1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <stddef.h>
6
7#include <algorithm>
8#include <vector>
9
10#include "base/logging.h"
11#include "base/synchronization/condition_variable.h"
12#include "base/synchronization/lock.h"
13#include "base/synchronization/waitable_event.h"
14#include "base/threading/thread_restrictions.h"
15
16// -----------------------------------------------------------------------------
17// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
18// support cross-process events (where one process can signal an event which
19// others are waiting on). Because of this, we can avoid having one thread per
20// listener in several cases.
21//
22// The WaitableEvent maintains a list of waiters, protected by a lock. Each
23// waiter is either an async wait, in which case we have a Task and the
24// MessageLoop to run it on, or a blocking wait, in which case we have the
25// condition variable to signal.
26//
27// Waiting involves grabbing the lock and adding oneself to the wait list. Async
28// waits can be canceled, which means grabbing the lock and removing oneself
29// from the list.
30//
31// Waiting on multiple events is handled by adding a single, synchronous wait to
32// the wait-list of many events. An event passes a pointer to itself when
33// firing a waiter and so we can store that pointer to find out which event
34// triggered.
35// -----------------------------------------------------------------------------
36
37namespace base {
38
39// -----------------------------------------------------------------------------
40// This is just an abstract base class for waking the two types of waiters
41// -----------------------------------------------------------------------------
42WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
43    : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
44}
45
46WaitableEvent::~WaitableEvent() {
47}
48
49void WaitableEvent::Reset() {
50  base::AutoLock locked(kernel_->lock_);
51  kernel_->signaled_ = false;
52}
53
54void WaitableEvent::Signal() {
55  base::AutoLock locked(kernel_->lock_);
56
57  if (kernel_->signaled_)
58    return;
59
60  if (kernel_->manual_reset_) {
61    SignalAll();
62    kernel_->signaled_ = true;
63  } else {
64    // In the case of auto reset, if no waiters were woken, we remain
65    // signaled.
66    if (!SignalOne())
67      kernel_->signaled_ = true;
68  }
69}
70
71bool WaitableEvent::IsSignaled() {
72  base::AutoLock locked(kernel_->lock_);
73
74  const bool result = kernel_->signaled_;
75  if (result && !kernel_->manual_reset_)
76    kernel_->signaled_ = false;
77  return result;
78}
79
80// -----------------------------------------------------------------------------
81// Synchronous waits
82
83// -----------------------------------------------------------------------------
84// This is a synchronous waiter. The thread is waiting on the given condition
85// variable and the fired flag in this object.
86// -----------------------------------------------------------------------------
87class SyncWaiter : public WaitableEvent::Waiter {
88 public:
89  SyncWaiter()
90      : fired_(false),
91        signaling_event_(NULL),
92        lock_(),
93        cv_(&lock_) {
94  }
95
96  bool Fire(WaitableEvent* signaling_event) override {
97    base::AutoLock locked(lock_);
98
99    if (fired_)
100      return false;
101
102    fired_ = true;
103    signaling_event_ = signaling_event;
104
105    cv_.Broadcast();
106
107    // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
108    // the blocking thread's stack.  There is no |delete this;| in Fire.  The
109    // SyncWaiter object is destroyed when it goes out of scope.
110
111    return true;
112  }
113
114  WaitableEvent* signaling_event() const {
115    return signaling_event_;
116  }
117
118  // ---------------------------------------------------------------------------
119  // These waiters are always stack allocated and don't delete themselves. Thus
120  // there's no problem and the ABA tag is the same as the object pointer.
121  // ---------------------------------------------------------------------------
122  bool Compare(void* tag) override { return this == tag; }
123
124  // ---------------------------------------------------------------------------
125  // Called with lock held.
126  // ---------------------------------------------------------------------------
127  bool fired() const {
128    return fired_;
129  }
130
131  // ---------------------------------------------------------------------------
132  // During a TimedWait, we need a way to make sure that an auto-reset
133  // WaitableEvent doesn't think that this event has been signaled between
134  // unlocking it and removing it from the wait-list. Called with lock held.
135  // ---------------------------------------------------------------------------
136  void Disable() {
137    fired_ = true;
138  }
139
140  base::Lock* lock() {
141    return &lock_;
142  }
143
144  base::ConditionVariable* cv() {
145    return &cv_;
146  }
147
148 private:
149  bool fired_;
150  WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
151  base::Lock lock_;
152  base::ConditionVariable cv_;
153};
154
155void WaitableEvent::Wait() {
156  bool result = TimedWait(TimeDelta::FromSeconds(-1));
157  DCHECK(result) << "TimedWait() should never fail with infinite timeout";
158}
159
160bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
161  base::ThreadRestrictions::AssertWaitAllowed();
162  const TimeTicks end_time(TimeTicks::Now() + max_time);
163  const bool finite_time = max_time.ToInternalValue() >= 0;
164
165  kernel_->lock_.Acquire();
166  if (kernel_->signaled_) {
167    if (!kernel_->manual_reset_) {
168      // In this case we were signaled when we had no waiters. Now that
169      // someone has waited upon us, we can automatically reset.
170      kernel_->signaled_ = false;
171    }
172
173    kernel_->lock_.Release();
174    return true;
175  }
176
177  SyncWaiter sw;
178  sw.lock()->Acquire();
179
180  Enqueue(&sw);
181  kernel_->lock_.Release();
182  // We are violating locking order here by holding the SyncWaiter lock but not
183  // the WaitableEvent lock. However, this is safe because we don't lock @lock_
184  // again before unlocking it.
185
186  for (;;) {
187    const TimeTicks current_time(TimeTicks::Now());
188
189    if (sw.fired() || (finite_time && current_time >= end_time)) {
190      const bool return_value = sw.fired();
191
192      // We can't acquire @lock_ before releasing the SyncWaiter lock (because
193      // of locking order), however, in between the two a signal could be fired
194      // and @sw would accept it, however we will still return false, so the
195      // signal would be lost on an auto-reset WaitableEvent. Thus we call
196      // Disable which makes sw::Fire return false.
197      sw.Disable();
198      sw.lock()->Release();
199
200      // This is a bug that has been enshrined in the interface of
201      // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
202      // even though it'll always return false in that case. However, taking
203      // the lock ensures that |Signal| has completed before we return and
204      // means that a WaitableEvent can synchronise its own destruction.
205      kernel_->lock_.Acquire();
206      kernel_->Dequeue(&sw, &sw);
207      kernel_->lock_.Release();
208
209      return return_value;
210    }
211
212    if (finite_time) {
213      const TimeDelta max_wait(end_time - current_time);
214      sw.cv()->TimedWait(max_wait);
215    } else {
216      sw.cv()->Wait();
217    }
218  }
219}
220
221// -----------------------------------------------------------------------------
222// Synchronous waiting on multiple objects.
223
224static bool  // StrictWeakOrdering
225cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
226             const std::pair<WaitableEvent*, unsigned> &b) {
227  return a.first < b.first;
228}
229
230// static
231size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
232                               size_t count) {
233  base::ThreadRestrictions::AssertWaitAllowed();
234  DCHECK(count) << "Cannot wait on no events";
235
236  // We need to acquire the locks in a globally consistent order. Thus we sort
237  // the array of waitables by address. We actually sort a pairs so that we can
238  // map back to the original index values later.
239  std::vector<std::pair<WaitableEvent*, size_t> > waitables;
240  waitables.reserve(count);
241  for (size_t i = 0; i < count; ++i)
242    waitables.push_back(std::make_pair(raw_waitables[i], i));
243
244  DCHECK_EQ(count, waitables.size());
245
246  sort(waitables.begin(), waitables.end(), cmp_fst_addr);
247
248  // The set of waitables must be distinct. Since we have just sorted by
249  // address, we can check this cheaply by comparing pairs of consecutive
250  // elements.
251  for (size_t i = 0; i < waitables.size() - 1; ++i) {
252    DCHECK(waitables[i].first != waitables[i+1].first);
253  }
254
255  SyncWaiter sw;
256
257  const size_t r = EnqueueMany(&waitables[0], count, &sw);
258  if (r) {
259    // One of the events is already signaled. The SyncWaiter has not been
260    // enqueued anywhere. EnqueueMany returns the count of remaining waitables
261    // when the signaled one was seen, so the index of the signaled event is
262    // @count - @r.
263    return waitables[count - r].second;
264  }
265
266  // At this point, we hold the locks on all the WaitableEvents and we have
267  // enqueued our waiter in them all.
268  sw.lock()->Acquire();
269    // Release the WaitableEvent locks in the reverse order
270    for (size_t i = 0; i < count; ++i) {
271      waitables[count - (1 + i)].first->kernel_->lock_.Release();
272    }
273
274    for (;;) {
275      if (sw.fired())
276        break;
277
278      sw.cv()->Wait();
279    }
280  sw.lock()->Release();
281
282  // The address of the WaitableEvent which fired is stored in the SyncWaiter.
283  WaitableEvent *const signaled_event = sw.signaling_event();
284  // This will store the index of the raw_waitables which fired.
285  size_t signaled_index = 0;
286
287  // Take the locks of each WaitableEvent in turn (except the signaled one) and
288  // remove our SyncWaiter from the wait-list
289  for (size_t i = 0; i < count; ++i) {
290    if (raw_waitables[i] != signaled_event) {
291      raw_waitables[i]->kernel_->lock_.Acquire();
292        // There's no possible ABA issue with the address of the SyncWaiter here
293        // because it lives on the stack. Thus the tag value is just the pointer
294        // value again.
295        raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
296      raw_waitables[i]->kernel_->lock_.Release();
297    } else {
298      // By taking this lock here we ensure that |Signal| has completed by the
299      // time we return, because |Signal| holds this lock. This matches the
300      // behaviour of |Wait| and |TimedWait|.
301      raw_waitables[i]->kernel_->lock_.Acquire();
302      raw_waitables[i]->kernel_->lock_.Release();
303      signaled_index = i;
304    }
305  }
306
307  return signaled_index;
308}
309
310// -----------------------------------------------------------------------------
311// If return value == 0:
312//   The locks of the WaitableEvents have been taken in order and the Waiter has
313//   been enqueued in the wait-list of each. None of the WaitableEvents are
314//   currently signaled
315// else:
316//   None of the WaitableEvent locks are held. The Waiter has not been enqueued
317//   in any of them and the return value is the index of the first WaitableEvent
318//   which was signaled, from the end of the array.
319// -----------------------------------------------------------------------------
320// static
321size_t WaitableEvent::EnqueueMany
322    (std::pair<WaitableEvent*, size_t>* waitables,
323     size_t count, Waiter* waiter) {
324  if (!count)
325    return 0;
326
327  waitables[0].first->kernel_->lock_.Acquire();
328    if (waitables[0].first->kernel_->signaled_) {
329      if (!waitables[0].first->kernel_->manual_reset_)
330        waitables[0].first->kernel_->signaled_ = false;
331      waitables[0].first->kernel_->lock_.Release();
332      return count;
333    }
334
335    const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
336    if (r) {
337      waitables[0].first->kernel_->lock_.Release();
338    } else {
339      waitables[0].first->Enqueue(waiter);
340    }
341
342    return r;
343}
344
345// -----------------------------------------------------------------------------
346
347
348// -----------------------------------------------------------------------------
349// Private functions...
350
351WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
352                                                        bool initially_signaled)
353    : manual_reset_(manual_reset),
354      signaled_(initially_signaled) {
355}
356
357WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
358}
359
360// -----------------------------------------------------------------------------
361// Wake all waiting waiters. Called with lock held.
362// -----------------------------------------------------------------------------
363bool WaitableEvent::SignalAll() {
364  bool signaled_at_least_one = false;
365
366  for (std::list<Waiter*>::iterator
367       i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
368    if ((*i)->Fire(this))
369      signaled_at_least_one = true;
370  }
371
372  kernel_->waiters_.clear();
373  return signaled_at_least_one;
374}
375
376// ---------------------------------------------------------------------------
377// Try to wake a single waiter. Return true if one was woken. Called with lock
378// held.
379// ---------------------------------------------------------------------------
380bool WaitableEvent::SignalOne() {
381  for (;;) {
382    if (kernel_->waiters_.empty())
383      return false;
384
385    const bool r = (*kernel_->waiters_.begin())->Fire(this);
386    kernel_->waiters_.pop_front();
387    if (r)
388      return true;
389  }
390}
391
392// -----------------------------------------------------------------------------
393// Add a waiter to the list of those waiting. Called with lock held.
394// -----------------------------------------------------------------------------
395void WaitableEvent::Enqueue(Waiter* waiter) {
396  kernel_->waiters_.push_back(waiter);
397}
398
399// -----------------------------------------------------------------------------
400// Remove a waiter from the list of those waiting. Return true if the waiter was
401// actually removed. Called with lock held.
402// -----------------------------------------------------------------------------
403bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
404  for (std::list<Waiter*>::iterator
405       i = waiters_.begin(); i != waiters_.end(); ++i) {
406    if (*i == waiter && (*i)->Compare(tag)) {
407      waiters_.erase(i);
408      return true;
409    }
410  }
411
412  return false;
413}
414
415// -----------------------------------------------------------------------------
416
417}  // namespace base
418