1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library 2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra. 3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// 4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> 5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// 6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla 7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed 8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "main.h" 11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType> void product_selfadjoint(const MatrixType& m) 13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{ 14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename MatrixType::Index Index; 15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename MatrixType::Scalar Scalar; 16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType; 18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType; 20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index rows = m.rows(); 22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index cols = m.cols(); 23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath MatrixType m1 = MatrixType::Random(rows, cols), 25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2 = MatrixType::Random(rows, cols), 26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m3; 27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VectorType v1 = VectorType::Random(rows), 28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath v2 = VectorType::Random(rows), 29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath v3(rows); 30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath RowVectorType r1 = RowVectorType::Random(rows), 31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath r2 = RowVectorType::Random(rows); 32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath RhsMatrixType m4 = RhsMatrixType::Random(rows,10); 33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Scalar s1 = internal::random<Scalar>(), 35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s2 = internal::random<Scalar>(), 36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s3 = internal::random<Scalar>(); 37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m1 = (m1.adjoint() + m1).eval(); 39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // rank2 update 41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2 = m1.template triangularView<Lower>(); 42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2.template selfadjointView<Lower>().rankUpdate(v1,v2); 43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); 44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2 = m1.template triangularView<Upper>(); 46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3); 477faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+numext::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix()); 48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2 = m1.template triangularView<Upper>(); 50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1); 517faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() + numext::conj(s1)*(r2.adjoint()*s3) * (-s2*r1.adjoint()).adjoint()).template triangularView<Upper>().toDenseMatrix()); 52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath if (rows>1) 54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2 = m1.template triangularView<Lower>(); 56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1)); 57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m3 = m1; 58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint(); 59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix()); 60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} 62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid test_product_selfadjoint() 64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{ 657faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez int s = 0; 66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int i = 0; i < g_repeat ; i++) { 67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) ); 68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) ); 69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) ); 70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); 71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(s, s)) ); 72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); 73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(s,s)) ); 74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); 75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_6( product_selfadjoint(MatrixXd(s,s)) ); 76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); 77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s,s)) ); 78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 797faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez TEST_SET_BUT_UNUSED_VARIABLE(s) 80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} 81