LiveVariables.cpp revision 60c7df2c9311fc35ab02f1600419e91d55d5b133
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/CodeGen/MachineRegisterInfo.h" 32#include "llvm/CodeGen/Passes.h" 33#include "llvm/Target/TargetRegisterInfo.h" 34#include "llvm/Target/TargetInstrInfo.h" 35#include "llvm/Target/TargetMachine.h" 36#include "llvm/ADT/DepthFirstIterator.h" 37#include "llvm/ADT/SmallPtrSet.h" 38#include "llvm/ADT/SmallSet.h" 39#include "llvm/ADT/STLExtras.h" 40#include <algorithm> 41using namespace llvm; 42 43char LiveVariables::ID = 0; 44static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 45 46 47void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 48 AU.addRequiredID(UnreachableMachineBlockElimID); 49 AU.setPreservesAll(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51} 52 53void LiveVariables::VarInfo::dump() const { 54 errs() << " Alive in blocks: "; 55 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 56 E = AliveBlocks.end(); I != E; ++I) 57 errs() << *I << ", "; 58 errs() << "\n Killed by:"; 59 if (Kills.empty()) 60 errs() << " No instructions.\n"; 61 else { 62 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 63 errs() << "\n #" << i << ": " << *Kills[i]; 64 errs() << "\n"; 65 } 66} 67 68/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 69LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 70 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 71 "getVarInfo: not a virtual register!"); 72 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 73 if (RegIdx >= VirtRegInfo.size()) { 74 if (RegIdx >= 2*VirtRegInfo.size()) 75 VirtRegInfo.resize(RegIdx*2); 76 else 77 VirtRegInfo.resize(2*VirtRegInfo.size()); 78 } 79 return VirtRegInfo[RegIdx]; 80} 81 82void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 83 MachineBasicBlock *DefBlock, 84 MachineBasicBlock *MBB, 85 std::vector<MachineBasicBlock*> &WorkList) { 86 unsigned BBNum = MBB->getNumber(); 87 88 // Check to see if this basic block is one of the killing blocks. If so, 89 // remove it. 90 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 91 if (VRInfo.Kills[i]->getParent() == MBB) { 92 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 93 break; 94 } 95 96 if (MBB == DefBlock) return; // Terminate recursion 97 98 if (VRInfo.AliveBlocks.test(BBNum)) 99 return; // We already know the block is live 100 101 // Mark the variable known alive in this bb 102 VRInfo.AliveBlocks.set(BBNum); 103 104 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 105 E = MBB->pred_rend(); PI != E; ++PI) 106 WorkList.push_back(*PI); 107} 108 109void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 110 MachineBasicBlock *DefBlock, 111 MachineBasicBlock *MBB) { 112 std::vector<MachineBasicBlock*> WorkList; 113 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 114 115 while (!WorkList.empty()) { 116 MachineBasicBlock *Pred = WorkList.back(); 117 WorkList.pop_back(); 118 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 119 } 120} 121 122void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 123 MachineInstr *MI) { 124 assert(MRI->getVRegDef(reg) && "Register use before def!"); 125 126 unsigned BBNum = MBB->getNumber(); 127 128 VarInfo& VRInfo = getVarInfo(reg); 129 VRInfo.NumUses++; 130 131 // Check to see if this basic block is already a kill block. 132 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 133 // Yes, this register is killed in this basic block already. Increase the 134 // live range by updating the kill instruction. 135 VRInfo.Kills.back() = MI; 136 return; 137 } 138 139#ifndef NDEBUG 140 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 141 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 142#endif 143 144 // This situation can occur: 145 // 146 // ,------. 147 // | | 148 // | v 149 // | t2 = phi ... t1 ... 150 // | | 151 // | v 152 // | t1 = ... 153 // | ... = ... t1 ... 154 // | | 155 // `------' 156 // 157 // where there is a use in a PHI node that's a predecessor to the defining 158 // block. We don't want to mark all predecessors as having the value "alive" 159 // in this case. 160 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 161 162 // Add a new kill entry for this basic block. If this virtual register is 163 // already marked as alive in this basic block, that means it is alive in at 164 // least one of the successor blocks, it's not a kill. 165 if (!VRInfo.AliveBlocks.test(BBNum)) 166 VRInfo.Kills.push_back(MI); 167 168 // Update all dominating blocks to mark them as "known live". 169 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 170 E = MBB->pred_end(); PI != E; ++PI) 171 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 172} 173 174void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 175 VarInfo &VRInfo = getVarInfo(Reg); 176 177 if (VRInfo.AliveBlocks.empty()) 178 // If vr is not alive in any block, then defaults to dead. 179 VRInfo.Kills.push_back(MI); 180} 181 182/// FindLastPartialDef - Return the last partial def of the specified register. 183/// Also returns the sub-registers that're defined by the instruction. 184MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 185 SmallSet<unsigned,4> &PartDefRegs) { 186 unsigned LastDefReg = 0; 187 unsigned LastDefDist = 0; 188 MachineInstr *LastDef = NULL; 189 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 190 unsigned SubReg = *SubRegs; ++SubRegs) { 191 MachineInstr *Def = PhysRegDef[SubReg]; 192 if (!Def) 193 continue; 194 unsigned Dist = DistanceMap[Def]; 195 if (Dist > LastDefDist) { 196 LastDefReg = SubReg; 197 LastDef = Def; 198 LastDefDist = Dist; 199 } 200 } 201 202 if (!LastDef) 203 return 0; 204 205 PartDefRegs.insert(LastDefReg); 206 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 207 MachineOperand &MO = LastDef->getOperand(i); 208 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 209 continue; 210 unsigned DefReg = MO.getReg(); 211 if (TRI->isSubRegister(Reg, DefReg)) { 212 PartDefRegs.insert(DefReg); 213 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); 214 unsigned SubReg = *SubRegs; ++SubRegs) 215 PartDefRegs.insert(SubReg); 216 } 217 } 218 return LastDef; 219} 220 221/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 222/// implicit defs to a machine instruction if there was an earlier def of its 223/// super-register. 224void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 225 // If there was a previous use or a "full" def all is well. 226 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) { 227 // Otherwise, the last sub-register def implicitly defines this register. 228 // e.g. 229 // AH = 230 // AL = ... <imp-def EAX>, <imp-kill AH> 231 // = AH 232 // ... 233 // = EAX 234 // All of the sub-registers must have been defined before the use of Reg! 235 SmallSet<unsigned, 4> PartDefRegs; 236 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 237 // If LastPartialDef is NULL, it must be using a livein register. 238 if (LastPartialDef) { 239 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 240 true/*IsImp*/)); 241 PhysRegDef[Reg] = LastPartialDef; 242 SmallSet<unsigned, 8> Processed; 243 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 244 unsigned SubReg = *SubRegs; ++SubRegs) { 245 if (Processed.count(SubReg)) 246 continue; 247 if (PartDefRegs.count(SubReg)) 248 continue; 249 // This part of Reg was defined before the last partial def. It's killed 250 // here. 251 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 252 false/*IsDef*/, 253 true/*IsImp*/)); 254 PhysRegDef[SubReg] = LastPartialDef; 255 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 256 Processed.insert(*SS); 257 } 258 } 259 } 260 261 // Remember this use. 262 PhysRegUse[Reg] = MI; 263 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 264 unsigned SubReg = *SubRegs; ++SubRegs) 265 PhysRegUse[SubReg] = MI; 266} 267 268/// hasRegisterUseBelow - Return true if the specified register is used after 269/// the current instruction and before it's next definition. 270bool LiveVariables::hasRegisterUseBelow(unsigned Reg, 271 MachineBasicBlock::iterator I, 272 MachineBasicBlock *MBB) { 273 if (I == MBB->end()) 274 return false; 275 276 // First find out if there are any uses / defs below. 277 bool hasDistInfo = true; 278 unsigned CurDist = DistanceMap[I]; 279 SmallVector<MachineInstr*, 4> Uses; 280 SmallVector<MachineInstr*, 4> Defs; 281 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), 282 RE = MRI->reg_end(); RI != RE; ++RI) { 283 MachineOperand &UDO = RI.getOperand(); 284 MachineInstr *UDMI = &*RI; 285 if (UDMI->getParent() != MBB) 286 continue; 287 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); 288 bool isBelow = false; 289 if (DI == DistanceMap.end()) { 290 // Must be below if it hasn't been assigned a distance yet. 291 isBelow = true; 292 hasDistInfo = false; 293 } else if (DI->second > CurDist) 294 isBelow = true; 295 if (isBelow) { 296 if (UDO.isUse()) 297 Uses.push_back(UDMI); 298 if (UDO.isDef()) 299 Defs.push_back(UDMI); 300 } 301 } 302 303 if (Uses.empty()) 304 // No uses below. 305 return false; 306 else if (!Uses.empty() && Defs.empty()) 307 // There are uses below but no defs below. 308 return true; 309 // There are both uses and defs below. We need to know which comes first. 310 if (!hasDistInfo) { 311 // Complete DistanceMap for this MBB. This information is computed only 312 // once per MBB. 313 ++I; 314 ++CurDist; 315 for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist) 316 DistanceMap.insert(std::make_pair(I, CurDist)); 317 } 318 319 unsigned EarliestUse = DistanceMap[Uses[0]]; 320 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 321 unsigned Dist = DistanceMap[Uses[i]]; 322 if (Dist < EarliestUse) 323 EarliestUse = Dist; 324 } 325 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 326 unsigned Dist = DistanceMap[Defs[i]]; 327 if (Dist < EarliestUse) 328 // The register is defined before its first use below. 329 return false; 330 } 331 return true; 332} 333 334bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 335 if (!PhysRegUse[Reg] && !PhysRegDef[Reg]) 336 return false; 337 338 MachineInstr *LastRefOrPartRef = PhysRegUse[Reg] 339 ? PhysRegUse[Reg] : PhysRegDef[Reg]; 340 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 341 // The whole register is used. 342 // AL = 343 // AH = 344 // 345 // = AX 346 // = AL, AX<imp-use, kill> 347 // AX = 348 // 349 // Or whole register is defined, but not used at all. 350 // AX<dead> = 351 // ... 352 // AX = 353 // 354 // Or whole register is defined, but only partly used. 355 // AX<dead> = AL<imp-def> 356 // = AL<kill> 357 // AX = 358 SmallSet<unsigned, 8> PartUses; 359 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 360 unsigned SubReg = *SubRegs; ++SubRegs) { 361 if (MachineInstr *Use = PhysRegUse[SubReg]) { 362 PartUses.insert(SubReg); 363 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 364 PartUses.insert(*SS); 365 unsigned Dist = DistanceMap[Use]; 366 if (Dist > LastRefOrPartRefDist) { 367 LastRefOrPartRefDist = Dist; 368 LastRefOrPartRef = Use; 369 } 370 } 371 } 372 373 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) 374 // If the last reference is the last def, then it's not used at all. 375 // That is, unless we are currently processing the last reference itself. 376 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 377 378 // Partial uses. Mark register def dead and add implicit def of 379 // sub-registers which are used. 380 // EAX<dead> = op AL<imp-def> 381 // That is, EAX def is dead but AL def extends pass it. 382 // Enable this after live interval analysis is fixed to improve codegen! 383 else if (!PhysRegUse[Reg]) { 384 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 385 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 386 unsigned SubReg = *SubRegs; ++SubRegs) { 387 if (PartUses.count(SubReg)) { 388 bool NeedDef = true; 389 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 390 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 391 if (MO) { 392 NeedDef = false; 393 assert(!MO->isDead()); 394 } 395 } 396 if (NeedDef) 397 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 398 true, true)); 399 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 400 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 401 PartUses.erase(*SS); 402 } 403 } 404 } 405 else 406 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 407 return true; 408} 409 410void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 411 // What parts of the register are previously defined? 412 SmallSet<unsigned, 32> Live; 413 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 414 Live.insert(Reg); 415 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 416 Live.insert(*SS); 417 } else { 418 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 419 unsigned SubReg = *SubRegs; ++SubRegs) { 420 // If a register isn't itself defined, but all parts that make up of it 421 // are defined, then consider it also defined. 422 // e.g. 423 // AL = 424 // AH = 425 // = AX 426 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 427 Live.insert(SubReg); 428 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 429 Live.insert(*SS); 430 } 431 } 432 } 433 434 // Start from the largest piece, find the last time any part of the register 435 // is referenced. 436 if (!HandlePhysRegKill(Reg, MI)) { 437 // Only some of the sub-registers are used. 438 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 439 unsigned SubReg = *SubRegs; ++SubRegs) { 440 if (!Live.count(SubReg)) 441 // Skip if this sub-register isn't defined. 442 continue; 443 if (HandlePhysRegKill(SubReg, MI)) { 444 Live.erase(SubReg); 445 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 446 Live.erase(*SS); 447 } 448 } 449 assert(Live.empty() && "Not all defined registers are killed / dead?"); 450 } 451 452 if (MI) { 453 // Does this extend the live range of a super-register? 454 SmallSet<unsigned, 8> Processed; 455 for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); 456 unsigned SuperReg = *SuperRegs; ++SuperRegs) { 457 if (Processed.count(SuperReg)) 458 continue; 459 MachineInstr *LastRef = PhysRegUse[SuperReg] 460 ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg]; 461 if (LastRef && LastRef != MI) { 462 // The larger register is previously defined. Now a smaller part is 463 // being re-defined. Treat it as read/mod/write if there are uses 464 // below. 465 // EAX = 466 // AX = EAX<imp-use,kill>, EAX<imp-def> 467 // ... 468 /// = EAX 469 if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) { 470 MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/, 471 true/*IsImp*/,true/*IsKill*/)); 472 MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/, 473 true/*IsImp*/)); 474 PhysRegDef[SuperReg] = MI; 475 PhysRegUse[SuperReg] = NULL; 476 Processed.insert(SuperReg); 477 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 478 PhysRegDef[*SS] = MI; 479 PhysRegUse[*SS] = NULL; 480 Processed.insert(*SS); 481 } 482 } else { 483 // Otherwise, the super register is killed. 484 if (HandlePhysRegKill(SuperReg, MI)) { 485 PhysRegDef[SuperReg] = NULL; 486 PhysRegUse[SuperReg] = NULL; 487 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 488 PhysRegDef[*SS] = NULL; 489 PhysRegUse[*SS] = NULL; 490 Processed.insert(*SS); 491 } 492 } 493 } 494 } 495 } 496 497 // Remember this def. 498 PhysRegDef[Reg] = MI; 499 PhysRegUse[Reg] = NULL; 500 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 501 unsigned SubReg = *SubRegs; ++SubRegs) { 502 PhysRegDef[SubReg] = MI; 503 PhysRegUse[SubReg] = NULL; 504 } 505 } 506} 507 508bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 509 MF = &mf; 510 MRI = &mf.getRegInfo(); 511 TRI = MF->getTarget().getRegisterInfo(); 512 513 ReservedRegisters = TRI->getReservedRegs(mf); 514 515 unsigned NumRegs = TRI->getNumRegs(); 516 PhysRegDef = new MachineInstr*[NumRegs]; 517 PhysRegUse = new MachineInstr*[NumRegs]; 518 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 519 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 520 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 521 522 /// Get some space for a respectable number of registers. 523 VirtRegInfo.resize(64); 524 525 analyzePHINodes(mf); 526 527 // Calculate live variable information in depth first order on the CFG of the 528 // function. This guarantees that we will see the definition of a virtual 529 // register before its uses due to dominance properties of SSA (except for PHI 530 // nodes, which are treated as a special case). 531 MachineBasicBlock *Entry = MF->begin(); 532 SmallPtrSet<MachineBasicBlock*,16> Visited; 533 534 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 535 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 536 DFI != E; ++DFI) { 537 MachineBasicBlock *MBB = *DFI; 538 539 // Mark live-in registers as live-in. 540 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 541 EE = MBB->livein_end(); II != EE; ++II) { 542 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 543 "Cannot have a live-in virtual register!"); 544 HandlePhysRegDef(*II, 0); 545 } 546 547 // Loop over all of the instructions, processing them. 548 DistanceMap.clear(); 549 unsigned Dist = 0; 550 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 551 I != E; ++I) { 552 MachineInstr *MI = I; 553 DistanceMap.insert(std::make_pair(MI, Dist++)); 554 555 // Process all of the operands of the instruction... 556 unsigned NumOperandsToProcess = MI->getNumOperands(); 557 558 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 559 // of the uses. They will be handled in other basic blocks. 560 if (MI->getOpcode() == TargetInstrInfo::PHI) 561 NumOperandsToProcess = 1; 562 563 SmallVector<unsigned, 4> UseRegs; 564 SmallVector<unsigned, 4> DefRegs; 565 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 566 const MachineOperand &MO = MI->getOperand(i); 567 if (!MO.isReg() || MO.getReg() == 0) 568 continue; 569 unsigned MOReg = MO.getReg(); 570 if (MO.isUse()) 571 UseRegs.push_back(MOReg); 572 if (MO.isDef()) 573 DefRegs.push_back(MOReg); 574 } 575 576 // Process all uses. 577 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 578 unsigned MOReg = UseRegs[i]; 579 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 580 HandleVirtRegUse(MOReg, MBB, MI); 581 else if (!ReservedRegisters[MOReg]) 582 HandlePhysRegUse(MOReg, MI); 583 } 584 585 // Process all defs. 586 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 587 unsigned MOReg = DefRegs[i]; 588 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 589 HandleVirtRegDef(MOReg, MI); 590 else if (!ReservedRegisters[MOReg]) 591 HandlePhysRegDef(MOReg, MI); 592 } 593 } 594 595 // Handle any virtual assignments from PHI nodes which might be at the 596 // bottom of this basic block. We check all of our successor blocks to see 597 // if they have PHI nodes, and if so, we simulate an assignment at the end 598 // of the current block. 599 if (!PHIVarInfo[MBB->getNumber()].empty()) { 600 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 601 602 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 603 E = VarInfoVec.end(); I != E; ++I) 604 // Mark it alive only in the block we are representing. 605 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 606 MBB); 607 } 608 609 // Finally, if the last instruction in the block is a return, make sure to 610 // mark it as using all of the live-out values in the function. 611 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 612 MachineInstr *Ret = &MBB->back(); 613 614 for (MachineRegisterInfo::liveout_iterator 615 I = MF->getRegInfo().liveout_begin(), 616 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 617 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 618 "Cannot have a live-out virtual register!"); 619 HandlePhysRegUse(*I, Ret); 620 621 // Add live-out registers as implicit uses. 622 if (!Ret->readsRegister(*I)) 623 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 624 } 625 } 626 627 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 628 // available at the end of the basic block. 629 for (unsigned i = 0; i != NumRegs; ++i) 630 if (PhysRegDef[i] || PhysRegUse[i]) 631 HandlePhysRegDef(i, 0); 632 633 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 634 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 635 } 636 637 // Convert and transfer the dead / killed information we have gathered into 638 // VirtRegInfo onto MI's. 639 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 640 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 641 if (VirtRegInfo[i].Kills[j] == 642 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 643 VirtRegInfo[i] 644 .Kills[j]->addRegisterDead(i + 645 TargetRegisterInfo::FirstVirtualRegister, 646 TRI); 647 else 648 VirtRegInfo[i] 649 .Kills[j]->addRegisterKilled(i + 650 TargetRegisterInfo::FirstVirtualRegister, 651 TRI); 652 653 // Check to make sure there are no unreachable blocks in the MC CFG for the 654 // function. If so, it is due to a bug in the instruction selector or some 655 // other part of the code generator if this happens. 656#ifndef NDEBUG 657 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 658 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 659#endif 660 661 delete[] PhysRegDef; 662 delete[] PhysRegUse; 663 delete[] PHIVarInfo; 664 665 return false; 666} 667 668/// replaceKillInstruction - Update register kill info by replacing a kill 669/// instruction with a new one. 670void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 671 MachineInstr *NewMI) { 672 VarInfo &VI = getVarInfo(Reg); 673 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 674} 675 676/// removeVirtualRegistersKilled - Remove all killed info for the specified 677/// instruction. 678void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 679 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 680 MachineOperand &MO = MI->getOperand(i); 681 if (MO.isReg() && MO.isKill()) { 682 MO.setIsKill(false); 683 unsigned Reg = MO.getReg(); 684 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 685 bool removed = getVarInfo(Reg).removeKill(MI); 686 assert(removed && "kill not in register's VarInfo?"); 687 removed = true; 688 } 689 } 690 } 691} 692 693/// analyzePHINodes - Gather information about the PHI nodes in here. In 694/// particular, we want to map the variable information of a virtual register 695/// which is used in a PHI node. We map that to the BB the vreg is coming from. 696/// 697void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 698 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 699 I != E; ++I) 700 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 701 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 702 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 703 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 704 .push_back(BBI->getOperand(i).getReg()); 705} 706