LiveVariables.cpp revision 95299c194d4f852d17554779117c4125c3fae73d
14be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
24be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman//
34be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman//                     The LLVM Compiler Infrastructure
44be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman//
54be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman// This file is distributed under the University of Illinois Open Source
64be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman// License. See LICENSE.TXT for details.
74be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman//
84be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman//===----------------------------------------------------------------------===//
95d1522e5231065d4372b2a6c5d752143a5074e9eDanny Chan//
104be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman// This file implements the LiveVariable analysis pass.  For each machine
114be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman// instruction in the function, this pass calculates the set of registers that
124be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman// are immediately dead after the instruction (i.e., the instruction calculates
134be897b5160dcb875a4daa63416a7821f5f5bbe8Katie Roberts-Hoffman// the value, but it is never used) and the set of registers that are used by
149ece2c6fb01d4c29d23a7238def15bdf656c885cJulius Werner// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Config/alloca.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
46
47
48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49  AU.addRequiredID(UnreachableMachineBlockElimID);
50  AU.setPreservesAll();
51}
52
53void LiveVariables::VarInfo::dump() const {
54  cerr << "  Alive in blocks: ";
55  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
56           E = AliveBlocks.end(); I != E; ++I)
57    cerr << *I << ", ";
58  cerr << "\n  Killed by:";
59  if (Kills.empty())
60    cerr << " No instructions.\n";
61  else {
62    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
63      cerr << "\n    #" << i << ": " << *Kills[i];
64    cerr << "\n";
65  }
66}
67
68/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
69LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
70  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
71         "getVarInfo: not a virtual register!");
72  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
73  if (RegIdx >= VirtRegInfo.size()) {
74    if (RegIdx >= 2*VirtRegInfo.size())
75      VirtRegInfo.resize(RegIdx*2);
76    else
77      VirtRegInfo.resize(2*VirtRegInfo.size());
78  }
79  return VirtRegInfo[RegIdx];
80}
81
82void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
83                                            MachineBasicBlock *DefBlock,
84                                            MachineBasicBlock *MBB,
85                                    std::vector<MachineBasicBlock*> &WorkList) {
86  unsigned BBNum = MBB->getNumber();
87
88  // Check to see if this basic block is one of the killing blocks.  If so,
89  // remove it.
90  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
91    if (VRInfo.Kills[i]->getParent() == MBB) {
92      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
93      break;
94    }
95
96  if (MBB == DefBlock) return;  // Terminate recursion
97
98  if (VRInfo.AliveBlocks.test(BBNum))
99    return;  // We already know the block is live
100
101  // Mark the variable known alive in this bb
102  VRInfo.AliveBlocks.set(BBNum);
103
104  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
105         E = MBB->pred_rend(); PI != E; ++PI)
106    WorkList.push_back(*PI);
107}
108
109void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
110                                            MachineBasicBlock *DefBlock,
111                                            MachineBasicBlock *MBB) {
112  std::vector<MachineBasicBlock*> WorkList;
113  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
114
115  while (!WorkList.empty()) {
116    MachineBasicBlock *Pred = WorkList.back();
117    WorkList.pop_back();
118    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
119  }
120}
121
122void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
123                                     MachineInstr *MI) {
124  assert(MRI->getVRegDef(reg) && "Register use before def!");
125
126  unsigned BBNum = MBB->getNumber();
127
128  VarInfo& VRInfo = getVarInfo(reg);
129  VRInfo.NumUses++;
130
131  // Check to see if this basic block is already a kill block.
132  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
133    // Yes, this register is killed in this basic block already. Increase the
134    // live range by updating the kill instruction.
135    VRInfo.Kills.back() = MI;
136    return;
137  }
138
139#ifndef NDEBUG
140  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
141    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
142#endif
143
144  // This situation can occur:
145  //
146  //     ,------.
147  //     |      |
148  //     |      v
149  //     |   t2 = phi ... t1 ...
150  //     |      |
151  //     |      v
152  //     |   t1 = ...
153  //     |  ... = ... t1 ...
154  //     |      |
155  //     `------'
156  //
157  // where there is a use in a PHI node that's a predecessor to the defining
158  // block. We don't want to mark all predecessors as having the value "alive"
159  // in this case.
160  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
161
162  // Add a new kill entry for this basic block. If this virtual register is
163  // already marked as alive in this basic block, that means it is alive in at
164  // least one of the successor blocks, it's not a kill.
165  if (!VRInfo.AliveBlocks.test(BBNum))
166    VRInfo.Kills.push_back(MI);
167
168  // Update all dominating blocks to mark them as "known live".
169  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
170         E = MBB->pred_end(); PI != E; ++PI)
171    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
172}
173
174void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
175  VarInfo &VRInfo = getVarInfo(Reg);
176
177  if (VRInfo.AliveBlocks.empty())
178    // If vr is not alive in any block, then defaults to dead.
179    VRInfo.Kills.push_back(MI);
180}
181
182/// FindLastPartialDef - Return the last partial def of the specified register.
183/// Also returns the sub-register that's defined.
184MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
185                                                unsigned &PartDefReg) {
186  unsigned LastDefReg = 0;
187  unsigned LastDefDist = 0;
188  MachineInstr *LastDef = NULL;
189  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
190       unsigned SubReg = *SubRegs; ++SubRegs) {
191    MachineInstr *Def = PhysRegDef[SubReg];
192    if (!Def)
193      continue;
194    unsigned Dist = DistanceMap[Def];
195    if (Dist > LastDefDist) {
196      LastDefReg  = SubReg;
197      LastDef     = Def;
198      LastDefDist = Dist;
199    }
200  }
201  PartDefReg = LastDefReg;
202  return LastDef;
203}
204
205/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
206/// implicit defs to a machine instruction if there was an earlier def of its
207/// super-register.
208void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
209  // If there was a previous use or a "full" def all is well.
210  if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
211    // Otherwise, the last sub-register def implicitly defines this register.
212    // e.g.
213    // AH =
214    // AL = ... <imp-def EAX>, <imp-kill AH>
215    //    = AH
216    // ...
217    //    = EAX
218    // All of the sub-registers must have been defined before the use of Reg!
219    unsigned PartDefReg = 0;
220    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
221    // If LastPartialDef is NULL, it must be using a livein register.
222    if (LastPartialDef) {
223      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
224                                                           true/*IsImp*/));
225      PhysRegDef[Reg] = LastPartialDef;
226      SmallSet<unsigned, 8> Processed;
227      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
228           unsigned SubReg = *SubRegs; ++SubRegs) {
229        if (Processed.count(SubReg))
230          continue;
231        if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
232          continue;
233        // This part of Reg was defined before the last partial def. It's killed
234        // here.
235        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
236                                                             false/*IsDef*/,
237                                                             true/*IsImp*/));
238        PhysRegDef[SubReg] = LastPartialDef;
239        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
240          Processed.insert(*SS);
241      }
242    }
243  }
244
245  // Remember this use.
246  PhysRegUse[Reg]  = MI;
247  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
248       unsigned SubReg = *SubRegs; ++SubRegs)
249    PhysRegUse[SubReg] =  MI;
250}
251
252/// hasRegisterUseBelow - Return true if the specified register is used after
253/// the current instruction and before it's next definition.
254bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
255                                        MachineBasicBlock::iterator I,
256                                        MachineBasicBlock *MBB) {
257  if (I == MBB->end())
258    return false;
259
260  // First find out if there are any uses / defs below.
261  bool hasDistInfo = true;
262  unsigned CurDist = DistanceMap[I];
263  SmallVector<MachineInstr*, 4> Uses;
264  SmallVector<MachineInstr*, 4> Defs;
265  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
266         RE = MRI->reg_end(); RI != RE; ++RI) {
267    MachineOperand &UDO = RI.getOperand();
268    MachineInstr *UDMI = &*RI;
269    if (UDMI->getParent() != MBB)
270      continue;
271    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
272    bool isBelow = false;
273    if (DI == DistanceMap.end()) {
274      // Must be below if it hasn't been assigned a distance yet.
275      isBelow = true;
276      hasDistInfo = false;
277    } else if (DI->second > CurDist)
278      isBelow = true;
279    if (isBelow) {
280      if (UDO.isUse())
281        Uses.push_back(UDMI);
282      if (UDO.isDef())
283        Defs.push_back(UDMI);
284    }
285  }
286
287  if (Uses.empty())
288    // No uses below.
289    return false;
290  else if (!Uses.empty() && Defs.empty())
291    // There are uses below but no defs below.
292    return true;
293  // There are both uses and defs below. We need to know which comes first.
294  if (!hasDistInfo) {
295    // Complete DistanceMap for this MBB. This information is computed only
296    // once per MBB.
297    ++I;
298    ++CurDist;
299    for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
300      DistanceMap.insert(std::make_pair(I, CurDist));
301  }
302
303  unsigned EarliestUse = DistanceMap[Uses[0]];
304  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
305    unsigned Dist = DistanceMap[Uses[i]];
306    if (Dist < EarliestUse)
307      EarliestUse = Dist;
308  }
309  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
310    unsigned Dist = DistanceMap[Defs[i]];
311    if (Dist < EarliestUse)
312      // The register is defined before its first use below.
313      return false;
314  }
315  return true;
316}
317
318bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
319  if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
320    return false;
321
322  MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
323    ? PhysRegUse[Reg] : PhysRegDef[Reg];
324  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
325  // The whole register is used.
326  // AL =
327  // AH =
328  //
329  //    = AX
330  //    = AL, AX<imp-use, kill>
331  // AX =
332  //
333  // Or whole register is defined, but not used at all.
334  // AX<dead> =
335  // ...
336  // AX =
337  //
338  // Or whole register is defined, but only partly used.
339  // AX<dead> = AL<imp-def>
340  //    = AL<kill>
341  // AX =
342  SmallSet<unsigned, 8> PartUses;
343  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
344       unsigned SubReg = *SubRegs; ++SubRegs) {
345    if (MachineInstr *Use = PhysRegUse[SubReg]) {
346      PartUses.insert(SubReg);
347      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
348        PartUses.insert(*SS);
349      unsigned Dist = DistanceMap[Use];
350      if (Dist > LastRefOrPartRefDist) {
351        LastRefOrPartRefDist = Dist;
352        LastRefOrPartRef = Use;
353      }
354    }
355  }
356
357  if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI)
358    // If the last reference is the last def, then it's not used at all.
359    // That is, unless we are currently processing the last reference itself.
360    LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
361
362  /* Partial uses. Mark register def dead and add implicit def of
363     sub-registers which are used.
364    FIXME: LiveIntervalAnalysis can't handle this yet!
365    EAX<dead>  = op  AL<imp-def>
366    That is, EAX def is dead but AL def extends pass it.
367    Enable this after live interval analysis is fixed to improve codegen!
368  else if (!PhysRegUse[Reg]) {
369    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
371         unsigned SubReg = *SubRegs; ++SubRegs) {
372      if (PartUses.count(SubReg)) {
373        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
374                                                              true, true));
375        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
376        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
377          PartUses.erase(*SS);
378      }
379    }
380  } */
381  else
382    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
383  return true;
384}
385
386void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
387  // What parts of the register are previously defined?
388  SmallSet<unsigned, 32> Live;
389  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
390    Live.insert(Reg);
391    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
392      Live.insert(*SS);
393  } else {
394    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
395         unsigned SubReg = *SubRegs; ++SubRegs) {
396      // If a register isn't itself defined, but all parts that make up of it
397      // are defined, then consider it also defined.
398      // e.g.
399      // AL =
400      // AH =
401      //    = AX
402      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
403        Live.insert(SubReg);
404        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
405          Live.insert(*SS);
406      }
407    }
408  }
409
410  // Start from the largest piece, find the last time any part of the register
411  // is referenced.
412  if (!HandlePhysRegKill(Reg, MI)) {
413    // Only some of the sub-registers are used.
414    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
415         unsigned SubReg = *SubRegs; ++SubRegs) {
416      if (!Live.count(SubReg))
417        // Skip if this sub-register isn't defined.
418        continue;
419      if (HandlePhysRegKill(SubReg, MI)) {
420        Live.erase(SubReg);
421        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
422          Live.erase(*SS);
423      }
424    }
425    assert(Live.empty() && "Not all defined registers are killed / dead?");
426  }
427
428  if (MI) {
429    // Does this extend the live range of a super-register?
430    SmallSet<unsigned, 8> Processed;
431    for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
432         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
433      if (Processed.count(SuperReg))
434        continue;
435      MachineInstr *LastRef = PhysRegUse[SuperReg]
436        ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
437      if (LastRef && LastRef != MI) {
438        // The larger register is previously defined. Now a smaller part is
439        // being re-defined. Treat it as read/mod/write if there are uses
440        // below.
441        // EAX =
442        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
443        // ...
444        ///    =  EAX
445        if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
446          MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
447                                                   true/*IsImp*/,true/*IsKill*/));
448          MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
449                                                   true/*IsImp*/));
450          PhysRegDef[SuperReg]  = MI;
451          PhysRegUse[SuperReg]  = NULL;
452          Processed.insert(SuperReg);
453          for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
454            PhysRegDef[*SS]  = MI;
455            PhysRegUse[*SS]  = NULL;
456            Processed.insert(*SS);
457          }
458        } else {
459          // Otherwise, the super register is killed.
460          if (HandlePhysRegKill(SuperReg, MI)) {
461            PhysRegDef[SuperReg]  = NULL;
462            PhysRegUse[SuperReg]  = NULL;
463            for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
464              PhysRegDef[*SS]  = NULL;
465              PhysRegUse[*SS]  = NULL;
466              Processed.insert(*SS);
467            }
468          }
469        }
470      }
471    }
472
473    // Remember this def.
474    PhysRegDef[Reg]  = MI;
475    PhysRegUse[Reg]  = NULL;
476    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
477         unsigned SubReg = *SubRegs; ++SubRegs) {
478      PhysRegDef[SubReg]  = MI;
479      PhysRegUse[SubReg]  = NULL;
480    }
481  }
482}
483
484bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
485  MF = &mf;
486  MRI = &mf.getRegInfo();
487  TRI = MF->getTarget().getRegisterInfo();
488
489  ReservedRegisters = TRI->getReservedRegs(mf);
490
491  unsigned NumRegs = TRI->getNumRegs();
492  PhysRegDef  = new MachineInstr*[NumRegs];
493  PhysRegUse  = new MachineInstr*[NumRegs];
494  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
495  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
496  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
497
498  /// Get some space for a respectable number of registers.
499  VirtRegInfo.resize(64);
500
501  analyzePHINodes(mf);
502
503  // Calculate live variable information in depth first order on the CFG of the
504  // function.  This guarantees that we will see the definition of a virtual
505  // register before its uses due to dominance properties of SSA (except for PHI
506  // nodes, which are treated as a special case).
507  MachineBasicBlock *Entry = MF->begin();
508  SmallPtrSet<MachineBasicBlock*,16> Visited;
509
510  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
511         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
512       DFI != E; ++DFI) {
513    MachineBasicBlock *MBB = *DFI;
514
515    // Mark live-in registers as live-in.
516    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
517           EE = MBB->livein_end(); II != EE; ++II) {
518      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
519             "Cannot have a live-in virtual register!");
520      HandlePhysRegDef(*II, 0);
521    }
522
523    // Loop over all of the instructions, processing them.
524    DistanceMap.clear();
525    unsigned Dist = 0;
526    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
527         I != E; ++I) {
528      MachineInstr *MI = I;
529      DistanceMap.insert(std::make_pair(MI, Dist++));
530
531      // Process all of the operands of the instruction...
532      unsigned NumOperandsToProcess = MI->getNumOperands();
533
534      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
535      // of the uses.  They will be handled in other basic blocks.
536      if (MI->getOpcode() == TargetInstrInfo::PHI)
537        NumOperandsToProcess = 1;
538
539      SmallVector<unsigned, 4> UseRegs;
540      SmallVector<unsigned, 4> DefRegs;
541      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
542        const MachineOperand &MO = MI->getOperand(i);
543        if (!MO.isReg() || MO.getReg() == 0)
544          continue;
545        unsigned MOReg = MO.getReg();
546        if (MO.isUse())
547          UseRegs.push_back(MOReg);
548        if (MO.isDef())
549          DefRegs.push_back(MOReg);
550      }
551
552      // Process all uses.
553      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
554        unsigned MOReg = UseRegs[i];
555        if (TargetRegisterInfo::isVirtualRegister(MOReg))
556          HandleVirtRegUse(MOReg, MBB, MI);
557        else if (!ReservedRegisters[MOReg])
558          HandlePhysRegUse(MOReg, MI);
559      }
560
561      // Process all defs.
562      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
563        unsigned MOReg = DefRegs[i];
564        if (TargetRegisterInfo::isVirtualRegister(MOReg))
565          HandleVirtRegDef(MOReg, MI);
566        else if (!ReservedRegisters[MOReg])
567          HandlePhysRegDef(MOReg, MI);
568      }
569    }
570
571    // Handle any virtual assignments from PHI nodes which might be at the
572    // bottom of this basic block.  We check all of our successor blocks to see
573    // if they have PHI nodes, and if so, we simulate an assignment at the end
574    // of the current block.
575    if (!PHIVarInfo[MBB->getNumber()].empty()) {
576      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
577
578      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
579             E = VarInfoVec.end(); I != E; ++I)
580        // Mark it alive only in the block we are representing.
581        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
582                                MBB);
583    }
584
585    // Finally, if the last instruction in the block is a return, make sure to
586    // mark it as using all of the live-out values in the function.
587    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
588      MachineInstr *Ret = &MBB->back();
589
590      for (MachineRegisterInfo::liveout_iterator
591           I = MF->getRegInfo().liveout_begin(),
592           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
593        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
594               "Cannot have a live-out virtual register!");
595        HandlePhysRegUse(*I, Ret);
596
597        // Add live-out registers as implicit uses.
598        if (!Ret->readsRegister(*I))
599          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
600      }
601    }
602
603    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
604    // available at the end of the basic block.
605    for (unsigned i = 0; i != NumRegs; ++i)
606      if (PhysRegDef[i] || PhysRegUse[i])
607        HandlePhysRegDef(i, 0);
608
609    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
610    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
611  }
612
613  // Convert and transfer the dead / killed information we have gathered into
614  // VirtRegInfo onto MI's.
615  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
616    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
617      if (VirtRegInfo[i].Kills[j] ==
618          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
619        VirtRegInfo[i]
620          .Kills[j]->addRegisterDead(i +
621                                     TargetRegisterInfo::FirstVirtualRegister,
622                                     TRI);
623      else
624        VirtRegInfo[i]
625          .Kills[j]->addRegisterKilled(i +
626                                       TargetRegisterInfo::FirstVirtualRegister,
627                                       TRI);
628
629  // Check to make sure there are no unreachable blocks in the MC CFG for the
630  // function.  If so, it is due to a bug in the instruction selector or some
631  // other part of the code generator if this happens.
632#ifndef NDEBUG
633  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
634    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
635#endif
636
637  delete[] PhysRegDef;
638  delete[] PhysRegUse;
639  delete[] PHIVarInfo;
640
641  return false;
642}
643
644/// replaceKillInstruction - Update register kill info by replacing a kill
645/// instruction with a new one.
646void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
647                                           MachineInstr *NewMI) {
648  VarInfo &VI = getVarInfo(Reg);
649  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
650}
651
652/// removeVirtualRegistersKilled - Remove all killed info for the specified
653/// instruction.
654void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
655  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
656    MachineOperand &MO = MI->getOperand(i);
657    if (MO.isReg() && MO.isKill()) {
658      MO.setIsKill(false);
659      unsigned Reg = MO.getReg();
660      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
661        bool removed = getVarInfo(Reg).removeKill(MI);
662        assert(removed && "kill not in register's VarInfo?");
663        removed = true;
664      }
665    }
666  }
667}
668
669/// analyzePHINodes - Gather information about the PHI nodes in here. In
670/// particular, we want to map the variable information of a virtual register
671/// which is used in a PHI node. We map that to the BB the vreg is coming from.
672///
673void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
674  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
675       I != E; ++I)
676    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
677         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
678      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
679        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
680          .push_back(BBI->getOperand(i).getReg());
681}
682