LiveVariables.cpp revision bffdf66b8050b45188cb265f27e81c41277ab0ca
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/CodeGen/MachineRegisterInfo.h" 32#include "llvm/Target/TargetRegisterInfo.h" 33#include "llvm/Target/TargetInstrInfo.h" 34#include "llvm/Target/TargetMachine.h" 35#include "llvm/ADT/DepthFirstIterator.h" 36#include "llvm/ADT/SmallPtrSet.h" 37#include "llvm/ADT/SmallSet.h" 38#include "llvm/ADT/STLExtras.h" 39#include "llvm/Config/alloca.h" 40#include <algorithm> 41using namespace llvm; 42 43char LiveVariables::ID = 0; 44static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 45 46void LiveVariables::VarInfo::dump() const { 47 cerr << " Alive in blocks: "; 48 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) 49 if (AliveBlocks[i]) cerr << i << ", "; 50 cerr << " Used in blocks: "; 51 for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i) 52 if (UsedBlocks[i]) cerr << i << ", "; 53 cerr << "\n Killed by:"; 54 if (Kills.empty()) 55 cerr << " No instructions.\n"; 56 else { 57 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 58 cerr << "\n #" << i << ": " << *Kills[i]; 59 cerr << "\n"; 60 } 61} 62 63/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 64LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 65 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 66 "getVarInfo: not a virtual register!"); 67 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 68 if (RegIdx >= VirtRegInfo.size()) { 69 if (RegIdx >= 2*VirtRegInfo.size()) 70 VirtRegInfo.resize(RegIdx*2); 71 else 72 VirtRegInfo.resize(2*VirtRegInfo.size()); 73 } 74 VarInfo &VI = VirtRegInfo[RegIdx]; 75 VI.AliveBlocks.resize(MF->getNumBlockIDs()); 76 VI.UsedBlocks.resize(MF->getNumBlockIDs()); 77 return VI; 78} 79 80void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 81 MachineBasicBlock *DefBlock, 82 MachineBasicBlock *MBB, 83 std::vector<MachineBasicBlock*> &WorkList) { 84 unsigned BBNum = MBB->getNumber(); 85 86 // Check to see if this basic block is one of the killing blocks. If so, 87 // remove it. 88 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 89 if (VRInfo.Kills[i]->getParent() == MBB) { 90 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 91 break; 92 } 93 94 if (MBB == DefBlock) return; // Terminate recursion 95 96 if (VRInfo.AliveBlocks[BBNum]) 97 return; // We already know the block is live 98 99 // Mark the variable known alive in this bb 100 VRInfo.AliveBlocks[BBNum] = true; 101 102 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 103 E = MBB->pred_rend(); PI != E; ++PI) 104 WorkList.push_back(*PI); 105} 106 107void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 108 MachineBasicBlock *DefBlock, 109 MachineBasicBlock *MBB) { 110 std::vector<MachineBasicBlock*> WorkList; 111 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 112 113 while (!WorkList.empty()) { 114 MachineBasicBlock *Pred = WorkList.back(); 115 WorkList.pop_back(); 116 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 117 } 118} 119 120void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 121 MachineInstr *MI) { 122 assert(MRI->getVRegDef(reg) && "Register use before def!"); 123 124 unsigned BBNum = MBB->getNumber(); 125 126 VarInfo& VRInfo = getVarInfo(reg); 127 VRInfo.UsedBlocks[BBNum] = true; 128 VRInfo.NumUses++; 129 130 // Check to see if this basic block is already a kill block. 131 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 132 // Yes, this register is killed in this basic block already. Increase the 133 // live range by updating the kill instruction. 134 VRInfo.Kills.back() = MI; 135 return; 136 } 137 138#ifndef NDEBUG 139 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 140 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 141#endif 142 143 // This situation can occur: 144 // 145 // ,------. 146 // | | 147 // | v 148 // | t2 = phi ... t1 ... 149 // | | 150 // | v 151 // | t1 = ... 152 // | ... = ... t1 ... 153 // | | 154 // `------' 155 // 156 // where there is a use in a PHI node that's a predecessor to the defining 157 // block. We don't want to mark all predecessors as having the value "alive" 158 // in this case. 159 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 160 161 // Add a new kill entry for this basic block. If this virtual register is 162 // already marked as alive in this basic block, that means it is alive in at 163 // least one of the successor blocks, it's not a kill. 164 if (!VRInfo.AliveBlocks[BBNum]) 165 VRInfo.Kills.push_back(MI); 166 167 // Update all dominating blocks to mark them as "known live". 168 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 169 E = MBB->pred_end(); PI != E; ++PI) 170 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 171} 172 173/// FindLastPartialDef - Return the last partial def of the specified register. 174/// Also returns the sub-register that's defined. 175MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 176 unsigned &PartDefReg) { 177 unsigned LastDefReg = 0; 178 unsigned LastDefDist = 0; 179 MachineInstr *LastDef = NULL; 180 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 181 unsigned SubReg = *SubRegs; ++SubRegs) { 182 MachineInstr *Def = PhysRegDef[SubReg]; 183 if (!Def) 184 continue; 185 unsigned Dist = DistanceMap[Def]; 186 if (Dist > LastDefDist) { 187 LastDefReg = SubReg; 188 LastDef = Def; 189 LastDefDist = Dist; 190 } 191 } 192 PartDefReg = LastDefReg; 193 return LastDef; 194} 195 196/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 197/// implicit defs to a machine instruction if there was an earlier def of its 198/// super-register. 199void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 200 // If there was a previous use or a "full" def all is well. 201 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) { 202 // Otherwise, the last sub-register def implicitly defines this register. 203 // e.g. 204 // AH = 205 // AL = ... <imp-def EAX>, <imp-kill AH> 206 // = AH 207 // ... 208 // = EAX 209 // All of the sub-registers must have been defined before the use of Reg! 210 unsigned PartDefReg = 0; 211 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg); 212 // If LastPartialDef is NULL, it must be using a livein register. 213 if (LastPartialDef) { 214 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 215 true/*IsImp*/)); 216 PhysRegDef[Reg] = LastPartialDef; 217 std::set<unsigned> Processed; 218 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 219 unsigned SubReg = *SubRegs; ++SubRegs) { 220 if (Processed.count(SubReg)) 221 continue; 222 if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg)) 223 continue; 224 // This part of Reg was defined before the last partial def. It's killed 225 // here. 226 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 227 false/*IsDef*/, 228 true/*IsImp*/)); 229 PhysRegDef[SubReg] = LastPartialDef; 230 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 231 Processed.insert(*SS); 232 } 233 } 234 } 235 236 // There was an earlier def of a super-register. Add implicit def to that MI. 237 // 238 // A: EAX = ... 239 // B: ... = AX 240 // 241 // Add implicit def to A if there isn't a use of AX (or EAX) before B. 242 if (!PhysRegUse[Reg]) { 243 MachineInstr *Def = PhysRegDef[Reg]; 244 if (Def && !Def->modifiesRegister(Reg)) 245 Def->addOperand(MachineOperand::CreateReg(Reg, 246 true /*IsDef*/, 247 true /*IsImp*/)); 248 } 249 250 // Remember this use. 251 PhysRegUse[Reg] = MI; 252 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 253 unsigned SubReg = *SubRegs; ++SubRegs) 254 PhysRegUse[SubReg] = MI; 255} 256 257/// hasRegisterUseBelow - Return true if the specified register is used after 258/// the current instruction and before it's next definition. 259bool LiveVariables::hasRegisterUseBelow(unsigned Reg, 260 MachineBasicBlock::iterator I, 261 MachineBasicBlock *MBB) { 262 if (I == MBB->end()) 263 return false; 264 265 // First find out if there are any uses / defs below. 266 bool hasDistInfo = true; 267 unsigned CurDist = DistanceMap[I]; 268 SmallVector<MachineInstr*, 4> Uses; 269 SmallVector<MachineInstr*, 4> Defs; 270 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), 271 RE = MRI->reg_end(); RI != RE; ++RI) { 272 MachineOperand &UDO = RI.getOperand(); 273 MachineInstr *UDMI = &*RI; 274 if (UDMI->getParent() != MBB) 275 continue; 276 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); 277 bool isBelow = false; 278 if (DI == DistanceMap.end()) { 279 // Must be below if it hasn't been assigned a distance yet. 280 isBelow = true; 281 hasDistInfo = false; 282 } else if (DI->second > CurDist) 283 isBelow = true; 284 if (isBelow) { 285 if (UDO.isUse()) 286 Uses.push_back(UDMI); 287 if (UDO.isDef()) 288 Defs.push_back(UDMI); 289 } 290 } 291 292 if (Uses.empty()) 293 // No uses below. 294 return false; 295 else if (!Uses.empty() && Defs.empty()) 296 // There are uses below but no defs below. 297 return true; 298 // There are both uses and defs below. We need to know which comes first. 299 if (!hasDistInfo) { 300 // Complete DistanceMap for this MBB. This information is computed only 301 // once per MBB. 302 ++I; 303 ++CurDist; 304 for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist) 305 DistanceMap.insert(std::make_pair(I, CurDist)); 306 } 307 308 unsigned EarliestUse = DistanceMap[Uses[0]]; 309 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 310 unsigned Dist = DistanceMap[Uses[i]]; 311 if (Dist < EarliestUse) 312 EarliestUse = Dist; 313 } 314 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 315 unsigned Dist = DistanceMap[Defs[i]]; 316 if (Dist < EarliestUse) 317 // The register is defined before its first use below. 318 return false; 319 } 320 return true; 321} 322 323bool LiveVariables::HandlePhysRegKill(unsigned Reg) { 324 if (!PhysRegUse[Reg] && !PhysRegDef[Reg]) 325 return false; 326 327 MachineInstr *LastRefOrPartRef = PhysRegUse[Reg] 328 ? PhysRegUse[Reg] : PhysRegDef[Reg]; 329 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 330 // The whole register is used. 331 // AL = 332 // AH = 333 // 334 // = AX 335 // = AL, AX<imp-use, kill> 336 // AX = 337 // 338 // Or whole register is defined, but not used at all. 339 // AX<dead> = 340 // ... 341 // AX = 342 // 343 // Or whole register is defined, but only partly used. 344 // AX<dead> = AL<imp-def> 345 // = AL<kill> 346 // AX = 347 std::set<unsigned> PartUses; 348 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 349 unsigned SubReg = *SubRegs; ++SubRegs) { 350 if (MachineInstr *Use = PhysRegUse[SubReg]) { 351 PartUses.insert(SubReg); 352 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 353 PartUses.insert(*SS); 354 unsigned Dist = DistanceMap[Use]; 355 if (Dist > LastRefOrPartRefDist) { 356 LastRefOrPartRefDist = Dist; 357 LastRefOrPartRef = Use; 358 } 359 } 360 } 361 if (LastRefOrPartRef == PhysRegDef[Reg]) 362 // Not used at all. 363 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 364 365 /* Partial uses. Mark register def dead and add implicit def of 366 sub-registers which are used. 367 FIXME: LiveIntervalAnalysis can't handle this yet! 368 EAX<dead> = op AL<imp-def> 369 That is, EAX def is dead but AL def extends pass it. 370 Enable this after live interval analysis is fixed to improve codegen! 371 else if (!PhysRegUse[Reg]) { 372 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 373 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 374 unsigned SubReg = *SubRegs; ++SubRegs) { 375 if (PartUses.count(SubReg)) { 376 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 377 true, true)); 378 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 379 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 380 PartUses.erase(*SS); 381 } 382 } 383 } */ 384 else 385 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 386 return true; 387} 388 389void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 390 // What parts of the register are previously defined? 391 SmallSet<unsigned, 32> Live; 392 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 393 Live.insert(Reg); 394 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 395 Live.insert(*SS); 396 } else { 397 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 398 unsigned SubReg = *SubRegs; ++SubRegs) { 399 // If a register isn't itself defined, but all parts that make up of it 400 // are defined, then consider it also defined. 401 // e.g. 402 // AL = 403 // AH = 404 // = AX 405 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 406 Live.insert(SubReg); 407 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 408 Live.insert(*SS); 409 } 410 } 411 } 412 413 // Start from the largest piece, find the last time any part of the register 414 // is referenced. 415 if (!HandlePhysRegKill(Reg)) { 416 // Only some of the sub-registers are used. 417 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 418 unsigned SubReg = *SubRegs; ++SubRegs) { 419 if (!Live.count(SubReg)) 420 // Skip if this sub-register isn't defined. 421 continue; 422 if (HandlePhysRegKill(SubReg)) { 423 Live.erase(SubReg); 424 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 425 Live.erase(*SS); 426 } 427 } 428 assert(Live.empty() && "Not all defined registers are killed / dead?"); 429 } 430 431 if (MI) { 432 // Does this extend the live range of a super-register? 433 std::set<unsigned> Processed; 434 for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); 435 unsigned SuperReg = *SuperRegs; ++SuperRegs) { 436 if (Processed.count(SuperReg)) 437 continue; 438 MachineInstr *LastRef = PhysRegUse[SuperReg] 439 ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg]; 440 if (LastRef && LastRef != MI) { 441 // The larger register is previously defined. Now a smaller part is 442 // being re-defined. Treat it as read/mod/write if there are uses 443 // below. 444 // EAX = 445 // AX = EAX<imp-use,kill>, EAX<imp-def> 446 // ... 447 /// = EAX 448 if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) { 449 MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/, 450 true/*IsImp*/,true/*IsKill*/)); 451 MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/, 452 true/*IsImp*/)); 453 PhysRegDef[SuperReg] = MI; 454 PhysRegUse[SuperReg] = NULL; 455 Processed.insert(SuperReg); 456 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 457 PhysRegDef[*SS] = MI; 458 PhysRegUse[*SS] = NULL; 459 Processed.insert(*SS); 460 } 461 } else { 462 // Otherwise, the super register is killed. 463 if (HandlePhysRegKill(SuperReg)) { 464 PhysRegDef[SuperReg] = NULL; 465 PhysRegUse[SuperReg] = NULL; 466 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 467 PhysRegDef[*SS] = NULL; 468 PhysRegUse[*SS] = NULL; 469 Processed.insert(*SS); 470 } 471 } 472 } 473 } 474 } 475 476 // Remember this def. 477 PhysRegDef[Reg] = MI; 478 PhysRegUse[Reg] = NULL; 479 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 480 unsigned SubReg = *SubRegs; ++SubRegs) { 481 PhysRegDef[SubReg] = MI; 482 PhysRegUse[SubReg] = NULL; 483 } 484 } 485} 486 487bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 488 MF = &mf; 489 MRI = &mf.getRegInfo(); 490 TRI = MF->getTarget().getRegisterInfo(); 491 492 ReservedRegisters = TRI->getReservedRegs(mf); 493 494 unsigned NumRegs = TRI->getNumRegs(); 495 PhysRegDef = new MachineInstr*[NumRegs]; 496 PhysRegUse = new MachineInstr*[NumRegs]; 497 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 498 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 499 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 500 501 /// Get some space for a respectable number of registers. 502 VirtRegInfo.resize(64); 503 504 analyzePHINodes(mf); 505 506 // Calculate live variable information in depth first order on the CFG of the 507 // function. This guarantees that we will see the definition of a virtual 508 // register before its uses due to dominance properties of SSA (except for PHI 509 // nodes, which are treated as a special case). 510 MachineBasicBlock *Entry = MF->begin(); 511 SmallPtrSet<MachineBasicBlock*,16> Visited; 512 513 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 514 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 515 DFI != E; ++DFI) { 516 MachineBasicBlock *MBB = *DFI; 517 518 // Mark live-in registers as live-in. 519 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 520 EE = MBB->livein_end(); II != EE; ++II) { 521 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 522 "Cannot have a live-in virtual register!"); 523 HandlePhysRegDef(*II, 0); 524 } 525 526 // Loop over all of the instructions, processing them. 527 DistanceMap.clear(); 528 unsigned Dist = 0; 529 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 530 I != E; ++I) { 531 MachineInstr *MI = I; 532 DistanceMap.insert(std::make_pair(MI, Dist++)); 533 534 // Process all of the operands of the instruction... 535 unsigned NumOperandsToProcess = MI->getNumOperands(); 536 537 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 538 // of the uses. They will be handled in other basic blocks. 539 if (MI->getOpcode() == TargetInstrInfo::PHI) 540 NumOperandsToProcess = 1; 541 542 SmallVector<unsigned, 4> UseRegs; 543 SmallVector<unsigned, 4> DefRegs; 544 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 545 const MachineOperand &MO = MI->getOperand(i); 546 if (MO.isRegister() && MO.getReg()) { 547 unsigned MOReg = MO.getReg(); 548 if (!MOReg) 549 continue; 550 if (MO.isUse()) 551 UseRegs.push_back(MOReg); 552 if (MO.isDef()) 553 DefRegs.push_back(MOReg); 554 } 555 } 556 557 // Process all uses. 558 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 559 unsigned MOReg = UseRegs[i]; 560 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 561 HandleVirtRegUse(MOReg, MBB, MI); 562 else if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 563 !ReservedRegisters[MOReg]) 564 HandlePhysRegUse(MOReg, MI); 565 } 566 567 // Process all defs. 568 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 569 unsigned MOReg = DefRegs[i]; 570 if (TargetRegisterInfo::isVirtualRegister(MOReg)) { 571 VarInfo &VRInfo = getVarInfo(MOReg); 572 573 if (VRInfo.AliveBlocks.none()) 574 // If vr is not alive in any block, then defaults to dead. 575 VRInfo.Kills.push_back(MI); 576 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 577 !ReservedRegisters[MOReg]) { 578 HandlePhysRegDef(MOReg, MI); 579 } 580 } 581 } 582 583 // Handle any virtual assignments from PHI nodes which might be at the 584 // bottom of this basic block. We check all of our successor blocks to see 585 // if they have PHI nodes, and if so, we simulate an assignment at the end 586 // of the current block. 587 if (!PHIVarInfo[MBB->getNumber()].empty()) { 588 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 589 590 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 591 E = VarInfoVec.end(); I != E; ++I) 592 // Mark it alive only in the block we are representing. 593 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 594 MBB); 595 } 596 597 // Finally, if the last instruction in the block is a return, make sure to 598 // mark it as using all of the live-out values in the function. 599 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 600 MachineInstr *Ret = &MBB->back(); 601 602 for (MachineRegisterInfo::liveout_iterator 603 I = MF->getRegInfo().liveout_begin(), 604 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 605 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 606 "Cannot have a live-out virtual register!"); 607 HandlePhysRegUse(*I, Ret); 608 609 // Add live-out registers as implicit uses. 610 if (!Ret->readsRegister(*I)) 611 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 612 } 613 } 614 615 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 616 // available at the end of the basic block. 617 for (unsigned i = 0; i != NumRegs; ++i) 618 if (PhysRegDef[i] || PhysRegUse[i]) 619 HandlePhysRegDef(i, 0); 620 621 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 622 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 623 } 624 625 // Convert and transfer the dead / killed information we have gathered into 626 // VirtRegInfo onto MI's. 627 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 628 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 629 if (VirtRegInfo[i].Kills[j] == 630 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 631 VirtRegInfo[i] 632 .Kills[j]->addRegisterDead(i + 633 TargetRegisterInfo::FirstVirtualRegister, 634 TRI); 635 else 636 VirtRegInfo[i] 637 .Kills[j]->addRegisterKilled(i + 638 TargetRegisterInfo::FirstVirtualRegister, 639 TRI); 640 641 // Check to make sure there are no unreachable blocks in the MC CFG for the 642 // function. If so, it is due to a bug in the instruction selector or some 643 // other part of the code generator if this happens. 644#ifndef NDEBUG 645 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 646 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 647#endif 648 649 delete[] PhysRegDef; 650 delete[] PhysRegUse; 651 delete[] PHIVarInfo; 652 653 return false; 654} 655 656/// instructionChanged - When the address of an instruction changes, this method 657/// should be called so that live variables can update its internal data 658/// structures. This removes the records for OldMI, transfering them to the 659/// records for NewMI. 660void LiveVariables::instructionChanged(MachineInstr *OldMI, 661 MachineInstr *NewMI) { 662 // If the instruction defines any virtual registers, update the VarInfo, 663 // kill and dead information for the instruction. 664 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 665 MachineOperand &MO = OldMI->getOperand(i); 666 if (MO.isRegister() && MO.getReg() && 667 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 668 unsigned Reg = MO.getReg(); 669 VarInfo &VI = getVarInfo(Reg); 670 if (MO.isDef()) { 671 if (MO.isDead()) { 672 MO.setIsDead(false); 673 addVirtualRegisterDead(Reg, NewMI); 674 } 675 } 676 if (MO.isKill()) { 677 MO.setIsKill(false); 678 addVirtualRegisterKilled(Reg, NewMI); 679 } 680 // If this is a kill of the value, update the VI kills list. 681 if (VI.removeKill(OldMI)) 682 VI.Kills.push_back(NewMI); // Yes, there was a kill of it 683 } 684 } 685} 686 687/// removeVirtualRegistersKilled - Remove all killed info for the specified 688/// instruction. 689void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 690 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 691 MachineOperand &MO = MI->getOperand(i); 692 if (MO.isRegister() && MO.isKill()) { 693 MO.setIsKill(false); 694 unsigned Reg = MO.getReg(); 695 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 696 bool removed = getVarInfo(Reg).removeKill(MI); 697 assert(removed && "kill not in register's VarInfo?"); 698 } 699 } 700 } 701} 702 703/// removeVirtualRegistersDead - Remove all of the dead registers for the 704/// specified instruction from the live variable information. 705void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { 706 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 707 MachineOperand &MO = MI->getOperand(i); 708 if (MO.isRegister() && MO.isDead()) { 709 MO.setIsDead(false); 710 unsigned Reg = MO.getReg(); 711 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 712 bool removed = getVarInfo(Reg).removeKill(MI); 713 assert(removed && "kill not in register's VarInfo?"); 714 } 715 } 716 } 717} 718 719/// analyzePHINodes - Gather information about the PHI nodes in here. In 720/// particular, we want to map the variable information of a virtual register 721/// which is used in a PHI node. We map that to the BB the vreg is coming from. 722/// 723void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 724 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 725 I != E; ++I) 726 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 727 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 728 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 729 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 730 .push_back(BBI->getOperand(i).getReg()); 731} 732