LiveVariables.cpp revision a4025df42d2393da7041cd11e48a3d44b0ae2bb1
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/CodeGen/MachineRegisterInfo.h" 32#include "llvm/CodeGen/Passes.h" 33#include "llvm/Target/TargetRegisterInfo.h" 34#include "llvm/Target/TargetInstrInfo.h" 35#include "llvm/Target/TargetMachine.h" 36#include "llvm/ADT/DepthFirstIterator.h" 37#include "llvm/ADT/SmallPtrSet.h" 38#include "llvm/ADT/SmallSet.h" 39#include "llvm/ADT/STLExtras.h" 40#include <algorithm> 41using namespace llvm; 42 43char LiveVariables::ID = 0; 44static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 45 46 47void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 48 AU.addRequiredID(UnreachableMachineBlockElimID); 49 AU.setPreservesAll(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51} 52 53MachineInstr * 54LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { 55 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 56 if (Kills[i]->getParent() == MBB) 57 return Kills[i]; 58 return NULL; 59} 60 61void LiveVariables::VarInfo::dump() const { 62 errs() << " Alive in blocks: "; 63 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 64 E = AliveBlocks.end(); I != E; ++I) 65 errs() << *I << ", "; 66 errs() << "\n Killed by:"; 67 if (Kills.empty()) 68 errs() << " No instructions.\n"; 69 else { 70 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 71 errs() << "\n #" << i << ": " << *Kills[i]; 72 errs() << "\n"; 73 } 74} 75 76/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 77LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 78 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 79 "getVarInfo: not a virtual register!"); 80 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 81 if (RegIdx >= VirtRegInfo.size()) { 82 if (RegIdx >= 2*VirtRegInfo.size()) 83 VirtRegInfo.resize(RegIdx*2); 84 else 85 VirtRegInfo.resize(2*VirtRegInfo.size()); 86 } 87 return VirtRegInfo[RegIdx]; 88} 89 90void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 91 MachineBasicBlock *DefBlock, 92 MachineBasicBlock *MBB, 93 std::vector<MachineBasicBlock*> &WorkList) { 94 unsigned BBNum = MBB->getNumber(); 95 96 // Check to see if this basic block is one of the killing blocks. If so, 97 // remove it. 98 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 99 if (VRInfo.Kills[i]->getParent() == MBB) { 100 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 101 break; 102 } 103 104 if (MBB == DefBlock) return; // Terminate recursion 105 106 if (VRInfo.AliveBlocks.test(BBNum)) 107 return; // We already know the block is live 108 109 // Mark the variable known alive in this bb 110 VRInfo.AliveBlocks.set(BBNum); 111 112 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 113 E = MBB->pred_rend(); PI != E; ++PI) 114 WorkList.push_back(*PI); 115} 116 117void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 118 MachineBasicBlock *DefBlock, 119 MachineBasicBlock *MBB) { 120 std::vector<MachineBasicBlock*> WorkList; 121 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 122 123 while (!WorkList.empty()) { 124 MachineBasicBlock *Pred = WorkList.back(); 125 WorkList.pop_back(); 126 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 127 } 128} 129 130void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 131 MachineInstr *MI) { 132 assert(MRI->getVRegDef(reg) && "Register use before def!"); 133 134 unsigned BBNum = MBB->getNumber(); 135 136 VarInfo& VRInfo = getVarInfo(reg); 137 VRInfo.NumUses++; 138 139 // Check to see if this basic block is already a kill block. 140 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 141 // Yes, this register is killed in this basic block already. Increase the 142 // live range by updating the kill instruction. 143 VRInfo.Kills.back() = MI; 144 return; 145 } 146 147#ifndef NDEBUG 148 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 149 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 150#endif 151 152 // This situation can occur: 153 // 154 // ,------. 155 // | | 156 // | v 157 // | t2 = phi ... t1 ... 158 // | | 159 // | v 160 // | t1 = ... 161 // | ... = ... t1 ... 162 // | | 163 // `------' 164 // 165 // where there is a use in a PHI node that's a predecessor to the defining 166 // block. We don't want to mark all predecessors as having the value "alive" 167 // in this case. 168 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 169 170 // Add a new kill entry for this basic block. If this virtual register is 171 // already marked as alive in this basic block, that means it is alive in at 172 // least one of the successor blocks, it's not a kill. 173 if (!VRInfo.AliveBlocks.test(BBNum)) 174 VRInfo.Kills.push_back(MI); 175 176 // Update all dominating blocks to mark them as "known live". 177 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 178 E = MBB->pred_end(); PI != E; ++PI) 179 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 180} 181 182void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 183 VarInfo &VRInfo = getVarInfo(Reg); 184 185 if (VRInfo.AliveBlocks.empty()) 186 // If vr is not alive in any block, then defaults to dead. 187 VRInfo.Kills.push_back(MI); 188} 189 190/// FindLastPartialDef - Return the last partial def of the specified register. 191/// Also returns the sub-registers that're defined by the instruction. 192MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 193 SmallSet<unsigned,4> &PartDefRegs) { 194 unsigned LastDefReg = 0; 195 unsigned LastDefDist = 0; 196 MachineInstr *LastDef = NULL; 197 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 198 unsigned SubReg = *SubRegs; ++SubRegs) { 199 MachineInstr *Def = PhysRegDef[SubReg]; 200 if (!Def) 201 continue; 202 unsigned Dist = DistanceMap[Def]; 203 if (Dist > LastDefDist) { 204 LastDefReg = SubReg; 205 LastDef = Def; 206 LastDefDist = Dist; 207 } 208 } 209 210 if (!LastDef) 211 return 0; 212 213 PartDefRegs.insert(LastDefReg); 214 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 215 MachineOperand &MO = LastDef->getOperand(i); 216 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 217 continue; 218 unsigned DefReg = MO.getReg(); 219 if (TRI->isSubRegister(Reg, DefReg)) { 220 PartDefRegs.insert(DefReg); 221 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); 222 unsigned SubReg = *SubRegs; ++SubRegs) 223 PartDefRegs.insert(SubReg); 224 } 225 } 226 return LastDef; 227} 228 229/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 230/// implicit defs to a machine instruction if there was an earlier def of its 231/// super-register. 232void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 233 MachineInstr *LastDef = PhysRegDef[Reg]; 234 // If there was a previous use or a "full" def all is well. 235 if (!LastDef && !PhysRegUse[Reg]) { 236 // Otherwise, the last sub-register def implicitly defines this register. 237 // e.g. 238 // AH = 239 // AL = ... <imp-def EAX>, <imp-kill AH> 240 // = AH 241 // ... 242 // = EAX 243 // All of the sub-registers must have been defined before the use of Reg! 244 SmallSet<unsigned, 4> PartDefRegs; 245 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 246 // If LastPartialDef is NULL, it must be using a livein register. 247 if (LastPartialDef) { 248 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 249 true/*IsImp*/)); 250 PhysRegDef[Reg] = LastPartialDef; 251 SmallSet<unsigned, 8> Processed; 252 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 253 unsigned SubReg = *SubRegs; ++SubRegs) { 254 if (Processed.count(SubReg)) 255 continue; 256 if (PartDefRegs.count(SubReg)) 257 continue; 258 // This part of Reg was defined before the last partial def. It's killed 259 // here. 260 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 261 false/*IsDef*/, 262 true/*IsImp*/)); 263 PhysRegDef[SubReg] = LastPartialDef; 264 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 265 Processed.insert(*SS); 266 } 267 } 268 } 269 else if (LastDef && !PhysRegUse[Reg] && 270 !LastDef->findRegisterDefOperand(Reg)) 271 // Last def defines the super register, add an implicit def of reg. 272 LastDef->addOperand(MachineOperand::CreateReg(Reg, 273 true/*IsDef*/, true/*IsImp*/)); 274 275 // Remember this use. 276 PhysRegUse[Reg] = MI; 277 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 278 unsigned SubReg = *SubRegs; ++SubRegs) 279 PhysRegUse[SubReg] = MI; 280} 281 282/// FindLastRefOrPartRef - Return the last reference or partial reference of 283/// the specified register. 284MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { 285 MachineInstr *LastDef = PhysRegDef[Reg]; 286 MachineInstr *LastUse = PhysRegUse[Reg]; 287 if (!LastDef && !LastUse) 288 return false; 289 290 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 291 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 292 MachineInstr *LastPartDef = 0; 293 unsigned LastPartDefDist = 0; 294 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 295 unsigned SubReg = *SubRegs; ++SubRegs) { 296 MachineInstr *Def = PhysRegDef[SubReg]; 297 if (Def && Def != LastDef) { 298 // There was a def of this sub-register in between. This is a partial 299 // def, keep track of the last one. 300 unsigned Dist = DistanceMap[Def]; 301 if (Dist > LastPartDefDist) { 302 LastPartDefDist = Dist; 303 LastPartDef = Def; 304 } 305 continue; 306 } 307 if (MachineInstr *Use = PhysRegUse[SubReg]) { 308 unsigned Dist = DistanceMap[Use]; 309 if (Dist > LastRefOrPartRefDist) { 310 LastRefOrPartRefDist = Dist; 311 LastRefOrPartRef = Use; 312 } 313 } 314 } 315 316 return LastRefOrPartRef; 317} 318 319bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 320 MachineInstr *LastDef = PhysRegDef[Reg]; 321 MachineInstr *LastUse = PhysRegUse[Reg]; 322 if (!LastDef && !LastUse) 323 return false; 324 325 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 326 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 327 // The whole register is used. 328 // AL = 329 // AH = 330 // 331 // = AX 332 // = AL, AX<imp-use, kill> 333 // AX = 334 // 335 // Or whole register is defined, but not used at all. 336 // AX<dead> = 337 // ... 338 // AX = 339 // 340 // Or whole register is defined, but only partly used. 341 // AX<dead> = AL<imp-def> 342 // = AL<kill> 343 // AX = 344 MachineInstr *LastPartDef = 0; 345 unsigned LastPartDefDist = 0; 346 SmallSet<unsigned, 8> PartUses; 347 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 348 unsigned SubReg = *SubRegs; ++SubRegs) { 349 MachineInstr *Def = PhysRegDef[SubReg]; 350 if (Def && Def != LastDef) { 351 // There was a def of this sub-register in between. This is a partial 352 // def, keep track of the last one. 353 unsigned Dist = DistanceMap[Def]; 354 if (Dist > LastPartDefDist) { 355 LastPartDefDist = Dist; 356 LastPartDef = Def; 357 } 358 continue; 359 } 360 if (MachineInstr *Use = PhysRegUse[SubReg]) { 361 PartUses.insert(SubReg); 362 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 363 PartUses.insert(*SS); 364 unsigned Dist = DistanceMap[Use]; 365 if (Dist > LastRefOrPartRefDist) { 366 LastRefOrPartRefDist = Dist; 367 LastRefOrPartRef = Use; 368 } 369 } 370 } 371 372 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { 373 if (LastPartDef) 374 // The last partial def kills the register. 375 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, 376 true/*IsImp*/, true/*IsKill*/)); 377 else { 378 MachineOperand *MO = 379 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); 380 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; 381 // If the last reference is the last def, then it's not used at all. 382 // That is, unless we are currently processing the last reference itself. 383 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 384 if (NeedEC) { 385 // If we are adding a subreg def and the superreg def is marked early 386 // clobber, add an early clobber marker to the subreg def. 387 MO = LastRefOrPartRef->findRegisterDefOperand(Reg); 388 if (MO) 389 MO->setIsEarlyClobber(); 390 } 391 } 392 } else if (!PhysRegUse[Reg]) { 393 // Partial uses. Mark register def dead and add implicit def of 394 // sub-registers which are used. 395 // EAX<dead> = op AL<imp-def> 396 // That is, EAX def is dead but AL def extends pass it. 397 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 398 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 399 unsigned SubReg = *SubRegs; ++SubRegs) { 400 if (!PartUses.count(SubReg)) 401 continue; 402 bool NeedDef = true; 403 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 404 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 405 if (MO) { 406 NeedDef = false; 407 assert(!MO->isDead()); 408 } 409 } 410 if (NeedDef) 411 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 412 true/*IsDef*/, true/*IsImp*/)); 413 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); 414 if (LastSubRef) 415 LastSubRef->addRegisterKilled(SubReg, TRI, true); 416 else { 417 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 418 PhysRegUse[SubReg] = LastRefOrPartRef; 419 for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg); 420 unsigned SSReg = *SSRegs; ++SSRegs) 421 PhysRegUse[SSReg] = LastRefOrPartRef; 422 } 423 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 424 PartUses.erase(*SS); 425 } 426 } else 427 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 428 return true; 429} 430 431void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 432 SmallVector<unsigned, 4> &Defs) { 433 // What parts of the register are previously defined? 434 SmallSet<unsigned, 32> Live; 435 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 436 Live.insert(Reg); 437 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 438 Live.insert(*SS); 439 } else { 440 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 441 unsigned SubReg = *SubRegs; ++SubRegs) { 442 // If a register isn't itself defined, but all parts that make up of it 443 // are defined, then consider it also defined. 444 // e.g. 445 // AL = 446 // AH = 447 // = AX 448 if (Live.count(SubReg)) 449 continue; 450 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 451 Live.insert(SubReg); 452 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 453 Live.insert(*SS); 454 } 455 } 456 } 457 458 // Start from the largest piece, find the last time any part of the register 459 // is referenced. 460 HandlePhysRegKill(Reg, MI); 461 // Only some of the sub-registers are used. 462 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 463 unsigned SubReg = *SubRegs; ++SubRegs) { 464 if (!Live.count(SubReg)) 465 // Skip if this sub-register isn't defined. 466 continue; 467 HandlePhysRegKill(SubReg, MI); 468 } 469 470 if (MI) 471 Defs.push_back(Reg); // Remember this def. 472} 473 474void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, 475 SmallVector<unsigned, 4> &Defs) { 476 while (!Defs.empty()) { 477 unsigned Reg = Defs.back(); 478 Defs.pop_back(); 479 PhysRegDef[Reg] = MI; 480 PhysRegUse[Reg] = NULL; 481 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 482 unsigned SubReg = *SubRegs; ++SubRegs) { 483 PhysRegDef[SubReg] = MI; 484 PhysRegUse[SubReg] = NULL; 485 } 486 } 487} 488 489namespace { 490 struct RegSorter { 491 const TargetRegisterInfo *TRI; 492 493 RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { } 494 bool operator()(unsigned A, unsigned B) { 495 if (TRI->isSubRegister(A, B)) 496 return true; 497 else if (TRI->isSubRegister(B, A)) 498 return false; 499 return A < B; 500 } 501 }; 502} 503 504bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 505 MF = &mf; 506 MRI = &mf.getRegInfo(); 507 TRI = MF->getTarget().getRegisterInfo(); 508 509 ReservedRegisters = TRI->getReservedRegs(mf); 510 511 unsigned NumRegs = TRI->getNumRegs(); 512 PhysRegDef = new MachineInstr*[NumRegs]; 513 PhysRegUse = new MachineInstr*[NumRegs]; 514 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 515 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 516 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 517 518 /// Get some space for a respectable number of registers. 519 VirtRegInfo.resize(64); 520 521 analyzePHINodes(mf); 522 523 // Calculate live variable information in depth first order on the CFG of the 524 // function. This guarantees that we will see the definition of a virtual 525 // register before its uses due to dominance properties of SSA (except for PHI 526 // nodes, which are treated as a special case). 527 MachineBasicBlock *Entry = MF->begin(); 528 SmallPtrSet<MachineBasicBlock*,16> Visited; 529 530 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 531 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 532 DFI != E; ++DFI) { 533 MachineBasicBlock *MBB = *DFI; 534 535 // Mark live-in registers as live-in. 536 SmallVector<unsigned, 4> Defs; 537 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 538 EE = MBB->livein_end(); II != EE; ++II) { 539 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 540 "Cannot have a live-in virtual register!"); 541 HandlePhysRegDef(*II, 0, Defs); 542 } 543 544 // Loop over all of the instructions, processing them. 545 DistanceMap.clear(); 546 unsigned Dist = 0; 547 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 548 I != E; ++I) { 549 MachineInstr *MI = I; 550 DistanceMap.insert(std::make_pair(MI, Dist++)); 551 552 // Process all of the operands of the instruction... 553 unsigned NumOperandsToProcess = MI->getNumOperands(); 554 555 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 556 // of the uses. They will be handled in other basic blocks. 557 if (MI->getOpcode() == TargetInstrInfo::PHI) 558 NumOperandsToProcess = 1; 559 560 SmallVector<unsigned, 4> UseRegs; 561 SmallVector<unsigned, 4> DefRegs; 562 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 563 const MachineOperand &MO = MI->getOperand(i); 564 if (!MO.isReg() || MO.getReg() == 0) 565 continue; 566 unsigned MOReg = MO.getReg(); 567 if (MO.isUse()) 568 UseRegs.push_back(MOReg); 569 if (MO.isDef()) 570 DefRegs.push_back(MOReg); 571 } 572 573 // Process all uses. 574 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 575 unsigned MOReg = UseRegs[i]; 576 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 577 HandleVirtRegUse(MOReg, MBB, MI); 578 else if (!ReservedRegisters[MOReg]) 579 HandlePhysRegUse(MOReg, MI); 580 } 581 582 // Process all defs. 583 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 584 unsigned MOReg = DefRegs[i]; 585 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 586 HandleVirtRegDef(MOReg, MI); 587 else if (!ReservedRegisters[MOReg]) 588 HandlePhysRegDef(MOReg, MI, Defs); 589 } 590 UpdatePhysRegDefs(MI, Defs); 591 } 592 593 // Handle any virtual assignments from PHI nodes which might be at the 594 // bottom of this basic block. We check all of our successor blocks to see 595 // if they have PHI nodes, and if so, we simulate an assignment at the end 596 // of the current block. 597 if (!PHIVarInfo[MBB->getNumber()].empty()) { 598 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 599 600 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 601 E = VarInfoVec.end(); I != E; ++I) 602 // Mark it alive only in the block we are representing. 603 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 604 MBB); 605 } 606 607 // Finally, if the last instruction in the block is a return, make sure to 608 // mark it as using all of the live-out values in the function. 609 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 610 MachineInstr *Ret = &MBB->back(); 611 612 for (MachineRegisterInfo::liveout_iterator 613 I = MF->getRegInfo().liveout_begin(), 614 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 615 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 616 "Cannot have a live-out virtual register!"); 617 HandlePhysRegUse(*I, Ret); 618 619 // Add live-out registers as implicit uses. 620 if (!Ret->readsRegister(*I)) 621 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 622 } 623 } 624 625 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 626 // available at the end of the basic block. 627 for (unsigned i = 0; i != NumRegs; ++i) 628 if (PhysRegDef[i] || PhysRegUse[i]) 629 HandlePhysRegDef(i, 0, Defs); 630 631 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 632 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 633 } 634 635 // Convert and transfer the dead / killed information we have gathered into 636 // VirtRegInfo onto MI's. 637 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 638 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 639 if (VirtRegInfo[i].Kills[j] == 640 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 641 VirtRegInfo[i] 642 .Kills[j]->addRegisterDead(i + 643 TargetRegisterInfo::FirstVirtualRegister, 644 TRI); 645 else 646 VirtRegInfo[i] 647 .Kills[j]->addRegisterKilled(i + 648 TargetRegisterInfo::FirstVirtualRegister, 649 TRI); 650 651 // Check to make sure there are no unreachable blocks in the MC CFG for the 652 // function. If so, it is due to a bug in the instruction selector or some 653 // other part of the code generator if this happens. 654#ifndef NDEBUG 655 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 656 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 657#endif 658 659 delete[] PhysRegDef; 660 delete[] PhysRegUse; 661 delete[] PHIVarInfo; 662 663 return false; 664} 665 666/// replaceKillInstruction - Update register kill info by replacing a kill 667/// instruction with a new one. 668void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 669 MachineInstr *NewMI) { 670 VarInfo &VI = getVarInfo(Reg); 671 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 672} 673 674/// removeVirtualRegistersKilled - Remove all killed info for the specified 675/// instruction. 676void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 677 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 678 MachineOperand &MO = MI->getOperand(i); 679 if (MO.isReg() && MO.isKill()) { 680 MO.setIsKill(false); 681 unsigned Reg = MO.getReg(); 682 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 683 bool removed = getVarInfo(Reg).removeKill(MI); 684 assert(removed && "kill not in register's VarInfo?"); 685 removed = true; 686 } 687 } 688 } 689} 690 691/// analyzePHINodes - Gather information about the PHI nodes in here. In 692/// particular, we want to map the variable information of a virtual register 693/// which is used in a PHI node. We map that to the BB the vreg is coming from. 694/// 695void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 696 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 697 I != E; ++I) 698 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 699 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 700 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 701 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 702 .push_back(BBI->getOperand(i).getReg()); 703} 704 705bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, 706 unsigned Reg, 707 MachineRegisterInfo &MRI) { 708 unsigned Num = MBB.getNumber(); 709 710 // Reg is live-through. 711 if (AliveBlocks.test(Num)) 712 return true; 713 714 // Registers defined in MBB cannot be live in. 715 const MachineInstr *Def = MRI.getVRegDef(Reg); 716 if (Def && Def->getParent() == &MBB) 717 return false; 718 719 // Reg was not defined in MBB, was it killed here? 720 return findKill(&MBB); 721} 722 723/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All 724/// variables that are live out of DomBB will be marked as passing live through 725/// BB. 726void LiveVariables::addNewBlock(MachineBasicBlock *BB, 727 MachineBasicBlock *DomBB, 728 MachineBasicBlock *SuccBB) { 729 const unsigned NumNew = BB->getNumber(); 730 731 // All registers used by PHI nodes in SuccBB must be live through BB. 732 for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), 733 BBE = SuccBB->end(); 734 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 735 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 736 if (BBI->getOperand(i+1).getMBB() == BB) 737 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); 738 739 // Update info for all live variables 740 for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, 741 E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) { 742 VarInfo &VI = getVarInfo(Reg); 743 if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) 744 VI.AliveBlocks.set(NumNew); 745 } 746} 747