 488 SourceLocation(), SourceLocation(), 489 &Context.Idents.get("value"), 490 Context.getPointerType(ConstCharType), 491 /*TInfo=*/0, 492 SC_None, SC_None, 0); 493 M->setMethodParams(Context, value, ArrayRef<SourceLocation>()); 494 BoxingMethod = M; 495 } 496 497 if (!validateBoxingMethod(*this, SR.getBegin(), NSStringDecl, 498 stringWithUTF8String, BoxingMethod)) 499 return ExprError(); 500 501 StringWithUTF8StringMethod = BoxingMethod; 502 } 503 504 BoxingMethod = StringWithUTF8StringMethod; 505 BoxedType = NSStringPointer; 506 } 507 } else if (ValueType->isBuiltinType()) { 508 // The other types we support are numeric, char and BOOL/bool. We could also 509 // provide limited support for structure types, such as NSRange, NSRect, and 510 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 511 // for more details. 512 513 // Check for a top-level character literal. 514 if (const CharacterLiteral *Char = 515 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 516 // In C, character literals have type 'int'. That's not the type we want 517 // to use to determine the Objective-c literal kind. 518 switch (Char->getKind()) { 519 case CharacterLiteral::Ascii: 520 ValueType = Context.CharTy; 521 break; 522 523 case CharacterLiteral::Wide: 524 ValueType = Context.getWCharType(); 525 break; 526 527 case CharacterLiteral::UTF16: 528 ValueType = Context.Char16Ty; 529 break; 530 531 case CharacterLiteral::UTF32: 532 ValueType = Context.Char32Ty; 533 break; 534 } 535 } 536 537 // FIXME: Do I need to do anything special with BoolTy expressions? 538 539 // Look for the appropriate method within NSNumber. 540 BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), ValueType); 541 BoxedType = NSNumberPointer; 542 543 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 544 if (!ET->getDecl()->isComplete()) { 545 Diag(SR.getBegin(), diag::err_objc_incomplete_boxed_expression_type) 546 << ValueType << ValueExpr->getSourceRange(); 547 return ExprError(); 548 } 549 550 BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), 551 ET->getDecl()->getIntegerType()); 552 BoxedType = NSNumberPointer; 553 } 554 555 if (!BoxingMethod) { 556 Diag(SR.getBegin(), diag::err_objc_illegal_boxed_expression_type) 557 << ValueType << ValueExpr->getSourceRange(); 558 return ExprError(); 559 } 560 561 // Convert the expression to the type that the parameter requires. 562 ParmVarDecl *ParamDecl = BoxingMethod->param_begin()[0]; 563 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 564 ParamDecl); 565 ExprResult ConvertedValueExpr = PerformCopyInitialization(Entity, 566 SourceLocation(), 567 Owned(ValueExpr)); 568 if (ConvertedValueExpr.isInvalid()) 569 return ExprError(); 570 ValueExpr = ConvertedValueExpr.get(); 571 572 ObjCBoxedExpr *BoxedExpr = 573 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 574 BoxingMethod, SR); 575 return MaybeBindToTemporary(BoxedExpr); 576} 577 578/// Build an ObjC subscript pseudo-object expression, given that 579/// that's supported by the runtime. 580ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 581 Expr *IndexExpr, 582 ObjCMethodDecl *getterMethod, 583 ObjCMethodDecl *setterMethod) { 584 assert(!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic()); 585 586 // We can't get dependent types here; our callers should have 587 // filtered them out. 588 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 589 "base or index cannot have dependent type here"); 590 591 // Filter out placeholders in the index. In theory, overloads could 592 // be preserved here, although that might not actually work correctly. 593 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 594 if (Result.isInvalid()) 595 return ExprError(); 596 IndexExpr = Result.get(); 597 598 // Perform lvalue-to-rvalue conversion on the base. 599 Result = DefaultLvalueConversion(BaseExpr); 600 if (Result.isInvalid()) 601 return ExprError(); 602 BaseExpr = Result.get(); 603 604 // Build the pseudo-object expression. 605 return Owned(ObjCSubscriptRefExpr::Create(Context, 606 BaseExpr, 607 IndexExpr, 608 Context.PseudoObjectTy, 609 getterMethod, 610 setterMethod, RB)); 611 612} 613 614ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 615 // Look up the NSArray class, if we haven't done so already. 616 if (!NSArrayDecl) { 617 NamedDecl *IF = LookupSingleName(TUScope, 618 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), 619 SR.getBegin(), 620 LookupOrdinaryName); 621 NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 622 if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral) 623 NSArrayDecl = ObjCInterfaceDecl::Create (Context, 624 Context.getTranslationUnitDecl(), 625 SourceLocation(), 626 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), 627 0, SourceLocation()); 628 629 if (!NSArrayDecl) { 630 Diag(SR.getBegin(), diag::err_undeclared_nsarray); 631 return ExprError(); 632 } 633 } 634 635 // Find the arrayWithObjects:count: method, if we haven't done so already. 636 QualType IdT = Context.getObjCIdType(); 637 if (!ArrayWithObjectsMethod) { 638 Selector 639 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 640 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 641 if (!Method && getLangOpts().DebuggerObjCLiteral) { 642 TypeSourceInfo *ResultTInfo = 0; 643 Method = ObjCMethodDecl::Create(Context, 644 SourceLocation(), SourceLocation(), Sel, 645 IdT, 646 ResultTInfo, 647 Context.getTranslationUnitDecl(), 648 false /*Instance*/, false/*isVariadic*/, 649 /*isPropertyAccessor=*/false, 650 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 651 ObjCMethodDecl::Required, 652 false); 653 SmallVector<ParmVarDecl *, 2> Params; 654 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 655 SourceLocation(), 656 SourceLocation(), 657 &Context.Idents.get("objects"), 658 Context.getPointerType(IdT), 659 /*TInfo=*/0, SC_None, SC_None, 660 0); 661 Params.push_back(objects); 662 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 663 SourceLocation(), 664 SourceLocation(), 665 &Context.Idents.get("cnt"), 666 Context.UnsignedLongTy, 667 /*TInfo=*/0, SC_None, SC_None, 668 0); 669 Params.push_back(cnt); 670 Method->setMethodParams(Context, Params, ArrayRef<SourceLocation>()); 671 } 672 673 if (!validateBoxingMethod(*this, SR.getBegin(), NSArrayDecl, Sel, Method)) 674 return ExprError(); 675 676 // Dig out the type that all elements should be converted to. 677 QualType T = Method->param_begin()[0]->getType(); 678 const PointerType *PtrT = T->getAs<PointerType>(); 679 if (!PtrT || 680 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 681 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 682 << Sel; 683 Diag(Method->param_begin()[0]->getLocation(), 684 diag::note_objc_literal_method_param) 685 << 0 << T 686 << Context.getPointerType(IdT.withConst()); 687 return ExprError(); 688 } 689 690 // Check that the 'count' parameter is integral. 691 if (!Method->param_begin()[1]->getType()->isIntegerType()) { 692 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 693 << Sel; 694 Diag(Method->param_begin()[1]->getLocation(), 695 diag::note_objc_literal_method_param) 696 << 1 697 << Method->param_begin()[1]->getType() 698 << "integral"; 699 return ExprError(); 700 } 701 702 // We've found a good +arrayWithObjects:count: method. Save it! 703 ArrayWithObjectsMethod = Method; 704 } 705 706 QualType ObjectsType = ArrayWithObjectsMethod->param_begin()[0]->getType(); 707 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 708 709 // Check that each of the elements provided is valid in a collection literal, 710 // performing conversions as necessary. 711 Expr **ElementsBuffer = Elements.data(); 712 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 713 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 714 ElementsBuffer[I], 715 RequiredType); 716 if (Converted.isInvalid()) 717 return ExprError(); 718 719 ElementsBuffer[I] = Converted.get(); 720 } 721 722 QualType Ty 723 = Context.getObjCObjectPointerType( 724 Context.getObjCInterfaceType(NSArrayDecl)); 725 726 return MaybeBindToTemporary( 727 ObjCArrayLiteral::Create(Context, Elements, Ty, 728 ArrayWithObjectsMethod, SR)); 729} 730 731ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 732 ObjCDictionaryElement *Elements, 733 unsigned NumElements) { 734 // Look up the NSDictionary class, if we haven't done so already. 735 if (!NSDictionaryDecl) { 736 NamedDecl *IF = LookupSingleName(TUScope, 737 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), 738 SR.getBegin(), LookupOrdinaryName); 739 NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 740 if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral) 741 NSDictionaryDecl = ObjCInterfaceDecl::Create (Context, 742 Context.getTranslationUnitDecl(), 743 SourceLocation(), 744 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), 745 0, SourceLocation()); 746 747 if (!NSDictionaryDecl) { 748 Diag(SR.getBegin(), diag::err_undeclared_nsdictionary); 749 return ExprError(); 750 } 751 } 752 753 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 754 // so already. 755 QualType IdT = Context.getObjCIdType(); 756 if (!DictionaryWithObjectsMethod) { 757 Selector Sel = NSAPIObj->getNSDictionarySelector( 758 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 759 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 760 if (!Method && getLangOpts().DebuggerObjCLiteral) { 761 Method = ObjCMethodDecl::Create(Context, 762 SourceLocation(), SourceLocation(), Sel, 763 IdT, 764 0 /*TypeSourceInfo */, 765 Context.getTranslationUnitDecl(), 766 false /*Instance*/, false/*isVariadic*/, 767 /*isPropertyAccessor=*/false, 768 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 769 ObjCMethodDecl::Required, 770 false); 771 SmallVector<ParmVarDecl *, 3> Params; 772 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 773 SourceLocation(), 774 SourceLocation(), 775 &Context.Idents.get("objects"), 776 Context.getPointerType(IdT), 777 /*TInfo=*/0, SC_None, SC_None, 778 0); 779 Params.push_back(objects); 780 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 781 SourceLocation(), 782 SourceLocation(), 783 &Context.Idents.get("keys"), 784 Context.getPointerType(IdT), 785 /*TInfo=*/0, SC_None, SC_None, 786 0); 787 Params.push_back(keys); 788 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 789 SourceLocation(), 790 SourceLocation(), 791 &Context.Idents.get("cnt"), 792 Context.UnsignedLongTy, 793 /*TInfo=*/0, SC_None, SC_None, 794 0); 795 Params.push_back(cnt); 796 Method->setMethodParams(Context, Params, ArrayRef<SourceLocation>()); 797 } 798 799 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 800 Method)) 801 return ExprError(); 802 803 // Dig out the type that all values should be converted to. 804 QualType ValueT = Method->param_begin()[0]->getType(); 805 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 806 if (!PtrValue || 807 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 808 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 809 << Sel; 810 Diag(Method->param_begin()[0]->getLocation(), 811 diag::note_objc_literal_method_param) 812 << 0 << ValueT 813 << Context.getPointerType(IdT.withConst()); 814 return ExprError(); 815 } 816 817 // Dig out the type that all keys should be converted to. 818 QualType KeyT = Method->param_begin()[1]->getType(); 819 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 820 if (!PtrKey || 821 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 822 IdT)) { 823 bool err = true; 824 if (PtrKey) { 825 if (QIDNSCopying.isNull()) { 826 // key argument of selector is id<NSCopying>? 827 if (ObjCProtocolDecl *NSCopyingPDecl = 828 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 829 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 830 QIDNSCopying = 831 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, 832 (ObjCProtocolDecl**) PQ,1); 833 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 834 } 835 } 836 if (!QIDNSCopying.isNull()) 837 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 838 QIDNSCopying); 839 } 840 841 if (err) { 842 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 843 << Sel; 844 Diag(Method->param_begin()[1]->getLocation(), 845 diag::note_objc_literal_method_param) 846 << 1 << KeyT 847 << Context.getPointerType(IdT.withConst()); 848 return ExprError(); 849 } 850 } 851 852 // Check that the 'count' parameter is integral. 853 QualType CountType = Method->param_begin()[2]->getType(); 854 if (!CountType->isIntegerType()) { 855 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 856 << Sel; 857 Diag(Method->param_begin()[2]->getLocation(), 858 diag::note_objc_literal_method_param) 859 << 2 << CountType 860 << "integral"; 861 return ExprError(); 862 } 863 864 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 865 DictionaryWithObjectsMethod = Method; 866 } 867 868 QualType ValuesT = DictionaryWithObjectsMethod->param_begin()[0]->getType(); 869 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 870 QualType KeysT = DictionaryWithObjectsMethod->param_begin()[1]->getType(); 871 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 872 873 // Check that each of the keys and values provided is valid in a collection 874 // literal, performing conversions as necessary. 875 bool HasPackExpansions = false; 876 for (unsigned I = 0, N = NumElements; I != N; ++I) { 877 // Check the key. 878 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key, 879 KeyT); 880 if (Key.isInvalid()) 881 return ExprError(); 882 883 // Check the value. 884 ExprResult Value 885 = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT); 886 if (Value.isInvalid()) 887 return ExprError(); 888 889 Elements[I].Key = Key.get(); 890 Elements[I].Value = Value.get(); 891 892 if (Elements[I].EllipsisLoc.isInvalid()) 893 continue; 894 895 if (!Elements[I].Key->containsUnexpandedParameterPack() && 896 !Elements[I].Value->containsUnexpandedParameterPack()) { 897 Diag(Elements[I].EllipsisLoc, 898 diag::err_pack_expansion_without_parameter_packs) 899 << SourceRange(Elements[I].Key->getLocStart(), 900 Elements[I].Value->getLocEnd()); 901 return ExprError(); 902 } 903 904 HasPackExpansions = true; 905 } 906 907 908 QualType Ty 909 = Context.getObjCObjectPointerType( 910 Context.getObjCInterfaceType(NSDictionaryDecl)); 911 return MaybeBindToTemporary( 912 ObjCDictionaryLiteral::Create(Context, 913 llvm::makeArrayRef(Elements, 914 NumElements), 915 HasPackExpansions, 916 Ty, 917 DictionaryWithObjectsMethod, SR)); 918} 919 920ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 921 TypeSourceInfo *EncodedTypeInfo, 922 SourceLocation RParenLoc) { 923 QualType EncodedType = EncodedTypeInfo->getType(); 924 QualType StrTy; 925 if (EncodedType->isDependentType()) 926 StrTy = Context.DependentTy; 927 else { 928 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 929 !EncodedType->isVoidType()) // void is handled too. 930 if (RequireCompleteType(AtLoc, EncodedType, 931 diag::err_incomplete_type_objc_at_encode, 932 EncodedTypeInfo->getTypeLoc())) 933 return ExprError(); 934 935 std::string Str; 936 Context.getObjCEncodingForType(EncodedType, Str); 937 938 // The type of @encode is the same as the type of the corresponding string, 939 // which is an array type. 940 StrTy = Context.CharTy; 941 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 942 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) 943 StrTy.addConst(); 944 StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), 945 ArrayType::Normal, 0); 946 } 947 948 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 949} 950 951ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 952 SourceLocation EncodeLoc, 953 SourceLocation LParenLoc, 954 ParsedType ty, 955 SourceLocation RParenLoc) { 956 // FIXME: Preserve type source info ? 957 TypeSourceInfo *TInfo; 958 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 959 if (!TInfo) 960 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 961 PP.getLocForEndOfToken(LParenLoc)); 962 963 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 964} 965 966ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 967 SourceLocation AtLoc, 968 SourceLocation SelLoc, 969 SourceLocation LParenLoc, 970 SourceLocation RParenLoc) { 971 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 972 SourceRange(LParenLoc, RParenLoc), false, false); 973 if (!Method) 974 Method = LookupFactoryMethodInGlobalPool(Sel, 975 SourceRange(LParenLoc, RParenLoc)); 976 if (!Method) 977 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 978 979 if (!Method || 980 Method->getImplementationControl() != ObjCMethodDecl::Optional) { 981 llvm::DenseMap<Selector, SourceLocation>::iterator Pos 982 = ReferencedSelectors.find(Sel); 983 if (Pos == ReferencedSelectors.end()) 984 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 985 } 986 987 // In ARC, forbid the user from using @selector for 988 // retain/release/autorelease/dealloc/retainCount. 989 if (getLangOpts().ObjCAutoRefCount) { 990 switch (Sel.getMethodFamily()) { 991 case OMF_retain: 992 case OMF_release: 993 case OMF_autorelease: 994 case OMF_retainCount: 995 case OMF_dealloc: 996 Diag(AtLoc, diag::err_arc_illegal_selector) << 997 Sel << SourceRange(LParenLoc, RParenLoc); 998 break; 999 1000 case OMF_None: 1001 case OMF_alloc: 1002 case OMF_copy: 1003 case OMF_finalize: 1004 case OMF_init: 1005 case OMF_mutableCopy: 1006 case OMF_new: 1007 case OMF_self: 1008 case OMF_performSelector: 1009 break; 1010 } 1011 } 1012 QualType Ty = Context.getObjCSelType(); 1013 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1014} 1015 1016ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1017 SourceLocation AtLoc, 1018 SourceLocation ProtoLoc, 1019 SourceLocation LParenLoc, 1020 SourceLocation ProtoIdLoc, 1021 SourceLocation RParenLoc) { 1022 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1023 if (!PDecl) { 1024 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1025 return true; 1026 } 1027 1028 QualType Ty = Context.getObjCProtoType(); 1029 if (Ty.isNull()) 1030 return true; 1031 Ty = Context.getObjCObjectPointerType(Ty); 1032 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1033} 1034 1035/// Try to capture an implicit reference to 'self'. 1036ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1037 DeclContext *DC = getFunctionLevelDeclContext(); 1038 1039 // If we're not in an ObjC method, error out. Note that, unlike the 1040 // C++ case, we don't require an instance method --- class methods 1041 // still have a 'self', and we really do still need to capture it! 1042 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1043 if (!method) 1044 return 0; 1045 1046 tryCaptureVariable(method->getSelfDecl(), Loc); 1047 1048 return method; 1049} 1050 1051static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1052 if (T == Context.getObjCInstanceType()) 1053 return Context.getObjCIdType(); 1054 1055 return T; 1056} 1057 1058QualType Sema::getMessageSendResultType(QualType ReceiverType, 1059 ObjCMethodDecl *Method, 1060 bool isClassMessage, bool isSuperMessage) { 1061 assert(Method && "Must have a method"); 1062 if (!Method->hasRelatedResultType()) 1063 return Method->getSendResultType(); 1064 1065 // If a method has a related return type: 1066 // - if the method found is an instance method, but the message send 1067 // was a class message send, T is the declared return type of the method 1068 // found 1069 if (Method->isInstanceMethod() && isClassMessage) 1070 return stripObjCInstanceType(Context, Method->getSendResultType()); 1071 1072 // - if the receiver is super, T is a pointer to the class of the 1073 // enclosing method definition 1074 if (isSuperMessage) { 1075 if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) 1076 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) 1077 return Context.getObjCObjectPointerType( 1078 Context.getObjCInterfaceType(Class)); 1079 } 1080 1081 // - if the receiver is the name of a class U, T is a pointer to U 1082 if (ReceiverType->getAs<ObjCInterfaceType>() || 1083 ReceiverType->isObjCQualifiedInterfaceType()) 1084 return Context.getObjCObjectPointerType(ReceiverType); 1085 // - if the receiver is of type Class or qualified Class type, 1086 // T is the declared return type of the method. 1087 if (ReceiverType->isObjCClassType() || 1088 ReceiverType->isObjCQualifiedClassType()) 1089 return stripObjCInstanceType(Context, Method->getSendResultType()); 1090 1091 // - if the receiver is id, qualified id, Class, or qualified Class, T 1092 // is the receiver type, otherwise 1093 // - T is the type of the receiver expression. 1094 return ReceiverType; 1095} 1096 1097void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1098 E = E->IgnoreParenImpCasts(); 1099 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1100 if (!MsgSend) 1101 return; 1102 1103 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1104 if (!Method) 1105 return; 1106 1107 if (!Method->hasRelatedResultType()) 1108 return; 1109 1110 if (Context.hasSameUnqualifiedType(Method->getResultType() 1111 .getNonReferenceType(), 1112 MsgSend->getType())) 1113 return; 1114 1115 if (!Context.hasSameUnqualifiedType(Method->getResultType(), 1116 Context.getObjCInstanceType())) 1117 return; 1118 1119 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1120 << Method->isInstanceMethod() << Method->getSelector() 1121 << MsgSend->getType(); 1122} 1123 1124bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, 1125 Expr **Args, unsigned NumArgs, 1126 Selector Sel, 1127 ArrayRef<SourceLocation> SelectorLocs, 1128 ObjCMethodDecl *Method, 1129 bool isClassMessage, bool isSuperMessage, 1130 SourceLocation lbrac, SourceLocation rbrac, 1131 QualType &ReturnType, ExprValueKind &VK) { 1132 if (!Method) { 1133 // Apply default argument promotion as for (C99 6.5.2.2p6). 1134 for (unsigned i = 0; i != NumArgs; i++) { 1135 if (Args[i]->isTypeDependent()) 1136 continue; 1137 1138 ExprResult Result = DefaultArgumentPromotion(Args[i]); 1139 if (Result.isInvalid()) 1140 return true; 1141 Args[i] = Result.take(); 1142 } 1143 1144 unsigned DiagID; 1145 if (getLangOpts().ObjCAutoRefCount) 1146 DiagID = diag::err_arc_method_not_found; 1147 else 1148 DiagID = isClassMessage ? diag::warn_class_method_not_found 1149 : diag::warn_inst_method_not_found; 1150 if (!getLangOpts().DebuggerSupport) 1151 Diag(lbrac, DiagID) 1152 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1153 SelectorLocs.back()); 1154 1155 // In debuggers, we want to use __unknown_anytype for these 1156 // results so that clients can cast them. 1157 if (getLangOpts().DebuggerSupport) { 1158 ReturnType = Context.UnknownAnyTy; 1159 } else { 1160 ReturnType = Context.getObjCIdType(); 1161 } 1162 VK = VK_RValue; 1163 return false; 1164 } 1165 1166 ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, 1167 isSuperMessage); 1168 VK = Expr::getValueKindForType(Method->getResultType()); 1169 1170 unsigned NumNamedArgs = Sel.getNumArgs(); 1171 // Method might have more arguments than selector indicates. This is due 1172 // to addition of c-style arguments in method. 1173 if (Method->param_size() > Sel.getNumArgs()) 1174 NumNamedArgs = Method->param_size(); 1175 // FIXME. This need be cleaned up. 1176 if (NumArgs < NumNamedArgs) { 1177 Diag(lbrac, diag::err_typecheck_call_too_few_args) 1178 << 2 << NumNamedArgs << NumArgs; 1179 return false; 1180 } 1181 1182 bool IsError = false; 1183 for (unsigned i = 0; i < NumNamedArgs; i++) { 1184 // We can't do any type-checking on a type-dependent argument. 1185 if (Args[i]->isTypeDependent()) 1186 continue; 1187 1188 Expr *argExpr = Args[i]; 1189 1190 ParmVarDecl *param = Method->param_begin()[i]; 1191 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1192 1193 // Strip the unbridged-cast placeholder expression off unless it's 1194 // a consumed argument. 1195 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1196 !param->hasAttr<CFConsumedAttr>()) 1197 argExpr = stripARCUnbridgedCast(argExpr); 1198 1199 // If the parameter is __unknown_anytype, infer its type 1200 // from the argument. 1201 if (param->getType() == Context.UnknownAnyTy) { 1202 QualType paramType = checkUnknownAnyArg(argExpr); 1203 if (paramType.isNull()) { 1204 IsError = true; 1205 continue; 1206 } 1207 1208 // Update the parameter type in-place. 1209 param->setType(paramType); 1210 } 1211 1212 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1213 param->getType(), 1214 diag::err_call_incomplete_argument, argExpr)) 1215 return true; 1216 1217 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 1218 param); 1219 ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr)); 1220 if (ArgE.isInvalid()) 1221 IsError = true; 1222 else 1223 Args[i] = ArgE.takeAs<Expr>(); 1224 } 1225 1226 // Promote additional arguments to variadic methods. 1227 if (Method->isVariadic()) { 1228 for (unsigned i = NumNamedArgs; i < NumArgs; ++i) { 1229 if (Args[i]->isTypeDependent()) 1230 continue; 1231 1232 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1233 0); 1234 IsError |= Arg.isInvalid(); 1235 Args[i] = Arg.take(); 1236 } 1237 } else { 1238 // Check for extra arguments to non-variadic methods. 1239 if (NumArgs != NumNamedArgs) { 1240 Diag(Args[NumNamedArgs]->getLocStart(), 1241 diag::err_typecheck_call_too_many_args) 1242 << 2 /*method*/ << NumNamedArgs << NumArgs 1243 << Method->getSourceRange() 1244 << SourceRange(Args[NumNamedArgs]->getLocStart(), 1245 Args[NumArgs-1]->getLocEnd()); 1246 } 1247 } 1248 1249 DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs); 1250 1251 // Do additional checkings on method. 1252 IsError |= CheckObjCMethodCall(Method, lbrac, Args, NumArgs); 1253 1254 return IsError; 1255} 1256 1257bool Sema::isSelfExpr(Expr *receiver) { 1258 // 'self' is objc 'self' in an objc method only. 1259 ObjCMethodDecl *method = 1260 dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1261 if (!method) return false; 1262 1263 receiver = receiver->IgnoreParenLValueCasts(); 1264 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1265 if (DRE->getDecl() == method->getSelfDecl()) 1266 return true; 1267 return false; 1268} 1269 1270/// LookupMethodInType - Look up a method in an ObjCObjectType. 1271ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1272 bool isInstance) { 1273 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1274 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1275 // Look it up in the main interface (and categories, etc.) 1276 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1277 return method; 1278 1279 // Okay, look for "private" methods declared in any 1280 // @implementations we've seen. 1281 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1282 return method; 1283 } 1284 1285 // Check qualifiers. 1286 for (ObjCObjectType::qual_iterator 1287 i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i) 1288 if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance)) 1289 return method; 1290 1291 return 0; 1292} 1293 1294/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1295/// list of a qualified objective pointer type. 1296ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1297 const ObjCObjectPointerType *OPT, 1298 bool Instance) 1299{ 1300 ObjCMethodDecl *MD = 0; 1301 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), 1302 E = OPT->qual_end(); I != E; ++I) { 1303 ObjCProtocolDecl *PROTO = (*I); 1304 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1305 return MD; 1306 } 1307 } 1308 return 0; 1309} 1310 1311static void DiagnoseARCUseOfWeakReceiver(Sema &S, Expr *Receiver) { 1312 if (!Receiver) 1313 return; 1314 1315 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Receiver)) 1316 Receiver = OVE->getSourceExpr(); 1317 1318 Expr *RExpr = Receiver->IgnoreParenImpCasts(); 1319 SourceLocation Loc = RExpr->getLocStart(); 1320 QualType T = RExpr->getType(); 1321 const ObjCPropertyDecl *PDecl = 0; 1322 const ObjCMethodDecl *GDecl = 0; 1323 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(RExpr)) { 1324 RExpr = POE->getSyntacticForm(); 1325 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(RExpr)) { 1326 if (PRE->isImplicitProperty()) { 1327 GDecl = PRE->getImplicitPropertyGetter(); 1328 if (GDecl) { 1329 T = GDecl->getResultType(); 1330 } 1331 } 1332 else { 1333 PDecl = PRE->getExplicitProperty(); 1334 if (PDecl) { 1335 T = PDecl->getType(); 1336 } 1337 } 1338 } 1339 } 1340 else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RExpr)) { 1341 // See if receiver is a method which envokes a synthesized getter 1342 // backing a 'weak' property. 1343 ObjCMethodDecl *Method = ME->getMethodDecl(); 1344 if (Method && Method->getSelector().getNumArgs() == 0) { 1345 PDecl = Method->findPropertyDecl(); 1346 if (PDecl) 1347 T = PDecl->getType(); 1348 } 1349 } 1350 1351 if (T.getObjCLifetime() != Qualifiers::OCL_Weak) { 1352 if (!PDecl) 1353 return; 1354 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)) 1355 return; 1356 } 1357 1358 S.Diag(Loc, diag::warn_receiver_is_weak) 1359 << ((!PDecl && !GDecl) ? 0 : (PDecl ? 1 : 2)); 1360 1361 if (PDecl) 1362 S.Diag(PDecl->getLocation(), diag::note_property_declare); 1363 else if (GDecl) 1364 S.Diag(GDecl->getLocation(), diag::note_method_declared_at) << GDecl; 1365 1366 S.Diag(Loc, diag::note_arc_assign_to_strong); 1367} 1368 1369/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1370/// objective C interface. This is a property reference expression. 1371ExprResult Sema:: 1372HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1373 Expr *BaseExpr, SourceLocation OpLoc, 1374 DeclarationName MemberName, 1375 SourceLocation MemberLoc, 1376 SourceLocation SuperLoc, QualType SuperType, 1377 bool Super) { 1378 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1379 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1380 1381 if (!MemberName.isIdentifier()) { 1382 Diag(MemberLoc, diag::err_invalid_property_name) 1383 << MemberName << QualType(OPT, 0); 1384 return ExprError(); 1385 } 1386 1387 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1388 1389 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1390 : BaseExpr->getSourceRange(); 1391 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1392 diag::err_property_not_found_forward_class, 1393 MemberName, BaseRange)) 1394 return ExprError(); 1395 1396 // Search for a declared property first. 1397 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { 1398 // Check whether we can reference this property. 1399 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1400 return ExprError(); 1401 if (Super) 1402 return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, 1403 VK_LValue, OK_ObjCProperty, 1404 MemberLoc, 1405 SuperLoc, SuperType)); 1406 else 1407 return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, 1408 VK_LValue, OK_ObjCProperty, 1409 MemberLoc, BaseExpr)); 1410 } 1411 // Check protocols on qualified interfaces. 1412 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), 1413 E = OPT->qual_end(); I != E; ++I) 1414 if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { 1415 // Check whether we can reference this property. 1416 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1417 return ExprError(); 1418 1419 if (Super) 1420 return Owned(new (Context) ObjCPropertyRefExpr(PD, 1421 Context.PseudoObjectTy, 1422 VK_LValue, 1423 OK_ObjCProperty, 1424 MemberLoc, 1425 SuperLoc, SuperType)); 1426 else 1427 return Owned(new (Context) ObjCPropertyRefExpr(PD, 1428 Context.PseudoObjectTy, 1429 VK_LValue, 1430 OK_ObjCProperty, 1431 MemberLoc, 1432 BaseExpr)); 1433 } 1434 // If that failed, look for an "implicit" property by seeing if the nullary 1435 // selector is implemented. 1436 1437 // FIXME: The logic for looking up nullary and unary selectors should be 1438 // shared with the code in ActOnInstanceMessage. 1439 1440 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 1441 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 1442 1443 // May be founf in property's qualified list. 1444 if (!Getter) 1445 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 1446 1447 // If this reference is in an @implementation, check for 'private' methods. 1448 if (!Getter) 1449 Getter = IFace->lookupPrivateMethod(Sel); 1450 1451 if (Getter) { 1452 // Check if we can reference this property. 1453 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 1454 return ExprError(); 1455 } 1456 // If we found a getter then this may be a valid dot-reference, we 1457 // will look for the matching setter, in case it is needed. 1458 Selector SetterSel = 1459 SelectorTable::constructSetterName(PP.getIdentifierTable(), 1460 PP.getSelectorTable(), Member); 1461 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 1462 1463 // May be founf in property's qualified list. 1464 if (!Setter) 1465 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 1466 1467 if (!Setter) { 1468 // If this reference is in an @implementation, also check for 'private' 1469 // methods. 1470 Setter = IFace->lookupPrivateMethod(SetterSel); 1471 } 1472 1473 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 1474 return ExprError(); 1475 1476 if (Getter || Setter) { 1477 if (Super) 1478 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1479 Context.PseudoObjectTy, 1480 VK_LValue, OK_ObjCProperty, 1481 MemberLoc, 1482 SuperLoc, SuperType)); 1483 else 1484 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1485 Context.PseudoObjectTy, 1486 VK_LValue, OK_ObjCProperty, 1487 MemberLoc, BaseExpr)); 1488 1489 } 1490 1491 // Attempt to correct for typos in property names. 1492 DeclFilterCCC<ObjCPropertyDecl> Validator; 1493 if (TypoCorrection Corrected = CorrectTypo( 1494 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL, 1495 NULL, Validator, IFace, false, OPT)) { 1496 ObjCPropertyDecl *Property = 1497 Corrected.getCorrectionDeclAs<ObjCPropertyDecl>(); 1498 DeclarationName TypoResult = Corrected.getCorrection(); 1499 Diag(MemberLoc, diag::err_property_not_found_suggest) 1500 << MemberName << QualType(OPT, 0) << TypoResult 1501 << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString()); 1502 Diag(Property->getLocation(), diag::note_previous_decl) 1503 << Property->getDeclName(); 1504 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 1505 TypoResult, MemberLoc, 1506 SuperLoc, SuperType, Super); 1507 } 1508 ObjCInterfaceDecl *ClassDeclared; 1509 if (ObjCIvarDecl *Ivar = 1510 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 1511 QualType T = Ivar->getType(); 1512 if (const ObjCObjectPointerType * OBJPT = 1513 T->getAsObjCInterfacePointerType()) { 1514 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 1515 diag::err_property_not_as_forward_class, 1516 MemberName, BaseExpr)) 1517 return ExprError(); 1518 } 1519 Diag(MemberLoc, 1520 diag::err_ivar_access_using_property_syntax_suggest) 1521 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 1522 << FixItHint::CreateReplacement(OpLoc, "->"); 1523 return ExprError(); 1524 } 1525 1526 Diag(MemberLoc, diag::err_property_not_found) 1527 << MemberName << QualType(OPT, 0); 1528 if (Setter) 1529 Diag(Setter->getLocation(), diag::note_getter_unavailable) 1530 << MemberName << BaseExpr->getSourceRange(); 1531 return ExprError(); 1532} 1533 1534 1535 1536ExprResult Sema:: 1537ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 1538 IdentifierInfo &propertyName, 1539 SourceLocation receiverNameLoc, 1540 SourceLocation propertyNameLoc) { 1541 1542 IdentifierInfo *receiverNamePtr = &receiverName; 1543 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 1544 receiverNameLoc); 1545 1546 bool IsSuper = false; 1547 if (IFace == 0) { 1548 // If the "receiver" is 'super' in a method, handle it as an expression-like 1549 // property reference. 1550 if (receiverNamePtr->isStr("super")) { 1551 IsSuper = true; 1552 1553 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 1554 if (CurMethod->isInstanceMethod()) { 1555 QualType T = 1556 Context.getObjCInterfaceType(CurMethod->getClassInterface()); 1557 T = Context.getObjCObjectPointerType(T); 1558 1559 return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(), 1560 /*BaseExpr*/0, 1561 SourceLocation()/*OpLoc*/, 1562 &propertyName, 1563 propertyNameLoc, 1564 receiverNameLoc, T, true); 1565 } 1566 1567 // Otherwise, if this is a class method, try dispatching to our 1568 // superclass. 1569 IFace = CurMethod->getClassInterface()->getSuperClass(); 1570 } 1571 } 1572 1573 if (IFace == 0) { 1574 Diag(receiverNameLoc, diag::err_expected_ident_or_lparen); 1575 return ExprError(); 1576 } 1577 } 1578 1579 // Search for a declared property first. 1580 Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); 1581 ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); 1582 1583 // If this reference is in an @implementation, check for 'private' methods. 1584 if (!Getter) 1585 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) 1586 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) 1587 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) 1588 Getter = ImpDecl->getClassMethod(Sel); 1589 1590 if (Getter) { 1591 // FIXME: refactor/share with ActOnMemberReference(). 1592 // Check if we can reference this property. 1593 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 1594 return ExprError(); 1595 } 1596 1597 // Look for the matching setter, in case it is needed. 1598 Selector SetterSel = 1599 SelectorTable::constructSetterName(PP.getIdentifierTable(), 1600 PP.getSelectorTable(), &propertyName); 1601 1602 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1603 if (!Setter) { 1604 // If this reference is in an @implementation, also check for 'private' 1605 // methods. 1606 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) 1607 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) 1608 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) 1609 Setter = ImpDecl->getClassMethod(SetterSel); 1610 } 1611 // Look through local category implementations associated with the class. 1612 if (!Setter) 1613 Setter = IFace->getCategoryClassMethod(SetterSel); 1614 1615 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 1616 return ExprError(); 1617 1618 if (Getter || Setter) { 1619 if (IsSuper) 1620 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1621 Context.PseudoObjectTy, 1622 VK_LValue, OK_ObjCProperty, 1623 propertyNameLoc, 1624 receiverNameLoc, 1625 Context.getObjCInterfaceType(IFace))); 1626 1627 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1628 Context.PseudoObjectTy, 1629 VK_LValue, OK_ObjCProperty, 1630 propertyNameLoc, 1631 receiverNameLoc, IFace)); 1632 } 1633 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 1634 << &propertyName << Context.getObjCInterfaceType(IFace)); 1635} 1636 1637namespace { 1638 1639class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback { 1640 public: 1641 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 1642 // Determine whether "super" is acceptable in the current context. 1643 if (Method && Method->getClassInterface()) 1644 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 1645 } 1646 1647 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 1648 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 1649 candidate.isKeyword("super"); 1650 } 1651}; 1652 1653} 1654 1655Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 1656 IdentifierInfo *Name, 1657 SourceLocation NameLoc, 1658 bool IsSuper, 1659 bool HasTrailingDot, 1660 ParsedType &ReceiverType) { 1661 ReceiverType = ParsedType(); 1662 1663 // If the identifier is "super" and there is no trailing dot, we're 1664 // messaging super. If the identifier is "super" and there is a 1665 // trailing dot, it's an instance message. 1666 if (IsSuper && S->isInObjcMethodScope()) 1667 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 1668 1669 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 1670 LookupName(Result, S); 1671 1672 switch (Result.getResultKind()) { 1673 case LookupResult::NotFound: 1674 // Normal name lookup didn't find anything. If we're in an 1675 // Objective-C method, look for ivars. If we find one, we're done! 1676 // FIXME: This is a hack. Ivar lookup should be part of normal 1677 // lookup. 1678 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 1679 if (!Method->getClassInterface()) { 1680 // Fall back: let the parser try to parse it as an instance message. 1681 return ObjCInstanceMessage; 1682 } 1683 1684 ObjCInterfaceDecl *ClassDeclared; 1685 if (Method->getClassInterface()->lookupInstanceVariable(Name, 1686 ClassDeclared)) 1687 return ObjCInstanceMessage; 1688 } 1689 1690 // Break out; we'll perform typo correction below. 1691 break; 1692 1693 case LookupResult::NotFoundInCurrentInstantiation: 1694 case LookupResult::FoundOverloaded: 1695 case LookupResult::FoundUnresolvedValue: 1696 case LookupResult::Ambiguous: 1697 Result.suppressDiagnostics(); 1698 return ObjCInstanceMessage; 1699 1700 case LookupResult::Found: { 1701 // If the identifier is a class or not, and there is a trailing dot, 1702 // it's an instance message. 1703 if (HasTrailingDot) 1704 return ObjCInstanceMessage; 1705 // We found something. If it's a type, then we have a class 1706 // message. Otherwise, it's an instance message. 1707 NamedDecl *ND = Result.getFoundDecl(); 1708 QualType T; 1709 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 1710 T = Context.getObjCInterfaceType(Class); 1711 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) 1712 T = Context.getTypeDeclType(Type); 1713 else 1714 return ObjCInstanceMessage; 1715 1716 // We have a class message, and T is the type we're 1717 // messaging. Build source-location information for it. 1718 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 1719 ReceiverType = CreateParsedType(T, TSInfo); 1720 return ObjCClassMessage; 1721 } 1722 } 1723 1724 ObjCInterfaceOrSuperCCC Validator(getCurMethodDecl()); 1725 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), 1726 Result.getLookupKind(), S, NULL, 1727 Validator)) { 1728 if (Corrected.isKeyword()) { 1729 // If we've found the keyword "super" (the only keyword that would be 1730 // returned by CorrectTypo), this is a send to super. 1731 Diag(NameLoc, diag::err_unknown_receiver_suggest) 1732 << Name << Corrected.getCorrection() 1733 << FixItHint::CreateReplacement(SourceRange(NameLoc), "super"); 1734 return ObjCSuperMessage; 1735 } else if (ObjCInterfaceDecl *Class = 1736 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1737 // If we found a declaration, correct when it refers to an Objective-C 1738 // class. 1739 Diag(NameLoc, diag::err_unknown_receiver_suggest) 1740 << Name << Corrected.getCorrection() 1741 << FixItHint::CreateReplacement(SourceRange(NameLoc), 1742 Class->getNameAsString()); 1743 Diag(Class->getLocation(), diag::note_previous_decl) 1744 << Corrected.getCorrection(); 1745 1746 QualType T = Context.getObjCInterfaceType(Class); 1747 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 1748 ReceiverType = CreateParsedType(T, TSInfo); 1749 return ObjCClassMessage; 1750 } 1751 } 1752 1753 // Fall back: let the parser try to parse it as an instance message. 1754 return ObjCInstanceMessage; 1755} 1756 1757ExprResult Sema::ActOnSuperMessage(Scope *S, 1758 SourceLocation SuperLoc, 1759 Selector Sel, 1760 SourceLocation LBracLoc, 1761 ArrayRef<SourceLocation> SelectorLocs, 1762 SourceLocation RBracLoc, 1763 MultiExprArg Args) { 1764 // Determine whether we are inside a method or not. 1765 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 1766 if (!Method) { 1767 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 1768 return ExprError(); 1769 } 1770 1771 ObjCInterfaceDecl *Class = Method->getClassInterface(); 1772 if (!Class) { 1773 Diag(SuperLoc, diag::error_no_super_class_message) 1774 << Method->getDeclName(); 1775 return ExprError(); 1776 } 1777 1778 ObjCInterfaceDecl *Super = Class->getSuperClass(); 1779 if (!Super) { 1780 // The current class does not have a superclass. 1781 Diag(SuperLoc, diag::error_root_class_cannot_use_super) 1782 << Class->getIdentifier(); 1783 return ExprError(); 1784 } 1785 1786 // We are in a method whose class has a superclass, so 'super' 1787 // is acting as a keyword. 1788 if (Method->getSelector() == Sel) 1789 getCurFunction()->ObjCShouldCallSuper = false; 1790 1791 if (Method->isInstanceMethod()) { 1792 // Since we are in an instance method, this is an instance 1793 // message to the superclass instance. 1794 QualType SuperTy = Context.getObjCInterfaceType(Super); 1795 SuperTy = Context.getObjCObjectPointerType(SuperTy); 1796 return BuildInstanceMessage(0, SuperTy, SuperLoc, 1797 Sel, /*Method=*/0, 1798 LBracLoc, SelectorLocs, RBracLoc, Args); 1799 } 1800 1801 // Since we are in a class method, this is a class message to 1802 // the superclass. 1803 return BuildClassMessage(/*ReceiverTypeInfo=*/0, 1804 Context.getObjCInterfaceType(Super), 1805 SuperLoc, Sel, /*Method=*/0, 1806 LBracLoc, SelectorLocs, RBracLoc, Args); 1807} 1808 1809 1810ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 1811 bool isSuperReceiver, 1812 SourceLocation Loc, 1813 Selector Sel, 1814 ObjCMethodDecl *Method, 1815 MultiExprArg Args) { 1816 TypeSourceInfo *receiverTypeInfo = 0; 1817 if (!ReceiverType.isNull()) 1818 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 1819 1820 return BuildClassMessage(receiverTypeInfo, ReceiverType, 1821 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 1822 Sel, Method, Loc, Loc, Loc, Args, 1823 /*isImplicit=*/true); 1824 1825} 1826 1827static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 1828 unsigned DiagID, 1829 bool (*refactor)(const ObjCMessageExpr *, 1830 const NSAPI &, edit::Commit &)) { 1831 SourceLocation MsgLoc = Msg->getExprLoc(); 1832 if (S.Diags.getDiagnosticLevel(DiagID, MsgLoc) == DiagnosticsEngine::Ignored) 1833 return; 1834 1835 SourceManager &SM = S.SourceMgr; 1836 edit::Commit ECommit(SM, S.LangOpts); 1837 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 1838 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) 1839 << Msg->getSelector() << Msg->getSourceRange(); 1840 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 1841 if (!ECommit.isCommitable()) 1842 return; 1843 for (edit::Commit::edit_iterator 1844 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 1845 const edit::Commit::Edit &Edit = *I; 1846 switch (Edit.Kind) { 1847 case edit::Commit::Act_Insert: 1848 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 1849 Edit.Text, 1850 Edit.BeforePrev)); 1851 break; 1852 case edit::Commit::Act_InsertFromRange: 1853 Builder.AddFixItHint( 1854 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 1855 Edit.getInsertFromRange(SM), 1856 Edit.BeforePrev)); 1857 break; 1858 case edit::Commit::Act_Remove: 1859 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 1860 break; 1861 } 1862 } 1863 } 1864} 1865 1866static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 1867 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 1868 edit::rewriteObjCRedundantCallWithLiteral); 1869} 1870 1871/// \brief Build an Objective-C class message expression. 1872/// 1873/// This routine takes care of both normal class messages and 1874/// class messages to the superclass. 1875/// 1876/// \param ReceiverTypeInfo Type source information that describes the 1877/// receiver of this message. This may be NULL, in which case we are 1878/// sending to the superclass and \p SuperLoc must be a valid source 1879/// location. 1880 1881/// \param ReceiverType The type of the object receiving the 1882/// message. When \p ReceiverTypeInfo is non-NULL, this is the same 1883/// type as that refers to. For a superclass send, this is the type of 1884/// the superclass. 1885/// 1886/// \param SuperLoc The location of the "super" keyword in a 1887/// superclass message. 1888/// 1889/// \param Sel The selector to which the message is being sent. 1890/// 1891/// \param Method The method that this class message is invoking, if 1892/// already known. 1893/// 1894/// \param LBracLoc The location of the opening square bracket ']'. 1895/// 1896/// \param RBracLoc The location of the closing square bracket ']'. 1897/// 1898/// \param ArgsIn The message arguments. 1899ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 1900 QualType ReceiverType, 1901 SourceLocation SuperLoc, 1902 Selector Sel, 1903 ObjCMethodDecl *Method, 1904 SourceLocation LBracLoc, 1905 ArrayRef<SourceLocation> SelectorLocs, 1906 SourceLocation RBracLoc, 1907 MultiExprArg ArgsIn, 1908 bool isImplicit) { 1909 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 1910 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 1911 if (LBracLoc.isInvalid()) { 1912 Diag(Loc, diag::err_missing_open_square_message_send) 1913 << FixItHint::CreateInsertion(Loc, "["); 1914 LBracLoc = Loc; 1915 } 1916 1917 if (ReceiverType->isDependentType()) { 1918 // If the receiver type is dependent, we can't type-check anything 1919 // at this point. Build a dependent expression. 1920 unsigned NumArgs = ArgsIn.size(); 1921 Expr **Args = ArgsIn.data(); 1922 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 1923 return Owned(ObjCMessageExpr::Create(Context, ReceiverType, 1924 VK_RValue, LBracLoc, ReceiverTypeInfo, 1925 Sel, SelectorLocs, /*Method=*/0, 1926 makeArrayRef(Args, NumArgs),RBracLoc, 1927 isImplicit)); 1928 } 1929 1930 // Find the class to which we are sending this message. 1931 ObjCInterfaceDecl *Class = 0; 1932 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 1933 if (!ClassType || !(Class = ClassType->getInterface())) { 1934 Diag(Loc, diag::err_invalid_receiver_class_message) 1935 << ReceiverType; 1936 return ExprError(); 1937 } 1938 assert(Class && "We don't know which class we're messaging?"); 1939 // objc++ diagnoses during typename annotation. 1940 if (!getLangOpts().CPlusPlus) 1941 (void)DiagnoseUseOfDecl(Class, Loc); 1942 // Find the method we are messaging. 1943 if (!Method) { 1944 SourceRange TypeRange 1945 = SuperLoc.isValid()? SourceRange(SuperLoc) 1946 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 1947 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 1948 (getLangOpts().ObjCAutoRefCount 1949 ? diag::err_arc_receiver_forward_class 1950 : diag::warn_receiver_forward_class), 1951 TypeRange)) { 1952 // A forward class used in messaging is treated as a 'Class' 1953 Method = LookupFactoryMethodInGlobalPool(Sel, 1954 SourceRange(LBracLoc, RBracLoc)); 1955 if (Method && !getLangOpts().ObjCAutoRefCount) 1956 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 1957 << Method->getDeclName(); 1958 } 1959 if (!Method) 1960 Method = Class->lookupClassMethod(Sel); 1961 1962 // If we have an implementation in scope, check "private" methods. 1963 if (!Method) 1964 Method = Class->lookupPrivateClassMethod(Sel); 1965 1966 if (Method && DiagnoseUseOfDecl(Method, Loc)) 1967 return ExprError(); 1968 } 1969 1970 // Check the argument types and determine the result type. 1971 QualType ReturnType; 1972 ExprValueKind VK = VK_RValue; 1973 1974 unsigned NumArgs = ArgsIn.size(); 1975 Expr **Args = ArgsIn.data(); 1976 if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, SelectorLocs, 1977 Method, true, 1978 SuperLoc.isValid(), LBracLoc, RBracLoc, 1979 ReturnType, VK)) 1980 return ExprError(); 1981 1982 if (Method && !Method->getResultType()->isVoidType() && 1983 RequireCompleteType(LBracLoc, Method->getResultType(), 1984 diag::err_illegal_message_expr_incomplete_type)) 1985 return ExprError(); 1986 1987 // Construct the appropriate ObjCMessageExpr. 1988 ObjCMessageExpr *Result; 1989 if (SuperLoc.isValid()) 1990 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 1991 SuperLoc, /*IsInstanceSuper=*/false, 1992 ReceiverType, Sel, SelectorLocs, 1993 Method, makeArrayRef(Args, NumArgs), 1994 RBracLoc, isImplicit); 1995 else { 1996 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 1997 ReceiverTypeInfo, Sel, SelectorLocs, 1998 Method, makeArrayRef(Args, NumArgs), 1999 RBracLoc, isImplicit); 2000 if (!isImplicit) 2001 checkCocoaAPI(*this, Result); 2002 } 2003 return MaybeBindToTemporary(Result); 2004} 2005 2006// ActOnClassMessage - used for both unary and keyword messages. 2007// ArgExprs is optional - if it is present, the number of expressions 2008// is obtained from Sel.getNumArgs(). 2009ExprResult Sema::ActOnClassMessage(Scope *S, 2010 ParsedType Receiver, 2011 Selector Sel, 2012 SourceLocation LBracLoc, 2013 ArrayRef<SourceLocation> SelectorLocs, 2014 SourceLocation RBracLoc, 2015 MultiExprArg Args) { 2016 TypeSourceInfo *ReceiverTypeInfo; 2017 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2018 if (ReceiverType.isNull()) 2019 return ExprError(); 2020 2021 2022 if (!ReceiverTypeInfo) 2023 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2024 2025 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2026 /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, 2027 LBracLoc, SelectorLocs, RBracLoc, Args); 2028} 2029 2030ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2031 QualType ReceiverType, 2032 SourceLocation Loc, 2033 Selector Sel, 2034 ObjCMethodDecl *Method, 2035 MultiExprArg Args) { 2036 return BuildInstanceMessage(Receiver, ReceiverType, 2037 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2038 Sel, Method, Loc, Loc, Loc, Args, 2039 /*isImplicit=*/true); 2040} 2041 2042/// \brief Build an Objective-C instance message expression. 2043/// 2044/// This routine takes care of both normal instance messages and 2045/// instance messages to the superclass instance. 2046/// 2047/// \param Receiver The expression that computes the object that will 2048/// receive this message. This may be empty, in which case we are 2049/// sending to the superclass instance and \p SuperLoc must be a valid 2050/// source location. 2051/// 2052/// \param ReceiverType The (static) type of the object receiving the 2053/// message. When a \p Receiver expression is provided, this is the 2054/// same type as that expression. For a superclass instance send, this 2055/// is a pointer to the type of the superclass. 2056/// 2057/// \param SuperLoc The location of the "super" keyword in a 2058/// superclass instance message. 2059/// 2060/// \param Sel The selector to which the message is being sent. 2061/// 2062/// \param Method The method that this instance message is invoking, if 2063/// already known. 2064/// 2065/// \param LBracLoc The location of the opening square bracket ']'. 2066/// 2067/// \param RBracLoc The location of the closing square bracket ']'. 2068/// 2069/// \param ArgsIn The message arguments. 2070ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2071 QualType ReceiverType, 2072 SourceLocation SuperLoc, 2073 Selector Sel, 2074 ObjCMethodDecl *Method, 2075 SourceLocation LBracLoc, 2076 ArrayRef<SourceLocation> SelectorLocs, 2077 SourceLocation RBracLoc, 2078 MultiExprArg ArgsIn, 2079 bool isImplicit) { 2080 // The location of the receiver. 2081 SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); 2082 2083 if (LBracLoc.isInvalid()) { 2084 Diag(Loc, diag::err_missing_open_square_message_send) 2085 << FixItHint::CreateInsertion(Loc, "["); 2086 LBracLoc = Loc; 2087 } 2088 2089 // If we have a receiver expression, perform appropriate promotions 2090 // and determine receiver type. 2091 if (Receiver) { 2092 if (Receiver->hasPlaceholderType()) { 2093 ExprResult Result; 2094 if (Receiver->getType() == Context.UnknownAnyTy) 2095 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2096 else 2097 Result = CheckPlaceholderExpr(Receiver); 2098 if (Result.isInvalid()) return ExprError(); 2099 Receiver = Result.take(); 2100 } 2101 2102 if (Receiver->isTypeDependent()) { 2103 // If the receiver is type-dependent, we can't type-check anything 2104 // at this point. Build a dependent expression. 2105 unsigned NumArgs = ArgsIn.size(); 2106 Expr **Args = ArgsIn.data(); 2107 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2108 return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy, 2109 VK_RValue, LBracLoc, Receiver, Sel, 2110 SelectorLocs, /*Method=*/0, 2111 makeArrayRef(Args, NumArgs), 2112 RBracLoc, isImplicit)); 2113 } 2114 2115 // If necessary, apply function/array conversion to the receiver. 2116 // C99 6.7.5.3p[7,8]. 2117 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2118 if (Result.isInvalid()) 2119 return ExprError(); 2120 Receiver = Result.take(); 2121 ReceiverType = Receiver->getType(); 2122 } 2123 2124 if (!Method) { 2125 // Handle messages to id. 2126 bool receiverIsId = ReceiverType->isObjCIdType(); 2127 if (receiverIsId || ReceiverType->isBlockPointerType() || 2128 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2129 Method = LookupInstanceMethodInGlobalPool(Sel, 2130 SourceRange(LBracLoc, RBracLoc), 2131 receiverIsId); 2132 if (!Method) 2133 Method = LookupFactoryMethodInGlobalPool(Sel, 2134 SourceRange(LBracLoc,RBracLoc), 2135 receiverIsId); 2136 } else if (ReceiverType->isObjCClassType() || 2137 ReceiverType->isObjCQualifiedClassType()) { 2138 // Handle messages to Class. 2139 // We allow sending a message to a qualified Class ("Class<foo>"), which 2140 // is ok as long as one of the protocols implements the selector (if not, warn). 2141 if (const ObjCObjectPointerType *QClassTy 2142 = ReceiverType->getAsObjCQualifiedClassType()) { 2143 // Search protocols for class methods. 2144 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2145 if (!Method) { 2146 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2147 // warn if instance method found for a Class message. 2148 if (Method) { 2149 Diag(Loc, diag::warn_instance_method_on_class_found) 2150 << Method->getSelector() << Sel; 2151 Diag(Method->getLocation(), diag::note_method_declared_at) 2152 << Method->getDeclName(); 2153 } 2154 } 2155 } else { 2156 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2157 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2158 // First check the public methods in the class interface. 2159 Method = ClassDecl->lookupClassMethod(Sel); 2160 2161 if (!Method) 2162 Method = ClassDecl->lookupPrivateClassMethod(Sel); 2163 } 2164 if (Method && DiagnoseUseOfDecl(Method, Loc)) 2165 return ExprError(); 2166 } 2167 if (!Method) { 2168 // If not messaging 'self', look for any factory method named 'Sel'. 2169 if (!Receiver || !isSelfExpr(Receiver)) { 2170 Method = LookupFactoryMethodInGlobalPool(Sel, 2171 SourceRange(LBracLoc, RBracLoc), 2172 true); 2173 if (!Method) { 2174 // If no class (factory) method was found, check if an _instance_ 2175 // method of the same name exists in the root class only. 2176 Method = LookupInstanceMethodInGlobalPool(Sel, 2177 SourceRange(LBracLoc, RBracLoc), 2178 true); 2179 if (Method) 2180 if (const ObjCInterfaceDecl *ID = 2181 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 2182 if (ID->getSuperClass()) 2183 Diag(Loc, diag::warn_root_inst_method_not_found) 2184 << Sel << SourceRange(LBracLoc, RBracLoc); 2185 } 2186 } 2187 } 2188 } 2189 } 2190 } else { 2191 ObjCInterfaceDecl* ClassDecl = 0; 2192 2193 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 2194 // long as one of the protocols implements the selector (if not, warn). 2195 // And as long as message is not deprecated/unavailable (warn if it is). 2196 if (const ObjCObjectPointerType *QIdTy 2197 = ReceiverType->getAsObjCQualifiedIdType()) { 2198 // Search protocols for instance methods. 2199 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 2200 if (!Method) 2201 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 2202 if (Method && DiagnoseUseOfDecl(Method, Loc)) 2203 return ExprError(); 2204 } else if (const ObjCObjectPointerType *OCIType 2205 = ReceiverType->getAsObjCInterfacePointerType()) { 2206 // We allow sending a message to a pointer to an interface (an object). 2207 ClassDecl = OCIType->getInterfaceDecl(); 2208 2209 // Try to complete the type. Under ARC, this is a hard error from which 2210 // we don't try to recover. 2211 const ObjCInterfaceDecl *forwardClass = 0; 2212 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 2213 getLangOpts().ObjCAutoRefCount 2214 ? diag::err_arc_receiver_forward_instance 2215 : diag::warn_receiver_forward_instance, 2216 Receiver? Receiver->getSourceRange() 2217 : SourceRange(SuperLoc))) { 2218 if (getLangOpts().ObjCAutoRefCount) 2219 return ExprError(); 2220 2221 forwardClass = OCIType->getInterfaceDecl(); 2222 Diag(Receiver ? Receiver->getLocStart() 2223 : SuperLoc, diag::note_receiver_is_id); 2224 Method = 0; 2225 } else { 2226 Method = ClassDecl->lookupInstanceMethod(Sel); 2227 } 2228 2229 if (!Method) 2230 // Search protocol qualifiers. 2231 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 2232 2233 if (!Method) { 2234 // If we have implementations in scope, check "private" methods. 2235 Method = ClassDecl->lookupPrivateMethod(Sel); 2236 2237 if (!Method && getLangOpts().ObjCAutoRefCount) { 2238 Diag(Loc, diag::err_arc_may_not_respond) 2239 << OCIType->getPointeeType() << Sel 2240 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 2241 return ExprError(); 2242 } 2243 2244 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 2245 // If we still haven't found a method, look in the global pool. This 2246 // behavior isn't very desirable, however we need it for GCC 2247 // compatibility. FIXME: should we deviate?? 2248 if (OCIType->qual_empty()) { 2249 Method = LookupInstanceMethodInGlobalPool(Sel, 2250 SourceRange(LBracLoc, RBracLoc)); 2251 if (Method && !forwardClass) 2252 Diag(Loc, diag::warn_maynot_respond) 2253 << OCIType->getInterfaceDecl()->getIdentifier() << Sel; 2254 } 2255 } 2256 } 2257 if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass)) 2258 return ExprError(); 2259 } else if (!getLangOpts().ObjCAutoRefCount && 2260 !Context.getObjCIdType().isNull() && 2261 (ReceiverType->isPointerType() || 2262 ReceiverType->isIntegerType())) { 2263 // Implicitly convert integers and pointers to 'id' but emit a warning. 2264 // But not in ARC. 2265 Diag(Loc, diag::warn_bad_receiver_type) 2266 << ReceiverType 2267 << Receiver->getSourceRange(); 2268 if (ReceiverType->isPointerType()) 2269 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2270 CK_CPointerToObjCPointerCast).take(); 2271 else { 2272 // TODO: specialized warning on null receivers? 2273 bool IsNull = Receiver->isNullPointerConstant(Context, 2274 Expr::NPC_ValueDependentIsNull); 2275 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2276 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2277 Kind).take(); 2278 } 2279 ReceiverType = Receiver->getType(); 2280 } else { 2281 ExprResult ReceiverRes; 2282 if (getLangOpts().CPlusPlus) 2283 ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver); 2284 if (ReceiverRes.isUsable()) { 2285 Receiver = ReceiverRes.take(); 2286 return BuildInstanceMessage(Receiver, 2287 ReceiverType, 2288 SuperLoc, 2289 Sel, 2290 Method, 2291 LBracLoc, 2292 SelectorLocs, 2293 RBracLoc, 2294 ArgsIn); 2295 } else { 2296 // Reject other random receiver types (e.g. structs). 2297 Diag(Loc, diag::err_bad_receiver_type) 2298 << ReceiverType << Receiver->getSourceRange(); 2299 return ExprError(); 2300 } 2301 } 2302 } 2303 } 2304 2305 // Check the message arguments. 2306 unsigned NumArgs = ArgsIn.size(); 2307 Expr **Args = ArgsIn.data(); 2308 QualType ReturnType; 2309 ExprValueKind VK = VK_RValue; 2310 bool ClassMessage = (ReceiverType->isObjCClassType() || 2311 ReceiverType->isObjCQualifiedClassType()); 2312 if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, 2313 SelectorLocs, Method, 2314 ClassMessage, SuperLoc.isValid(), 2315 LBracLoc, RBracLoc, ReturnType, VK)) 2316 return ExprError(); 2317 2318 if (Method && !Method->getResultType()->isVoidType() && 2319 RequireCompleteType(LBracLoc, Method->getResultType(), 2320 diag::err_illegal_message_expr_incomplete_type)) 2321 return ExprError(); 2322 2323 SourceLocation SelLoc = SelectorLocs.front(); 2324 2325 // In ARC, forbid the user from sending messages to 2326 // retain/release/autorelease/dealloc/retainCount explicitly. 2327 if (getLangOpts().ObjCAutoRefCount) { 2328 ObjCMethodFamily family = 2329 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 2330 switch (family) { 2331 case OMF_init: 2332 if (Method) 2333 checkInitMethod(Method, ReceiverType); 2334 2335 case OMF_None: 2336 case OMF_alloc: 2337 case OMF_copy: 2338 case OMF_finalize: 2339 case OMF_mutableCopy: 2340 case OMF_new: 2341 case OMF_self: 2342 break; 2343 2344 case OMF_dealloc: 2345 case OMF_retain: 2346 case OMF_release: 2347 case OMF_autorelease: 2348 case OMF_retainCount: 2349 Diag(Loc, diag::err_arc_illegal_explicit_message) 2350 << Sel << SelLoc; 2351 break; 2352 2353 case OMF_performSelector: 2354 if (Method && NumArgs >= 1) { 2355 if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { 2356 Selector ArgSel = SelExp->getSelector(); 2357 ObjCMethodDecl *SelMethod = 2358 LookupInstanceMethodInGlobalPool(ArgSel, 2359 SelExp->getSourceRange()); 2360 if (!SelMethod) 2361 SelMethod = 2362 LookupFactoryMethodInGlobalPool(ArgSel, 2363 SelExp->getSourceRange()); 2364 if (SelMethod) { 2365 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 2366 switch (SelFamily) { 2367 case OMF_alloc: 2368 case OMF_copy: 2369 case OMF_mutableCopy: 2370 case OMF_new: 2371 case OMF_self: 2372 case OMF_init: 2373 // Issue error, unless ns_returns_not_retained. 2374 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 2375 // selector names a +1 method 2376 Diag(SelLoc, 2377 diag::err_arc_perform_selector_retains); 2378 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2379 << SelMethod->getDeclName(); 2380 } 2381 break; 2382 default: 2383 // +0 call. OK. unless ns_returns_retained. 2384 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 2385 // selector names a +1 method 2386 Diag(SelLoc, 2387 diag::err_arc_perform_selector_retains); 2388 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2389 << SelMethod->getDeclName(); 2390 } 2391 break; 2392 } 2393 } 2394 } else { 2395 // error (may leak). 2396 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 2397 Diag(Args[0]->getExprLoc(), diag::note_used_here); 2398 } 2399 } 2400 break; 2401 } 2402 } 2403 2404 // Construct the appropriate ObjCMessageExpr instance. 2405 ObjCMessageExpr *Result; 2406 if (SuperLoc.isValid()) 2407 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2408 SuperLoc, /*IsInstanceSuper=*/true, 2409 ReceiverType, Sel, SelectorLocs, Method, 2410 makeArrayRef(Args, NumArgs), RBracLoc, 2411 isImplicit); 2412 else { 2413 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2414 Receiver, Sel, SelectorLocs, Method, 2415 makeArrayRef(Args, NumArgs), RBracLoc, 2416 isImplicit); 2417 if (!isImplicit) 2418 checkCocoaAPI(*this, Result); 2419 } 2420 2421 if (getLangOpts().ObjCAutoRefCount) { 2422 DiagnoseARCUseOfWeakReceiver(*this, Receiver); 2423 2424 // In ARC, annotate delegate init calls. 2425 if (Result->getMethodFamily() == OMF_init && 2426 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2427 // Only consider init calls *directly* in init implementations, 2428 // not within blocks. 2429 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 2430 if (method && method->getMethodFamily() == OMF_init) { 2431 // The implicit assignment to self means we also don't want to 2432 // consume the result. 2433 Result->setDelegateInitCall(true); 2434 return Owned(Result); 2435 } 2436 } 2437 2438 // In ARC, check for message sends which are likely to introduce 2439 // retain cycles. 2440 checkRetainCycles(Result); 2441 2442 if (!isImplicit && Method) { 2443 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 2444 bool IsWeak = 2445 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak; 2446 if (!IsWeak && Sel.isUnarySelector()) 2447 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 2448 2449 if (IsWeak) { 2450 DiagnosticsEngine::Level Level = 2451 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, 2452 LBracLoc); 2453 if (Level != DiagnosticsEngine::Ignored) 2454 getCurFunction()->recordUseOfWeak(Result, Prop); 2455 2456 } 2457 } 2458 } 2459 } 2460 2461 return MaybeBindToTemporary(Result); 2462} 2463 2464static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 2465 if (ObjCSelectorExpr *OSE = 2466 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 2467 Selector Sel = OSE->getSelector(); 2468 SourceLocation Loc = OSE->getAtLoc(); 2469 llvm::DenseMap<Selector, SourceLocation>::iterator Pos 2470 = S.ReferencedSelectors.find(Sel); 2471 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 2472 S.ReferencedSelectors.erase(Pos); 2473 } 2474} 2475 2476// ActOnInstanceMessage - used for both unary and keyword messages. 2477// ArgExprs is optional - if it is present, the number of expressions 2478// is obtained from Sel.getNumArgs(). 2479ExprResult Sema::ActOnInstanceMessage(Scope *S, 2480 Expr *Receiver, 2481 Selector Sel, 2482 SourceLocation LBracLoc, 2483 ArrayRef<SourceLocation> SelectorLocs, 2484 SourceLocation RBracLoc, 2485 MultiExprArg Args) { 2486 if (!Receiver) 2487 return ExprError(); 2488 2489 // A ParenListExpr can show up while doing error recovery with invalid code. 2490 if (isa<ParenListExpr>(Receiver)) { 2491 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 2492 if (Result.isInvalid()) return ExprError(); 2493 Receiver = Result.take(); 2494 } 2495 2496 if (RespondsToSelectorSel.isNull()) { 2497 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 2498 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 2499 } 2500 if (Sel == RespondsToSelectorSel) 2501 RemoveSelectorFromWarningCache(*this, Args[0]); 2502 2503 return BuildInstanceMessage(Receiver, Receiver->getType(), 2504 /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, 2505 LBracLoc, SelectorLocs, RBracLoc, Args); 2506} 2507 2508enum ARCConversionTypeClass { 2509 /// int, void, struct A 2510 ACTC_none, 2511 2512 /// id, void (^)() 2513 ACTC_retainable, 2514 2515 /// id*, id***, void (^*)(), 2516 ACTC_indirectRetainable, 2517 2518 /// void* might be a normal C type, or it might a CF type. 2519 ACTC_voidPtr, 2520 2521 /// struct A* 2522 ACTC_coreFoundation 2523}; 2524static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 2525 return (ACTC == ACTC_retainable || 2526 ACTC == ACTC_coreFoundation || 2527 ACTC == ACTC_voidPtr); 2528} 2529static bool isAnyCLike(ARCConversionTypeClass ACTC) { 2530 return ACTC == ACTC_none || 2531 ACTC == ACTC_voidPtr || 2532 ACTC == ACTC_coreFoundation; 2533} 2534 2535static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 2536 bool isIndirect = false; 2537 2538 // Ignore an outermost reference type. 2539 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2540 type = ref->getPointeeType(); 2541 isIndirect = true; 2542 } 2543 2544 // Drill through pointers and arrays recursively. 2545 while (true) { 2546 if (const PointerType *ptr = type->getAs<PointerType>()) { 2547 type = ptr->getPointeeType(); 2548 2549 // The first level of pointer may be the innermost pointer on a CF type. 2550 if (!isIndirect) { 2551 if (type->isVoidType()) return ACTC_voidPtr; 2552 if (type->isRecordType()) return ACTC_coreFoundation; 2553 } 2554 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 2555 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 2556 } else { 2557 break; 2558 } 2559 isIndirect = true; 2560 } 2561 2562 if (isIndirect) { 2563 if (type->isObjCARCBridgableType()) 2564 return ACTC_indirectRetainable; 2565 return ACTC_none; 2566 } 2567 2568 if (type->isObjCARCBridgableType()) 2569 return ACTC_retainable; 2570 2571 return ACTC_none; 2572} 2573 2574namespace { 2575 /// A result from the cast checker. 2576 enum ACCResult { 2577 /// Cannot be casted. 2578 ACC_invalid, 2579 2580 /// Can be safely retained or not retained. 2581 ACC_bottom, 2582 2583 /// Can be casted at +0. 2584 ACC_plusZero, 2585 2586 /// Can be casted at +1. 2587 ACC_plusOne 2588 }; 2589 ACCResult merge(ACCResult left, ACCResult right) { 2590 if (left == right) return left; 2591 if (left == ACC_bottom) return right; 2592 if (right == ACC_bottom) return left; 2593 return ACC_invalid; 2594 } 2595 2596 /// A checker which white-lists certain expressions whose conversion 2597 /// to or from retainable type would otherwise be forbidden in ARC. 2598 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 2599 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 2600 2601 ASTContext &Context; 2602 ARCConversionTypeClass SourceClass; 2603 ARCConversionTypeClass TargetClass; 2604 bool Diagnose; 2605 2606 static bool isCFType(QualType type) { 2607 // Someday this can use ns_bridged. For now, it has to do this. 2608 return type->isCARCBridgableType(); 2609 } 2610 2611 public: 2612 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 2613 ARCConversionTypeClass target, bool diagnose) 2614 : Context(Context), SourceClass(source), TargetClass(target), 2615 Diagnose(diagnose) {} 2616 2617 using super::Visit; 2618 ACCResult Visit(Expr *e) { 2619 return super::Visit(e->IgnoreParens()); 2620 } 2621 2622 ACCResult VisitStmt(Stmt *s) { 2623 return ACC_invalid; 2624 } 2625 2626 /// Null pointer constants can be casted however you please. 2627 ACCResult VisitExpr(Expr *e) { 2628 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2629 return ACC_bottom; 2630 return ACC_invalid; 2631 } 2632 2633 /// Objective-C string literals can be safely casted. 2634 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 2635 // If we're casting to any retainable type, go ahead. Global 2636 // strings are immune to retains, so this is bottom. 2637 if (isAnyRetainable(TargetClass)) return ACC_bottom; 2638 2639 return ACC_invalid; 2640 } 2641 2642 /// Look through certain implicit and explicit casts. 2643 ACCResult VisitCastExpr(CastExpr *e) { 2644 switch (e->getCastKind()) { 2645 case CK_NullToPointer: 2646 return ACC_bottom; 2647 2648 case CK_NoOp: 2649 case CK_LValueToRValue: 2650 case CK_BitCast: 2651 case CK_CPointerToObjCPointerCast: 2652 case CK_BlockPointerToObjCPointerCast: 2653 case CK_AnyPointerToBlockPointerCast: 2654 return Visit(e->getSubExpr()); 2655 2656 default: 2657 return ACC_invalid; 2658 } 2659 } 2660 2661 /// Look through unary extension. 2662 ACCResult VisitUnaryExtension(UnaryOperator *e) { 2663 return Visit(e->getSubExpr()); 2664 } 2665 2666 /// Ignore the LHS of a comma operator. 2667 ACCResult VisitBinComma(BinaryOperator *e) { 2668 return Visit(e->getRHS()); 2669 } 2670 2671 /// Conditional operators are okay if both sides are okay. 2672 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 2673 ACCResult left = Visit(e->getTrueExpr()); 2674 if (left == ACC_invalid) return ACC_invalid; 2675 return merge(left, Visit(e->getFalseExpr())); 2676 } 2677 2678 /// Look through pseudo-objects. 2679 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 2680 // If we're getting here, we should always have a result. 2681 return Visit(e->getResultExpr()); 2682 } 2683 2684 /// Statement expressions are okay if their result expression is okay. 2685 ACCResult VisitStmtExpr(StmtExpr *e) { 2686 return Visit(e->getSubStmt()->body_back()); 2687 } 2688 2689 /// Some declaration references are okay. 2690 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 2691 // References to global constants from system headers are okay. 2692 // These are things like 'kCFStringTransformToLatin'. They are 2693 // can also be assumed to be immune to retains. 2694 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 2695 if (isAnyRetainable(TargetClass) && 2696 isAnyRetainable(SourceClass) && 2697 var && 2698 var->getStorageClass() == SC_Extern && 2699 var->getType().isConstQualified() && 2700 Context.getSourceManager().isInSystemHeader(var->getLocation())) { 2701 return ACC_bottom; 2702 } 2703 2704 // Nothing else. 2705 return ACC_invalid; 2706 } 2707 2708 /// Some calls are okay. 2709 ACCResult VisitCallExpr(CallExpr *e) { 2710 if (FunctionDecl *fn = e->getDirectCallee()) 2711 if (ACCResult result = checkCallToFunction(fn)) 2712 return result; 2713 2714 return super::VisitCallExpr(e); 2715 } 2716 2717 ACCResult checkCallToFunction(FunctionDecl *fn) { 2718 // Require a CF*Ref return type. 2719 if (!isCFType(fn->getResultType())) 2720 return ACC_invalid; 2721 2722 if (!isAnyRetainable(TargetClass)) 2723 return ACC_invalid; 2724 2725 // Honor an explicit 'not retained' attribute. 2726 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 2727 return ACC_plusZero; 2728 2729 // Honor an explicit 'retained' attribute, except that for 2730 // now we're not going to permit implicit handling of +1 results, 2731 // because it's a bit frightening. 2732 if (fn->hasAttr<CFReturnsRetainedAttr>()) 2733 return Diagnose ? ACC_plusOne 2734 : ACC_invalid; // ACC_plusOne if we start accepting this 2735 2736 // Recognize this specific builtin function, which is used by CFSTR. 2737 unsigned builtinID = fn->getBuiltinID(); 2738 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 2739 return ACC_bottom; 2740 2741 // Otherwise, don't do anything implicit with an unaudited function. 2742 if (!fn->hasAttr<CFAuditedTransferAttr>()) 2743 return ACC_invalid; 2744 2745 // Otherwise, it's +0 unless it follows the create convention. 2746 if (ento::coreFoundation::followsCreateRule(fn)) 2747 return Diagnose ? ACC_plusOne 2748 : ACC_invalid; // ACC_plusOne if we start accepting this 2749 2750 return ACC_plusZero; 2751 } 2752 2753 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 2754 return checkCallToMethod(e->getMethodDecl()); 2755 } 2756 2757 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 2758 ObjCMethodDecl *method; 2759 if (e->isExplicitProperty()) 2760 method = e->getExplicitProperty()->getGetterMethodDecl(); 2761 else 2762 method = e->getImplicitPropertyGetter(); 2763 return checkCallToMethod(method); 2764 } 2765 2766 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 2767 if (!method) return ACC_invalid; 2768 2769 // Check for message sends to functions returning CF types. We 2770 // just obey the Cocoa conventions with these, even though the 2771 // return type is CF. 2772 if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType())) 2773 return ACC_invalid; 2774 2775 // If the method is explicitly marked not-retained, it's +0. 2776 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 2777 return ACC_plusZero; 2778 2779 // If the method is explicitly marked as returning retained, or its 2780 // selector follows a +1 Cocoa convention, treat it as +1. 2781 if (method->hasAttr<CFReturnsRetainedAttr>()) 2782 return ACC_plusOne; 2783 2784 switch (method->getSelector().getMethodFamily()) { 2785 case OMF_alloc: 2786 case OMF_copy: 2787 case OMF_mutableCopy: 2788 case OMF_new: 2789 return ACC_plusOne; 2790 2791 default: 2792 // Otherwise, treat it as +0. 2793 return ACC_plusZero; 2794 } 2795 } 2796 }; 2797} 2798 2799bool Sema::isKnownName(StringRef name) { 2800 if (name.empty()) 2801 return false; 2802 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 2803 Sema::LookupOrdinaryName); 2804 return LookupName(R, TUScope, false); 2805} 2806 2807static void addFixitForObjCARCConversion(Sema &S, 2808 DiagnosticBuilder &DiagB, 2809 Sema::CheckedConversionKind CCK, 2810 SourceLocation afterLParen, 2811 QualType castType, 2812 Expr *castExpr, 2813 const char *bridgeKeyword, 2814 const char *CFBridgeName) { 2815 // We handle C-style and implicit casts here. 2816 switch (CCK) { 2817 case Sema::CCK_ImplicitConversion: 2818 case Sema::CCK_CStyleCast: 2819 break; 2820 case Sema::CCK_FunctionalCast: 2821 case Sema::CCK_OtherCast: 2822 return; 2823 } 2824 2825 if (CFBridgeName) { 2826 Expr *castedE = castExpr; 2827 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 2828 castedE = CCE->getSubExpr(); 2829 castedE = castedE->IgnoreImpCasts(); 2830 SourceRange range = castedE->getSourceRange(); 2831 2832 SmallString<32> BridgeCall; 2833 2834 SourceManager &SM = S.getSourceManager(); 2835 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 2836 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 2837 BridgeCall += ' '; 2838 2839 BridgeCall += CFBridgeName; 2840 2841 if (isa<ParenExpr>(castedE)) { 2842 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2843 BridgeCall)); 2844 } else { 2845 BridgeCall += '('; 2846 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2847 BridgeCall)); 2848 DiagB.AddFixItHint(FixItHint::CreateInsertion( 2849 S.PP.getLocForEndOfToken(range.getEnd()), 2850 ")")); 2851 } 2852 return; 2853 } 2854 2855 if (CCK == Sema::CCK_CStyleCast) { 2856 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 2857 } else { 2858 std::string castCode = "("; 2859 castCode += bridgeKeyword; 2860 castCode += castType.getAsString(); 2861 castCode += ")"; 2862 Expr *castedE = castExpr->IgnoreImpCasts(); 2863 SourceRange range = castedE->getSourceRange(); 2864 if (isa<ParenExpr>(castedE)) { 2865 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2866 castCode)); 2867 } else { 2868 castCode += "("; 2869 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2870 castCode)); 2871 DiagB.AddFixItHint(FixItHint::CreateInsertion( 2872 S.PP.getLocForEndOfToken(range.getEnd()), 2873 ")")); 2874 } 2875 } 2876} 2877 2878static void 2879diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 2880 QualType castType, ARCConversionTypeClass castACTC, 2881 Expr *castExpr, ARCConversionTypeClass exprACTC, 2882 Sema::CheckedConversionKind CCK) { 2883 SourceLocation loc = 2884 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 2885 2886 if (S.makeUnavailableInSystemHeader(loc, 2887 "converts between Objective-C and C pointers in -fobjc-arc")) 2888 return; 2889 2890 QualType castExprType = castExpr->getType(); 2891 2892 unsigned srcKind = 0; 2893 switch (exprACTC) { 2894 case ACTC_none: 2895 case ACTC_coreFoundation: 2896 case ACTC_voidPtr: 2897 srcKind = (castExprType->isPointerType() ? 1 : 0); 2898 break; 2899 case ACTC_retainable: 2900 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 2901 break; 2902 case ACTC_indirectRetainable: 2903 srcKind = 4; 2904 break; 2905 } 2906 2907 // Check whether this could be fixed with a bridge cast. 2908 SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin()); 2909 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 2910 2911 // Bridge from an ARC type to a CF type. 2912 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 2913 2914 S.Diag(loc, diag::err_arc_cast_requires_bridge) 2915 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 2916 << 2 // of C pointer type 2917 << castExprType 2918 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 2919 << castType 2920 << castRange 2921 << castExpr->getSourceRange(); 2922 bool br = S.isKnownName("CFBridgingRelease"); 2923 ACCResult CreateRule = 2924 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 2925 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 2926 if (CreateRule != ACC_plusOne) 2927 { 2928 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge); 2929 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2930 castType, castExpr, "__bridge ", 0); 2931 } 2932 if (CreateRule != ACC_plusZero) 2933 { 2934 DiagnosticBuilder DiagB = S.Diag(br ? castExpr->getExprLoc() : noteLoc, 2935 diag::note_arc_bridge_transfer) 2936 << castExprType << br; 2937 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2938 castType, castExpr, "__bridge_transfer ", 2939 br ? "CFBridgingRelease" : 0); 2940 } 2941 2942 return; 2943 } 2944 2945 // Bridge from a CF type to an ARC type. 2946 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 2947 bool br = S.isKnownName("CFBridgingRetain"); 2948 S.Diag(loc, diag::err_arc_cast_requires_bridge) 2949 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 2950 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 2951 << castExprType 2952 << 2 // to C pointer type 2953 << castType 2954 << castRange 2955 << castExpr->getSourceRange(); 2956 ACCResult CreateRule = 2957 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 2958 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 2959 if (CreateRule != ACC_plusOne) 2960 { 2961 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge); 2962 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2963 castType, castExpr, "__bridge ", 0); 2964 } 2965 if (CreateRule != ACC_plusZero) 2966 { 2967 DiagnosticBuilder DiagB = S.Diag(br ? castExpr->getExprLoc() : noteLoc, 2968 diag::note_arc_bridge_retained) 2969 << castType << br; 2970 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2971 castType, castExpr, "__bridge_retained ", 2972 br ? "CFBridgingRetain" : 0); 2973 } 2974 2975 return; 2976 } 2977 2978 S.Diag(loc, diag::err_arc_mismatched_cast) 2979 << (CCK != Sema::CCK_ImplicitConversion) 2980 << srcKind << castExprType << castType 2981 << castRange << castExpr->getSourceRange(); 2982} 2983 2984Sema::ARCConversionResult 2985Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, 2986 Expr *&castExpr, CheckedConversionKind CCK) { 2987 QualType castExprType = castExpr->getType(); 2988 2989 // For the purposes of the classification, we assume reference types 2990 // will bind to temporaries. 2991 QualType effCastType = castType; 2992 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 2993 effCastType = ref->getPointeeType(); 2994 2995 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 2996 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 2997 if (exprACTC == castACTC) { 2998 // check for viablity and report error if casting an rvalue to a 2999 // life-time qualifier. 3000 if ((castACTC == ACTC_retainable) && 3001 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 3002 (castType != castExprType)) { 3003 const Type *DT = castType.getTypePtr(); 3004 QualType QDT = castType; 3005 // We desugar some types but not others. We ignore those 3006 // that cannot happen in a cast; i.e. auto, and those which 3007 // should not be de-sugared; i.e typedef. 3008 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 3009 QDT = PT->desugar(); 3010 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 3011 QDT = TP->desugar(); 3012 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 3013 QDT = AT->desugar(); 3014 if (QDT != castType && 3015 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 3016 SourceLocation loc = 3017 (castRange.isValid() ? castRange.getBegin() 3018 : castExpr->getExprLoc()); 3019 Diag(loc, diag::err_arc_nolifetime_behavior); 3020 } 3021 } 3022 return ACR_okay; 3023 } 3024 3025 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 3026 3027 // Allow all of these types to be cast to integer types (but not 3028 // vice-versa). 3029 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 3030 return ACR_okay; 3031 3032 // Allow casts between pointers to lifetime types (e.g., __strong id*) 3033 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 3034 // must be explicit. 3035 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 3036 return ACR_okay; 3037 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 3038 CCK != CCK_ImplicitConversion) 3039 return ACR_okay; 3040 3041 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 3042 // For invalid casts, fall through. 3043 case ACC_invalid: 3044 break; 3045 3046 // Do nothing for both bottom and +0. 3047 case ACC_bottom: 3048 case ACC_plusZero: 3049 return ACR_okay; 3050 3051 // If the result is +1, consume it here. 3052 case ACC_plusOne: 3053 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 3054 CK_ARCConsumeObject, castExpr, 3055 0, VK_RValue); 3056 ExprNeedsCleanups = true; 3057 return ACR_okay; 3058 } 3059 3060 // If this is a non-implicit cast from id or block type to a 3061 // CoreFoundation type, delay complaining in case the cast is used 3062 // in an acceptable context. 3063 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && 3064 CCK != CCK_ImplicitConversion) 3065 return ACR_unbridged; 3066 3067 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 3068 castExpr, exprACTC, CCK); 3069 return ACR_okay; 3070} 3071 3072/// Given that we saw an expression with the ARCUnbridgedCastTy 3073/// placeholder type, complain bitterly. 3074void Sema::diagnoseARCUnbridgedCast(Expr *e) { 3075 // We expect the spurious ImplicitCastExpr to already have been stripped. 3076 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 3077 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 3078 3079 SourceRange castRange; 3080 QualType castType; 3081 CheckedConversionKind CCK; 3082 3083 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 3084 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 3085 castType = cast->getTypeAsWritten(); 3086 CCK = CCK_CStyleCast; 3087 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 3088 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 3089 castType = cast->getTypeAsWritten(); 3090 CCK = CCK_OtherCast; 3091 } else { 3092 castType = cast->getType(); 3093 CCK = CCK_ImplicitConversion; 3094 } 3095 3096 ARCConversionTypeClass castACTC = 3097 classifyTypeForARCConversion(castType.getNonReferenceType()); 3098 3099 Expr *castExpr = realCast->getSubExpr(); 3100 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 3101 3102 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 3103 castExpr, ACTC_retainable, CCK); 3104} 3105 3106/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 3107/// type, remove the placeholder cast. 3108Expr *Sema::stripARCUnbridgedCast(Expr *e) { 3109 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 3110 3111 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 3112 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 3113 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 3114 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 3115 assert(uo->getOpcode() == UO_Extension); 3116 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 3117 return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(), 3118 sub->getValueKind(), sub->getObjectKind(), 3119 uo->getOperatorLoc()); 3120 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 3121 assert(!gse->isResultDependent()); 3122 3123 unsigned n = gse->getNumAssocs(); 3124 SmallVector<Expr*, 4> subExprs(n); 3125 SmallVector<TypeSourceInfo*, 4> subTypes(n); 3126 for (unsigned i = 0; i != n; ++i) { 3127 subTypes[i] = gse->getAssocTypeSourceInfo(i); 3128 Expr *sub = gse->getAssocExpr(i); 3129 if (i == gse->getResultIndex()) 3130 sub = stripARCUnbridgedCast(sub); 3131 subExprs[i] = sub; 3132 } 3133 3134 return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(), 3135 gse->getControllingExpr(), 3136 subTypes, subExprs, 3137 gse->getDefaultLoc(), 3138 gse->getRParenLoc(), 3139 gse->containsUnexpandedParameterPack(), 3140 gse->getResultIndex()); 3141 } else { 3142 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 3143 return cast<ImplicitCastExpr>(e)->getSubExpr(); 3144 } 3145} 3146 3147bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 3148 QualType exprType) { 3149 QualType canCastType = 3150 Context.getCanonicalType(castType).getUnqualifiedType(); 3151 QualType canExprType = 3152 Context.getCanonicalType(exprType).getUnqualifiedType(); 3153 if (isa<ObjCObjectPointerType>(canCastType) && 3154 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 3155 canExprType->isObjCObjectPointerType()) { 3156 if (const ObjCObjectPointerType *ObjT = 3157 canExprType->getAs<ObjCObjectPointerType>()) 3158 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 3159 return !ObjI->isArcWeakrefUnavailable(); 3160 } 3161 return true; 3162} 3163 3164/// Look for an ObjCReclaimReturnedObject cast and destroy it. 3165static Expr *maybeUndoReclaimObject(Expr *e) { 3166 // For now, we just undo operands that are *immediately* reclaim 3167 // expressions, which prevents the vast majority of potential 3168 // problems here. To catch them all, we'd need to rebuild arbitrary 3169 // value-propagating subexpressions --- we can't reliably rebuild 3170 // in-place because of expression sharing. 3171 if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3172 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) 3173 return ice->getSubExpr(); 3174 3175 return e; 3176} 3177 3178ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 3179 ObjCBridgeCastKind Kind, 3180 SourceLocation BridgeKeywordLoc, 3181 TypeSourceInfo *TSInfo, 3182 Expr *SubExpr) { 3183 ExprResult SubResult = UsualUnaryConversions(SubExpr); 3184 if (SubResult.isInvalid()) return ExprError(); 3185 SubExpr = SubResult.take(); 3186 3187 QualType T = TSInfo->getType(); 3188 QualType FromType = SubExpr->getType(); 3189 3190 CastKind CK; 3191 3192 bool MustConsume = false; 3193 if (T->isDependentType() || SubExpr->isTypeDependent()) { 3194 // Okay: we'll build a dependent expression type. 3195 CK = CK_Dependent; 3196 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 3197 // Casting CF -> id 3198 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 3199 : CK_CPointerToObjCPointerCast); 3200 switch (Kind) { 3201 case OBC_Bridge: 3202 break; 3203 3204 case OBC_BridgeRetained: { 3205 bool br = isKnownName("CFBridgingRelease"); 3206 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 3207 << 2 3208 << FromType 3209 << (T->isBlockPointerType()? 1 : 0) 3210 << T 3211 << SubExpr->getSourceRange() 3212 << Kind; 3213 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 3214 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 3215 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 3216 << FromType << br 3217 << FixItHint::CreateReplacement(BridgeKeywordLoc, 3218 br ? "CFBridgingRelease " 3219 : "__bridge_transfer "); 3220 3221 Kind = OBC_Bridge; 3222 break; 3223 } 3224 3225 case OBC_BridgeTransfer: 3226 // We must consume the Objective-C object produced by the cast. 3227 MustConsume = true; 3228 break; 3229 } 3230 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 3231 // Okay: id -> CF 3232 CK = CK_BitCast; 3233 switch (Kind) { 3234 case OBC_Bridge: 3235 // Reclaiming a value that's going to be __bridge-casted to CF 3236 // is very dangerous, so we don't do it. 3237 SubExpr = maybeUndoReclaimObject(SubExpr); 3238 break; 3239 3240 case OBC_BridgeRetained: 3241 // Produce the object before casting it. 3242 SubExpr = ImplicitCastExpr::Create(Context, FromType, 3243 CK_ARCProduceObject, 3244 SubExpr, 0, VK_RValue); 3245 break; 3246 3247 case OBC_BridgeTransfer: { 3248 bool br = isKnownName("CFBridgingRetain"); 3249 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 3250 << (FromType->isBlockPointerType()? 1 : 0) 3251 << FromType 3252 << 2 3253 << T 3254 << SubExpr->getSourceRange() 3255 << Kind; 3256 3257 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 3258 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 3259 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 3260 << T << br 3261 << FixItHint::CreateReplacement(BridgeKeywordLoc, 3262 br ? "CFBridgingRetain " : "__bridge_retained"); 3263 3264 Kind = OBC_Bridge; 3265 break; 3266 } 3267 } 3268 } else { 3269 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 3270 << FromType << T << Kind 3271 << SubExpr->getSourceRange() 3272 << TSInfo->getTypeLoc().getSourceRange(); 3273 return ExprError(); 3274 } 3275 3276 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 3277 BridgeKeywordLoc, 3278 TSInfo, SubExpr); 3279 3280 if (MustConsume) { 3281 ExprNeedsCleanups = true; 3282 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 3283 0, VK_RValue); 3284 } 3285 3286 return Result; 3287} 3288 3289ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 3290 SourceLocation LParenLoc, 3291 ObjCBridgeCastKind Kind, 3292 SourceLocation BridgeKeywordLoc, 3293 ParsedType Type, 3294 SourceLocation RParenLoc, 3295 Expr *SubExpr) { 3296 TypeSourceInfo *TSInfo = 0; 3297 QualType T = GetTypeFromParser(Type, &TSInfo); 3298 if (!TSInfo) 3299 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 3300 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 3301 SubExpr); 3302} 3303