LiveVariables.cpp revision 81bf03eb5cd68243eabb52505105aa5f4a831bf3
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
46
47
48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49  AU.addRequiredID(UnreachableMachineBlockElimID);
50  AU.setPreservesAll();
51  MachineFunctionPass::getAnalysisUsage(AU);
52}
53
54MachineInstr *
55LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
56  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
57    if (Kills[i]->getParent() == MBB)
58      return Kills[i];
59  return NULL;
60}
61
62void LiveVariables::VarInfo::dump() const {
63  dbgs() << "  Alive in blocks: ";
64  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
65           E = AliveBlocks.end(); I != E; ++I)
66    dbgs() << *I << ", ";
67  dbgs() << "\n  Killed by:";
68  if (Kills.empty())
69    dbgs() << " No instructions.\n";
70  else {
71    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
72      dbgs() << "\n    #" << i << ": " << *Kills[i];
73    dbgs() << "\n";
74  }
75}
76
77/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
78LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
79  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
80         "getVarInfo: not a virtual register!");
81  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
82  if (RegIdx >= VirtRegInfo.size()) {
83    if (RegIdx >= 2*VirtRegInfo.size())
84      VirtRegInfo.resize(RegIdx*2);
85    else
86      VirtRegInfo.resize(2*VirtRegInfo.size());
87  }
88  return VirtRegInfo[RegIdx];
89}
90
91void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
92                                            MachineBasicBlock *DefBlock,
93                                            MachineBasicBlock *MBB,
94                                    std::vector<MachineBasicBlock*> &WorkList) {
95  unsigned BBNum = MBB->getNumber();
96
97  // Check to see if this basic block is one of the killing blocks.  If so,
98  // remove it.
99  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
100    if (VRInfo.Kills[i]->getParent() == MBB) {
101      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
102      break;
103    }
104
105  if (MBB == DefBlock) return;  // Terminate recursion
106
107  if (VRInfo.AliveBlocks.test(BBNum))
108    return;  // We already know the block is live
109
110  // Mark the variable known alive in this bb
111  VRInfo.AliveBlocks.set(BBNum);
112
113  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
114         E = MBB->pred_rend(); PI != E; ++PI)
115    WorkList.push_back(*PI);
116}
117
118void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
119                                            MachineBasicBlock *DefBlock,
120                                            MachineBasicBlock *MBB) {
121  std::vector<MachineBasicBlock*> WorkList;
122  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
123
124  while (!WorkList.empty()) {
125    MachineBasicBlock *Pred = WorkList.back();
126    WorkList.pop_back();
127    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
128  }
129}
130
131void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
132                                     MachineInstr *MI) {
133  assert(MRI->getVRegDef(reg) && "Register use before def!");
134
135  unsigned BBNum = MBB->getNumber();
136
137  VarInfo& VRInfo = getVarInfo(reg);
138  VRInfo.NumUses++;
139
140  // Check to see if this basic block is already a kill block.
141  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
142    // Yes, this register is killed in this basic block already. Increase the
143    // live range by updating the kill instruction.
144    VRInfo.Kills.back() = MI;
145    return;
146  }
147
148#ifndef NDEBUG
149  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
150    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
151#endif
152
153  // This situation can occur:
154  //
155  //     ,------.
156  //     |      |
157  //     |      v
158  //     |   t2 = phi ... t1 ...
159  //     |      |
160  //     |      v
161  //     |   t1 = ...
162  //     |  ... = ... t1 ...
163  //     |      |
164  //     `------'
165  //
166  // where there is a use in a PHI node that's a predecessor to the defining
167  // block. We don't want to mark all predecessors as having the value "alive"
168  // in this case.
169  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
170
171  // Add a new kill entry for this basic block. If this virtual register is
172  // already marked as alive in this basic block, that means it is alive in at
173  // least one of the successor blocks, it's not a kill.
174  if (!VRInfo.AliveBlocks.test(BBNum))
175    VRInfo.Kills.push_back(MI);
176
177  // Update all dominating blocks to mark them as "known live".
178  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
179         E = MBB->pred_end(); PI != E; ++PI)
180    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
181}
182
183void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
184  VarInfo &VRInfo = getVarInfo(Reg);
185
186  if (VRInfo.AliveBlocks.empty())
187    // If vr is not alive in any block, then defaults to dead.
188    VRInfo.Kills.push_back(MI);
189}
190
191/// FindLastPartialDef - Return the last partial def of the specified register.
192/// Also returns the sub-registers that're defined by the instruction.
193MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
194                                            SmallSet<unsigned,4> &PartDefRegs) {
195  unsigned LastDefReg = 0;
196  unsigned LastDefDist = 0;
197  MachineInstr *LastDef = NULL;
198  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
199       unsigned SubReg = *SubRegs; ++SubRegs) {
200    MachineInstr *Def = PhysRegDef[SubReg];
201    if (!Def)
202      continue;
203    unsigned Dist = DistanceMap[Def];
204    if (Dist > LastDefDist) {
205      LastDefReg  = SubReg;
206      LastDef     = Def;
207      LastDefDist = Dist;
208    }
209  }
210
211  if (!LastDef)
212    return 0;
213
214  PartDefRegs.insert(LastDefReg);
215  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
216    MachineOperand &MO = LastDef->getOperand(i);
217    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
218      continue;
219    unsigned DefReg = MO.getReg();
220    if (TRI->isSubRegister(Reg, DefReg)) {
221      PartDefRegs.insert(DefReg);
222      for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg);
223           unsigned SubReg = *SubRegs; ++SubRegs)
224        PartDefRegs.insert(SubReg);
225    }
226  }
227  return LastDef;
228}
229
230/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
231/// implicit defs to a machine instruction if there was an earlier def of its
232/// super-register.
233void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
234  MachineInstr *LastDef = PhysRegDef[Reg];
235  // If there was a previous use or a "full" def all is well.
236  if (!LastDef && !PhysRegUse[Reg]) {
237    // Otherwise, the last sub-register def implicitly defines this register.
238    // e.g.
239    // AH =
240    // AL = ... <imp-def EAX>, <imp-kill AH>
241    //    = AH
242    // ...
243    //    = EAX
244    // All of the sub-registers must have been defined before the use of Reg!
245    SmallSet<unsigned, 4> PartDefRegs;
246    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
247    // If LastPartialDef is NULL, it must be using a livein register.
248    if (LastPartialDef) {
249      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
250                                                           true/*IsImp*/));
251      PhysRegDef[Reg] = LastPartialDef;
252      SmallSet<unsigned, 8> Processed;
253      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
254           unsigned SubReg = *SubRegs; ++SubRegs) {
255        if (Processed.count(SubReg))
256          continue;
257        if (PartDefRegs.count(SubReg))
258          continue;
259        // This part of Reg was defined before the last partial def. It's killed
260        // here.
261        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
262                                                             false/*IsDef*/,
263                                                             true/*IsImp*/));
264        PhysRegDef[SubReg] = LastPartialDef;
265        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
266          Processed.insert(*SS);
267      }
268    }
269  }
270  else if (LastDef && !PhysRegUse[Reg] &&
271           !LastDef->findRegisterDefOperand(Reg))
272    // Last def defines the super register, add an implicit def of reg.
273    LastDef->addOperand(MachineOperand::CreateReg(Reg,
274                                                 true/*IsDef*/, true/*IsImp*/));
275
276  // Remember this use.
277  PhysRegUse[Reg]  = MI;
278  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
279       unsigned SubReg = *SubRegs; ++SubRegs)
280    PhysRegUse[SubReg] =  MI;
281}
282
283/// FindLastRefOrPartRef - Return the last reference or partial reference of
284/// the specified register.
285MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
286  MachineInstr *LastDef = PhysRegDef[Reg];
287  MachineInstr *LastUse = PhysRegUse[Reg];
288  if (!LastDef && !LastUse)
289    return false;
290
291  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
292  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
293  unsigned LastPartDefDist = 0;
294  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
295       unsigned SubReg = *SubRegs; ++SubRegs) {
296    MachineInstr *Def = PhysRegDef[SubReg];
297    if (Def && Def != LastDef) {
298      // There was a def of this sub-register in between. This is a partial
299      // def, keep track of the last one.
300      unsigned Dist = DistanceMap[Def];
301      if (Dist > LastPartDefDist)
302        LastPartDefDist = Dist;
303    } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
304      unsigned Dist = DistanceMap[Use];
305      if (Dist > LastRefOrPartRefDist) {
306        LastRefOrPartRefDist = Dist;
307        LastRefOrPartRef = Use;
308      }
309    }
310  }
311
312  return LastRefOrPartRef;
313}
314
315bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
316  MachineInstr *LastDef = PhysRegDef[Reg];
317  MachineInstr *LastUse = PhysRegUse[Reg];
318  if (!LastDef && !LastUse)
319    return false;
320
321  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
322  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
323  // The whole register is used.
324  // AL =
325  // AH =
326  //
327  //    = AX
328  //    = AL, AX<imp-use, kill>
329  // AX =
330  //
331  // Or whole register is defined, but not used at all.
332  // AX<dead> =
333  // ...
334  // AX =
335  //
336  // Or whole register is defined, but only partly used.
337  // AX<dead> = AL<imp-def>
338  //    = AL<kill>
339  // AX =
340  MachineInstr *LastPartDef = 0;
341  unsigned LastPartDefDist = 0;
342  SmallSet<unsigned, 8> PartUses;
343  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
344       unsigned SubReg = *SubRegs; ++SubRegs) {
345    MachineInstr *Def = PhysRegDef[SubReg];
346    if (Def && Def != LastDef) {
347      // There was a def of this sub-register in between. This is a partial
348      // def, keep track of the last one.
349      unsigned Dist = DistanceMap[Def];
350      if (Dist > LastPartDefDist) {
351        LastPartDefDist = Dist;
352        LastPartDef = Def;
353      }
354      continue;
355    }
356    if (MachineInstr *Use = PhysRegUse[SubReg]) {
357      PartUses.insert(SubReg);
358      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
359        PartUses.insert(*SS);
360      unsigned Dist = DistanceMap[Use];
361      if (Dist > LastRefOrPartRefDist) {
362        LastRefOrPartRefDist = Dist;
363        LastRefOrPartRef = Use;
364      }
365    }
366  }
367
368  if (!PhysRegUse[Reg]) {
369    // Partial uses. Mark register def dead and add implicit def of
370    // sub-registers which are used.
371    // EAX<dead>  = op  AL<imp-def>
372    // That is, EAX def is dead but AL def extends pass it.
373    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
374    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
375         unsigned SubReg = *SubRegs; ++SubRegs) {
376      if (!PartUses.count(SubReg))
377        continue;
378      bool NeedDef = true;
379      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
380        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
381        if (MO) {
382          NeedDef = false;
383          assert(!MO->isDead());
384        }
385      }
386      if (NeedDef)
387        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
388                                                 true/*IsDef*/, true/*IsImp*/));
389      MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
390      if (LastSubRef)
391        LastSubRef->addRegisterKilled(SubReg, TRI, true);
392      else {
393        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
394        PhysRegUse[SubReg] = LastRefOrPartRef;
395        for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg);
396             unsigned SSReg = *SSRegs; ++SSRegs)
397          PhysRegUse[SSReg] = LastRefOrPartRef;
398      }
399      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
400        PartUses.erase(*SS);
401    }
402  } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
403    if (LastPartDef)
404      // The last partial def kills the register.
405      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
406                                                true/*IsImp*/, true/*IsKill*/));
407    else {
408      MachineOperand *MO =
409        LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
410      bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
411      // If the last reference is the last def, then it's not used at all.
412      // That is, unless we are currently processing the last reference itself.
413      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
414      if (NeedEC) {
415        // If we are adding a subreg def and the superreg def is marked early
416        // clobber, add an early clobber marker to the subreg def.
417        MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
418        if (MO)
419          MO->setIsEarlyClobber();
420      }
421    }
422  } else
423    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
424  return true;
425}
426
427void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
428                                     SmallVector<unsigned, 4> &Defs) {
429  // What parts of the register are previously defined?
430  SmallSet<unsigned, 32> Live;
431  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
432    Live.insert(Reg);
433    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
434      Live.insert(*SS);
435  } else {
436    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
437         unsigned SubReg = *SubRegs; ++SubRegs) {
438      // If a register isn't itself defined, but all parts that make up of it
439      // are defined, then consider it also defined.
440      // e.g.
441      // AL =
442      // AH =
443      //    = AX
444      if (Live.count(SubReg))
445        continue;
446      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
447        Live.insert(SubReg);
448        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
449          Live.insert(*SS);
450      }
451    }
452  }
453
454  // Start from the largest piece, find the last time any part of the register
455  // is referenced.
456  HandlePhysRegKill(Reg, MI);
457  // Only some of the sub-registers are used.
458  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
459       unsigned SubReg = *SubRegs; ++SubRegs) {
460    if (!Live.count(SubReg))
461      // Skip if this sub-register isn't defined.
462      continue;
463    HandlePhysRegKill(SubReg, MI);
464  }
465
466  if (MI)
467    Defs.push_back(Reg);  // Remember this def.
468}
469
470void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
471                                      SmallVector<unsigned, 4> &Defs) {
472  while (!Defs.empty()) {
473    unsigned Reg = Defs.back();
474    Defs.pop_back();
475    PhysRegDef[Reg]  = MI;
476    PhysRegUse[Reg]  = NULL;
477    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
478         unsigned SubReg = *SubRegs; ++SubRegs) {
479      PhysRegDef[SubReg]  = MI;
480      PhysRegUse[SubReg]  = NULL;
481    }
482  }
483}
484
485namespace {
486  struct RegSorter {
487    const TargetRegisterInfo *TRI;
488
489    RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { }
490    bool operator()(unsigned A, unsigned B) {
491      if (TRI->isSubRegister(A, B))
492        return true;
493      else if (TRI->isSubRegister(B, A))
494        return false;
495      return A < B;
496    }
497  };
498}
499
500bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
501  MF = &mf;
502  MRI = &mf.getRegInfo();
503  TRI = MF->getTarget().getRegisterInfo();
504
505  ReservedRegisters = TRI->getReservedRegs(mf);
506
507  unsigned NumRegs = TRI->getNumRegs();
508  PhysRegDef  = new MachineInstr*[NumRegs];
509  PhysRegUse  = new MachineInstr*[NumRegs];
510  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
511  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
512  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
513  PHIJoins.clear();
514
515  /// Get some space for a respectable number of registers.
516  VirtRegInfo.resize(64);
517
518  analyzePHINodes(mf);
519
520  // Calculate live variable information in depth first order on the CFG of the
521  // function.  This guarantees that we will see the definition of a virtual
522  // register before its uses due to dominance properties of SSA (except for PHI
523  // nodes, which are treated as a special case).
524  MachineBasicBlock *Entry = MF->begin();
525  SmallPtrSet<MachineBasicBlock*,16> Visited;
526
527  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
528         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
529       DFI != E; ++DFI) {
530    MachineBasicBlock *MBB = *DFI;
531
532    // Mark live-in registers as live-in.
533    SmallVector<unsigned, 4> Defs;
534    for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
535           EE = MBB->livein_end(); II != EE; ++II) {
536      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
537             "Cannot have a live-in virtual register!");
538      HandlePhysRegDef(*II, 0, Defs);
539    }
540
541    // Loop over all of the instructions, processing them.
542    DistanceMap.clear();
543    unsigned Dist = 0;
544    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
545         I != E; ++I) {
546      MachineInstr *MI = I;
547      if (MI->isDebugValue())
548        continue;
549      DistanceMap.insert(std::make_pair(MI, Dist++));
550
551      // Process all of the operands of the instruction...
552      unsigned NumOperandsToProcess = MI->getNumOperands();
553
554      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
555      // of the uses.  They will be handled in other basic blocks.
556      if (MI->isPHI())
557        NumOperandsToProcess = 1;
558
559      // Clear kill and dead markers. LV will recompute them.
560      SmallVector<unsigned, 4> UseRegs;
561      SmallVector<unsigned, 4> DefRegs;
562      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
563        MachineOperand &MO = MI->getOperand(i);
564        if (!MO.isReg() || MO.getReg() == 0)
565          continue;
566        unsigned MOReg = MO.getReg();
567        if (MO.isUse()) {
568          MO.setIsKill(false);
569          UseRegs.push_back(MOReg);
570        } else /*MO.isDef()*/ {
571          MO.setIsDead(false);
572          DefRegs.push_back(MOReg);
573        }
574      }
575
576      // Process all uses.
577      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
578        unsigned MOReg = UseRegs[i];
579        if (TargetRegisterInfo::isVirtualRegister(MOReg))
580          HandleVirtRegUse(MOReg, MBB, MI);
581        else if (!ReservedRegisters[MOReg])
582          HandlePhysRegUse(MOReg, MI);
583      }
584
585      // Process all defs.
586      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
587        unsigned MOReg = DefRegs[i];
588        if (TargetRegisterInfo::isVirtualRegister(MOReg))
589          HandleVirtRegDef(MOReg, MI);
590        else if (!ReservedRegisters[MOReg])
591          HandlePhysRegDef(MOReg, MI, Defs);
592      }
593      UpdatePhysRegDefs(MI, Defs);
594    }
595
596    // Handle any virtual assignments from PHI nodes which might be at the
597    // bottom of this basic block.  We check all of our successor blocks to see
598    // if they have PHI nodes, and if so, we simulate an assignment at the end
599    // of the current block.
600    if (!PHIVarInfo[MBB->getNumber()].empty()) {
601      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
602
603      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
604             E = VarInfoVec.end(); I != E; ++I)
605        // Mark it alive only in the block we are representing.
606        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
607                                MBB);
608    }
609
610    // Finally, if the last instruction in the block is a return, make sure to
611    // mark it as using all of the live-out values in the function.
612    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
613      MachineInstr *Ret = &MBB->back();
614
615      for (MachineRegisterInfo::liveout_iterator
616           I = MF->getRegInfo().liveout_begin(),
617           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
618        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
619               "Cannot have a live-out virtual register!");
620        HandlePhysRegUse(*I, Ret);
621
622        // Add live-out registers as implicit uses.
623        if (!Ret->readsRegister(*I))
624          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
625      }
626    }
627
628    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
629    // available at the end of the basic block.
630    for (unsigned i = 0; i != NumRegs; ++i)
631      if (PhysRegDef[i] || PhysRegUse[i])
632        HandlePhysRegDef(i, 0, Defs);
633
634    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
635    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
636  }
637
638  // Convert and transfer the dead / killed information we have gathered into
639  // VirtRegInfo onto MI's.
640  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
641    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
642      if (VirtRegInfo[i].Kills[j] ==
643          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
644        VirtRegInfo[i]
645          .Kills[j]->addRegisterDead(i +
646                                     TargetRegisterInfo::FirstVirtualRegister,
647                                     TRI);
648      else
649        VirtRegInfo[i]
650          .Kills[j]->addRegisterKilled(i +
651                                       TargetRegisterInfo::FirstVirtualRegister,
652                                       TRI);
653
654  // Check to make sure there are no unreachable blocks in the MC CFG for the
655  // function.  If so, it is due to a bug in the instruction selector or some
656  // other part of the code generator if this happens.
657#ifndef NDEBUG
658  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
659    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
660#endif
661
662  delete[] PhysRegDef;
663  delete[] PhysRegUse;
664  delete[] PHIVarInfo;
665
666  return false;
667}
668
669/// replaceKillInstruction - Update register kill info by replacing a kill
670/// instruction with a new one.
671void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
672                                           MachineInstr *NewMI) {
673  VarInfo &VI = getVarInfo(Reg);
674  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
675}
676
677/// removeVirtualRegistersKilled - Remove all killed info for the specified
678/// instruction.
679void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
680  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
681    MachineOperand &MO = MI->getOperand(i);
682    if (MO.isReg() && MO.isKill()) {
683      MO.setIsKill(false);
684      unsigned Reg = MO.getReg();
685      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
686        bool removed = getVarInfo(Reg).removeKill(MI);
687        assert(removed && "kill not in register's VarInfo?");
688        removed = true;
689      }
690    }
691  }
692}
693
694/// analyzePHINodes - Gather information about the PHI nodes in here. In
695/// particular, we want to map the variable information of a virtual register
696/// which is used in a PHI node. We map that to the BB the vreg is coming from.
697///
698void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
699  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
700       I != E; ++I)
701    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
702         BBI != BBE && BBI->isPHI(); ++BBI)
703      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
704        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
705          .push_back(BBI->getOperand(i).getReg());
706}
707
708bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
709                                      unsigned Reg,
710                                      MachineRegisterInfo &MRI) {
711  unsigned Num = MBB.getNumber();
712
713  // Reg is live-through.
714  if (AliveBlocks.test(Num))
715    return true;
716
717  // Registers defined in MBB cannot be live in.
718  const MachineInstr *Def = MRI.getVRegDef(Reg);
719  if (Def && Def->getParent() == &MBB)
720    return false;
721
722 // Reg was not defined in MBB, was it killed here?
723  return findKill(&MBB);
724}
725
726bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
727  LiveVariables::VarInfo &VI = getVarInfo(Reg);
728
729  // Loop over all of the successors of the basic block, checking to see if
730  // the value is either live in the block, or if it is killed in the block.
731  std::vector<MachineBasicBlock*> OpSuccBlocks;
732  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
733         E = MBB.succ_end(); SI != E; ++SI) {
734    MachineBasicBlock *SuccMBB = *SI;
735
736    // Is it alive in this successor?
737    unsigned SuccIdx = SuccMBB->getNumber();
738    if (VI.AliveBlocks.test(SuccIdx))
739      return true;
740    OpSuccBlocks.push_back(SuccMBB);
741  }
742
743  // Check to see if this value is live because there is a use in a successor
744  // that kills it.
745  switch (OpSuccBlocks.size()) {
746  case 1: {
747    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
748    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
749      if (VI.Kills[i]->getParent() == SuccMBB)
750        return true;
751    break;
752  }
753  case 2: {
754    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
755    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
756      if (VI.Kills[i]->getParent() == SuccMBB1 ||
757          VI.Kills[i]->getParent() == SuccMBB2)
758        return true;
759    break;
760  }
761  default:
762    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
763    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
764      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
765                             VI.Kills[i]->getParent()))
766        return true;
767  }
768  return false;
769}
770
771/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
772/// variables that are live out of DomBB will be marked as passing live through
773/// BB.
774void LiveVariables::addNewBlock(MachineBasicBlock *BB,
775                                MachineBasicBlock *DomBB,
776                                MachineBasicBlock *SuccBB) {
777  const unsigned NumNew = BB->getNumber();
778
779  // All registers used by PHI nodes in SuccBB must be live through BB.
780  for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(),
781         BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
782    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
783      if (BBI->getOperand(i+1).getMBB() == BB)
784        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
785
786  // Update info for all live variables
787  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
788         E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) {
789    VarInfo &VI = getVarInfo(Reg);
790    if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
791      VI.AliveBlocks.set(NumNew);
792  }
793}
794