LiveVariables.cpp revision 2ab36d350293c77fc8941ce1023e4899df7e3a82
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/CodeGen/MachineRegisterInfo.h" 32#include "llvm/CodeGen/Passes.h" 33#include "llvm/Support/Debug.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/Target/TargetInstrInfo.h" 36#include "llvm/Target/TargetMachine.h" 37#include "llvm/ADT/DepthFirstIterator.h" 38#include "llvm/ADT/SmallPtrSet.h" 39#include "llvm/ADT/SmallSet.h" 40#include "llvm/ADT/STLExtras.h" 41#include <algorithm> 42using namespace llvm; 43 44char LiveVariables::ID = 0; 45INITIALIZE_PASS_BEGIN(LiveVariables, "livevars", 46 "Live Variable Analysis", false, false) 47INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim) 48INITIALIZE_PASS_END(LiveVariables, "livevars", 49 "Live Variable Analysis", false, false) 50 51 52void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 53 AU.addRequiredID(UnreachableMachineBlockElimID); 54 AU.setPreservesAll(); 55 MachineFunctionPass::getAnalysisUsage(AU); 56} 57 58MachineInstr * 59LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { 60 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 61 if (Kills[i]->getParent() == MBB) 62 return Kills[i]; 63 return NULL; 64} 65 66void LiveVariables::VarInfo::dump() const { 67 dbgs() << " Alive in blocks: "; 68 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 69 E = AliveBlocks.end(); I != E; ++I) 70 dbgs() << *I << ", "; 71 dbgs() << "\n Killed by:"; 72 if (Kills.empty()) 73 dbgs() << " No instructions.\n"; 74 else { 75 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 76 dbgs() << "\n #" << i << ": " << *Kills[i]; 77 dbgs() << "\n"; 78 } 79} 80 81/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 82LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 83 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 84 "getVarInfo: not a virtual register!"); 85 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 86 if (RegIdx >= VirtRegInfo.size()) { 87 if (RegIdx >= 2*VirtRegInfo.size()) 88 VirtRegInfo.resize(RegIdx*2); 89 else 90 VirtRegInfo.resize(2*VirtRegInfo.size()); 91 } 92 return VirtRegInfo[RegIdx]; 93} 94 95void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 96 MachineBasicBlock *DefBlock, 97 MachineBasicBlock *MBB, 98 std::vector<MachineBasicBlock*> &WorkList) { 99 unsigned BBNum = MBB->getNumber(); 100 101 // Check to see if this basic block is one of the killing blocks. If so, 102 // remove it. 103 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 104 if (VRInfo.Kills[i]->getParent() == MBB) { 105 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 106 break; 107 } 108 109 if (MBB == DefBlock) return; // Terminate recursion 110 111 if (VRInfo.AliveBlocks.test(BBNum)) 112 return; // We already know the block is live 113 114 // Mark the variable known alive in this bb 115 VRInfo.AliveBlocks.set(BBNum); 116 117 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 118 E = MBB->pred_rend(); PI != E; ++PI) 119 WorkList.push_back(*PI); 120} 121 122void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 123 MachineBasicBlock *DefBlock, 124 MachineBasicBlock *MBB) { 125 std::vector<MachineBasicBlock*> WorkList; 126 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 127 128 while (!WorkList.empty()) { 129 MachineBasicBlock *Pred = WorkList.back(); 130 WorkList.pop_back(); 131 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 132 } 133} 134 135void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 136 MachineInstr *MI) { 137 assert(MRI->getVRegDef(reg) && "Register use before def!"); 138 139 unsigned BBNum = MBB->getNumber(); 140 141 VarInfo& VRInfo = getVarInfo(reg); 142 VRInfo.NumUses++; 143 144 // Check to see if this basic block is already a kill block. 145 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 146 // Yes, this register is killed in this basic block already. Increase the 147 // live range by updating the kill instruction. 148 VRInfo.Kills.back() = MI; 149 return; 150 } 151 152#ifndef NDEBUG 153 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 154 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 155#endif 156 157 // This situation can occur: 158 // 159 // ,------. 160 // | | 161 // | v 162 // | t2 = phi ... t1 ... 163 // | | 164 // | v 165 // | t1 = ... 166 // | ... = ... t1 ... 167 // | | 168 // `------' 169 // 170 // where there is a use in a PHI node that's a predecessor to the defining 171 // block. We don't want to mark all predecessors as having the value "alive" 172 // in this case. 173 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 174 175 // Add a new kill entry for this basic block. If this virtual register is 176 // already marked as alive in this basic block, that means it is alive in at 177 // least one of the successor blocks, it's not a kill. 178 if (!VRInfo.AliveBlocks.test(BBNum)) 179 VRInfo.Kills.push_back(MI); 180 181 // Update all dominating blocks to mark them as "known live". 182 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 183 E = MBB->pred_end(); PI != E; ++PI) 184 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 185} 186 187void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 188 VarInfo &VRInfo = getVarInfo(Reg); 189 190 if (VRInfo.AliveBlocks.empty()) 191 // If vr is not alive in any block, then defaults to dead. 192 VRInfo.Kills.push_back(MI); 193} 194 195/// FindLastPartialDef - Return the last partial def of the specified register. 196/// Also returns the sub-registers that're defined by the instruction. 197MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 198 SmallSet<unsigned,4> &PartDefRegs) { 199 unsigned LastDefReg = 0; 200 unsigned LastDefDist = 0; 201 MachineInstr *LastDef = NULL; 202 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 203 unsigned SubReg = *SubRegs; ++SubRegs) { 204 MachineInstr *Def = PhysRegDef[SubReg]; 205 if (!Def) 206 continue; 207 unsigned Dist = DistanceMap[Def]; 208 if (Dist > LastDefDist) { 209 LastDefReg = SubReg; 210 LastDef = Def; 211 LastDefDist = Dist; 212 } 213 } 214 215 if (!LastDef) 216 return 0; 217 218 PartDefRegs.insert(LastDefReg); 219 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 220 MachineOperand &MO = LastDef->getOperand(i); 221 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 222 continue; 223 unsigned DefReg = MO.getReg(); 224 if (TRI->isSubRegister(Reg, DefReg)) { 225 PartDefRegs.insert(DefReg); 226 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); 227 unsigned SubReg = *SubRegs; ++SubRegs) 228 PartDefRegs.insert(SubReg); 229 } 230 } 231 return LastDef; 232} 233 234/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 235/// implicit defs to a machine instruction if there was an earlier def of its 236/// super-register. 237void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 238 MachineInstr *LastDef = PhysRegDef[Reg]; 239 // If there was a previous use or a "full" def all is well. 240 if (!LastDef && !PhysRegUse[Reg]) { 241 // Otherwise, the last sub-register def implicitly defines this register. 242 // e.g. 243 // AH = 244 // AL = ... <imp-def EAX>, <imp-kill AH> 245 // = AH 246 // ... 247 // = EAX 248 // All of the sub-registers must have been defined before the use of Reg! 249 SmallSet<unsigned, 4> PartDefRegs; 250 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 251 // If LastPartialDef is NULL, it must be using a livein register. 252 if (LastPartialDef) { 253 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 254 true/*IsImp*/)); 255 PhysRegDef[Reg] = LastPartialDef; 256 SmallSet<unsigned, 8> Processed; 257 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 258 unsigned SubReg = *SubRegs; ++SubRegs) { 259 if (Processed.count(SubReg)) 260 continue; 261 if (PartDefRegs.count(SubReg)) 262 continue; 263 // This part of Reg was defined before the last partial def. It's killed 264 // here. 265 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 266 false/*IsDef*/, 267 true/*IsImp*/)); 268 PhysRegDef[SubReg] = LastPartialDef; 269 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 270 Processed.insert(*SS); 271 } 272 } 273 } 274 else if (LastDef && !PhysRegUse[Reg] && 275 !LastDef->findRegisterDefOperand(Reg)) 276 // Last def defines the super register, add an implicit def of reg. 277 LastDef->addOperand(MachineOperand::CreateReg(Reg, 278 true/*IsDef*/, true/*IsImp*/)); 279 280 // Remember this use. 281 PhysRegUse[Reg] = MI; 282 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 283 unsigned SubReg = *SubRegs; ++SubRegs) 284 PhysRegUse[SubReg] = MI; 285} 286 287/// FindLastRefOrPartRef - Return the last reference or partial reference of 288/// the specified register. 289MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { 290 MachineInstr *LastDef = PhysRegDef[Reg]; 291 MachineInstr *LastUse = PhysRegUse[Reg]; 292 if (!LastDef && !LastUse) 293 return 0; 294 295 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 296 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 297 unsigned LastPartDefDist = 0; 298 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 299 unsigned SubReg = *SubRegs; ++SubRegs) { 300 MachineInstr *Def = PhysRegDef[SubReg]; 301 if (Def && Def != LastDef) { 302 // There was a def of this sub-register in between. This is a partial 303 // def, keep track of the last one. 304 unsigned Dist = DistanceMap[Def]; 305 if (Dist > LastPartDefDist) 306 LastPartDefDist = Dist; 307 } else if (MachineInstr *Use = PhysRegUse[SubReg]) { 308 unsigned Dist = DistanceMap[Use]; 309 if (Dist > LastRefOrPartRefDist) { 310 LastRefOrPartRefDist = Dist; 311 LastRefOrPartRef = Use; 312 } 313 } 314 } 315 316 return LastRefOrPartRef; 317} 318 319bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 320 MachineInstr *LastDef = PhysRegDef[Reg]; 321 MachineInstr *LastUse = PhysRegUse[Reg]; 322 if (!LastDef && !LastUse) 323 return false; 324 325 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 326 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 327 // The whole register is used. 328 // AL = 329 // AH = 330 // 331 // = AX 332 // = AL, AX<imp-use, kill> 333 // AX = 334 // 335 // Or whole register is defined, but not used at all. 336 // AX<dead> = 337 // ... 338 // AX = 339 // 340 // Or whole register is defined, but only partly used. 341 // AX<dead> = AL<imp-def> 342 // = AL<kill> 343 // AX = 344 MachineInstr *LastPartDef = 0; 345 unsigned LastPartDefDist = 0; 346 SmallSet<unsigned, 8> PartUses; 347 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 348 unsigned SubReg = *SubRegs; ++SubRegs) { 349 MachineInstr *Def = PhysRegDef[SubReg]; 350 if (Def && Def != LastDef) { 351 // There was a def of this sub-register in between. This is a partial 352 // def, keep track of the last one. 353 unsigned Dist = DistanceMap[Def]; 354 if (Dist > LastPartDefDist) { 355 LastPartDefDist = Dist; 356 LastPartDef = Def; 357 } 358 continue; 359 } 360 if (MachineInstr *Use = PhysRegUse[SubReg]) { 361 PartUses.insert(SubReg); 362 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 363 PartUses.insert(*SS); 364 unsigned Dist = DistanceMap[Use]; 365 if (Dist > LastRefOrPartRefDist) { 366 LastRefOrPartRefDist = Dist; 367 LastRefOrPartRef = Use; 368 } 369 } 370 } 371 372 if (!PhysRegUse[Reg]) { 373 // Partial uses. Mark register def dead and add implicit def of 374 // sub-registers which are used. 375 // EAX<dead> = op AL<imp-def> 376 // That is, EAX def is dead but AL def extends pass it. 377 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 378 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 379 unsigned SubReg = *SubRegs; ++SubRegs) { 380 if (!PartUses.count(SubReg)) 381 continue; 382 bool NeedDef = true; 383 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 384 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 385 if (MO) { 386 NeedDef = false; 387 assert(!MO->isDead()); 388 } 389 } 390 if (NeedDef) 391 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 392 true/*IsDef*/, true/*IsImp*/)); 393 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); 394 if (LastSubRef) 395 LastSubRef->addRegisterKilled(SubReg, TRI, true); 396 else { 397 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 398 PhysRegUse[SubReg] = LastRefOrPartRef; 399 for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg); 400 unsigned SSReg = *SSRegs; ++SSRegs) 401 PhysRegUse[SSReg] = LastRefOrPartRef; 402 } 403 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 404 PartUses.erase(*SS); 405 } 406 } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { 407 if (LastPartDef) 408 // The last partial def kills the register. 409 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, 410 true/*IsImp*/, true/*IsKill*/)); 411 else { 412 MachineOperand *MO = 413 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); 414 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; 415 // If the last reference is the last def, then it's not used at all. 416 // That is, unless we are currently processing the last reference itself. 417 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 418 if (NeedEC) { 419 // If we are adding a subreg def and the superreg def is marked early 420 // clobber, add an early clobber marker to the subreg def. 421 MO = LastRefOrPartRef->findRegisterDefOperand(Reg); 422 if (MO) 423 MO->setIsEarlyClobber(); 424 } 425 } 426 } else 427 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 428 return true; 429} 430 431void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 432 SmallVector<unsigned, 4> &Defs) { 433 // What parts of the register are previously defined? 434 SmallSet<unsigned, 32> Live; 435 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 436 Live.insert(Reg); 437 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 438 Live.insert(*SS); 439 } else { 440 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 441 unsigned SubReg = *SubRegs; ++SubRegs) { 442 // If a register isn't itself defined, but all parts that make up of it 443 // are defined, then consider it also defined. 444 // e.g. 445 // AL = 446 // AH = 447 // = AX 448 if (Live.count(SubReg)) 449 continue; 450 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 451 Live.insert(SubReg); 452 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 453 Live.insert(*SS); 454 } 455 } 456 } 457 458 // Start from the largest piece, find the last time any part of the register 459 // is referenced. 460 HandlePhysRegKill(Reg, MI); 461 // Only some of the sub-registers are used. 462 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 463 unsigned SubReg = *SubRegs; ++SubRegs) { 464 if (!Live.count(SubReg)) 465 // Skip if this sub-register isn't defined. 466 continue; 467 HandlePhysRegKill(SubReg, MI); 468 } 469 470 if (MI) 471 Defs.push_back(Reg); // Remember this def. 472} 473 474void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, 475 SmallVector<unsigned, 4> &Defs) { 476 while (!Defs.empty()) { 477 unsigned Reg = Defs.back(); 478 Defs.pop_back(); 479 PhysRegDef[Reg] = MI; 480 PhysRegUse[Reg] = NULL; 481 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 482 unsigned SubReg = *SubRegs; ++SubRegs) { 483 PhysRegDef[SubReg] = MI; 484 PhysRegUse[SubReg] = NULL; 485 } 486 } 487} 488 489bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 490 MF = &mf; 491 MRI = &mf.getRegInfo(); 492 TRI = MF->getTarget().getRegisterInfo(); 493 494 ReservedRegisters = TRI->getReservedRegs(mf); 495 496 unsigned NumRegs = TRI->getNumRegs(); 497 PhysRegDef = new MachineInstr*[NumRegs]; 498 PhysRegUse = new MachineInstr*[NumRegs]; 499 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 500 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 501 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 502 PHIJoins.clear(); 503 504 /// Get some space for a respectable number of registers. 505 VirtRegInfo.resize(64); 506 507 analyzePHINodes(mf); 508 509 // Calculate live variable information in depth first order on the CFG of the 510 // function. This guarantees that we will see the definition of a virtual 511 // register before its uses due to dominance properties of SSA (except for PHI 512 // nodes, which are treated as a special case). 513 MachineBasicBlock *Entry = MF->begin(); 514 SmallPtrSet<MachineBasicBlock*,16> Visited; 515 516 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 517 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 518 DFI != E; ++DFI) { 519 MachineBasicBlock *MBB = *DFI; 520 521 // Mark live-in registers as live-in. 522 SmallVector<unsigned, 4> Defs; 523 for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(), 524 EE = MBB->livein_end(); II != EE; ++II) { 525 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 526 "Cannot have a live-in virtual register!"); 527 HandlePhysRegDef(*II, 0, Defs); 528 } 529 530 // Loop over all of the instructions, processing them. 531 DistanceMap.clear(); 532 unsigned Dist = 0; 533 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 534 I != E; ++I) { 535 MachineInstr *MI = I; 536 if (MI->isDebugValue()) 537 continue; 538 DistanceMap.insert(std::make_pair(MI, Dist++)); 539 540 // Process all of the operands of the instruction... 541 unsigned NumOperandsToProcess = MI->getNumOperands(); 542 543 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 544 // of the uses. They will be handled in other basic blocks. 545 if (MI->isPHI()) 546 NumOperandsToProcess = 1; 547 548 // Clear kill and dead markers. LV will recompute them. 549 SmallVector<unsigned, 4> UseRegs; 550 SmallVector<unsigned, 4> DefRegs; 551 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 552 MachineOperand &MO = MI->getOperand(i); 553 if (!MO.isReg() || MO.getReg() == 0) 554 continue; 555 unsigned MOReg = MO.getReg(); 556 if (MO.isUse()) { 557 MO.setIsKill(false); 558 UseRegs.push_back(MOReg); 559 } else /*MO.isDef()*/ { 560 MO.setIsDead(false); 561 DefRegs.push_back(MOReg); 562 } 563 } 564 565 // Process all uses. 566 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 567 unsigned MOReg = UseRegs[i]; 568 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 569 HandleVirtRegUse(MOReg, MBB, MI); 570 else if (!ReservedRegisters[MOReg]) 571 HandlePhysRegUse(MOReg, MI); 572 } 573 574 // Process all defs. 575 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 576 unsigned MOReg = DefRegs[i]; 577 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 578 HandleVirtRegDef(MOReg, MI); 579 else if (!ReservedRegisters[MOReg]) 580 HandlePhysRegDef(MOReg, MI, Defs); 581 } 582 UpdatePhysRegDefs(MI, Defs); 583 } 584 585 // Handle any virtual assignments from PHI nodes which might be at the 586 // bottom of this basic block. We check all of our successor blocks to see 587 // if they have PHI nodes, and if so, we simulate an assignment at the end 588 // of the current block. 589 if (!PHIVarInfo[MBB->getNumber()].empty()) { 590 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 591 592 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 593 E = VarInfoVec.end(); I != E; ++I) 594 // Mark it alive only in the block we are representing. 595 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 596 MBB); 597 } 598 599 // Finally, if the last instruction in the block is a return, make sure to 600 // mark it as using all of the live-out values in the function. 601 // Things marked both call and return are tail calls; do not do this for 602 // them. The tail callee need not take the same registers as input 603 // that it produces as output, and there are dependencies for its input 604 // registers elsewhere. 605 if (!MBB->empty() && MBB->back().getDesc().isReturn() 606 && !MBB->back().getDesc().isCall()) { 607 MachineInstr *Ret = &MBB->back(); 608 609 for (MachineRegisterInfo::liveout_iterator 610 I = MF->getRegInfo().liveout_begin(), 611 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 612 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 613 "Cannot have a live-out virtual register!"); 614 HandlePhysRegUse(*I, Ret); 615 616 // Add live-out registers as implicit uses. 617 if (!Ret->readsRegister(*I)) 618 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 619 } 620 } 621 622 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 623 // available at the end of the basic block. 624 for (unsigned i = 0; i != NumRegs; ++i) 625 if (PhysRegDef[i] || PhysRegUse[i]) 626 HandlePhysRegDef(i, 0, Defs); 627 628 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 629 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 630 } 631 632 // Convert and transfer the dead / killed information we have gathered into 633 // VirtRegInfo onto MI's. 634 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 635 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 636 if (VirtRegInfo[i].Kills[j] == 637 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 638 VirtRegInfo[i] 639 .Kills[j]->addRegisterDead(i + 640 TargetRegisterInfo::FirstVirtualRegister, 641 TRI); 642 else 643 VirtRegInfo[i] 644 .Kills[j]->addRegisterKilled(i + 645 TargetRegisterInfo::FirstVirtualRegister, 646 TRI); 647 648 // Check to make sure there are no unreachable blocks in the MC CFG for the 649 // function. If so, it is due to a bug in the instruction selector or some 650 // other part of the code generator if this happens. 651#ifndef NDEBUG 652 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 653 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 654#endif 655 656 delete[] PhysRegDef; 657 delete[] PhysRegUse; 658 delete[] PHIVarInfo; 659 660 return false; 661} 662 663/// replaceKillInstruction - Update register kill info by replacing a kill 664/// instruction with a new one. 665void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 666 MachineInstr *NewMI) { 667 VarInfo &VI = getVarInfo(Reg); 668 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 669} 670 671/// removeVirtualRegistersKilled - Remove all killed info for the specified 672/// instruction. 673void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 674 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 675 MachineOperand &MO = MI->getOperand(i); 676 if (MO.isReg() && MO.isKill()) { 677 MO.setIsKill(false); 678 unsigned Reg = MO.getReg(); 679 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 680 bool removed = getVarInfo(Reg).removeKill(MI); 681 assert(removed && "kill not in register's VarInfo?"); 682 removed = true; 683 } 684 } 685 } 686} 687 688/// analyzePHINodes - Gather information about the PHI nodes in here. In 689/// particular, we want to map the variable information of a virtual register 690/// which is used in a PHI node. We map that to the BB the vreg is coming from. 691/// 692void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 693 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 694 I != E; ++I) 695 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 696 BBI != BBE && BBI->isPHI(); ++BBI) 697 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 698 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 699 .push_back(BBI->getOperand(i).getReg()); 700} 701 702bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, 703 unsigned Reg, 704 MachineRegisterInfo &MRI) { 705 unsigned Num = MBB.getNumber(); 706 707 // Reg is live-through. 708 if (AliveBlocks.test(Num)) 709 return true; 710 711 // Registers defined in MBB cannot be live in. 712 const MachineInstr *Def = MRI.getVRegDef(Reg); 713 if (Def && Def->getParent() == &MBB) 714 return false; 715 716 // Reg was not defined in MBB, was it killed here? 717 return findKill(&MBB); 718} 719 720bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { 721 LiveVariables::VarInfo &VI = getVarInfo(Reg); 722 723 // Loop over all of the successors of the basic block, checking to see if 724 // the value is either live in the block, or if it is killed in the block. 725 std::vector<MachineBasicBlock*> OpSuccBlocks; 726 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), 727 E = MBB.succ_end(); SI != E; ++SI) { 728 MachineBasicBlock *SuccMBB = *SI; 729 730 // Is it alive in this successor? 731 unsigned SuccIdx = SuccMBB->getNumber(); 732 if (VI.AliveBlocks.test(SuccIdx)) 733 return true; 734 OpSuccBlocks.push_back(SuccMBB); 735 } 736 737 // Check to see if this value is live because there is a use in a successor 738 // that kills it. 739 switch (OpSuccBlocks.size()) { 740 case 1: { 741 MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; 742 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 743 if (VI.Kills[i]->getParent() == SuccMBB) 744 return true; 745 break; 746 } 747 case 2: { 748 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; 749 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 750 if (VI.Kills[i]->getParent() == SuccMBB1 || 751 VI.Kills[i]->getParent() == SuccMBB2) 752 return true; 753 break; 754 } 755 default: 756 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); 757 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 758 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), 759 VI.Kills[i]->getParent())) 760 return true; 761 } 762 return false; 763} 764 765/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All 766/// variables that are live out of DomBB will be marked as passing live through 767/// BB. 768void LiveVariables::addNewBlock(MachineBasicBlock *BB, 769 MachineBasicBlock *DomBB, 770 MachineBasicBlock *SuccBB) { 771 const unsigned NumNew = BB->getNumber(); 772 773 // All registers used by PHI nodes in SuccBB must be live through BB. 774 for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), 775 BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) 776 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 777 if (BBI->getOperand(i+1).getMBB() == BB) 778 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); 779 780 // Update info for all live variables 781 for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, 782 E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) { 783 VarInfo &VI = getVarInfo(Reg); 784 if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) 785 VI.AliveBlocks.set(NumNew); 786 } 787} 788