MachineInstr.cpp revision 40a858f6e71ed8d68779d00c63dad15baded3562
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Metadata.h"
19#include "llvm/Type.h"
20#include "llvm/Value.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/MC/MCSymbol.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetInstrDesc.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/LeakDetector.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/FoldingSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43// MachineOperand Implementation
44//===----------------------------------------------------------------------===//
45
46/// AddRegOperandToRegInfo - Add this register operand to the specified
47/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
48/// explicitly nulled out.
49void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
50  assert(isReg() && "Can only add reg operand to use lists");
51
52  // If the reginfo pointer is null, just explicitly null out or next/prev
53  // pointers, to ensure they are not garbage.
54  if (RegInfo == 0) {
55    Contents.Reg.Prev = 0;
56    Contents.Reg.Next = 0;
57    return;
58  }
59
60  // Otherwise, add this operand to the head of the registers use/def list.
61  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
62
63  // For SSA values, we prefer to keep the definition at the start of the list.
64  // we do this by skipping over the definition if it is at the head of the
65  // list.
66  if (*Head && (*Head)->isDef())
67    Head = &(*Head)->Contents.Reg.Next;
68
69  Contents.Reg.Next = *Head;
70  if (Contents.Reg.Next) {
71    assert(getReg() == Contents.Reg.Next->getReg() &&
72           "Different regs on the same list!");
73    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
74  }
75
76  Contents.Reg.Prev = Head;
77  *Head = this;
78}
79
80/// RemoveRegOperandFromRegInfo - Remove this register operand from the
81/// MachineRegisterInfo it is linked with.
82void MachineOperand::RemoveRegOperandFromRegInfo() {
83  assert(isOnRegUseList() && "Reg operand is not on a use list");
84  // Unlink this from the doubly linked list of operands.
85  MachineOperand *NextOp = Contents.Reg.Next;
86  *Contents.Reg.Prev = NextOp;
87  if (NextOp) {
88    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
89    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
90  }
91  Contents.Reg.Prev = 0;
92  Contents.Reg.Next = 0;
93}
94
95void MachineOperand::setReg(unsigned Reg) {
96  if (getReg() == Reg) return; // No change.
97
98  // Otherwise, we have to change the register.  If this operand is embedded
99  // into a machine function, we need to update the old and new register's
100  // use/def lists.
101  if (MachineInstr *MI = getParent())
102    if (MachineBasicBlock *MBB = MI->getParent())
103      if (MachineFunction *MF = MBB->getParent()) {
104        RemoveRegOperandFromRegInfo();
105        Contents.Reg.RegNo = Reg;
106        AddRegOperandToRegInfo(&MF->getRegInfo());
107        return;
108      }
109
110  // Otherwise, just change the register, no problem.  :)
111  Contents.Reg.RegNo = Reg;
112}
113
114void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
115                                  const TargetRegisterInfo &TRI) {
116  assert(TargetRegisterInfo::isVirtualRegister(Reg));
117  if (SubIdx && getSubReg())
118    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
119  setReg(Reg);
120  if (SubIdx)
121    setSubReg(SubIdx);
122}
123
124void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
125  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
126  if (getSubReg()) {
127    Reg = TRI.getSubReg(Reg, getSubReg());
128    assert(Reg && "Invalid SubReg for physical register");
129    setSubReg(0);
130  }
131  setReg(Reg);
132}
133
134/// ChangeToImmediate - Replace this operand with a new immediate operand of
135/// the specified value.  If an operand is known to be an immediate already,
136/// the setImm method should be used.
137void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
138  // If this operand is currently a register operand, and if this is in a
139  // function, deregister the operand from the register's use/def list.
140  if (isReg() && getParent() && getParent()->getParent() &&
141      getParent()->getParent()->getParent())
142    RemoveRegOperandFromRegInfo();
143
144  OpKind = MO_Immediate;
145  Contents.ImmVal = ImmVal;
146}
147
148/// ChangeToRegister - Replace this operand with a new register operand of
149/// the specified value.  If an operand is known to be an register already,
150/// the setReg method should be used.
151void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
152                                      bool isKill, bool isDead, bool isUndef,
153                                      bool isDebug) {
154  // If this operand is already a register operand, use setReg to update the
155  // register's use/def lists.
156  if (isReg()) {
157    assert(!isEarlyClobber());
158    setReg(Reg);
159  } else {
160    // Otherwise, change this to a register and set the reg#.
161    OpKind = MO_Register;
162    Contents.Reg.RegNo = Reg;
163
164    // If this operand is embedded in a function, add the operand to the
165    // register's use/def list.
166    if (MachineInstr *MI = getParent())
167      if (MachineBasicBlock *MBB = MI->getParent())
168        if (MachineFunction *MF = MBB->getParent())
169          AddRegOperandToRegInfo(&MF->getRegInfo());
170  }
171
172  IsDef = isDef;
173  IsImp = isImp;
174  IsKill = isKill;
175  IsDead = isDead;
176  IsUndef = isUndef;
177  IsEarlyClobber = false;
178  IsDebug = isDebug;
179  SubReg = 0;
180}
181
182/// isIdenticalTo - Return true if this operand is identical to the specified
183/// operand.
184bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
185  if (getType() != Other.getType() ||
186      getTargetFlags() != Other.getTargetFlags())
187    return false;
188
189  switch (getType()) {
190  default: llvm_unreachable("Unrecognized operand type");
191  case MachineOperand::MO_Register:
192    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
193           getSubReg() == Other.getSubReg();
194  case MachineOperand::MO_Immediate:
195    return getImm() == Other.getImm();
196  case MachineOperand::MO_FPImmediate:
197    return getFPImm() == Other.getFPImm();
198  case MachineOperand::MO_MachineBasicBlock:
199    return getMBB() == Other.getMBB();
200  case MachineOperand::MO_FrameIndex:
201    return getIndex() == Other.getIndex();
202  case MachineOperand::MO_ConstantPoolIndex:
203    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
204  case MachineOperand::MO_JumpTableIndex:
205    return getIndex() == Other.getIndex();
206  case MachineOperand::MO_GlobalAddress:
207    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
208  case MachineOperand::MO_ExternalSymbol:
209    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
210           getOffset() == Other.getOffset();
211  case MachineOperand::MO_BlockAddress:
212    return getBlockAddress() == Other.getBlockAddress();
213  case MachineOperand::MO_MCSymbol:
214    return getMCSymbol() == Other.getMCSymbol();
215  case MachineOperand::MO_Metadata:
216    return getMetadata() == Other.getMetadata();
217  }
218}
219
220/// print - Print the specified machine operand.
221///
222void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
223  // If the instruction is embedded into a basic block, we can find the
224  // target info for the instruction.
225  if (!TM)
226    if (const MachineInstr *MI = getParent())
227      if (const MachineBasicBlock *MBB = MI->getParent())
228        if (const MachineFunction *MF = MBB->getParent())
229          TM = &MF->getTarget();
230
231  switch (getType()) {
232  case MachineOperand::MO_Register:
233    if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
234      OS << "%reg" << getReg();
235    } else {
236      if (TM)
237        OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
238      else
239        OS << "%physreg" << getReg();
240    }
241
242    if (getSubReg() != 0) {
243      if (TM)
244        OS << ':' << TM->getRegisterInfo()->getSubRegIndexName(getSubReg());
245      else
246        OS << ':' << getSubReg();
247    }
248
249    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
250        isEarlyClobber()) {
251      OS << '<';
252      bool NeedComma = false;
253      if (isDef()) {
254        if (NeedComma) OS << ',';
255        if (isEarlyClobber())
256          OS << "earlyclobber,";
257        if (isImplicit())
258          OS << "imp-";
259        OS << "def";
260        NeedComma = true;
261      } else if (isImplicit()) {
262          OS << "imp-use";
263          NeedComma = true;
264      }
265
266      if (isKill() || isDead() || isUndef()) {
267        if (NeedComma) OS << ',';
268        if (isKill())  OS << "kill";
269        if (isDead())  OS << "dead";
270        if (isUndef()) {
271          if (isKill() || isDead())
272            OS << ',';
273          OS << "undef";
274        }
275      }
276      OS << '>';
277    }
278    break;
279  case MachineOperand::MO_Immediate:
280    OS << getImm();
281    break;
282  case MachineOperand::MO_FPImmediate:
283    if (getFPImm()->getType()->isFloatTy())
284      OS << getFPImm()->getValueAPF().convertToFloat();
285    else
286      OS << getFPImm()->getValueAPF().convertToDouble();
287    break;
288  case MachineOperand::MO_MachineBasicBlock:
289    OS << "<BB#" << getMBB()->getNumber() << ">";
290    break;
291  case MachineOperand::MO_FrameIndex:
292    OS << "<fi#" << getIndex() << '>';
293    break;
294  case MachineOperand::MO_ConstantPoolIndex:
295    OS << "<cp#" << getIndex();
296    if (getOffset()) OS << "+" << getOffset();
297    OS << '>';
298    break;
299  case MachineOperand::MO_JumpTableIndex:
300    OS << "<jt#" << getIndex() << '>';
301    break;
302  case MachineOperand::MO_GlobalAddress:
303    OS << "<ga:";
304    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
305    if (getOffset()) OS << "+" << getOffset();
306    OS << '>';
307    break;
308  case MachineOperand::MO_ExternalSymbol:
309    OS << "<es:" << getSymbolName();
310    if (getOffset()) OS << "+" << getOffset();
311    OS << '>';
312    break;
313  case MachineOperand::MO_BlockAddress:
314    OS << '<';
315    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
316    OS << '>';
317    break;
318  case MachineOperand::MO_Metadata:
319    OS << '<';
320    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
321    OS << '>';
322    break;
323  case MachineOperand::MO_MCSymbol:
324    OS << "<MCSym=" << *getMCSymbol() << '>';
325    break;
326  default:
327    llvm_unreachable("Unrecognized operand type");
328  }
329
330  if (unsigned TF = getTargetFlags())
331    OS << "[TF=" << TF << ']';
332}
333
334//===----------------------------------------------------------------------===//
335// MachineMemOperand Implementation
336//===----------------------------------------------------------------------===//
337
338/// getAddrSpace - Return the LLVM IR address space number that this pointer
339/// points into.
340unsigned MachinePointerInfo::getAddrSpace() const {
341  if (V == 0) return 0;
342  return cast<PointerType>(V->getType())->getAddressSpace();
343}
344
345
346MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
347                                     uint64_t s, unsigned int a)
348  : PtrInfo(ptrinfo), Size(s),
349    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) {
350  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
351         "invalid pointer value");
352  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
353  assert((isLoad() || isStore()) && "Not a load/store!");
354}
355
356/// Profile - Gather unique data for the object.
357///
358void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
359  ID.AddInteger(getOffset());
360  ID.AddInteger(Size);
361  ID.AddPointer(getValue());
362  ID.AddInteger(Flags);
363}
364
365void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
366  // The Value and Offset may differ due to CSE. But the flags and size
367  // should be the same.
368  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
369  assert(MMO->getSize() == getSize() && "Size mismatch!");
370
371  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
372    // Update the alignment value.
373    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
374      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
375    // Also update the base and offset, because the new alignment may
376    // not be applicable with the old ones.
377    PtrInfo = MMO->PtrInfo;
378  }
379}
380
381/// getAlignment - Return the minimum known alignment in bytes of the
382/// actual memory reference.
383uint64_t MachineMemOperand::getAlignment() const {
384  return MinAlign(getBaseAlignment(), getOffset());
385}
386
387raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
388  assert((MMO.isLoad() || MMO.isStore()) &&
389         "SV has to be a load, store or both.");
390
391  if (MMO.isVolatile())
392    OS << "Volatile ";
393
394  if (MMO.isLoad())
395    OS << "LD";
396  if (MMO.isStore())
397    OS << "ST";
398  OS << MMO.getSize();
399
400  // Print the address information.
401  OS << "[";
402  if (!MMO.getValue())
403    OS << "<unknown>";
404  else
405    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
406
407  // If the alignment of the memory reference itself differs from the alignment
408  // of the base pointer, print the base alignment explicitly, next to the base
409  // pointer.
410  if (MMO.getBaseAlignment() != MMO.getAlignment())
411    OS << "(align=" << MMO.getBaseAlignment() << ")";
412
413  if (MMO.getOffset() != 0)
414    OS << "+" << MMO.getOffset();
415  OS << "]";
416
417  // Print the alignment of the reference.
418  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
419      MMO.getBaseAlignment() != MMO.getSize())
420    OS << "(align=" << MMO.getAlignment() << ")";
421
422  return OS;
423}
424
425//===----------------------------------------------------------------------===//
426// MachineInstr Implementation
427//===----------------------------------------------------------------------===//
428
429/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
430/// TID NULL and no operands.
431MachineInstr::MachineInstr()
432  : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
433    Parent(0) {
434  // Make sure that we get added to a machine basicblock
435  LeakDetector::addGarbageObject(this);
436}
437
438void MachineInstr::addImplicitDefUseOperands() {
439  if (TID->ImplicitDefs)
440    for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
441      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
442  if (TID->ImplicitUses)
443    for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
444      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
445}
446
447/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
448/// implicit operands. It reserves space for the number of operands specified by
449/// the TargetInstrDesc.
450MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
451  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
452    MemRefs(0), MemRefsEnd(0), Parent(0) {
453  if (!NoImp)
454    NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
455  Operands.reserve(NumImplicitOps + TID->getNumOperands());
456  if (!NoImp)
457    addImplicitDefUseOperands();
458  // Make sure that we get added to a machine basicblock
459  LeakDetector::addGarbageObject(this);
460}
461
462/// MachineInstr ctor - As above, but with a DebugLoc.
463MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
464                           bool NoImp)
465  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
466    Parent(0), debugLoc(dl) {
467  if (!NoImp)
468    NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
469  Operands.reserve(NumImplicitOps + TID->getNumOperands());
470  if (!NoImp)
471    addImplicitDefUseOperands();
472  // Make sure that we get added to a machine basicblock
473  LeakDetector::addGarbageObject(this);
474}
475
476/// MachineInstr ctor - Work exactly the same as the ctor two above, except
477/// that the MachineInstr is created and added to the end of the specified
478/// basic block.
479MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
480  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
481    MemRefs(0), MemRefsEnd(0), Parent(0) {
482  assert(MBB && "Cannot use inserting ctor with null basic block!");
483  NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
484  Operands.reserve(NumImplicitOps + TID->getNumOperands());
485  addImplicitDefUseOperands();
486  // Make sure that we get added to a machine basicblock
487  LeakDetector::addGarbageObject(this);
488  MBB->push_back(this);  // Add instruction to end of basic block!
489}
490
491/// MachineInstr ctor - As above, but with a DebugLoc.
492///
493MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
494                           const TargetInstrDesc &tid)
495  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
496    Parent(0), debugLoc(dl) {
497  assert(MBB && "Cannot use inserting ctor with null basic block!");
498  NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
499  Operands.reserve(NumImplicitOps + TID->getNumOperands());
500  addImplicitDefUseOperands();
501  // Make sure that we get added to a machine basicblock
502  LeakDetector::addGarbageObject(this);
503  MBB->push_back(this);  // Add instruction to end of basic block!
504}
505
506/// MachineInstr ctor - Copies MachineInstr arg exactly
507///
508MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
509  : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
510    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
511    Parent(0), debugLoc(MI.getDebugLoc()) {
512  Operands.reserve(MI.getNumOperands());
513
514  // Add operands
515  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
516    addOperand(MI.getOperand(i));
517  NumImplicitOps = MI.NumImplicitOps;
518
519  // Set parent to null.
520  Parent = 0;
521
522  LeakDetector::addGarbageObject(this);
523}
524
525MachineInstr::~MachineInstr() {
526  LeakDetector::removeGarbageObject(this);
527#ifndef NDEBUG
528  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
529    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
530    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
531           "Reg operand def/use list corrupted");
532  }
533#endif
534}
535
536/// getRegInfo - If this instruction is embedded into a MachineFunction,
537/// return the MachineRegisterInfo object for the current function, otherwise
538/// return null.
539MachineRegisterInfo *MachineInstr::getRegInfo() {
540  if (MachineBasicBlock *MBB = getParent())
541    return &MBB->getParent()->getRegInfo();
542  return 0;
543}
544
545/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
546/// this instruction from their respective use lists.  This requires that the
547/// operands already be on their use lists.
548void MachineInstr::RemoveRegOperandsFromUseLists() {
549  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
550    if (Operands[i].isReg())
551      Operands[i].RemoveRegOperandFromRegInfo();
552  }
553}
554
555/// AddRegOperandsToUseLists - Add all of the register operands in
556/// this instruction from their respective use lists.  This requires that the
557/// operands not be on their use lists yet.
558void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
559  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
560    if (Operands[i].isReg())
561      Operands[i].AddRegOperandToRegInfo(&RegInfo);
562  }
563}
564
565
566/// addOperand - Add the specified operand to the instruction.  If it is an
567/// implicit operand, it is added to the end of the operand list.  If it is
568/// an explicit operand it is added at the end of the explicit operand list
569/// (before the first implicit operand).
570void MachineInstr::addOperand(const MachineOperand &Op) {
571  bool isImpReg = Op.isReg() && Op.isImplicit();
572  assert((isImpReg || !OperandsComplete()) &&
573         "Trying to add an operand to a machine instr that is already done!");
574
575  MachineRegisterInfo *RegInfo = getRegInfo();
576
577  // If we are adding the operand to the end of the list, our job is simpler.
578  // This is true most of the time, so this is a reasonable optimization.
579  if (isImpReg || NumImplicitOps == 0) {
580    // We can only do this optimization if we know that the operand list won't
581    // reallocate.
582    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
583      Operands.push_back(Op);
584
585      // Set the parent of the operand.
586      Operands.back().ParentMI = this;
587
588      // If the operand is a register, update the operand's use list.
589      if (Op.isReg()) {
590        Operands.back().AddRegOperandToRegInfo(RegInfo);
591        // If the register operand is flagged as early, mark the operand as such
592        unsigned OpNo = Operands.size() - 1;
593        if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
594          Operands[OpNo].setIsEarlyClobber(true);
595      }
596      return;
597    }
598  }
599
600  // Otherwise, we have to insert a real operand before any implicit ones.
601  unsigned OpNo = Operands.size()-NumImplicitOps;
602
603  // If this instruction isn't embedded into a function, then we don't need to
604  // update any operand lists.
605  if (RegInfo == 0) {
606    // Simple insertion, no reginfo update needed for other register operands.
607    Operands.insert(Operands.begin()+OpNo, Op);
608    Operands[OpNo].ParentMI = this;
609
610    // Do explicitly set the reginfo for this operand though, to ensure the
611    // next/prev fields are properly nulled out.
612    if (Operands[OpNo].isReg()) {
613      Operands[OpNo].AddRegOperandToRegInfo(0);
614      // If the register operand is flagged as early, mark the operand as such
615      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
616        Operands[OpNo].setIsEarlyClobber(true);
617    }
618
619  } else if (Operands.size()+1 <= Operands.capacity()) {
620    // Otherwise, we have to remove register operands from their register use
621    // list, add the operand, then add the register operands back to their use
622    // list.  This also must handle the case when the operand list reallocates
623    // to somewhere else.
624
625    // If insertion of this operand won't cause reallocation of the operand
626    // list, just remove the implicit operands, add the operand, then re-add all
627    // the rest of the operands.
628    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
629      assert(Operands[i].isReg() && "Should only be an implicit reg!");
630      Operands[i].RemoveRegOperandFromRegInfo();
631    }
632
633    // Add the operand.  If it is a register, add it to the reg list.
634    Operands.insert(Operands.begin()+OpNo, Op);
635    Operands[OpNo].ParentMI = this;
636
637    if (Operands[OpNo].isReg()) {
638      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
639      // If the register operand is flagged as early, mark the operand as such
640      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
641        Operands[OpNo].setIsEarlyClobber(true);
642    }
643
644    // Re-add all the implicit ops.
645    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
646      assert(Operands[i].isReg() && "Should only be an implicit reg!");
647      Operands[i].AddRegOperandToRegInfo(RegInfo);
648    }
649  } else {
650    // Otherwise, we will be reallocating the operand list.  Remove all reg
651    // operands from their list, then readd them after the operand list is
652    // reallocated.
653    RemoveRegOperandsFromUseLists();
654
655    Operands.insert(Operands.begin()+OpNo, Op);
656    Operands[OpNo].ParentMI = this;
657
658    // Re-add all the operands.
659    AddRegOperandsToUseLists(*RegInfo);
660
661      // If the register operand is flagged as early, mark the operand as such
662    if (Operands[OpNo].isReg()
663        && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
664      Operands[OpNo].setIsEarlyClobber(true);
665  }
666}
667
668/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
669/// fewer operand than it started with.
670///
671void MachineInstr::RemoveOperand(unsigned OpNo) {
672  assert(OpNo < Operands.size() && "Invalid operand number");
673
674  // Special case removing the last one.
675  if (OpNo == Operands.size()-1) {
676    // If needed, remove from the reg def/use list.
677    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
678      Operands.back().RemoveRegOperandFromRegInfo();
679
680    Operands.pop_back();
681    return;
682  }
683
684  // Otherwise, we are removing an interior operand.  If we have reginfo to
685  // update, remove all operands that will be shifted down from their reg lists,
686  // move everything down, then re-add them.
687  MachineRegisterInfo *RegInfo = getRegInfo();
688  if (RegInfo) {
689    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
690      if (Operands[i].isReg())
691        Operands[i].RemoveRegOperandFromRegInfo();
692    }
693  }
694
695  Operands.erase(Operands.begin()+OpNo);
696
697  if (RegInfo) {
698    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
699      if (Operands[i].isReg())
700        Operands[i].AddRegOperandToRegInfo(RegInfo);
701    }
702  }
703}
704
705/// addMemOperand - Add a MachineMemOperand to the machine instruction.
706/// This function should be used only occasionally. The setMemRefs function
707/// is the primary method for setting up a MachineInstr's MemRefs list.
708void MachineInstr::addMemOperand(MachineFunction &MF,
709                                 MachineMemOperand *MO) {
710  mmo_iterator OldMemRefs = MemRefs;
711  mmo_iterator OldMemRefsEnd = MemRefsEnd;
712
713  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
714  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
715  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
716
717  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
718  NewMemRefs[NewNum - 1] = MO;
719
720  MemRefs = NewMemRefs;
721  MemRefsEnd = NewMemRefsEnd;
722}
723
724bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
725                                 MICheckType Check) const {
726  // If opcodes or number of operands are not the same then the two
727  // instructions are obviously not identical.
728  if (Other->getOpcode() != getOpcode() ||
729      Other->getNumOperands() != getNumOperands())
730    return false;
731
732  // Check operands to make sure they match.
733  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
734    const MachineOperand &MO = getOperand(i);
735    const MachineOperand &OMO = Other->getOperand(i);
736    // Clients may or may not want to ignore defs when testing for equality.
737    // For example, machine CSE pass only cares about finding common
738    // subexpressions, so it's safe to ignore virtual register defs.
739    if (Check != CheckDefs && MO.isReg() && MO.isDef()) {
740      if (Check == IgnoreDefs)
741        continue;
742      // Check == IgnoreVRegDefs
743      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
744          TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
745        if (MO.getReg() != OMO.getReg())
746          return false;
747    } else if (!MO.isIdenticalTo(OMO))
748      return false;
749  }
750  return true;
751}
752
753/// removeFromParent - This method unlinks 'this' from the containing basic
754/// block, and returns it, but does not delete it.
755MachineInstr *MachineInstr::removeFromParent() {
756  assert(getParent() && "Not embedded in a basic block!");
757  getParent()->remove(this);
758  return this;
759}
760
761
762/// eraseFromParent - This method unlinks 'this' from the containing basic
763/// block, and deletes it.
764void MachineInstr::eraseFromParent() {
765  assert(getParent() && "Not embedded in a basic block!");
766  getParent()->erase(this);
767}
768
769
770/// OperandComplete - Return true if it's illegal to add a new operand
771///
772bool MachineInstr::OperandsComplete() const {
773  unsigned short NumOperands = TID->getNumOperands();
774  if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
775    return true;  // Broken: we have all the operands of this instruction!
776  return false;
777}
778
779/// getNumExplicitOperands - Returns the number of non-implicit operands.
780///
781unsigned MachineInstr::getNumExplicitOperands() const {
782  unsigned NumOperands = TID->getNumOperands();
783  if (!TID->isVariadic())
784    return NumOperands;
785
786  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
787    const MachineOperand &MO = getOperand(i);
788    if (!MO.isReg() || !MO.isImplicit())
789      NumOperands++;
790  }
791  return NumOperands;
792}
793
794
795/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
796/// the specific register or -1 if it is not found. It further tightens
797/// the search criteria to a use that kills the register if isKill is true.
798int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
799                                          const TargetRegisterInfo *TRI) const {
800  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
801    const MachineOperand &MO = getOperand(i);
802    if (!MO.isReg() || !MO.isUse())
803      continue;
804    unsigned MOReg = MO.getReg();
805    if (!MOReg)
806      continue;
807    if (MOReg == Reg ||
808        (TRI &&
809         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
810         TargetRegisterInfo::isPhysicalRegister(Reg) &&
811         TRI->isSubRegister(MOReg, Reg)))
812      if (!isKill || MO.isKill())
813        return i;
814  }
815  return -1;
816}
817
818/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
819/// indicating if this instruction reads or writes Reg. This also considers
820/// partial defines.
821std::pair<bool,bool>
822MachineInstr::readsWritesVirtualRegister(unsigned Reg,
823                                         SmallVectorImpl<unsigned> *Ops) const {
824  bool PartDef = false; // Partial redefine.
825  bool FullDef = false; // Full define.
826  bool Use = false;
827
828  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
829    const MachineOperand &MO = getOperand(i);
830    if (!MO.isReg() || MO.getReg() != Reg)
831      continue;
832    if (Ops)
833      Ops->push_back(i);
834    if (MO.isUse())
835      Use |= !MO.isUndef();
836    else if (MO.getSubReg())
837      PartDef = true;
838    else
839      FullDef = true;
840  }
841  // A partial redefine uses Reg unless there is also a full define.
842  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
843}
844
845/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
846/// the specified register or -1 if it is not found. If isDead is true, defs
847/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
848/// also checks if there is a def of a super-register.
849int
850MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
851                                        const TargetRegisterInfo *TRI) const {
852  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
853  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
854    const MachineOperand &MO = getOperand(i);
855    if (!MO.isReg() || !MO.isDef())
856      continue;
857    unsigned MOReg = MO.getReg();
858    bool Found = (MOReg == Reg);
859    if (!Found && TRI && isPhys &&
860        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
861      if (Overlap)
862        Found = TRI->regsOverlap(MOReg, Reg);
863      else
864        Found = TRI->isSubRegister(MOReg, Reg);
865    }
866    if (Found && (!isDead || MO.isDead()))
867      return i;
868  }
869  return -1;
870}
871
872/// findFirstPredOperandIdx() - Find the index of the first operand in the
873/// operand list that is used to represent the predicate. It returns -1 if
874/// none is found.
875int MachineInstr::findFirstPredOperandIdx() const {
876  const TargetInstrDesc &TID = getDesc();
877  if (TID.isPredicable()) {
878    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
879      if (TID.OpInfo[i].isPredicate())
880        return i;
881  }
882
883  return -1;
884}
885
886/// isRegTiedToUseOperand - Given the index of a register def operand,
887/// check if the register def is tied to a source operand, due to either
888/// two-address elimination or inline assembly constraints. Returns the
889/// first tied use operand index by reference is UseOpIdx is not null.
890bool MachineInstr::
891isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
892  if (isInlineAsm()) {
893    assert(DefOpIdx >= 3);
894    const MachineOperand &MO = getOperand(DefOpIdx);
895    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
896      return false;
897    // Determine the actual operand index that corresponds to this index.
898    unsigned DefNo = 0;
899    unsigned DefPart = 0;
900    for (unsigned i = 2, e = getNumOperands(); i < e; ) {
901      const MachineOperand &FMO = getOperand(i);
902      // After the normal asm operands there may be additional imp-def regs.
903      if (!FMO.isImm())
904        return false;
905      // Skip over this def.
906      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
907      unsigned PrevDef = i + 1;
908      i = PrevDef + NumOps;
909      if (i > DefOpIdx) {
910        DefPart = DefOpIdx - PrevDef;
911        break;
912      }
913      ++DefNo;
914    }
915    for (unsigned i = 2, e = getNumOperands(); i != e; ++i) {
916      const MachineOperand &FMO = getOperand(i);
917      if (!FMO.isImm())
918        continue;
919      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
920        continue;
921      unsigned Idx;
922      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
923          Idx == DefNo) {
924        if (UseOpIdx)
925          *UseOpIdx = (unsigned)i + 1 + DefPart;
926        return true;
927      }
928    }
929    return false;
930  }
931
932  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
933  const TargetInstrDesc &TID = getDesc();
934  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
935    const MachineOperand &MO = getOperand(i);
936    if (MO.isReg() && MO.isUse() &&
937        TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
938      if (UseOpIdx)
939        *UseOpIdx = (unsigned)i;
940      return true;
941    }
942  }
943  return false;
944}
945
946/// isRegTiedToDefOperand - Return true if the operand of the specified index
947/// is a register use and it is tied to an def operand. It also returns the def
948/// operand index by reference.
949bool MachineInstr::
950isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
951  if (isInlineAsm()) {
952    const MachineOperand &MO = getOperand(UseOpIdx);
953    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
954      return false;
955
956    // Find the flag operand corresponding to UseOpIdx
957    unsigned FlagIdx, NumOps=0;
958    for (FlagIdx = 2; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
959      const MachineOperand &UFMO = getOperand(FlagIdx);
960      // After the normal asm operands there may be additional imp-def regs.
961      if (!UFMO.isImm())
962        return false;
963      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
964      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
965      if (UseOpIdx < FlagIdx+NumOps+1)
966        break;
967    }
968    if (FlagIdx >= UseOpIdx)
969      return false;
970    const MachineOperand &UFMO = getOperand(FlagIdx);
971    unsigned DefNo;
972    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
973      if (!DefOpIdx)
974        return true;
975
976      unsigned DefIdx = 2;
977      // Remember to adjust the index. First operand is asm string, second is
978      // the AlignStack bit, then there is a flag for each.
979      while (DefNo) {
980        const MachineOperand &FMO = getOperand(DefIdx);
981        assert(FMO.isImm());
982        // Skip over this def.
983        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
984        --DefNo;
985      }
986      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
987      return true;
988    }
989    return false;
990  }
991
992  const TargetInstrDesc &TID = getDesc();
993  if (UseOpIdx >= TID.getNumOperands())
994    return false;
995  const MachineOperand &MO = getOperand(UseOpIdx);
996  if (!MO.isReg() || !MO.isUse())
997    return false;
998  int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
999  if (DefIdx == -1)
1000    return false;
1001  if (DefOpIdx)
1002    *DefOpIdx = (unsigned)DefIdx;
1003  return true;
1004}
1005
1006/// clearKillInfo - Clears kill flags on all operands.
1007///
1008void MachineInstr::clearKillInfo() {
1009  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1010    MachineOperand &MO = getOperand(i);
1011    if (MO.isReg() && MO.isUse())
1012      MO.setIsKill(false);
1013  }
1014}
1015
1016/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1017///
1018void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1019  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1020    const MachineOperand &MO = MI->getOperand(i);
1021    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1022      continue;
1023    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1024      MachineOperand &MOp = getOperand(j);
1025      if (!MOp.isIdenticalTo(MO))
1026        continue;
1027      if (MO.isKill())
1028        MOp.setIsKill();
1029      else
1030        MOp.setIsDead();
1031      break;
1032    }
1033  }
1034}
1035
1036/// copyPredicates - Copies predicate operand(s) from MI.
1037void MachineInstr::copyPredicates(const MachineInstr *MI) {
1038  const TargetInstrDesc &TID = MI->getDesc();
1039  if (!TID.isPredicable())
1040    return;
1041  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1042    if (TID.OpInfo[i].isPredicate()) {
1043      // Predicated operands must be last operands.
1044      addOperand(MI->getOperand(i));
1045    }
1046  }
1047}
1048
1049void MachineInstr::substituteRegister(unsigned FromReg,
1050                                      unsigned ToReg,
1051                                      unsigned SubIdx,
1052                                      const TargetRegisterInfo &RegInfo) {
1053  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1054    if (SubIdx)
1055      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1056    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1057      MachineOperand &MO = getOperand(i);
1058      if (!MO.isReg() || MO.getReg() != FromReg)
1059        continue;
1060      MO.substPhysReg(ToReg, RegInfo);
1061    }
1062  } else {
1063    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1064      MachineOperand &MO = getOperand(i);
1065      if (!MO.isReg() || MO.getReg() != FromReg)
1066        continue;
1067      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1068    }
1069  }
1070}
1071
1072/// isSafeToMove - Return true if it is safe to move this instruction. If
1073/// SawStore is set to true, it means that there is a store (or call) between
1074/// the instruction's location and its intended destination.
1075bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1076                                AliasAnalysis *AA,
1077                                bool &SawStore) const {
1078  // Ignore stuff that we obviously can't move.
1079  if (TID->mayStore() || TID->isCall()) {
1080    SawStore = true;
1081    return false;
1082  }
1083  if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
1084    return false;
1085
1086  // See if this instruction does a load.  If so, we have to guarantee that the
1087  // loaded value doesn't change between the load and the its intended
1088  // destination. The check for isInvariantLoad gives the targe the chance to
1089  // classify the load as always returning a constant, e.g. a constant pool
1090  // load.
1091  if (TID->mayLoad() && !isInvariantLoad(AA))
1092    // Otherwise, this is a real load.  If there is a store between the load and
1093    // end of block, or if the load is volatile, we can't move it.
1094    return !SawStore && !hasVolatileMemoryRef();
1095
1096  return true;
1097}
1098
1099/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1100/// instruction which defined the specified register instead of copying it.
1101bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1102                                 AliasAnalysis *AA,
1103                                 unsigned DstReg) const {
1104  bool SawStore = false;
1105  if (!TII->isTriviallyReMaterializable(this, AA) ||
1106      !isSafeToMove(TII, AA, SawStore))
1107    return false;
1108  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1109    const MachineOperand &MO = getOperand(i);
1110    if (!MO.isReg())
1111      continue;
1112    // FIXME: For now, do not remat any instruction with register operands.
1113    // Later on, we can loosen the restriction is the register operands have
1114    // not been modified between the def and use. Note, this is different from
1115    // MachineSink because the code is no longer in two-address form (at least
1116    // partially).
1117    if (MO.isUse())
1118      return false;
1119    else if (!MO.isDead() && MO.getReg() != DstReg)
1120      return false;
1121  }
1122  return true;
1123}
1124
1125/// hasVolatileMemoryRef - Return true if this instruction may have a
1126/// volatile memory reference, or if the information describing the
1127/// memory reference is not available. Return false if it is known to
1128/// have no volatile memory references.
1129bool MachineInstr::hasVolatileMemoryRef() const {
1130  // An instruction known never to access memory won't have a volatile access.
1131  if (!TID->mayStore() &&
1132      !TID->mayLoad() &&
1133      !TID->isCall() &&
1134      !TID->hasUnmodeledSideEffects())
1135    return false;
1136
1137  // Otherwise, if the instruction has no memory reference information,
1138  // conservatively assume it wasn't preserved.
1139  if (memoperands_empty())
1140    return true;
1141
1142  // Check the memory reference information for volatile references.
1143  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1144    if ((*I)->isVolatile())
1145      return true;
1146
1147  return false;
1148}
1149
1150/// isInvariantLoad - Return true if this instruction is loading from a
1151/// location whose value is invariant across the function.  For example,
1152/// loading a value from the constant pool or from the argument area
1153/// of a function if it does not change.  This should only return true of
1154/// *all* loads the instruction does are invariant (if it does multiple loads).
1155bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1156  // If the instruction doesn't load at all, it isn't an invariant load.
1157  if (!TID->mayLoad())
1158    return false;
1159
1160  // If the instruction has lost its memoperands, conservatively assume that
1161  // it may not be an invariant load.
1162  if (memoperands_empty())
1163    return false;
1164
1165  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1166
1167  for (mmo_iterator I = memoperands_begin(),
1168       E = memoperands_end(); I != E; ++I) {
1169    if ((*I)->isVolatile()) return false;
1170    if ((*I)->isStore()) return false;
1171
1172    if (const Value *V = (*I)->getValue()) {
1173      // A load from a constant PseudoSourceValue is invariant.
1174      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1175        if (PSV->isConstant(MFI))
1176          continue;
1177      // If we have an AliasAnalysis, ask it whether the memory is constant.
1178      if (AA && AA->pointsToConstantMemory(V))
1179        continue;
1180    }
1181
1182    // Otherwise assume conservatively.
1183    return false;
1184  }
1185
1186  // Everything checks out.
1187  return true;
1188}
1189
1190/// isConstantValuePHI - If the specified instruction is a PHI that always
1191/// merges together the same virtual register, return the register, otherwise
1192/// return 0.
1193unsigned MachineInstr::isConstantValuePHI() const {
1194  if (!isPHI())
1195    return 0;
1196  assert(getNumOperands() >= 3 &&
1197         "It's illegal to have a PHI without source operands");
1198
1199  unsigned Reg = getOperand(1).getReg();
1200  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1201    if (getOperand(i).getReg() != Reg)
1202      return 0;
1203  return Reg;
1204}
1205
1206/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1207///
1208bool MachineInstr::allDefsAreDead() const {
1209  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1210    const MachineOperand &MO = getOperand(i);
1211    if (!MO.isReg() || MO.isUse())
1212      continue;
1213    if (!MO.isDead())
1214      return false;
1215  }
1216  return true;
1217}
1218
1219void MachineInstr::dump() const {
1220  dbgs() << "  " << *this;
1221}
1222
1223static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1224                         raw_ostream &CommentOS) {
1225  const LLVMContext &Ctx = MF->getFunction()->getContext();
1226  if (!DL.isUnknown()) {          // Print source line info.
1227    DIScope Scope(DL.getScope(Ctx));
1228    // Omit the directory, because it's likely to be long and uninteresting.
1229    if (Scope.Verify())
1230      CommentOS << Scope.getFilename();
1231    else
1232      CommentOS << "<unknown>";
1233    CommentOS << ':' << DL.getLine();
1234    if (DL.getCol() != 0)
1235      CommentOS << ':' << DL.getCol();
1236    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1237    if (!InlinedAtDL.isUnknown()) {
1238      CommentOS << " @[ ";
1239      printDebugLoc(InlinedAtDL, MF, CommentOS);
1240      CommentOS << " ]";
1241    }
1242  }
1243}
1244
1245void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1246  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1247  const MachineFunction *MF = 0;
1248  const MachineRegisterInfo *MRI = 0;
1249  if (const MachineBasicBlock *MBB = getParent()) {
1250    MF = MBB->getParent();
1251    if (!TM && MF)
1252      TM = &MF->getTarget();
1253    if (MF)
1254      MRI = &MF->getRegInfo();
1255  }
1256
1257  // Save a list of virtual registers.
1258  SmallVector<unsigned, 8> VirtRegs;
1259
1260  // Print explicitly defined operands on the left of an assignment syntax.
1261  unsigned StartOp = 0, e = getNumOperands();
1262  for (; StartOp < e && getOperand(StartOp).isReg() &&
1263         getOperand(StartOp).isDef() &&
1264         !getOperand(StartOp).isImplicit();
1265       ++StartOp) {
1266    if (StartOp != 0) OS << ", ";
1267    getOperand(StartOp).print(OS, TM);
1268    unsigned Reg = getOperand(StartOp).getReg();
1269    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg))
1270      VirtRegs.push_back(Reg);
1271  }
1272
1273  if (StartOp != 0)
1274    OS << " = ";
1275
1276  // Print the opcode name.
1277  OS << getDesc().getName();
1278
1279  // Print the rest of the operands.
1280  bool OmittedAnyCallClobbers = false;
1281  bool FirstOp = true;
1282  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1283    const MachineOperand &MO = getOperand(i);
1284
1285    if (MO.isReg() && MO.getReg() &&
1286        TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1287      VirtRegs.push_back(MO.getReg());
1288
1289    // Omit call-clobbered registers which aren't used anywhere. This makes
1290    // call instructions much less noisy on targets where calls clobber lots
1291    // of registers. Don't rely on MO.isDead() because we may be called before
1292    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1293    if (MF && getDesc().isCall() &&
1294        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1295      unsigned Reg = MO.getReg();
1296      if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
1297        const MachineRegisterInfo &MRI = MF->getRegInfo();
1298        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1299          bool HasAliasLive = false;
1300          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1301               unsigned AliasReg = *Alias; ++Alias)
1302            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1303              HasAliasLive = true;
1304              break;
1305            }
1306          if (!HasAliasLive) {
1307            OmittedAnyCallClobbers = true;
1308            continue;
1309          }
1310        }
1311      }
1312    }
1313
1314    if (FirstOp) FirstOp = false; else OS << ",";
1315    OS << " ";
1316    if (i < getDesc().NumOperands) {
1317      const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1318      if (TOI.isPredicate())
1319        OS << "pred:";
1320      if (TOI.isOptionalDef())
1321        OS << "opt:";
1322    }
1323    if (isDebugValue() && MO.isMetadata()) {
1324      // Pretty print DBG_VALUE instructions.
1325      const MDNode *MD = MO.getMetadata();
1326      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1327        OS << "!\"" << MDS->getString() << '\"';
1328      else
1329        MO.print(OS, TM);
1330    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1331      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1332    } else
1333      MO.print(OS, TM);
1334  }
1335
1336  // Briefly indicate whether any call clobbers were omitted.
1337  if (OmittedAnyCallClobbers) {
1338    if (!FirstOp) OS << ",";
1339    OS << " ...";
1340  }
1341
1342  bool HaveSemi = false;
1343  if (!memoperands_empty()) {
1344    if (!HaveSemi) OS << ";"; HaveSemi = true;
1345
1346    OS << " mem:";
1347    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1348         i != e; ++i) {
1349      OS << **i;
1350      if (llvm::next(i) != e)
1351        OS << " ";
1352    }
1353  }
1354
1355  // Print the regclass of any virtual registers encountered.
1356  if (MRI && !VirtRegs.empty()) {
1357    if (!HaveSemi) OS << ";"; HaveSemi = true;
1358    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1359      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1360      OS << " " << RC->getName() << ":%reg" << VirtRegs[i];
1361      for (unsigned j = i+1; j != VirtRegs.size();) {
1362        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1363          ++j;
1364          continue;
1365        }
1366        if (VirtRegs[i] != VirtRegs[j])
1367          OS << "," << VirtRegs[j];
1368        VirtRegs.erase(VirtRegs.begin()+j);
1369      }
1370    }
1371  }
1372
1373  if (!debugLoc.isUnknown() && MF) {
1374    if (!HaveSemi) OS << ";";
1375    OS << " dbg:";
1376    printDebugLoc(debugLoc, MF, OS);
1377  }
1378
1379  OS << "\n";
1380}
1381
1382bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1383                                     const TargetRegisterInfo *RegInfo,
1384                                     bool AddIfNotFound) {
1385  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1386  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1387  bool Found = false;
1388  SmallVector<unsigned,4> DeadOps;
1389  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1390    MachineOperand &MO = getOperand(i);
1391    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1392      continue;
1393    unsigned Reg = MO.getReg();
1394    if (!Reg)
1395      continue;
1396
1397    if (Reg == IncomingReg) {
1398      if (!Found) {
1399        if (MO.isKill())
1400          // The register is already marked kill.
1401          return true;
1402        if (isPhysReg && isRegTiedToDefOperand(i))
1403          // Two-address uses of physregs must not be marked kill.
1404          return true;
1405        MO.setIsKill();
1406        Found = true;
1407      }
1408    } else if (hasAliases && MO.isKill() &&
1409               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1410      // A super-register kill already exists.
1411      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1412        return true;
1413      if (RegInfo->isSubRegister(IncomingReg, Reg))
1414        DeadOps.push_back(i);
1415    }
1416  }
1417
1418  // Trim unneeded kill operands.
1419  while (!DeadOps.empty()) {
1420    unsigned OpIdx = DeadOps.back();
1421    if (getOperand(OpIdx).isImplicit())
1422      RemoveOperand(OpIdx);
1423    else
1424      getOperand(OpIdx).setIsKill(false);
1425    DeadOps.pop_back();
1426  }
1427
1428  // If not found, this means an alias of one of the operands is killed. Add a
1429  // new implicit operand if required.
1430  if (!Found && AddIfNotFound) {
1431    addOperand(MachineOperand::CreateReg(IncomingReg,
1432                                         false /*IsDef*/,
1433                                         true  /*IsImp*/,
1434                                         true  /*IsKill*/));
1435    return true;
1436  }
1437  return Found;
1438}
1439
1440bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1441                                   const TargetRegisterInfo *RegInfo,
1442                                   bool AddIfNotFound) {
1443  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1444  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1445  bool Found = false;
1446  SmallVector<unsigned,4> DeadOps;
1447  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1448    MachineOperand &MO = getOperand(i);
1449    if (!MO.isReg() || !MO.isDef())
1450      continue;
1451    unsigned Reg = MO.getReg();
1452    if (!Reg)
1453      continue;
1454
1455    if (Reg == IncomingReg) {
1456      if (!Found) {
1457        if (MO.isDead())
1458          // The register is already marked dead.
1459          return true;
1460        MO.setIsDead();
1461        Found = true;
1462      }
1463    } else if (hasAliases && MO.isDead() &&
1464               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1465      // There exists a super-register that's marked dead.
1466      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1467        return true;
1468      if (RegInfo->getSubRegisters(IncomingReg) &&
1469          RegInfo->getSuperRegisters(Reg) &&
1470          RegInfo->isSubRegister(IncomingReg, Reg))
1471        DeadOps.push_back(i);
1472    }
1473  }
1474
1475  // Trim unneeded dead operands.
1476  while (!DeadOps.empty()) {
1477    unsigned OpIdx = DeadOps.back();
1478    if (getOperand(OpIdx).isImplicit())
1479      RemoveOperand(OpIdx);
1480    else
1481      getOperand(OpIdx).setIsDead(false);
1482    DeadOps.pop_back();
1483  }
1484
1485  // If not found, this means an alias of one of the operands is dead. Add a
1486  // new implicit operand if required.
1487  if (Found || !AddIfNotFound)
1488    return Found;
1489
1490  addOperand(MachineOperand::CreateReg(IncomingReg,
1491                                       true  /*IsDef*/,
1492                                       true  /*IsImp*/,
1493                                       false /*IsKill*/,
1494                                       true  /*IsDead*/));
1495  return true;
1496}
1497
1498void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1499                                      const TargetRegisterInfo *RegInfo) {
1500  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1501    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1502    if (MO)
1503      return;
1504  } else {
1505    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1506      const MachineOperand &MO = getOperand(i);
1507      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1508          MO.getSubReg() == 0)
1509        return;
1510    }
1511  }
1512  addOperand(MachineOperand::CreateReg(IncomingReg,
1513                                       true  /*IsDef*/,
1514                                       true  /*IsImp*/));
1515}
1516
1517void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1518                                         const TargetRegisterInfo &TRI) {
1519  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1520    MachineOperand &MO = getOperand(i);
1521    if (!MO.isReg() || !MO.isDef()) continue;
1522    unsigned Reg = MO.getReg();
1523    if (Reg == 0) continue;
1524    bool Dead = true;
1525    for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1526         E = UsedRegs.end(); I != E; ++I)
1527      if (TRI.regsOverlap(*I, Reg)) {
1528        Dead = false;
1529        break;
1530      }
1531    // If there are no uses, including partial uses, the def is dead.
1532    if (Dead) MO.setIsDead();
1533  }
1534}
1535
1536unsigned
1537MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1538  unsigned Hash = MI->getOpcode() * 37;
1539  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1540    const MachineOperand &MO = MI->getOperand(i);
1541    uint64_t Key = (uint64_t)MO.getType() << 32;
1542    switch (MO.getType()) {
1543    default: break;
1544    case MachineOperand::MO_Register:
1545      if (MO.isDef() && MO.getReg() &&
1546          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1547        continue;  // Skip virtual register defs.
1548      Key |= MO.getReg();
1549      break;
1550    case MachineOperand::MO_Immediate:
1551      Key |= MO.getImm();
1552      break;
1553    case MachineOperand::MO_FrameIndex:
1554    case MachineOperand::MO_ConstantPoolIndex:
1555    case MachineOperand::MO_JumpTableIndex:
1556      Key |= MO.getIndex();
1557      break;
1558    case MachineOperand::MO_MachineBasicBlock:
1559      Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1560      break;
1561    case MachineOperand::MO_GlobalAddress:
1562      Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1563      break;
1564    case MachineOperand::MO_BlockAddress:
1565      Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1566      break;
1567    case MachineOperand::MO_MCSymbol:
1568      Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1569      break;
1570    }
1571    Key += ~(Key << 32);
1572    Key ^= (Key >> 22);
1573    Key += ~(Key << 13);
1574    Key ^= (Key >> 8);
1575    Key += (Key << 3);
1576    Key ^= (Key >> 15);
1577    Key += ~(Key << 27);
1578    Key ^= (Key >> 31);
1579    Hash = (unsigned)Key + Hash * 37;
1580  }
1581  return Hash;
1582}
1583