LiveVariables.cpp revision a5287a63762fbf0976e333fb7787ec135fdc2061
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/Target/MRegisterInfo.h" 32#include "llvm/Target/TargetInstrInfo.h" 33#include "llvm/Target/TargetMachine.h" 34#include "Support/DepthFirstIterator.h" 35#include "Support/STLExtras.h" 36using namespace llvm; 37 38static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 39 40/// getIndexMachineBasicBlock() - Given a block index, return the 41/// MachineBasicBlock corresponding to it. 42MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) { 43 if (BBIdxMap.empty()) { 44 BBIdxMap.resize(BBMap.size()); 45 for (std::map<MachineBasicBlock*, unsigned>::iterator I = BBMap.begin(), 46 E = BBMap.end(); I != E; ++I) { 47 assert(BBIdxMap.size() > I->second && "Indices are not sequential"); 48 assert(BBIdxMap[I->second] == 0 && "Multiple idx collision!"); 49 BBIdxMap[I->second] = I->first; 50 } 51 } 52 assert(Idx < BBIdxMap.size() && "BB Index out of range!"); 53 return BBIdxMap[Idx]; 54} 55 56LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 57 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 58 "getVarInfo: not a virtual register!"); 59 RegIdx -= MRegisterInfo::FirstVirtualRegister; 60 if (RegIdx >= VirtRegInfo.size()) { 61 if (RegIdx >= 2*VirtRegInfo.size()) 62 VirtRegInfo.resize(RegIdx*2); 63 else 64 VirtRegInfo.resize(2*VirtRegInfo.size()); 65 } 66 return VirtRegInfo[RegIdx]; 67} 68 69 70 71void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 72 MachineBasicBlock *MBB) { 73 unsigned BBNum = getMachineBasicBlockIndex(MBB); 74 75 // Check to see if this basic block is one of the killing blocks. If so, 76 // remove it... 77 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 78 if (VRInfo.Kills[i].first == MBB) { 79 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 80 break; 81 } 82 83 if (MBB == VRInfo.DefBlock) return; // Terminate recursion 84 85 if (VRInfo.AliveBlocks.size() <= BBNum) 86 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 87 88 if (VRInfo.AliveBlocks[BBNum]) 89 return; // We already know the block is live 90 91 // Mark the variable known alive in this bb 92 VRInfo.AliveBlocks[BBNum] = true; 93 94 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 95 E = MBB->pred_end(); PI != E; ++PI) 96 MarkVirtRegAliveInBlock(VRInfo, *PI); 97} 98 99void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 100 MachineInstr *MI) { 101 // Check to see if this basic block is already a kill block... 102 if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { 103 // Yes, this register is killed in this basic block already. Increase the 104 // live range by updating the kill instruction. 105 VRInfo.Kills.back().second = MI; 106 return; 107 } 108 109#ifndef NDEBUG 110 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 111 assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); 112#endif 113 114 assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!"); 115 116 // Add a new kill entry for this basic block. 117 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); 118 119 // Update all dominating blocks to mark them known live. 120 const BasicBlock *BB = MBB->getBasicBlock(); 121 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 122 E = MBB->pred_end(); PI != E; ++PI) 123 MarkVirtRegAliveInBlock(VRInfo, *PI); 124} 125 126void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 127 PhysRegInfo[Reg] = MI; 128 PhysRegUsed[Reg] = true; 129 130 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 131 unsigned Alias = *AliasSet; ++AliasSet) { 132 PhysRegInfo[Alias] = MI; 133 PhysRegUsed[Alias] = true; 134 } 135} 136 137void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 138 // Does this kill a previous version of this register? 139 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 140 if (PhysRegUsed[Reg]) 141 RegistersKilled.insert(std::make_pair(LastUse, Reg)); 142 else 143 RegistersDead.insert(std::make_pair(LastUse, Reg)); 144 } 145 PhysRegInfo[Reg] = MI; 146 PhysRegUsed[Reg] = false; 147 148 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 149 unsigned Alias = *AliasSet; ++AliasSet) { 150 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 151 if (PhysRegUsed[Alias]) 152 RegistersKilled.insert(std::make_pair(LastUse, Alias)); 153 else 154 RegistersDead.insert(std::make_pair(LastUse, Alias)); 155 } 156 PhysRegInfo[Alias] = MI; 157 PhysRegUsed[Alias] = false; 158 } 159} 160 161bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 162 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); 163 RegInfo = MF.getTarget().getRegisterInfo(); 164 assert(RegInfo && "Target doesn't have register information?"); 165 166 // First time though, initialize AllocatablePhysicalRegisters for the target 167 if (AllocatablePhysicalRegisters.empty()) { 168 // Make space, initializing to false... 169 AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs()); 170 171 // Loop over all of the register classes... 172 for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(), 173 E = RegInfo->regclass_end(); RCI != E; ++RCI) 174 // Loop over all of the allocatable registers in the function... 175 for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), 176 E = (*RCI)->allocation_order_end(MF); I != E; ++I) 177 AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable! 178 } 179 180 // Build BBMap... 181 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 182 BBMap[I] = I->getNumber(); 183 184 // PhysRegInfo - Keep track of which instruction was the last use of a 185 // physical register. This is a purely local property, because all physical 186 // register references as presumed dead across basic blocks. 187 // 188 MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()]; 189 bool PhysRegUsedA[RegInfo->getNumRegs()]; 190 std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0); 191 PhysRegInfo = PhysRegInfoA; 192 PhysRegUsed = PhysRegUsedA; 193 194 /// Get some space for a respectable number of registers... 195 VirtRegInfo.resize(64); 196 197 // Calculate live variable information in depth first order on the CFG of the 198 // function. This guarantees that we will see the definition of a virtual 199 // register before its uses due to dominance properties of SSA (except for PHI 200 // nodes, which are treated as a special case). 201 // 202 MachineBasicBlock *Entry = MF.begin(); 203 std::set<MachineBasicBlock*> Visited; 204 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 205 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 206 MachineBasicBlock *MBB = *DFI; 207 unsigned BBNum = getMachineBasicBlockIndex(MBB); 208 209 // Loop over all of the instructions, processing them. 210 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 211 I != E; ++I) { 212 MachineInstr *MI = I; 213 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 214 215 // Process all of the operands of the instruction... 216 unsigned NumOperandsToProcess = MI->getNumOperands(); 217 218 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 219 // of the uses. They will be handled in other basic blocks. 220 if (MI->getOpcode() == TargetInstrInfo::PHI) 221 NumOperandsToProcess = 1; 222 223 // Loop over implicit uses, using them. 224 for (const unsigned *ImplicitUses = MID.ImplicitUses; 225 *ImplicitUses; ++ImplicitUses) 226 HandlePhysRegUse(*ImplicitUses, MI); 227 228 // Process all explicit uses... 229 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 230 MachineOperand &MO = MI->getOperand(i); 231 if (MO.isUse() && MO.isRegister() && MO.getReg()) { 232 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 233 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 234 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 235 AllocatablePhysicalRegisters[MO.getReg()]) { 236 HandlePhysRegUse(MO.getReg(), MI); 237 } 238 } 239 } 240 241 // Loop over implicit defs, defining them. 242 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 243 *ImplicitDefs; ++ImplicitDefs) 244 HandlePhysRegDef(*ImplicitDefs, MI); 245 246 // Process all explicit defs... 247 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 248 MachineOperand &MO = MI->getOperand(i); 249 if (MO.isDef() && MO.isRegister() && MO.getReg()) { 250 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 251 VarInfo &VRInfo = getVarInfo(MO.getReg()); 252 253 assert(VRInfo.DefBlock == 0 && "Variable multiply defined!"); 254 VRInfo.DefBlock = MBB; // Created here... 255 VRInfo.DefInst = MI; 256 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead 257 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 258 AllocatablePhysicalRegisters[MO.getReg()]) { 259 HandlePhysRegDef(MO.getReg(), MI); 260 } 261 } 262 } 263 } 264 265 // Handle any virtual assignments from PHI nodes which might be at the 266 // bottom of this basic block. We check all of our successor blocks to see 267 // if they have PHI nodes, and if so, we simulate an assignment at the end 268 // of the current block. 269 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 270 E = MBB->succ_end(); SI != E; ++SI) { 271 MachineBasicBlock *Succ = *SI; 272 273 // PHI nodes are guaranteed to be at the top of the block... 274 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 275 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { 276 for (unsigned i = 1; ; i += 2) { 277 assert(MI->getNumOperands() > i+1 && 278 "Didn't find an entry for our predecessor??"); 279 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 280 MachineOperand &MO = MI->getOperand(i); 281 if (!MO.getVRegValueOrNull()) { 282 VarInfo &VRInfo = getVarInfo(MO.getReg()); 283 284 // Only mark it alive only in the block we are representing... 285 MarkVirtRegAliveInBlock(VRInfo, MBB); 286 break; // Found the PHI entry for this block... 287 } 288 } 289 } 290 } 291 } 292 293 // Loop over PhysRegInfo, killing any registers that are available at the 294 // end of the basic block. This also resets the PhysRegInfo map. 295 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 296 if (PhysRegInfo[i]) 297 HandlePhysRegDef(i, 0); 298 } 299 300 // Convert the information we have gathered into VirtRegInfo and transform it 301 // into a form usable by RegistersKilled. 302 // 303 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 304 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 305 if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) 306 RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 307 i + MRegisterInfo::FirstVirtualRegister)); 308 309 else 310 RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 311 i + MRegisterInfo::FirstVirtualRegister)); 312 } 313 314 return false; 315} 316 317/// instructionChanged - When the address of an instruction changes, this 318/// method should be called so that live variables can update its internal 319/// data structures. This removes the records for OldMI, transfering them to 320/// the records for NewMI. 321void LiveVariables::instructionChanged(MachineInstr *OldMI, 322 MachineInstr *NewMI) { 323 // If the instruction defines any virtual registers, update the VarInfo for 324 // the instruction. 325 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 326 MachineOperand &MO = OldMI->getOperand(i); 327 if (MO.isRegister() && MO.isDef() && MO.getReg() && 328 MRegisterInfo::isVirtualRegister(MO.getReg())) { 329 unsigned Reg = MO.getReg(); 330 VarInfo &VI = getVarInfo(Reg); 331 if (VI.DefInst == OldMI) 332 VI.DefInst = NewMI; 333 } 334 } 335 336 // Move the killed information over... 337 killed_iterator I, E; 338 tie(I, E) = killed_range(OldMI); 339 std::vector<unsigned> Regs; 340 for (killed_iterator A = I; A != E; ++A) 341 Regs.push_back(A->second); 342 RegistersKilled.erase(I, E); 343 344 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 345 RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); 346 Regs.clear(); 347 348 // Move the dead information over... 349 tie(I, E) = dead_range(OldMI); 350 for (killed_iterator A = I; A != E; ++A) 351 Regs.push_back(A->second); 352 RegistersDead.erase(I, E); 353 354 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 355 RegistersDead.insert(std::make_pair(NewMI, Regs[i])); 356} 357