LiveVariables.cpp revision ac28fbd0436dd8b2bc0c071ba150b60bbfca67f3
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/Target/MRegisterInfo.h" 32#include "llvm/Target/TargetInstrInfo.h" 33#include "llvm/Target/TargetMachine.h" 34#include "llvm/ADT/DepthFirstIterator.h" 35#include "llvm/ADT/STLExtras.h" 36#include "llvm/Config/alloca.h" 37#include <algorithm> 38using namespace llvm; 39 40static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 41 42LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 43 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 44 "getVarInfo: not a virtual register!"); 45 RegIdx -= MRegisterInfo::FirstVirtualRegister; 46 if (RegIdx >= VirtRegInfo.size()) { 47 if (RegIdx >= 2*VirtRegInfo.size()) 48 VirtRegInfo.resize(RegIdx*2); 49 else 50 VirtRegInfo.resize(2*VirtRegInfo.size()); 51 } 52 return VirtRegInfo[RegIdx]; 53} 54 55bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { 56 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 57 RegistersKilled.find(MI); 58 if (I == RegistersKilled.end()) return false; 59 60 // Do a binary search, as these lists can grow pretty big, particularly for 61 // call instructions on targets with lots of call-clobbered registers. 62 return std::binary_search(I->second.begin(), I->second.end(), Reg); 63} 64 65bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { 66 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 67 RegistersDead.find(MI); 68 if (I == RegistersDead.end()) return false; 69 70 // Do a binary search, as these lists can grow pretty big, particularly for 71 // call instructions on targets with lots of call-clobbered registers. 72 return std::binary_search(I->second.begin(), I->second.end(), Reg); 73} 74 75 76void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 77 MachineBasicBlock *MBB) { 78 unsigned BBNum = MBB->getNumber(); 79 80 // Check to see if this basic block is one of the killing blocks. If so, 81 // remove it... 82 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 83 if (VRInfo.Kills[i]->getParent() == MBB) { 84 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 85 break; 86 } 87 88 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion 89 90 if (VRInfo.AliveBlocks.size() <= BBNum) 91 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 92 93 if (VRInfo.AliveBlocks[BBNum]) 94 return; // We already know the block is live 95 96 // Mark the variable known alive in this bb 97 VRInfo.AliveBlocks[BBNum] = true; 98 99 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 100 E = MBB->pred_end(); PI != E; ++PI) 101 MarkVirtRegAliveInBlock(VRInfo, *PI); 102} 103 104void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 105 MachineInstr *MI) { 106 assert(VRInfo.DefInst && "Register use before def!"); 107 108 // Check to see if this basic block is already a kill block... 109 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 110 // Yes, this register is killed in this basic block already. Increase the 111 // live range by updating the kill instruction. 112 VRInfo.Kills.back() = MI; 113 return; 114 } 115 116#ifndef NDEBUG 117 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 118 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 119#endif 120 121 assert(MBB != VRInfo.DefInst->getParent() && 122 "Should have kill for defblock!"); 123 124 // Add a new kill entry for this basic block. 125 VRInfo.Kills.push_back(MI); 126 127 // Update all dominating blocks to mark them known live. 128 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 129 E = MBB->pred_end(); PI != E; ++PI) 130 MarkVirtRegAliveInBlock(VRInfo, *PI); 131} 132 133void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 134 PhysRegInfo[Reg] = MI; 135 PhysRegUsed[Reg] = true; 136 137 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 138 unsigned Alias = *AliasSet; ++AliasSet) { 139 PhysRegInfo[Alias] = MI; 140 PhysRegUsed[Alias] = true; 141 } 142} 143 144void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 145 // Does this kill a previous version of this register? 146 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 147 if (PhysRegUsed[Reg]) 148 RegistersKilled[LastUse].push_back(Reg); 149 else 150 RegistersDead[LastUse].push_back(Reg); 151 } 152 PhysRegInfo[Reg] = MI; 153 PhysRegUsed[Reg] = false; 154 155 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 156 unsigned Alias = *AliasSet; ++AliasSet) { 157 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 158 if (PhysRegUsed[Alias]) 159 RegistersKilled[LastUse].push_back(Alias); 160 else 161 RegistersDead[LastUse].push_back(Alias); 162 } 163 PhysRegInfo[Alias] = MI; 164 PhysRegUsed[Alias] = false; 165 } 166} 167 168bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 169 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); 170 RegInfo = MF.getTarget().getRegisterInfo(); 171 assert(RegInfo && "Target doesn't have register information?"); 172 173 AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF); 174 175 // PhysRegInfo - Keep track of which instruction was the last use of a 176 // physical register. This is a purely local property, because all physical 177 // register references as presumed dead across basic blocks. 178 // 179 PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) * 180 RegInfo->getNumRegs()); 181 PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs()); 182 std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0); 183 184 /// Get some space for a respectable number of registers... 185 VirtRegInfo.resize(64); 186 187 // Mark live-in registers as live-in. 188 for (MachineFunction::livein_iterator I = MF.livein_begin(), 189 E = MF.livein_end(); I != E; ++I) { 190 assert(MRegisterInfo::isPhysicalRegister(I->first) && 191 "Cannot have a live-in virtual register!"); 192 HandlePhysRegDef(I->first, 0); 193 } 194 195 // Calculate live variable information in depth first order on the CFG of the 196 // function. This guarantees that we will see the definition of a virtual 197 // register before its uses due to dominance properties of SSA (except for PHI 198 // nodes, which are treated as a special case). 199 // 200 MachineBasicBlock *Entry = MF.begin(); 201 std::set<MachineBasicBlock*> Visited; 202 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 203 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 204 MachineBasicBlock *MBB = *DFI; 205 unsigned BBNum = MBB->getNumber(); 206 207 // Loop over all of the instructions, processing them. 208 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 209 I != E; ++I) { 210 MachineInstr *MI = I; 211 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 212 213 // Process all of the operands of the instruction... 214 unsigned NumOperandsToProcess = MI->getNumOperands(); 215 216 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 217 // of the uses. They will be handled in other basic blocks. 218 if (MI->getOpcode() == TargetInstrInfo::PHI) 219 NumOperandsToProcess = 1; 220 221 // Loop over implicit uses, using them. 222 for (const unsigned *ImplicitUses = MID.ImplicitUses; 223 *ImplicitUses; ++ImplicitUses) 224 HandlePhysRegUse(*ImplicitUses, MI); 225 226 // Process all explicit uses... 227 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 228 MachineOperand &MO = MI->getOperand(i); 229 if (MO.isUse() && MO.isRegister() && MO.getReg()) { 230 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 231 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 232 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 233 AllocatablePhysicalRegisters[MO.getReg()]) { 234 HandlePhysRegUse(MO.getReg(), MI); 235 } 236 } 237 } 238 239 // Loop over implicit defs, defining them. 240 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 241 *ImplicitDefs; ++ImplicitDefs) 242 HandlePhysRegDef(*ImplicitDefs, MI); 243 244 // Process all explicit defs... 245 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 246 MachineOperand &MO = MI->getOperand(i); 247 if (MO.isDef() && MO.isRegister() && MO.getReg()) { 248 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 249 VarInfo &VRInfo = getVarInfo(MO.getReg()); 250 251 assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); 252 VRInfo.DefInst = MI; 253 // Defaults to dead 254 VRInfo.Kills.push_back(MI); 255 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 256 AllocatablePhysicalRegisters[MO.getReg()]) { 257 HandlePhysRegDef(MO.getReg(), MI); 258 } 259 } 260 } 261 } 262 263 // Handle any virtual assignments from PHI nodes which might be at the 264 // bottom of this basic block. We check all of our successor blocks to see 265 // if they have PHI nodes, and if so, we simulate an assignment at the end 266 // of the current block. 267 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 268 E = MBB->succ_end(); SI != E; ++SI) { 269 MachineBasicBlock *Succ = *SI; 270 271 // PHI nodes are guaranteed to be at the top of the block... 272 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 273 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { 274 for (unsigned i = 1; ; i += 2) { 275 assert(MI->getNumOperands() > i+1 && 276 "Didn't find an entry for our predecessor??"); 277 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 278 MachineOperand &MO = MI->getOperand(i); 279 if (!MO.getVRegValueOrNull()) { 280 VarInfo &VRInfo = getVarInfo(MO.getReg()); 281 assert(VRInfo.DefInst && "Register use before def (or no def)!"); 282 283 // Only mark it alive only in the block we are representing. 284 MarkVirtRegAliveInBlock(VRInfo, MBB); 285 break; // Found the PHI entry for this block. 286 } 287 } 288 } 289 } 290 } 291 292 // Finally, if the last block in the function is a return, make sure to mark 293 // it as using all of the live-out values in the function. 294 if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { 295 MachineInstr *Ret = &MBB->back(); 296 for (MachineFunction::liveout_iterator I = MF.liveout_begin(), 297 E = MF.liveout_end(); I != E; ++I) { 298 assert(MRegisterInfo::isPhysicalRegister(*I) && 299 "Cannot have a live-in virtual register!"); 300 HandlePhysRegUse(*I, Ret); 301 } 302 } 303 304 // Loop over PhysRegInfo, killing any registers that are available at the 305 // end of the basic block. This also resets the PhysRegInfo map. 306 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 307 if (PhysRegInfo[i]) 308 HandlePhysRegDef(i, 0); 309 } 310 311 // Convert the information we have gathered into VirtRegInfo and transform it 312 // into a form usable by RegistersKilled. 313 // 314 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 315 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 316 if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) 317 RegistersDead[VirtRegInfo[i].Kills[j]].push_back( 318 i + MRegisterInfo::FirstVirtualRegister); 319 320 else 321 RegistersKilled[VirtRegInfo[i].Kills[j]].push_back( 322 i + MRegisterInfo::FirstVirtualRegister); 323 } 324 325 // Walk through the RegistersKilled/Dead sets, and sort the registers killed 326 // or dead. This allows us to use efficient binary search for membership 327 // testing. 328 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator 329 I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I) 330 std::sort(I->second.begin(), I->second.end()); 331 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator 332 I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I) 333 std::sort(I->second.begin(), I->second.end()); 334 335 // Check to make sure there are no unreachable blocks in the MC CFG for the 336 // function. If so, it is due to a bug in the instruction selector or some 337 // other part of the code generator if this happens. 338#ifndef NDEBUG 339 for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) 340 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 341#endif 342 343 return false; 344} 345 346/// instructionChanged - When the address of an instruction changes, this 347/// method should be called so that live variables can update its internal 348/// data structures. This removes the records for OldMI, transfering them to 349/// the records for NewMI. 350void LiveVariables::instructionChanged(MachineInstr *OldMI, 351 MachineInstr *NewMI) { 352 // If the instruction defines any virtual registers, update the VarInfo for 353 // the instruction. 354 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 355 MachineOperand &MO = OldMI->getOperand(i); 356 if (MO.isRegister() && MO.getReg() && 357 MRegisterInfo::isVirtualRegister(MO.getReg())) { 358 unsigned Reg = MO.getReg(); 359 VarInfo &VI = getVarInfo(Reg); 360 if (MO.isDef()) { 361 // Update the defining instruction. 362 if (VI.DefInst == OldMI) 363 VI.DefInst = NewMI; 364 } 365 if (MO.isUse()) { 366 // If this is a kill of the value, update the VI kills list. 367 if (VI.removeKill(OldMI)) 368 VI.Kills.push_back(NewMI); // Yes, there was a kill of it 369 } 370 } 371 } 372 373 // Move the killed information over... 374 killed_iterator I, E; 375 tie(I, E) = killed_range(OldMI); 376 if (I != E) { 377 std::vector<unsigned> &V = RegistersKilled[NewMI]; 378 bool WasEmpty = V.empty(); 379 V.insert(V.end(), I, E); 380 if (!WasEmpty) 381 std::sort(V.begin(), V.end()); // Keep the reg list sorted. 382 RegistersKilled.erase(OldMI); 383 } 384 385 // Move the dead information over... 386 tie(I, E) = dead_range(OldMI); 387 if (I != E) { 388 std::vector<unsigned> &V = RegistersDead[NewMI]; 389 bool WasEmpty = V.empty(); 390 V.insert(V.end(), I, E); 391 if (!WasEmpty) 392 std::sort(V.begin(), V.end()); // Keep the reg list sorted. 393 RegistersDead.erase(OldMI); 394 } 395} 396