LiveVariables.cpp revision 5ba3e4d75d37d4cb145ebd01c2b0b2fec0db27c0
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/CodeGen/MachineRegisterInfo.h" 32#include "llvm/CodeGen/Passes.h" 33#include "llvm/Support/Debug.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/Target/TargetInstrInfo.h" 36#include "llvm/Target/TargetMachine.h" 37#include "llvm/ADT/DepthFirstIterator.h" 38#include "llvm/ADT/SmallPtrSet.h" 39#include "llvm/ADT/SmallSet.h" 40#include "llvm/ADT/STLExtras.h" 41#include <algorithm> 42using namespace llvm; 43 44char LiveVariables::ID = 0; 45INITIALIZE_PASS(LiveVariables, "livevars", 46 "Live Variable Analysis", false, false); 47 48 49void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 50 AU.addRequiredID(UnreachableMachineBlockElimID); 51 AU.setPreservesAll(); 52 MachineFunctionPass::getAnalysisUsage(AU); 53} 54 55MachineInstr * 56LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { 57 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 58 if (Kills[i]->getParent() == MBB) 59 return Kills[i]; 60 return NULL; 61} 62 63void LiveVariables::VarInfo::dump() const { 64 dbgs() << " Alive in blocks: "; 65 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 66 E = AliveBlocks.end(); I != E; ++I) 67 dbgs() << *I << ", "; 68 dbgs() << "\n Killed by:"; 69 if (Kills.empty()) 70 dbgs() << " No instructions.\n"; 71 else { 72 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 73 dbgs() << "\n #" << i << ": " << *Kills[i]; 74 dbgs() << "\n"; 75 } 76} 77 78/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 79LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 80 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 81 "getVarInfo: not a virtual register!"); 82 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 83 if (RegIdx >= VirtRegInfo.size()) { 84 if (RegIdx >= 2*VirtRegInfo.size()) 85 VirtRegInfo.resize(RegIdx*2); 86 else 87 VirtRegInfo.resize(2*VirtRegInfo.size()); 88 } 89 return VirtRegInfo[RegIdx]; 90} 91 92void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 93 MachineBasicBlock *DefBlock, 94 MachineBasicBlock *MBB, 95 std::vector<MachineBasicBlock*> &WorkList) { 96 unsigned BBNum = MBB->getNumber(); 97 98 // Check to see if this basic block is one of the killing blocks. If so, 99 // remove it. 100 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 101 if (VRInfo.Kills[i]->getParent() == MBB) { 102 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 103 break; 104 } 105 106 if (MBB == DefBlock) return; // Terminate recursion 107 108 if (VRInfo.AliveBlocks.test(BBNum)) 109 return; // We already know the block is live 110 111 // Mark the variable known alive in this bb 112 VRInfo.AliveBlocks.set(BBNum); 113 114 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 115 E = MBB->pred_rend(); PI != E; ++PI) 116 WorkList.push_back(*PI); 117} 118 119void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 120 MachineBasicBlock *DefBlock, 121 MachineBasicBlock *MBB) { 122 std::vector<MachineBasicBlock*> WorkList; 123 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 124 125 while (!WorkList.empty()) { 126 MachineBasicBlock *Pred = WorkList.back(); 127 WorkList.pop_back(); 128 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 129 } 130} 131 132void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 133 MachineInstr *MI) { 134 assert(MRI->getVRegDef(reg) && "Register use before def!"); 135 136 unsigned BBNum = MBB->getNumber(); 137 138 VarInfo& VRInfo = getVarInfo(reg); 139 VRInfo.NumUses++; 140 141 // Check to see if this basic block is already a kill block. 142 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 143 // Yes, this register is killed in this basic block already. Increase the 144 // live range by updating the kill instruction. 145 VRInfo.Kills.back() = MI; 146 return; 147 } 148 149#ifndef NDEBUG 150 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 151 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 152#endif 153 154 // This situation can occur: 155 // 156 // ,------. 157 // | | 158 // | v 159 // | t2 = phi ... t1 ... 160 // | | 161 // | v 162 // | t1 = ... 163 // | ... = ... t1 ... 164 // | | 165 // `------' 166 // 167 // where there is a use in a PHI node that's a predecessor to the defining 168 // block. We don't want to mark all predecessors as having the value "alive" 169 // in this case. 170 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 171 172 // Add a new kill entry for this basic block. If this virtual register is 173 // already marked as alive in this basic block, that means it is alive in at 174 // least one of the successor blocks, it's not a kill. 175 if (!VRInfo.AliveBlocks.test(BBNum)) 176 VRInfo.Kills.push_back(MI); 177 178 // Update all dominating blocks to mark them as "known live". 179 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 180 E = MBB->pred_end(); PI != E; ++PI) 181 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 182} 183 184void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 185 VarInfo &VRInfo = getVarInfo(Reg); 186 187 if (VRInfo.AliveBlocks.empty()) 188 // If vr is not alive in any block, then defaults to dead. 189 VRInfo.Kills.push_back(MI); 190} 191 192/// FindLastPartialDef - Return the last partial def of the specified register. 193/// Also returns the sub-registers that're defined by the instruction. 194MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 195 SmallSet<unsigned,4> &PartDefRegs) { 196 unsigned LastDefReg = 0; 197 unsigned LastDefDist = 0; 198 MachineInstr *LastDef = NULL; 199 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 200 unsigned SubReg = *SubRegs; ++SubRegs) { 201 MachineInstr *Def = PhysRegDef[SubReg]; 202 if (!Def) 203 continue; 204 unsigned Dist = DistanceMap[Def]; 205 if (Dist > LastDefDist) { 206 LastDefReg = SubReg; 207 LastDef = Def; 208 LastDefDist = Dist; 209 } 210 } 211 212 if (!LastDef) 213 return 0; 214 215 PartDefRegs.insert(LastDefReg); 216 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 217 MachineOperand &MO = LastDef->getOperand(i); 218 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 219 continue; 220 unsigned DefReg = MO.getReg(); 221 if (TRI->isSubRegister(Reg, DefReg)) { 222 PartDefRegs.insert(DefReg); 223 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); 224 unsigned SubReg = *SubRegs; ++SubRegs) 225 PartDefRegs.insert(SubReg); 226 } 227 } 228 return LastDef; 229} 230 231/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 232/// implicit defs to a machine instruction if there was an earlier def of its 233/// super-register. 234void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 235 MachineInstr *LastDef = PhysRegDef[Reg]; 236 // If there was a previous use or a "full" def all is well. 237 if (!LastDef && !PhysRegUse[Reg]) { 238 // Otherwise, the last sub-register def implicitly defines this register. 239 // e.g. 240 // AH = 241 // AL = ... <imp-def EAX>, <imp-kill AH> 242 // = AH 243 // ... 244 // = EAX 245 // All of the sub-registers must have been defined before the use of Reg! 246 SmallSet<unsigned, 4> PartDefRegs; 247 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 248 // If LastPartialDef is NULL, it must be using a livein register. 249 if (LastPartialDef) { 250 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 251 true/*IsImp*/)); 252 PhysRegDef[Reg] = LastPartialDef; 253 SmallSet<unsigned, 8> Processed; 254 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 255 unsigned SubReg = *SubRegs; ++SubRegs) { 256 if (Processed.count(SubReg)) 257 continue; 258 if (PartDefRegs.count(SubReg)) 259 continue; 260 // This part of Reg was defined before the last partial def. It's killed 261 // here. 262 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 263 false/*IsDef*/, 264 true/*IsImp*/)); 265 PhysRegDef[SubReg] = LastPartialDef; 266 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 267 Processed.insert(*SS); 268 } 269 } 270 } 271 else if (LastDef && !PhysRegUse[Reg] && 272 !LastDef->findRegisterDefOperand(Reg)) 273 // Last def defines the super register, add an implicit def of reg. 274 LastDef->addOperand(MachineOperand::CreateReg(Reg, 275 true/*IsDef*/, true/*IsImp*/)); 276 277 // Remember this use. 278 PhysRegUse[Reg] = MI; 279 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 280 unsigned SubReg = *SubRegs; ++SubRegs) 281 PhysRegUse[SubReg] = MI; 282} 283 284/// FindLastRefOrPartRef - Return the last reference or partial reference of 285/// the specified register. 286MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { 287 MachineInstr *LastDef = PhysRegDef[Reg]; 288 MachineInstr *LastUse = PhysRegUse[Reg]; 289 if (!LastDef && !LastUse) 290 return 0; 291 292 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 293 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 294 unsigned LastPartDefDist = 0; 295 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 296 unsigned SubReg = *SubRegs; ++SubRegs) { 297 MachineInstr *Def = PhysRegDef[SubReg]; 298 if (Def && Def != LastDef) { 299 // There was a def of this sub-register in between. This is a partial 300 // def, keep track of the last one. 301 unsigned Dist = DistanceMap[Def]; 302 if (Dist > LastPartDefDist) 303 LastPartDefDist = Dist; 304 } else if (MachineInstr *Use = PhysRegUse[SubReg]) { 305 unsigned Dist = DistanceMap[Use]; 306 if (Dist > LastRefOrPartRefDist) { 307 LastRefOrPartRefDist = Dist; 308 LastRefOrPartRef = Use; 309 } 310 } 311 } 312 313 return LastRefOrPartRef; 314} 315 316bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 317 MachineInstr *LastDef = PhysRegDef[Reg]; 318 MachineInstr *LastUse = PhysRegUse[Reg]; 319 if (!LastDef && !LastUse) 320 return false; 321 322 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 323 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 324 // The whole register is used. 325 // AL = 326 // AH = 327 // 328 // = AX 329 // = AL, AX<imp-use, kill> 330 // AX = 331 // 332 // Or whole register is defined, but not used at all. 333 // AX<dead> = 334 // ... 335 // AX = 336 // 337 // Or whole register is defined, but only partly used. 338 // AX<dead> = AL<imp-def> 339 // = AL<kill> 340 // AX = 341 MachineInstr *LastPartDef = 0; 342 unsigned LastPartDefDist = 0; 343 SmallSet<unsigned, 8> PartUses; 344 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 345 unsigned SubReg = *SubRegs; ++SubRegs) { 346 MachineInstr *Def = PhysRegDef[SubReg]; 347 if (Def && Def != LastDef) { 348 // There was a def of this sub-register in between. This is a partial 349 // def, keep track of the last one. 350 unsigned Dist = DistanceMap[Def]; 351 if (Dist > LastPartDefDist) { 352 LastPartDefDist = Dist; 353 LastPartDef = Def; 354 } 355 continue; 356 } 357 if (MachineInstr *Use = PhysRegUse[SubReg]) { 358 PartUses.insert(SubReg); 359 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 360 PartUses.insert(*SS); 361 unsigned Dist = DistanceMap[Use]; 362 if (Dist > LastRefOrPartRefDist) { 363 LastRefOrPartRefDist = Dist; 364 LastRefOrPartRef = Use; 365 } 366 } 367 } 368 369 if (!PhysRegUse[Reg]) { 370 // Partial uses. Mark register def dead and add implicit def of 371 // sub-registers which are used. 372 // EAX<dead> = op AL<imp-def> 373 // That is, EAX def is dead but AL def extends pass it. 374 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 375 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 376 unsigned SubReg = *SubRegs; ++SubRegs) { 377 if (!PartUses.count(SubReg)) 378 continue; 379 bool NeedDef = true; 380 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 381 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 382 if (MO) { 383 NeedDef = false; 384 assert(!MO->isDead()); 385 } 386 } 387 if (NeedDef) 388 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 389 true/*IsDef*/, true/*IsImp*/)); 390 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); 391 if (LastSubRef) 392 LastSubRef->addRegisterKilled(SubReg, TRI, true); 393 else { 394 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 395 PhysRegUse[SubReg] = LastRefOrPartRef; 396 for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg); 397 unsigned SSReg = *SSRegs; ++SSRegs) 398 PhysRegUse[SSReg] = LastRefOrPartRef; 399 } 400 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 401 PartUses.erase(*SS); 402 } 403 } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { 404 if (LastPartDef) 405 // The last partial def kills the register. 406 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, 407 true/*IsImp*/, true/*IsKill*/)); 408 else { 409 MachineOperand *MO = 410 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); 411 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; 412 // If the last reference is the last def, then it's not used at all. 413 // That is, unless we are currently processing the last reference itself. 414 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 415 if (NeedEC) { 416 // If we are adding a subreg def and the superreg def is marked early 417 // clobber, add an early clobber marker to the subreg def. 418 MO = LastRefOrPartRef->findRegisterDefOperand(Reg); 419 if (MO) 420 MO->setIsEarlyClobber(); 421 } 422 } 423 } else 424 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 425 return true; 426} 427 428void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 429 SmallVector<unsigned, 4> &Defs) { 430 // What parts of the register are previously defined? 431 SmallSet<unsigned, 32> Live; 432 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 433 Live.insert(Reg); 434 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 435 Live.insert(*SS); 436 } else { 437 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 438 unsigned SubReg = *SubRegs; ++SubRegs) { 439 // If a register isn't itself defined, but all parts that make up of it 440 // are defined, then consider it also defined. 441 // e.g. 442 // AL = 443 // AH = 444 // = AX 445 if (Live.count(SubReg)) 446 continue; 447 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 448 Live.insert(SubReg); 449 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 450 Live.insert(*SS); 451 } 452 } 453 } 454 455 // Start from the largest piece, find the last time any part of the register 456 // is referenced. 457 HandlePhysRegKill(Reg, MI); 458 // Only some of the sub-registers are used. 459 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 460 unsigned SubReg = *SubRegs; ++SubRegs) { 461 if (!Live.count(SubReg)) 462 // Skip if this sub-register isn't defined. 463 continue; 464 HandlePhysRegKill(SubReg, MI); 465 } 466 467 if (MI) 468 Defs.push_back(Reg); // Remember this def. 469} 470 471void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, 472 SmallVector<unsigned, 4> &Defs) { 473 while (!Defs.empty()) { 474 unsigned Reg = Defs.back(); 475 Defs.pop_back(); 476 PhysRegDef[Reg] = MI; 477 PhysRegUse[Reg] = NULL; 478 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 479 unsigned SubReg = *SubRegs; ++SubRegs) { 480 PhysRegDef[SubReg] = MI; 481 PhysRegUse[SubReg] = NULL; 482 } 483 } 484} 485 486bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 487 MF = &mf; 488 MRI = &mf.getRegInfo(); 489 TRI = MF->getTarget().getRegisterInfo(); 490 491 ReservedRegisters = TRI->getReservedRegs(mf); 492 493 unsigned NumRegs = TRI->getNumRegs(); 494 PhysRegDef = new MachineInstr*[NumRegs]; 495 PhysRegUse = new MachineInstr*[NumRegs]; 496 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 497 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 498 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 499 PHIJoins.clear(); 500 501 /// Get some space for a respectable number of registers. 502 VirtRegInfo.resize(64); 503 504 analyzePHINodes(mf); 505 506 // Calculate live variable information in depth first order on the CFG of the 507 // function. This guarantees that we will see the definition of a virtual 508 // register before its uses due to dominance properties of SSA (except for PHI 509 // nodes, which are treated as a special case). 510 MachineBasicBlock *Entry = MF->begin(); 511 SmallPtrSet<MachineBasicBlock*,16> Visited; 512 513 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 514 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 515 DFI != E; ++DFI) { 516 MachineBasicBlock *MBB = *DFI; 517 518 // Mark live-in registers as live-in. 519 SmallVector<unsigned, 4> Defs; 520 for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(), 521 EE = MBB->livein_end(); II != EE; ++II) { 522 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 523 "Cannot have a live-in virtual register!"); 524 HandlePhysRegDef(*II, 0, Defs); 525 } 526 527 // Loop over all of the instructions, processing them. 528 DistanceMap.clear(); 529 unsigned Dist = 0; 530 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 531 I != E; ++I) { 532 MachineInstr *MI = I; 533 if (MI->isDebugValue()) 534 continue; 535 DistanceMap.insert(std::make_pair(MI, Dist++)); 536 537 // Process all of the operands of the instruction... 538 unsigned NumOperandsToProcess = MI->getNumOperands(); 539 540 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 541 // of the uses. They will be handled in other basic blocks. 542 if (MI->isPHI()) 543 NumOperandsToProcess = 1; 544 545 // Clear kill and dead markers. LV will recompute them. 546 SmallVector<unsigned, 4> UseRegs; 547 SmallVector<unsigned, 4> DefRegs; 548 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 549 MachineOperand &MO = MI->getOperand(i); 550 if (!MO.isReg() || MO.getReg() == 0) 551 continue; 552 unsigned MOReg = MO.getReg(); 553 if (MO.isUse()) { 554 MO.setIsKill(false); 555 UseRegs.push_back(MOReg); 556 } else /*MO.isDef()*/ { 557 MO.setIsDead(false); 558 DefRegs.push_back(MOReg); 559 } 560 } 561 562 // Process all uses. 563 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 564 unsigned MOReg = UseRegs[i]; 565 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 566 HandleVirtRegUse(MOReg, MBB, MI); 567 else if (!ReservedRegisters[MOReg]) 568 HandlePhysRegUse(MOReg, MI); 569 } 570 571 // Process all defs. 572 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 573 unsigned MOReg = DefRegs[i]; 574 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 575 HandleVirtRegDef(MOReg, MI); 576 else if (!ReservedRegisters[MOReg]) 577 HandlePhysRegDef(MOReg, MI, Defs); 578 } 579 UpdatePhysRegDefs(MI, Defs); 580 } 581 582 // Handle any virtual assignments from PHI nodes which might be at the 583 // bottom of this basic block. We check all of our successor blocks to see 584 // if they have PHI nodes, and if so, we simulate an assignment at the end 585 // of the current block. 586 if (!PHIVarInfo[MBB->getNumber()].empty()) { 587 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 588 589 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 590 E = VarInfoVec.end(); I != E; ++I) 591 // Mark it alive only in the block we are representing. 592 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 593 MBB); 594 } 595 596 // Finally, if the last instruction in the block is a return, make sure to 597 // mark it as using all of the live-out values in the function. 598 // Things marked both call and return are tail calls; do not do this for 599 // them. The tail callee need not take the same registers as input 600 // that it produces as output, and there are dependencies for its input 601 // registers elsewhere. 602 if (!MBB->empty() && MBB->back().getDesc().isReturn() 603 && !MBB->back().getDesc().isCall()) { 604 MachineInstr *Ret = &MBB->back(); 605 606 for (MachineRegisterInfo::liveout_iterator 607 I = MF->getRegInfo().liveout_begin(), 608 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 609 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 610 "Cannot have a live-out virtual register!"); 611 HandlePhysRegUse(*I, Ret); 612 613 // Add live-out registers as implicit uses. 614 if (!Ret->readsRegister(*I)) 615 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 616 } 617 } 618 619 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 620 // available at the end of the basic block. 621 for (unsigned i = 0; i != NumRegs; ++i) 622 if (PhysRegDef[i] || PhysRegUse[i]) 623 HandlePhysRegDef(i, 0, Defs); 624 625 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 626 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 627 } 628 629 // Convert and transfer the dead / killed information we have gathered into 630 // VirtRegInfo onto MI's. 631 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 632 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 633 if (VirtRegInfo[i].Kills[j] == 634 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 635 VirtRegInfo[i] 636 .Kills[j]->addRegisterDead(i + 637 TargetRegisterInfo::FirstVirtualRegister, 638 TRI); 639 else 640 VirtRegInfo[i] 641 .Kills[j]->addRegisterKilled(i + 642 TargetRegisterInfo::FirstVirtualRegister, 643 TRI); 644 645 // Check to make sure there are no unreachable blocks in the MC CFG for the 646 // function. If so, it is due to a bug in the instruction selector or some 647 // other part of the code generator if this happens. 648#ifndef NDEBUG 649 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 650 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 651#endif 652 653 delete[] PhysRegDef; 654 delete[] PhysRegUse; 655 delete[] PHIVarInfo; 656 657 return false; 658} 659 660/// replaceKillInstruction - Update register kill info by replacing a kill 661/// instruction with a new one. 662void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 663 MachineInstr *NewMI) { 664 VarInfo &VI = getVarInfo(Reg); 665 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 666} 667 668/// removeVirtualRegistersKilled - Remove all killed info for the specified 669/// instruction. 670void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 671 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 672 MachineOperand &MO = MI->getOperand(i); 673 if (MO.isReg() && MO.isKill()) { 674 MO.setIsKill(false); 675 unsigned Reg = MO.getReg(); 676 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 677 bool removed = getVarInfo(Reg).removeKill(MI); 678 assert(removed && "kill not in register's VarInfo?"); 679 removed = true; 680 } 681 } 682 } 683} 684 685/// analyzePHINodes - Gather information about the PHI nodes in here. In 686/// particular, we want to map the variable information of a virtual register 687/// which is used in a PHI node. We map that to the BB the vreg is coming from. 688/// 689void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 690 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 691 I != E; ++I) 692 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 693 BBI != BBE && BBI->isPHI(); ++BBI) 694 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 695 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 696 .push_back(BBI->getOperand(i).getReg()); 697} 698 699bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, 700 unsigned Reg, 701 MachineRegisterInfo &MRI) { 702 unsigned Num = MBB.getNumber(); 703 704 // Reg is live-through. 705 if (AliveBlocks.test(Num)) 706 return true; 707 708 // Registers defined in MBB cannot be live in. 709 const MachineInstr *Def = MRI.getVRegDef(Reg); 710 if (Def && Def->getParent() == &MBB) 711 return false; 712 713 // Reg was not defined in MBB, was it killed here? 714 return findKill(&MBB); 715} 716 717bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { 718 LiveVariables::VarInfo &VI = getVarInfo(Reg); 719 720 // Loop over all of the successors of the basic block, checking to see if 721 // the value is either live in the block, or if it is killed in the block. 722 std::vector<MachineBasicBlock*> OpSuccBlocks; 723 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), 724 E = MBB.succ_end(); SI != E; ++SI) { 725 MachineBasicBlock *SuccMBB = *SI; 726 727 // Is it alive in this successor? 728 unsigned SuccIdx = SuccMBB->getNumber(); 729 if (VI.AliveBlocks.test(SuccIdx)) 730 return true; 731 OpSuccBlocks.push_back(SuccMBB); 732 } 733 734 // Check to see if this value is live because there is a use in a successor 735 // that kills it. 736 switch (OpSuccBlocks.size()) { 737 case 1: { 738 MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; 739 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 740 if (VI.Kills[i]->getParent() == SuccMBB) 741 return true; 742 break; 743 } 744 case 2: { 745 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; 746 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 747 if (VI.Kills[i]->getParent() == SuccMBB1 || 748 VI.Kills[i]->getParent() == SuccMBB2) 749 return true; 750 break; 751 } 752 default: 753 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); 754 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 755 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), 756 VI.Kills[i]->getParent())) 757 return true; 758 } 759 return false; 760} 761 762/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All 763/// variables that are live out of DomBB will be marked as passing live through 764/// BB. 765void LiveVariables::addNewBlock(MachineBasicBlock *BB, 766 MachineBasicBlock *DomBB, 767 MachineBasicBlock *SuccBB) { 768 const unsigned NumNew = BB->getNumber(); 769 770 // All registers used by PHI nodes in SuccBB must be live through BB. 771 for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), 772 BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) 773 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 774 if (BBI->getOperand(i+1).getMBB() == BB) 775 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); 776 777 // Update info for all live variables 778 for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, 779 E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) { 780 VarInfo &VI = getVarInfo(Reg); 781 if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) 782 VI.AliveBlocks.set(NumNew); 783 } 784} 785