LiveVariables.cpp revision 2ab36d350293c77fc8941ce1023e4899df7e3a82
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
46                "Live Variable Analysis", false, false)
47INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
48INITIALIZE_PASS_END(LiveVariables, "livevars",
49                "Live Variable Analysis", false, false)
50
51
52void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
53  AU.addRequiredID(UnreachableMachineBlockElimID);
54  AU.setPreservesAll();
55  MachineFunctionPass::getAnalysisUsage(AU);
56}
57
58MachineInstr *
59LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
60  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
61    if (Kills[i]->getParent() == MBB)
62      return Kills[i];
63  return NULL;
64}
65
66void LiveVariables::VarInfo::dump() const {
67  dbgs() << "  Alive in blocks: ";
68  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
69           E = AliveBlocks.end(); I != E; ++I)
70    dbgs() << *I << ", ";
71  dbgs() << "\n  Killed by:";
72  if (Kills.empty())
73    dbgs() << " No instructions.\n";
74  else {
75    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
76      dbgs() << "\n    #" << i << ": " << *Kills[i];
77    dbgs() << "\n";
78  }
79}
80
81/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
82LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
83  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
84         "getVarInfo: not a virtual register!");
85  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
86  if (RegIdx >= VirtRegInfo.size()) {
87    if (RegIdx >= 2*VirtRegInfo.size())
88      VirtRegInfo.resize(RegIdx*2);
89    else
90      VirtRegInfo.resize(2*VirtRegInfo.size());
91  }
92  return VirtRegInfo[RegIdx];
93}
94
95void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
96                                            MachineBasicBlock *DefBlock,
97                                            MachineBasicBlock *MBB,
98                                    std::vector<MachineBasicBlock*> &WorkList) {
99  unsigned BBNum = MBB->getNumber();
100
101  // Check to see if this basic block is one of the killing blocks.  If so,
102  // remove it.
103  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
104    if (VRInfo.Kills[i]->getParent() == MBB) {
105      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
106      break;
107    }
108
109  if (MBB == DefBlock) return;  // Terminate recursion
110
111  if (VRInfo.AliveBlocks.test(BBNum))
112    return;  // We already know the block is live
113
114  // Mark the variable known alive in this bb
115  VRInfo.AliveBlocks.set(BBNum);
116
117  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
118         E = MBB->pred_rend(); PI != E; ++PI)
119    WorkList.push_back(*PI);
120}
121
122void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
123                                            MachineBasicBlock *DefBlock,
124                                            MachineBasicBlock *MBB) {
125  std::vector<MachineBasicBlock*> WorkList;
126  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
127
128  while (!WorkList.empty()) {
129    MachineBasicBlock *Pred = WorkList.back();
130    WorkList.pop_back();
131    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
132  }
133}
134
135void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
136                                     MachineInstr *MI) {
137  assert(MRI->getVRegDef(reg) && "Register use before def!");
138
139  unsigned BBNum = MBB->getNumber();
140
141  VarInfo& VRInfo = getVarInfo(reg);
142  VRInfo.NumUses++;
143
144  // Check to see if this basic block is already a kill block.
145  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
146    // Yes, this register is killed in this basic block already. Increase the
147    // live range by updating the kill instruction.
148    VRInfo.Kills.back() = MI;
149    return;
150  }
151
152#ifndef NDEBUG
153  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
154    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
155#endif
156
157  // This situation can occur:
158  //
159  //     ,------.
160  //     |      |
161  //     |      v
162  //     |   t2 = phi ... t1 ...
163  //     |      |
164  //     |      v
165  //     |   t1 = ...
166  //     |  ... = ... t1 ...
167  //     |      |
168  //     `------'
169  //
170  // where there is a use in a PHI node that's a predecessor to the defining
171  // block. We don't want to mark all predecessors as having the value "alive"
172  // in this case.
173  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
174
175  // Add a new kill entry for this basic block. If this virtual register is
176  // already marked as alive in this basic block, that means it is alive in at
177  // least one of the successor blocks, it's not a kill.
178  if (!VRInfo.AliveBlocks.test(BBNum))
179    VRInfo.Kills.push_back(MI);
180
181  // Update all dominating blocks to mark them as "known live".
182  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
183         E = MBB->pred_end(); PI != E; ++PI)
184    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
185}
186
187void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
188  VarInfo &VRInfo = getVarInfo(Reg);
189
190  if (VRInfo.AliveBlocks.empty())
191    // If vr is not alive in any block, then defaults to dead.
192    VRInfo.Kills.push_back(MI);
193}
194
195/// FindLastPartialDef - Return the last partial def of the specified register.
196/// Also returns the sub-registers that're defined by the instruction.
197MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
198                                            SmallSet<unsigned,4> &PartDefRegs) {
199  unsigned LastDefReg = 0;
200  unsigned LastDefDist = 0;
201  MachineInstr *LastDef = NULL;
202  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
203       unsigned SubReg = *SubRegs; ++SubRegs) {
204    MachineInstr *Def = PhysRegDef[SubReg];
205    if (!Def)
206      continue;
207    unsigned Dist = DistanceMap[Def];
208    if (Dist > LastDefDist) {
209      LastDefReg  = SubReg;
210      LastDef     = Def;
211      LastDefDist = Dist;
212    }
213  }
214
215  if (!LastDef)
216    return 0;
217
218  PartDefRegs.insert(LastDefReg);
219  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
220    MachineOperand &MO = LastDef->getOperand(i);
221    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
222      continue;
223    unsigned DefReg = MO.getReg();
224    if (TRI->isSubRegister(Reg, DefReg)) {
225      PartDefRegs.insert(DefReg);
226      for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg);
227           unsigned SubReg = *SubRegs; ++SubRegs)
228        PartDefRegs.insert(SubReg);
229    }
230  }
231  return LastDef;
232}
233
234/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
235/// implicit defs to a machine instruction if there was an earlier def of its
236/// super-register.
237void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
238  MachineInstr *LastDef = PhysRegDef[Reg];
239  // If there was a previous use or a "full" def all is well.
240  if (!LastDef && !PhysRegUse[Reg]) {
241    // Otherwise, the last sub-register def implicitly defines this register.
242    // e.g.
243    // AH =
244    // AL = ... <imp-def EAX>, <imp-kill AH>
245    //    = AH
246    // ...
247    //    = EAX
248    // All of the sub-registers must have been defined before the use of Reg!
249    SmallSet<unsigned, 4> PartDefRegs;
250    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
251    // If LastPartialDef is NULL, it must be using a livein register.
252    if (LastPartialDef) {
253      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
254                                                           true/*IsImp*/));
255      PhysRegDef[Reg] = LastPartialDef;
256      SmallSet<unsigned, 8> Processed;
257      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
258           unsigned SubReg = *SubRegs; ++SubRegs) {
259        if (Processed.count(SubReg))
260          continue;
261        if (PartDefRegs.count(SubReg))
262          continue;
263        // This part of Reg was defined before the last partial def. It's killed
264        // here.
265        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
266                                                             false/*IsDef*/,
267                                                             true/*IsImp*/));
268        PhysRegDef[SubReg] = LastPartialDef;
269        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
270          Processed.insert(*SS);
271      }
272    }
273  }
274  else if (LastDef && !PhysRegUse[Reg] &&
275           !LastDef->findRegisterDefOperand(Reg))
276    // Last def defines the super register, add an implicit def of reg.
277    LastDef->addOperand(MachineOperand::CreateReg(Reg,
278                                                 true/*IsDef*/, true/*IsImp*/));
279
280  // Remember this use.
281  PhysRegUse[Reg]  = MI;
282  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
283       unsigned SubReg = *SubRegs; ++SubRegs)
284    PhysRegUse[SubReg] =  MI;
285}
286
287/// FindLastRefOrPartRef - Return the last reference or partial reference of
288/// the specified register.
289MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
290  MachineInstr *LastDef = PhysRegDef[Reg];
291  MachineInstr *LastUse = PhysRegUse[Reg];
292  if (!LastDef && !LastUse)
293    return 0;
294
295  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
296  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
297  unsigned LastPartDefDist = 0;
298  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
299       unsigned SubReg = *SubRegs; ++SubRegs) {
300    MachineInstr *Def = PhysRegDef[SubReg];
301    if (Def && Def != LastDef) {
302      // There was a def of this sub-register in between. This is a partial
303      // def, keep track of the last one.
304      unsigned Dist = DistanceMap[Def];
305      if (Dist > LastPartDefDist)
306        LastPartDefDist = Dist;
307    } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
308      unsigned Dist = DistanceMap[Use];
309      if (Dist > LastRefOrPartRefDist) {
310        LastRefOrPartRefDist = Dist;
311        LastRefOrPartRef = Use;
312      }
313    }
314  }
315
316  return LastRefOrPartRef;
317}
318
319bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
320  MachineInstr *LastDef = PhysRegDef[Reg];
321  MachineInstr *LastUse = PhysRegUse[Reg];
322  if (!LastDef && !LastUse)
323    return false;
324
325  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
326  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
327  // The whole register is used.
328  // AL =
329  // AH =
330  //
331  //    = AX
332  //    = AL, AX<imp-use, kill>
333  // AX =
334  //
335  // Or whole register is defined, but not used at all.
336  // AX<dead> =
337  // ...
338  // AX =
339  //
340  // Or whole register is defined, but only partly used.
341  // AX<dead> = AL<imp-def>
342  //    = AL<kill>
343  // AX =
344  MachineInstr *LastPartDef = 0;
345  unsigned LastPartDefDist = 0;
346  SmallSet<unsigned, 8> PartUses;
347  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
348       unsigned SubReg = *SubRegs; ++SubRegs) {
349    MachineInstr *Def = PhysRegDef[SubReg];
350    if (Def && Def != LastDef) {
351      // There was a def of this sub-register in between. This is a partial
352      // def, keep track of the last one.
353      unsigned Dist = DistanceMap[Def];
354      if (Dist > LastPartDefDist) {
355        LastPartDefDist = Dist;
356        LastPartDef = Def;
357      }
358      continue;
359    }
360    if (MachineInstr *Use = PhysRegUse[SubReg]) {
361      PartUses.insert(SubReg);
362      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
363        PartUses.insert(*SS);
364      unsigned Dist = DistanceMap[Use];
365      if (Dist > LastRefOrPartRefDist) {
366        LastRefOrPartRefDist = Dist;
367        LastRefOrPartRef = Use;
368      }
369    }
370  }
371
372  if (!PhysRegUse[Reg]) {
373    // Partial uses. Mark register def dead and add implicit def of
374    // sub-registers which are used.
375    // EAX<dead>  = op  AL<imp-def>
376    // That is, EAX def is dead but AL def extends pass it.
377    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
378    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
379         unsigned SubReg = *SubRegs; ++SubRegs) {
380      if (!PartUses.count(SubReg))
381        continue;
382      bool NeedDef = true;
383      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
384        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
385        if (MO) {
386          NeedDef = false;
387          assert(!MO->isDead());
388        }
389      }
390      if (NeedDef)
391        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
392                                                 true/*IsDef*/, true/*IsImp*/));
393      MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
394      if (LastSubRef)
395        LastSubRef->addRegisterKilled(SubReg, TRI, true);
396      else {
397        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
398        PhysRegUse[SubReg] = LastRefOrPartRef;
399        for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg);
400             unsigned SSReg = *SSRegs; ++SSRegs)
401          PhysRegUse[SSReg] = LastRefOrPartRef;
402      }
403      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
404        PartUses.erase(*SS);
405    }
406  } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
407    if (LastPartDef)
408      // The last partial def kills the register.
409      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
410                                                true/*IsImp*/, true/*IsKill*/));
411    else {
412      MachineOperand *MO =
413        LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
414      bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
415      // If the last reference is the last def, then it's not used at all.
416      // That is, unless we are currently processing the last reference itself.
417      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
418      if (NeedEC) {
419        // If we are adding a subreg def and the superreg def is marked early
420        // clobber, add an early clobber marker to the subreg def.
421        MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
422        if (MO)
423          MO->setIsEarlyClobber();
424      }
425    }
426  } else
427    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
428  return true;
429}
430
431void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
432                                     SmallVector<unsigned, 4> &Defs) {
433  // What parts of the register are previously defined?
434  SmallSet<unsigned, 32> Live;
435  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
436    Live.insert(Reg);
437    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
438      Live.insert(*SS);
439  } else {
440    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
441         unsigned SubReg = *SubRegs; ++SubRegs) {
442      // If a register isn't itself defined, but all parts that make up of it
443      // are defined, then consider it also defined.
444      // e.g.
445      // AL =
446      // AH =
447      //    = AX
448      if (Live.count(SubReg))
449        continue;
450      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
451        Live.insert(SubReg);
452        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
453          Live.insert(*SS);
454      }
455    }
456  }
457
458  // Start from the largest piece, find the last time any part of the register
459  // is referenced.
460  HandlePhysRegKill(Reg, MI);
461  // Only some of the sub-registers are used.
462  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
463       unsigned SubReg = *SubRegs; ++SubRegs) {
464    if (!Live.count(SubReg))
465      // Skip if this sub-register isn't defined.
466      continue;
467    HandlePhysRegKill(SubReg, MI);
468  }
469
470  if (MI)
471    Defs.push_back(Reg);  // Remember this def.
472}
473
474void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
475                                      SmallVector<unsigned, 4> &Defs) {
476  while (!Defs.empty()) {
477    unsigned Reg = Defs.back();
478    Defs.pop_back();
479    PhysRegDef[Reg]  = MI;
480    PhysRegUse[Reg]  = NULL;
481    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
482         unsigned SubReg = *SubRegs; ++SubRegs) {
483      PhysRegDef[SubReg]  = MI;
484      PhysRegUse[SubReg]  = NULL;
485    }
486  }
487}
488
489bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
490  MF = &mf;
491  MRI = &mf.getRegInfo();
492  TRI = MF->getTarget().getRegisterInfo();
493
494  ReservedRegisters = TRI->getReservedRegs(mf);
495
496  unsigned NumRegs = TRI->getNumRegs();
497  PhysRegDef  = new MachineInstr*[NumRegs];
498  PhysRegUse  = new MachineInstr*[NumRegs];
499  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
500  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
501  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
502  PHIJoins.clear();
503
504  /// Get some space for a respectable number of registers.
505  VirtRegInfo.resize(64);
506
507  analyzePHINodes(mf);
508
509  // Calculate live variable information in depth first order on the CFG of the
510  // function.  This guarantees that we will see the definition of a virtual
511  // register before its uses due to dominance properties of SSA (except for PHI
512  // nodes, which are treated as a special case).
513  MachineBasicBlock *Entry = MF->begin();
514  SmallPtrSet<MachineBasicBlock*,16> Visited;
515
516  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
517         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
518       DFI != E; ++DFI) {
519    MachineBasicBlock *MBB = *DFI;
520
521    // Mark live-in registers as live-in.
522    SmallVector<unsigned, 4> Defs;
523    for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
524           EE = MBB->livein_end(); II != EE; ++II) {
525      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
526             "Cannot have a live-in virtual register!");
527      HandlePhysRegDef(*II, 0, Defs);
528    }
529
530    // Loop over all of the instructions, processing them.
531    DistanceMap.clear();
532    unsigned Dist = 0;
533    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
534         I != E; ++I) {
535      MachineInstr *MI = I;
536      if (MI->isDebugValue())
537        continue;
538      DistanceMap.insert(std::make_pair(MI, Dist++));
539
540      // Process all of the operands of the instruction...
541      unsigned NumOperandsToProcess = MI->getNumOperands();
542
543      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
544      // of the uses.  They will be handled in other basic blocks.
545      if (MI->isPHI())
546        NumOperandsToProcess = 1;
547
548      // Clear kill and dead markers. LV will recompute them.
549      SmallVector<unsigned, 4> UseRegs;
550      SmallVector<unsigned, 4> DefRegs;
551      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
552        MachineOperand &MO = MI->getOperand(i);
553        if (!MO.isReg() || MO.getReg() == 0)
554          continue;
555        unsigned MOReg = MO.getReg();
556        if (MO.isUse()) {
557          MO.setIsKill(false);
558          UseRegs.push_back(MOReg);
559        } else /*MO.isDef()*/ {
560          MO.setIsDead(false);
561          DefRegs.push_back(MOReg);
562        }
563      }
564
565      // Process all uses.
566      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
567        unsigned MOReg = UseRegs[i];
568        if (TargetRegisterInfo::isVirtualRegister(MOReg))
569          HandleVirtRegUse(MOReg, MBB, MI);
570        else if (!ReservedRegisters[MOReg])
571          HandlePhysRegUse(MOReg, MI);
572      }
573
574      // Process all defs.
575      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
576        unsigned MOReg = DefRegs[i];
577        if (TargetRegisterInfo::isVirtualRegister(MOReg))
578          HandleVirtRegDef(MOReg, MI);
579        else if (!ReservedRegisters[MOReg])
580          HandlePhysRegDef(MOReg, MI, Defs);
581      }
582      UpdatePhysRegDefs(MI, Defs);
583    }
584
585    // Handle any virtual assignments from PHI nodes which might be at the
586    // bottom of this basic block.  We check all of our successor blocks to see
587    // if they have PHI nodes, and if so, we simulate an assignment at the end
588    // of the current block.
589    if (!PHIVarInfo[MBB->getNumber()].empty()) {
590      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
591
592      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
593             E = VarInfoVec.end(); I != E; ++I)
594        // Mark it alive only in the block we are representing.
595        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
596                                MBB);
597    }
598
599    // Finally, if the last instruction in the block is a return, make sure to
600    // mark it as using all of the live-out values in the function.
601    // Things marked both call and return are tail calls; do not do this for
602    // them.  The tail callee need not take the same registers as input
603    // that it produces as output, and there are dependencies for its input
604    // registers elsewhere.
605    if (!MBB->empty() && MBB->back().getDesc().isReturn()
606        && !MBB->back().getDesc().isCall()) {
607      MachineInstr *Ret = &MBB->back();
608
609      for (MachineRegisterInfo::liveout_iterator
610           I = MF->getRegInfo().liveout_begin(),
611           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
612        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
613               "Cannot have a live-out virtual register!");
614        HandlePhysRegUse(*I, Ret);
615
616        // Add live-out registers as implicit uses.
617        if (!Ret->readsRegister(*I))
618          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
619      }
620    }
621
622    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
623    // available at the end of the basic block.
624    for (unsigned i = 0; i != NumRegs; ++i)
625      if (PhysRegDef[i] || PhysRegUse[i])
626        HandlePhysRegDef(i, 0, Defs);
627
628    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
629    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
630  }
631
632  // Convert and transfer the dead / killed information we have gathered into
633  // VirtRegInfo onto MI's.
634  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
635    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
636      if (VirtRegInfo[i].Kills[j] ==
637          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
638        VirtRegInfo[i]
639          .Kills[j]->addRegisterDead(i +
640                                     TargetRegisterInfo::FirstVirtualRegister,
641                                     TRI);
642      else
643        VirtRegInfo[i]
644          .Kills[j]->addRegisterKilled(i +
645                                       TargetRegisterInfo::FirstVirtualRegister,
646                                       TRI);
647
648  // Check to make sure there are no unreachable blocks in the MC CFG for the
649  // function.  If so, it is due to a bug in the instruction selector or some
650  // other part of the code generator if this happens.
651#ifndef NDEBUG
652  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
653    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
654#endif
655
656  delete[] PhysRegDef;
657  delete[] PhysRegUse;
658  delete[] PHIVarInfo;
659
660  return false;
661}
662
663/// replaceKillInstruction - Update register kill info by replacing a kill
664/// instruction with a new one.
665void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
666                                           MachineInstr *NewMI) {
667  VarInfo &VI = getVarInfo(Reg);
668  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
669}
670
671/// removeVirtualRegistersKilled - Remove all killed info for the specified
672/// instruction.
673void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
674  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
675    MachineOperand &MO = MI->getOperand(i);
676    if (MO.isReg() && MO.isKill()) {
677      MO.setIsKill(false);
678      unsigned Reg = MO.getReg();
679      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
680        bool removed = getVarInfo(Reg).removeKill(MI);
681        assert(removed && "kill not in register's VarInfo?");
682        removed = true;
683      }
684    }
685  }
686}
687
688/// analyzePHINodes - Gather information about the PHI nodes in here. In
689/// particular, we want to map the variable information of a virtual register
690/// which is used in a PHI node. We map that to the BB the vreg is coming from.
691///
692void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
693  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
694       I != E; ++I)
695    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
696         BBI != BBE && BBI->isPHI(); ++BBI)
697      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
698        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
699          .push_back(BBI->getOperand(i).getReg());
700}
701
702bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
703                                      unsigned Reg,
704                                      MachineRegisterInfo &MRI) {
705  unsigned Num = MBB.getNumber();
706
707  // Reg is live-through.
708  if (AliveBlocks.test(Num))
709    return true;
710
711  // Registers defined in MBB cannot be live in.
712  const MachineInstr *Def = MRI.getVRegDef(Reg);
713  if (Def && Def->getParent() == &MBB)
714    return false;
715
716 // Reg was not defined in MBB, was it killed here?
717  return findKill(&MBB);
718}
719
720bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
721  LiveVariables::VarInfo &VI = getVarInfo(Reg);
722
723  // Loop over all of the successors of the basic block, checking to see if
724  // the value is either live in the block, or if it is killed in the block.
725  std::vector<MachineBasicBlock*> OpSuccBlocks;
726  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
727         E = MBB.succ_end(); SI != E; ++SI) {
728    MachineBasicBlock *SuccMBB = *SI;
729
730    // Is it alive in this successor?
731    unsigned SuccIdx = SuccMBB->getNumber();
732    if (VI.AliveBlocks.test(SuccIdx))
733      return true;
734    OpSuccBlocks.push_back(SuccMBB);
735  }
736
737  // Check to see if this value is live because there is a use in a successor
738  // that kills it.
739  switch (OpSuccBlocks.size()) {
740  case 1: {
741    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
742    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
743      if (VI.Kills[i]->getParent() == SuccMBB)
744        return true;
745    break;
746  }
747  case 2: {
748    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
749    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
750      if (VI.Kills[i]->getParent() == SuccMBB1 ||
751          VI.Kills[i]->getParent() == SuccMBB2)
752        return true;
753    break;
754  }
755  default:
756    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
757    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
758      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
759                             VI.Kills[i]->getParent()))
760        return true;
761  }
762  return false;
763}
764
765/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
766/// variables that are live out of DomBB will be marked as passing live through
767/// BB.
768void LiveVariables::addNewBlock(MachineBasicBlock *BB,
769                                MachineBasicBlock *DomBB,
770                                MachineBasicBlock *SuccBB) {
771  const unsigned NumNew = BB->getNumber();
772
773  // All registers used by PHI nodes in SuccBB must be live through BB.
774  for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(),
775         BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
776    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
777      if (BBI->getOperand(i+1).getMBB() == BB)
778        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
779
780  // Update info for all live variables
781  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
782         E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) {
783    VarInfo &VI = getVarInfo(Reg);
784    if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
785      VI.AliveBlocks.set(NumNew);
786  }
787}
788