LiveVariables.cpp revision a8db01ac8353f00b519211e6e9e7d53feb1b2923
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/Target/MRegisterInfo.h" 32#include "llvm/Target/TargetInstrInfo.h" 33#include "llvm/Target/TargetMachine.h" 34#include "llvm/Support/CFG.h" 35#include "Support/DepthFirstIterator.h" 36#include "Support/STLExtras.h" 37using namespace llvm; 38 39static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 40 41const std::pair<MachineBasicBlock*, unsigned> & 42LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{ 43 return BBMap.find(MBB->getBasicBlock())->second; 44} 45 46/// getIndexMachineBasicBlock() - Given a block index, return the 47/// MachineBasicBlock corresponding to it. 48MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) { 49 if (BBIdxMap.empty()) { 50 BBIdxMap.resize(BBMap.size()); 51 for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> > 52 ::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) { 53 assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential"); 54 assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!"); 55 BBIdxMap[I->second.second] = I->second.first; 56 } 57 } 58 assert(Idx < BBIdxMap.size() && "BB Index out of range!"); 59 return BBIdxMap[Idx]; 60} 61 62LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 63 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 64 "getVarInfo: not a virtual register!"); 65 RegIdx -= MRegisterInfo::FirstVirtualRegister; 66 if (RegIdx >= VirtRegInfo.size()) { 67 if (RegIdx >= 2*VirtRegInfo.size()) 68 VirtRegInfo.resize(RegIdx*2); 69 else 70 VirtRegInfo.resize(2*VirtRegInfo.size()); 71 } 72 return VirtRegInfo[RegIdx]; 73} 74 75 76 77void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 78 const BasicBlock *BB) { 79 const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second; 80 MachineBasicBlock *MBB = Info.first; 81 unsigned BBNum = Info.second; 82 83 // Check to see if this basic block is one of the killing blocks. If so, 84 // remove it... 85 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 86 if (VRInfo.Kills[i].first == MBB) { 87 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 88 break; 89 } 90 91 if (MBB == VRInfo.DefBlock) return; // Terminate recursion 92 93 if (VRInfo.AliveBlocks.size() <= BBNum) 94 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 95 96 if (VRInfo.AliveBlocks[BBNum]) 97 return; // We already know the block is live 98 99 // Mark the variable known alive in this bb 100 VRInfo.AliveBlocks[BBNum] = true; 101 102 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 103 MarkVirtRegAliveInBlock(VRInfo, *PI); 104} 105 106void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 107 MachineInstr *MI) { 108 // Check to see if this basic block is already a kill block... 109 if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { 110 // Yes, this register is killed in this basic block already. Increase the 111 // live range by updating the kill instruction. 112 VRInfo.Kills.back().second = MI; 113 return; 114 } 115 116#ifndef NDEBUG 117 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 118 assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); 119#endif 120 121 assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!"); 122 123 // Add a new kill entry for this basic block. 124 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); 125 126 // Update all dominating blocks to mark them known live. 127 const BasicBlock *BB = MBB->getBasicBlock(); 128 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); 129 PI != E; ++PI) 130 MarkVirtRegAliveInBlock(VRInfo, *PI); 131} 132 133void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 134 PhysRegInfo[Reg] = MI; 135 PhysRegUsed[Reg] = true; 136} 137 138void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 139 // Does this kill a previous version of this register? 140 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 141 if (PhysRegUsed[Reg]) 142 RegistersKilled.insert(std::make_pair(LastUse, Reg)); 143 else 144 RegistersDead.insert(std::make_pair(LastUse, Reg)); 145 } 146 PhysRegInfo[Reg] = MI; 147 PhysRegUsed[Reg] = false; 148 149 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 150 *AliasSet; ++AliasSet) { 151 unsigned Alias = *AliasSet; 152 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 153 if (PhysRegUsed[Alias]) 154 RegistersKilled.insert(std::make_pair(LastUse, Alias)); 155 else 156 RegistersDead.insert(std::make_pair(LastUse, Alias)); 157 } 158 PhysRegInfo[Alias] = MI; 159 PhysRegUsed[Alias] = false; 160 } 161} 162 163bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 164 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo(); 165 RegInfo = MF.getTarget().getRegisterInfo(); 166 assert(RegInfo && "Target doesn't have register information?"); 167 168 // First time though, initialize AllocatablePhysicalRegisters for the target 169 if (AllocatablePhysicalRegisters.empty()) { 170 // Make space, initializing to false... 171 AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs()); 172 173 // Loop over all of the register classes... 174 for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(), 175 E = RegInfo->regclass_end(); RCI != E; ++RCI) 176 // Loop over all of the allocatable registers in the function... 177 for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), 178 E = (*RCI)->allocation_order_end(MF); I != E; ++I) 179 AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable! 180 } 181 182 // Build BBMap... 183 unsigned BBNum = 0; 184 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 185 BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++); 186 187 // PhysRegInfo - Keep track of which instruction was the last use of a 188 // physical register. This is a purely local property, because all physical 189 // register references as presumed dead across basic blocks. 190 // 191 MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()]; 192 bool PhysRegUsedA[RegInfo->getNumRegs()]; 193 std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0); 194 PhysRegInfo = PhysRegInfoA; 195 PhysRegUsed = PhysRegUsedA; 196 197 /// Get some space for a respectable number of registers... 198 VirtRegInfo.resize(64); 199 200 // Calculate live variable information in depth first order on the CFG of the 201 // function. This guarantees that we will see the definition of a virtual 202 // register before its uses due to dominance properties of SSA (except for PHI 203 // nodes, which are treated as a special case). 204 // 205 const BasicBlock *Entry = MF.getFunction()->begin(); 206 for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry); 207 DFI != E; ++DFI) { 208 const BasicBlock *BB = *DFI; 209 std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second; 210 MachineBasicBlock *MBB = BBRec.first; 211 unsigned BBNum = BBRec.second; 212 213 // Loop over all of the instructions, processing them. 214 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 215 I != E; ++I) { 216 MachineInstr *MI = I; 217 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 218 219 // Process all of the operands of the instruction... 220 unsigned NumOperandsToProcess = MI->getNumOperands(); 221 222 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 223 // of the uses. They will be handled in other basic blocks. 224 if (MI->getOpcode() == TargetInstrInfo::PHI) 225 NumOperandsToProcess = 1; 226 227 // Loop over implicit uses, using them. 228 for (const unsigned *ImplicitUses = MID.ImplicitUses; 229 *ImplicitUses; ++ImplicitUses) 230 HandlePhysRegUse(*ImplicitUses, MI); 231 232 // Process all explicit uses... 233 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 234 MachineOperand &MO = MI->getOperand(i); 235 if (MO.isUse() && MO.isRegister() && MO.getReg()) { 236 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 237 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 238 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 239 AllocatablePhysicalRegisters[MO.getReg()]) { 240 HandlePhysRegUse(MO.getReg(), MI); 241 } 242 } 243 } 244 245 // Loop over implicit defs, defining them. 246 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 247 *ImplicitDefs; ++ImplicitDefs) 248 HandlePhysRegDef(*ImplicitDefs, MI); 249 250 // Process all explicit defs... 251 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 252 MachineOperand &MO = MI->getOperand(i); 253 if (MO.isDef() && MO.isRegister() && MO.getReg()) { 254 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 255 VarInfo &VRInfo = getVarInfo(MO.getReg()); 256 257 assert(VRInfo.DefBlock == 0 && "Variable multiply defined!"); 258 VRInfo.DefBlock = MBB; // Created here... 259 VRInfo.DefInst = MI; 260 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead 261 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 262 AllocatablePhysicalRegisters[MO.getReg()]) { 263 HandlePhysRegDef(MO.getReg(), MI); 264 } 265 } 266 } 267 } 268 269 // Handle any virtual assignments from PHI nodes which might be at the 270 // bottom of this basic block. We check all of our successor blocks to see 271 // if they have PHI nodes, and if so, we simulate an assignment at the end 272 // of the current block. 273 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); 274 SI != E; ++SI) { 275 MachineBasicBlock *Succ = BBMap.find(*SI)->second.first; 276 277 // PHI nodes are guaranteed to be at the top of the block... 278 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 279 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { 280 for (unsigned i = 1; ; i += 2) { 281 assert(MI->getNumOperands() > i+1 && 282 "Didn't find an entry for our predecessor??"); 283 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 284 MachineOperand &MO = MI->getOperand(i); 285 if (!MO.getVRegValueOrNull()) { 286 VarInfo &VRInfo = getVarInfo(MO.getReg()); 287 288 // Only mark it alive only in the block we are representing... 289 MarkVirtRegAliveInBlock(VRInfo, BB); 290 break; // Found the PHI entry for this block... 291 } 292 } 293 } 294 } 295 } 296 297 // Loop over PhysRegInfo, killing any registers that are available at the 298 // end of the basic block. This also resets the PhysRegInfo map. 299 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 300 if (PhysRegInfo[i]) 301 HandlePhysRegDef(i, 0); 302 } 303 304 // Convert the information we have gathered into VirtRegInfo and transform it 305 // into a form usable by RegistersKilled. 306 // 307 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 308 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 309 if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) 310 RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 311 i + MRegisterInfo::FirstVirtualRegister)); 312 313 else 314 RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 315 i + MRegisterInfo::FirstVirtualRegister)); 316 } 317 318 return false; 319} 320 321/// instructionChanged - When the address of an instruction changes, this 322/// method should be called so that live variables can update its internal 323/// data structures. This removes the records for OldMI, transfering them to 324/// the records for NewMI. 325void LiveVariables::instructionChanged(MachineInstr *OldMI, 326 MachineInstr *NewMI) { 327 // If the instruction defines any virtual registers, update the VarInfo for 328 // the instruction. 329 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 330 MachineOperand &MO = OldMI->getOperand(i); 331 if (MO.isRegister() && MO.isDef() && MO.getReg() && 332 MRegisterInfo::isVirtualRegister(MO.getReg())) { 333 unsigned Reg = MO.getReg(); 334 VarInfo &VI = getVarInfo(Reg); 335 if (VI.DefInst == OldMI) 336 VI.DefInst = NewMI; 337 } 338 } 339 340 // Move the killed information over... 341 killed_iterator I, E; 342 tie(I, E) = killed_range(OldMI); 343 std::vector<unsigned> Regs; 344 for (killed_iterator A = I; A != E; ++A) 345 Regs.push_back(A->second); 346 RegistersKilled.erase(I, E); 347 348 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 349 RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); 350 Regs.clear(); 351 352 353 // Move the dead information over... 354 tie(I, E) = dead_range(OldMI); 355 for (killed_iterator A = I; A != E; ++A) 356 Regs.push_back(A->second); 357 RegistersDead.erase(I, E); 358 359 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 360 RegistersDead.insert(std::make_pair(NewMI, Regs[i])); 361} 362