LiveVariables.cpp revision bd3ba461eb5578a81ba09ff7bd7eb271d1130196
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/CodeGen/MachineRegisterInfo.h" 32#include "llvm/CodeGen/Passes.h" 33#include "llvm/Target/TargetRegisterInfo.h" 34#include "llvm/Target/TargetInstrInfo.h" 35#include "llvm/Target/TargetMachine.h" 36#include "llvm/ADT/DepthFirstIterator.h" 37#include "llvm/ADT/SmallPtrSet.h" 38#include "llvm/ADT/SmallSet.h" 39#include "llvm/ADT/STLExtras.h" 40#include "llvm/Config/alloca.h" 41#include <algorithm> 42using namespace llvm; 43 44char LiveVariables::ID = 0; 45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 46 47 48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequiredID(UnreachableMachineBlockElimID); 50 AU.setPreservesAll(); 51} 52 53void LiveVariables::VarInfo::dump() const { 54 cerr << " Alive in blocks: "; 55 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) 56 if (AliveBlocks[i]) cerr << i << ", "; 57 cerr << " Used in blocks: "; 58 for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i) 59 if (UsedBlocks[i]) cerr << i << ", "; 60 cerr << "\n Killed by:"; 61 if (Kills.empty()) 62 cerr << " No instructions.\n"; 63 else { 64 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 65 cerr << "\n #" << i << ": " << *Kills[i]; 66 cerr << "\n"; 67 } 68} 69 70/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 71LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 72 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 73 "getVarInfo: not a virtual register!"); 74 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 75 if (RegIdx >= VirtRegInfo.size()) { 76 if (RegIdx >= 2*VirtRegInfo.size()) 77 VirtRegInfo.resize(RegIdx*2); 78 else 79 VirtRegInfo.resize(2*VirtRegInfo.size()); 80 } 81 VarInfo &VI = VirtRegInfo[RegIdx]; 82 VI.AliveBlocks.resize(MF->getNumBlockIDs()); 83 VI.UsedBlocks.resize(MF->getNumBlockIDs()); 84 return VI; 85} 86 87void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 88 MachineBasicBlock *DefBlock, 89 MachineBasicBlock *MBB, 90 std::vector<MachineBasicBlock*> &WorkList) { 91 unsigned BBNum = MBB->getNumber(); 92 93 // Check to see if this basic block is one of the killing blocks. If so, 94 // remove it. 95 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 96 if (VRInfo.Kills[i]->getParent() == MBB) { 97 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 98 break; 99 } 100 101 if (MBB == DefBlock) return; // Terminate recursion 102 103 if (VRInfo.AliveBlocks[BBNum]) 104 return; // We already know the block is live 105 106 // Mark the variable known alive in this bb 107 VRInfo.AliveBlocks[BBNum] = true; 108 109 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 110 E = MBB->pred_rend(); PI != E; ++PI) 111 WorkList.push_back(*PI); 112} 113 114void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 115 MachineBasicBlock *DefBlock, 116 MachineBasicBlock *MBB) { 117 std::vector<MachineBasicBlock*> WorkList; 118 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 119 120 while (!WorkList.empty()) { 121 MachineBasicBlock *Pred = WorkList.back(); 122 WorkList.pop_back(); 123 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 124 } 125} 126 127void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 128 MachineInstr *MI) { 129 assert(MRI->getVRegDef(reg) && "Register use before def!"); 130 131 unsigned BBNum = MBB->getNumber(); 132 133 VarInfo& VRInfo = getVarInfo(reg); 134 VRInfo.UsedBlocks[BBNum] = true; 135 VRInfo.NumUses++; 136 137 // Check to see if this basic block is already a kill block. 138 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 139 // Yes, this register is killed in this basic block already. Increase the 140 // live range by updating the kill instruction. 141 VRInfo.Kills.back() = MI; 142 return; 143 } 144 145#ifndef NDEBUG 146 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 147 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 148#endif 149 150 // This situation can occur: 151 // 152 // ,------. 153 // | | 154 // | v 155 // | t2 = phi ... t1 ... 156 // | | 157 // | v 158 // | t1 = ... 159 // | ... = ... t1 ... 160 // | | 161 // `------' 162 // 163 // where there is a use in a PHI node that's a predecessor to the defining 164 // block. We don't want to mark all predecessors as having the value "alive" 165 // in this case. 166 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 167 168 // Add a new kill entry for this basic block. If this virtual register is 169 // already marked as alive in this basic block, that means it is alive in at 170 // least one of the successor blocks, it's not a kill. 171 if (!VRInfo.AliveBlocks[BBNum]) 172 VRInfo.Kills.push_back(MI); 173 174 // Update all dominating blocks to mark them as "known live". 175 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 176 E = MBB->pred_end(); PI != E; ++PI) 177 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 178} 179 180/// FindLastPartialDef - Return the last partial def of the specified register. 181/// Also returns the sub-register that's defined. 182MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 183 unsigned &PartDefReg) { 184 unsigned LastDefReg = 0; 185 unsigned LastDefDist = 0; 186 MachineInstr *LastDef = NULL; 187 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 188 unsigned SubReg = *SubRegs; ++SubRegs) { 189 MachineInstr *Def = PhysRegDef[SubReg]; 190 if (!Def) 191 continue; 192 unsigned Dist = DistanceMap[Def]; 193 if (Dist > LastDefDist) { 194 LastDefReg = SubReg; 195 LastDef = Def; 196 LastDefDist = Dist; 197 } 198 } 199 PartDefReg = LastDefReg; 200 return LastDef; 201} 202 203/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 204/// implicit defs to a machine instruction if there was an earlier def of its 205/// super-register. 206void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 207 // If there was a previous use or a "full" def all is well. 208 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) { 209 // Otherwise, the last sub-register def implicitly defines this register. 210 // e.g. 211 // AH = 212 // AL = ... <imp-def EAX>, <imp-kill AH> 213 // = AH 214 // ... 215 // = EAX 216 // All of the sub-registers must have been defined before the use of Reg! 217 unsigned PartDefReg = 0; 218 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg); 219 // If LastPartialDef is NULL, it must be using a livein register. 220 if (LastPartialDef) { 221 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 222 true/*IsImp*/)); 223 PhysRegDef[Reg] = LastPartialDef; 224 std::set<unsigned> Processed; 225 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 226 unsigned SubReg = *SubRegs; ++SubRegs) { 227 if (Processed.count(SubReg)) 228 continue; 229 if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg)) 230 continue; 231 // This part of Reg was defined before the last partial def. It's killed 232 // here. 233 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 234 false/*IsDef*/, 235 true/*IsImp*/)); 236 PhysRegDef[SubReg] = LastPartialDef; 237 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 238 Processed.insert(*SS); 239 } 240 } 241 } 242 243 // There was an earlier def of a super-register. Add implicit def to that MI. 244 // 245 // A: EAX = ... 246 // B: ... = AX 247 // 248 // Add implicit def to A if there isn't a use of AX (or EAX) before B. 249 if (!PhysRegUse[Reg]) { 250 MachineInstr *Def = PhysRegDef[Reg]; 251 if (Def && !Def->modifiesRegister(Reg)) 252 Def->addOperand(MachineOperand::CreateReg(Reg, 253 true /*IsDef*/, 254 true /*IsImp*/)); 255 } 256 257 // Remember this use. 258 PhysRegUse[Reg] = MI; 259 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 260 unsigned SubReg = *SubRegs; ++SubRegs) 261 PhysRegUse[SubReg] = MI; 262} 263 264/// hasRegisterUseBelow - Return true if the specified register is used after 265/// the current instruction and before it's next definition. 266bool LiveVariables::hasRegisterUseBelow(unsigned Reg, 267 MachineBasicBlock::iterator I, 268 MachineBasicBlock *MBB) { 269 if (I == MBB->end()) 270 return false; 271 272 // First find out if there are any uses / defs below. 273 bool hasDistInfo = true; 274 unsigned CurDist = DistanceMap[I]; 275 SmallVector<MachineInstr*, 4> Uses; 276 SmallVector<MachineInstr*, 4> Defs; 277 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), 278 RE = MRI->reg_end(); RI != RE; ++RI) { 279 MachineOperand &UDO = RI.getOperand(); 280 MachineInstr *UDMI = &*RI; 281 if (UDMI->getParent() != MBB) 282 continue; 283 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); 284 bool isBelow = false; 285 if (DI == DistanceMap.end()) { 286 // Must be below if it hasn't been assigned a distance yet. 287 isBelow = true; 288 hasDistInfo = false; 289 } else if (DI->second > CurDist) 290 isBelow = true; 291 if (isBelow) { 292 if (UDO.isUse()) 293 Uses.push_back(UDMI); 294 if (UDO.isDef()) 295 Defs.push_back(UDMI); 296 } 297 } 298 299 if (Uses.empty()) 300 // No uses below. 301 return false; 302 else if (!Uses.empty() && Defs.empty()) 303 // There are uses below but no defs below. 304 return true; 305 // There are both uses and defs below. We need to know which comes first. 306 if (!hasDistInfo) { 307 // Complete DistanceMap for this MBB. This information is computed only 308 // once per MBB. 309 ++I; 310 ++CurDist; 311 for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist) 312 DistanceMap.insert(std::make_pair(I, CurDist)); 313 } 314 315 unsigned EarliestUse = DistanceMap[Uses[0]]; 316 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 317 unsigned Dist = DistanceMap[Uses[i]]; 318 if (Dist < EarliestUse) 319 EarliestUse = Dist; 320 } 321 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 322 unsigned Dist = DistanceMap[Defs[i]]; 323 if (Dist < EarliestUse) 324 // The register is defined before its first use below. 325 return false; 326 } 327 return true; 328} 329 330bool LiveVariables::HandlePhysRegKill(unsigned Reg) { 331 if (!PhysRegUse[Reg] && !PhysRegDef[Reg]) 332 return false; 333 334 MachineInstr *LastRefOrPartRef = PhysRegUse[Reg] 335 ? PhysRegUse[Reg] : PhysRegDef[Reg]; 336 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 337 // The whole register is used. 338 // AL = 339 // AH = 340 // 341 // = AX 342 // = AL, AX<imp-use, kill> 343 // AX = 344 // 345 // Or whole register is defined, but not used at all. 346 // AX<dead> = 347 // ... 348 // AX = 349 // 350 // Or whole register is defined, but only partly used. 351 // AX<dead> = AL<imp-def> 352 // = AL<kill> 353 // AX = 354 std::set<unsigned> PartUses; 355 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 356 unsigned SubReg = *SubRegs; ++SubRegs) { 357 if (MachineInstr *Use = PhysRegUse[SubReg]) { 358 PartUses.insert(SubReg); 359 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 360 PartUses.insert(*SS); 361 unsigned Dist = DistanceMap[Use]; 362 if (Dist > LastRefOrPartRefDist) { 363 LastRefOrPartRefDist = Dist; 364 LastRefOrPartRef = Use; 365 } 366 } 367 } 368 if (LastRefOrPartRef == PhysRegDef[Reg]) 369 // Not used at all. 370 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 371 372 /* Partial uses. Mark register def dead and add implicit def of 373 sub-registers which are used. 374 FIXME: LiveIntervalAnalysis can't handle this yet! 375 EAX<dead> = op AL<imp-def> 376 That is, EAX def is dead but AL def extends pass it. 377 Enable this after live interval analysis is fixed to improve codegen! 378 else if (!PhysRegUse[Reg]) { 379 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 380 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 381 unsigned SubReg = *SubRegs; ++SubRegs) { 382 if (PartUses.count(SubReg)) { 383 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 384 true, true)); 385 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 386 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 387 PartUses.erase(*SS); 388 } 389 } 390 } */ 391 else 392 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 393 return true; 394} 395 396void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 397 // What parts of the register are previously defined? 398 SmallSet<unsigned, 32> Live; 399 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 400 Live.insert(Reg); 401 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 402 Live.insert(*SS); 403 } else { 404 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 405 unsigned SubReg = *SubRegs; ++SubRegs) { 406 // If a register isn't itself defined, but all parts that make up of it 407 // are defined, then consider it also defined. 408 // e.g. 409 // AL = 410 // AH = 411 // = AX 412 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 413 Live.insert(SubReg); 414 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 415 Live.insert(*SS); 416 } 417 } 418 } 419 420 // Start from the largest piece, find the last time any part of the register 421 // is referenced. 422 if (!HandlePhysRegKill(Reg)) { 423 // Only some of the sub-registers are used. 424 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 425 unsigned SubReg = *SubRegs; ++SubRegs) { 426 if (!Live.count(SubReg)) 427 // Skip if this sub-register isn't defined. 428 continue; 429 if (HandlePhysRegKill(SubReg)) { 430 Live.erase(SubReg); 431 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 432 Live.erase(*SS); 433 } 434 } 435 assert(Live.empty() && "Not all defined registers are killed / dead?"); 436 } 437 438 if (MI) { 439 // Does this extend the live range of a super-register? 440 std::set<unsigned> Processed; 441 for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); 442 unsigned SuperReg = *SuperRegs; ++SuperRegs) { 443 if (Processed.count(SuperReg)) 444 continue; 445 MachineInstr *LastRef = PhysRegUse[SuperReg] 446 ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg]; 447 if (LastRef && LastRef != MI) { 448 // The larger register is previously defined. Now a smaller part is 449 // being re-defined. Treat it as read/mod/write if there are uses 450 // below. 451 // EAX = 452 // AX = EAX<imp-use,kill>, EAX<imp-def> 453 // ... 454 /// = EAX 455 if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) { 456 MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/, 457 true/*IsImp*/,true/*IsKill*/)); 458 MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/, 459 true/*IsImp*/)); 460 PhysRegDef[SuperReg] = MI; 461 PhysRegUse[SuperReg] = NULL; 462 Processed.insert(SuperReg); 463 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 464 PhysRegDef[*SS] = MI; 465 PhysRegUse[*SS] = NULL; 466 Processed.insert(*SS); 467 } 468 } else { 469 // Otherwise, the super register is killed. 470 if (HandlePhysRegKill(SuperReg)) { 471 PhysRegDef[SuperReg] = NULL; 472 PhysRegUse[SuperReg] = NULL; 473 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 474 PhysRegDef[*SS] = NULL; 475 PhysRegUse[*SS] = NULL; 476 Processed.insert(*SS); 477 } 478 } 479 } 480 } 481 } 482 483 // Remember this def. 484 PhysRegDef[Reg] = MI; 485 PhysRegUse[Reg] = NULL; 486 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 487 unsigned SubReg = *SubRegs; ++SubRegs) { 488 PhysRegDef[SubReg] = MI; 489 PhysRegUse[SubReg] = NULL; 490 } 491 } 492} 493 494bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 495 MF = &mf; 496 MRI = &mf.getRegInfo(); 497 TRI = MF->getTarget().getRegisterInfo(); 498 499 ReservedRegisters = TRI->getReservedRegs(mf); 500 501 unsigned NumRegs = TRI->getNumRegs(); 502 PhysRegDef = new MachineInstr*[NumRegs]; 503 PhysRegUse = new MachineInstr*[NumRegs]; 504 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 505 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 506 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 507 508 /// Get some space for a respectable number of registers. 509 VirtRegInfo.resize(64); 510 511 analyzePHINodes(mf); 512 513 // Calculate live variable information in depth first order on the CFG of the 514 // function. This guarantees that we will see the definition of a virtual 515 // register before its uses due to dominance properties of SSA (except for PHI 516 // nodes, which are treated as a special case). 517 MachineBasicBlock *Entry = MF->begin(); 518 SmallPtrSet<MachineBasicBlock*,16> Visited; 519 520 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 521 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 522 DFI != E; ++DFI) { 523 MachineBasicBlock *MBB = *DFI; 524 525 // Mark live-in registers as live-in. 526 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 527 EE = MBB->livein_end(); II != EE; ++II) { 528 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 529 "Cannot have a live-in virtual register!"); 530 HandlePhysRegDef(*II, 0); 531 } 532 533 // Loop over all of the instructions, processing them. 534 DistanceMap.clear(); 535 unsigned Dist = 0; 536 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 537 I != E; ++I) { 538 MachineInstr *MI = I; 539 DistanceMap.insert(std::make_pair(MI, Dist++)); 540 541 // Process all of the operands of the instruction... 542 unsigned NumOperandsToProcess = MI->getNumOperands(); 543 544 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 545 // of the uses. They will be handled in other basic blocks. 546 if (MI->getOpcode() == TargetInstrInfo::PHI) 547 NumOperandsToProcess = 1; 548 549 SmallVector<unsigned, 4> UseRegs; 550 SmallVector<unsigned, 4> DefRegs; 551 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 552 const MachineOperand &MO = MI->getOperand(i); 553 if (MO.isRegister() && MO.getReg()) { 554 unsigned MOReg = MO.getReg(); 555 if (!MOReg) 556 continue; 557 if (MO.isUse()) 558 UseRegs.push_back(MOReg); 559 if (MO.isDef()) 560 DefRegs.push_back(MOReg); 561 } 562 } 563 564 // Process all uses. 565 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 566 unsigned MOReg = UseRegs[i]; 567 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 568 HandleVirtRegUse(MOReg, MBB, MI); 569 else if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 570 !ReservedRegisters[MOReg]) 571 HandlePhysRegUse(MOReg, MI); 572 } 573 574 // Process all defs. 575 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 576 unsigned MOReg = DefRegs[i]; 577 if (TargetRegisterInfo::isVirtualRegister(MOReg)) { 578 VarInfo &VRInfo = getVarInfo(MOReg); 579 580 if (VRInfo.AliveBlocks.none()) 581 // If vr is not alive in any block, then defaults to dead. 582 VRInfo.Kills.push_back(MI); 583 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 584 !ReservedRegisters[MOReg]) { 585 HandlePhysRegDef(MOReg, MI); 586 } 587 } 588 } 589 590 // Handle any virtual assignments from PHI nodes which might be at the 591 // bottom of this basic block. We check all of our successor blocks to see 592 // if they have PHI nodes, and if so, we simulate an assignment at the end 593 // of the current block. 594 if (!PHIVarInfo[MBB->getNumber()].empty()) { 595 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 596 597 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 598 E = VarInfoVec.end(); I != E; ++I) 599 // Mark it alive only in the block we are representing. 600 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 601 MBB); 602 } 603 604 // Finally, if the last instruction in the block is a return, make sure to 605 // mark it as using all of the live-out values in the function. 606 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 607 MachineInstr *Ret = &MBB->back(); 608 609 for (MachineRegisterInfo::liveout_iterator 610 I = MF->getRegInfo().liveout_begin(), 611 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 612 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 613 "Cannot have a live-out virtual register!"); 614 HandlePhysRegUse(*I, Ret); 615 616 // Add live-out registers as implicit uses. 617 if (!Ret->readsRegister(*I)) 618 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 619 } 620 } 621 622 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 623 // available at the end of the basic block. 624 for (unsigned i = 0; i != NumRegs; ++i) 625 if (PhysRegDef[i] || PhysRegUse[i]) 626 HandlePhysRegDef(i, 0); 627 628 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 629 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 630 } 631 632 // Convert and transfer the dead / killed information we have gathered into 633 // VirtRegInfo onto MI's. 634 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 635 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 636 if (VirtRegInfo[i].Kills[j] == 637 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 638 VirtRegInfo[i] 639 .Kills[j]->addRegisterDead(i + 640 TargetRegisterInfo::FirstVirtualRegister, 641 TRI); 642 else 643 VirtRegInfo[i] 644 .Kills[j]->addRegisterKilled(i + 645 TargetRegisterInfo::FirstVirtualRegister, 646 TRI); 647 648 // Check to make sure there are no unreachable blocks in the MC CFG for the 649 // function. If so, it is due to a bug in the instruction selector or some 650 // other part of the code generator if this happens. 651#ifndef NDEBUG 652 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 653 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 654#endif 655 656 delete[] PhysRegDef; 657 delete[] PhysRegUse; 658 delete[] PHIVarInfo; 659 660 return false; 661} 662 663/// replaceKillInstruction - Update register kill info by replacing a kill 664/// instruction with a new one. 665void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 666 MachineInstr *NewMI) { 667 VarInfo &VI = getVarInfo(Reg); 668 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 669} 670 671/// removeVirtualRegistersKilled - Remove all killed info for the specified 672/// instruction. 673void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 674 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 675 MachineOperand &MO = MI->getOperand(i); 676 if (MO.isRegister() && MO.isKill()) { 677 MO.setIsKill(false); 678 unsigned Reg = MO.getReg(); 679 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 680 bool removed = getVarInfo(Reg).removeKill(MI); 681 assert(removed && "kill not in register's VarInfo?"); 682 } 683 } 684 } 685} 686 687/// analyzePHINodes - Gather information about the PHI nodes in here. In 688/// particular, we want to map the variable information of a virtual register 689/// which is used in a PHI node. We map that to the BB the vreg is coming from. 690/// 691void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 692 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 693 I != E; ++I) 694 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 695 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 696 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 697 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 698 .push_back(BBI->getOperand(i).getReg()); 699} 700