MachineInstr.cpp revision 576cd11ab8035d4240f7e6ea8d7c6c2e45154f86
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Methods common to all machine instructions. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/MachineInstr.h" 15#include "llvm/Constants.h" 16#include "llvm/DebugInfo.h" 17#include "llvm/Function.h" 18#include "llvm/InlineAsm.h" 19#include "llvm/LLVMContext.h" 20#include "llvm/Metadata.h" 21#include "llvm/Module.h" 22#include "llvm/Type.h" 23#include "llvm/Value.h" 24#include "llvm/Assembly/Writer.h" 25#include "llvm/CodeGen/MachineConstantPool.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineMemOperand.h" 28#include "llvm/CodeGen/MachineModuleInfo.h" 29#include "llvm/CodeGen/MachineRegisterInfo.h" 30#include "llvm/CodeGen/PseudoSourceValue.h" 31#include "llvm/MC/MCInstrDesc.h" 32#include "llvm/MC/MCSymbol.h" 33#include "llvm/Target/TargetMachine.h" 34#include "llvm/Target/TargetInstrInfo.h" 35#include "llvm/Target/TargetRegisterInfo.h" 36#include "llvm/Analysis/AliasAnalysis.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/LeakDetector.h" 40#include "llvm/Support/MathExtras.h" 41#include "llvm/Support/raw_ostream.h" 42#include "llvm/ADT/FoldingSet.h" 43#include "llvm/ADT/Hashing.h" 44using namespace llvm; 45 46//===----------------------------------------------------------------------===// 47// MachineOperand Implementation 48//===----------------------------------------------------------------------===// 49 50void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68} 69 70void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78} 79 80void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89} 90 91/// Change a def to a use, or a use to a def. 92void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108} 109 110/// ChangeToImmediate - Replace this operand with a new immediate operand of 111/// the specified value. If an operand is known to be an immediate already, 112/// the setImm method should be used. 113void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 115 // If this operand is currently a register operand, and if this is in a 116 // function, deregister the operand from the register's use/def list. 117 if (isReg() && isOnRegUseList()) 118 if (MachineInstr *MI = getParent()) 119 if (MachineBasicBlock *MBB = MI->getParent()) 120 if (MachineFunction *MF = MBB->getParent()) 121 MF->getRegInfo().removeRegOperandFromUseList(this); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125} 126 127/// ChangeToRegister - Replace this operand with a new register operand of 128/// the specified value. If an operand is known to be an register already, 129/// the setReg method should be used. 130void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 MachineRegisterInfo *RegInfo = 0; 134 if (MachineInstr *MI = getParent()) 135 if (MachineBasicBlock *MBB = MI->getParent()) 136 if (MachineFunction *MF = MBB->getParent()) 137 RegInfo = &MF->getRegInfo(); 138 // If this operand is already a register operand, remove it from the 139 // register's use/def lists. 140 bool WasReg = isReg(); 141 if (RegInfo && WasReg) 142 RegInfo->removeRegOperandFromUseList(this); 143 144 // Change this to a register and set the reg#. 145 OpKind = MO_Register; 146 SmallContents.RegNo = Reg; 147 SubReg = 0; 148 IsDef = isDef; 149 IsImp = isImp; 150 IsKill = isKill; 151 IsDead = isDead; 152 IsUndef = isUndef; 153 IsInternalRead = false; 154 IsEarlyClobber = false; 155 IsDebug = isDebug; 156 // Ensure isOnRegUseList() returns false. 157 Contents.Reg.Prev = 0; 158 // Preserve the tie when the operand was already a register. 159 if (!WasReg) 160 TiedTo = 0; 161 162 // If this operand is embedded in a function, add the operand to the 163 // register's use/def list. 164 if (RegInfo) 165 RegInfo->addRegOperandToUseList(this); 166} 167 168/// isIdenticalTo - Return true if this operand is identical to the specified 169/// operand. Note that this should stay in sync with the hash_value overload 170/// below. 171bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 172 if (getType() != Other.getType() || 173 getTargetFlags() != Other.getTargetFlags()) 174 return false; 175 176 switch (getType()) { 177 case MachineOperand::MO_Register: 178 return getReg() == Other.getReg() && isDef() == Other.isDef() && 179 getSubReg() == Other.getSubReg(); 180 case MachineOperand::MO_Immediate: 181 return getImm() == Other.getImm(); 182 case MachineOperand::MO_CImmediate: 183 return getCImm() == Other.getCImm(); 184 case MachineOperand::MO_FPImmediate: 185 return getFPImm() == Other.getFPImm(); 186 case MachineOperand::MO_MachineBasicBlock: 187 return getMBB() == Other.getMBB(); 188 case MachineOperand::MO_FrameIndex: 189 return getIndex() == Other.getIndex(); 190 case MachineOperand::MO_ConstantPoolIndex: 191 case MachineOperand::MO_TargetIndex: 192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 193 case MachineOperand::MO_JumpTableIndex: 194 return getIndex() == Other.getIndex(); 195 case MachineOperand::MO_GlobalAddress: 196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 197 case MachineOperand::MO_ExternalSymbol: 198 return !strcmp(getSymbolName(), Other.getSymbolName()) && 199 getOffset() == Other.getOffset(); 200 case MachineOperand::MO_BlockAddress: 201 return getBlockAddress() == Other.getBlockAddress(); 202 case MO_RegisterMask: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_Metadata: 207 return getMetadata() == Other.getMetadata(); 208 } 209 llvm_unreachable("Invalid machine operand type"); 210} 211 212// Note: this must stay exactly in sync with isIdenticalTo above. 213hash_code llvm::hash_value(const MachineOperand &MO) { 214 switch (MO.getType()) { 215 case MachineOperand::MO_Register: 216 // Register operands don't have target flags. 217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 218 case MachineOperand::MO_Immediate: 219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 220 case MachineOperand::MO_CImmediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 222 case MachineOperand::MO_FPImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 224 case MachineOperand::MO_MachineBasicBlock: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 226 case MachineOperand::MO_FrameIndex: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 228 case MachineOperand::MO_ConstantPoolIndex: 229 case MachineOperand::MO_TargetIndex: 230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 231 MO.getOffset()); 232 case MachineOperand::MO_JumpTableIndex: 233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 234 case MachineOperand::MO_ExternalSymbol: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 236 MO.getSymbolName()); 237 case MachineOperand::MO_GlobalAddress: 238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 239 MO.getOffset()); 240 case MachineOperand::MO_BlockAddress: 241 return hash_combine(MO.getType(), MO.getTargetFlags(), 242 MO.getBlockAddress()); 243 case MachineOperand::MO_RegisterMask: 244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 245 case MachineOperand::MO_Metadata: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 247 case MachineOperand::MO_MCSymbol: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 249 } 250 llvm_unreachable("Invalid machine operand type"); 251} 252 253/// print - Print the specified machine operand. 254/// 255void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 256 // If the instruction is embedded into a basic block, we can find the 257 // target info for the instruction. 258 if (!TM) 259 if (const MachineInstr *MI = getParent()) 260 if (const MachineBasicBlock *MBB = MI->getParent()) 261 if (const MachineFunction *MF = MBB->getParent()) 262 TM = &MF->getTarget(); 263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 264 265 switch (getType()) { 266 case MachineOperand::MO_Register: 267 OS << PrintReg(getReg(), TRI, getSubReg()); 268 269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 270 isInternalRead() || isEarlyClobber() || isTied()) { 271 OS << '<'; 272 bool NeedComma = false; 273 if (isDef()) { 274 if (NeedComma) OS << ','; 275 if (isEarlyClobber()) 276 OS << "earlyclobber,"; 277 if (isImplicit()) 278 OS << "imp-"; 279 OS << "def"; 280 NeedComma = true; 281 // <def,read-undef> only makes sense when getSubReg() is set. 282 // Don't clutter the output otherwise. 283 if (isUndef() && getSubReg()) 284 OS << ",read-undef"; 285 } else if (isImplicit()) { 286 OS << "imp-use"; 287 NeedComma = true; 288 } 289 290 if (isKill()) { 291 if (NeedComma) OS << ','; 292 OS << "kill"; 293 NeedComma = true; 294 } 295 if (isDead()) { 296 if (NeedComma) OS << ','; 297 OS << "dead"; 298 NeedComma = true; 299 } 300 if (isUndef() && isUse()) { 301 if (NeedComma) OS << ','; 302 OS << "undef"; 303 NeedComma = true; 304 } 305 if (isInternalRead()) { 306 if (NeedComma) OS << ','; 307 OS << "internal"; 308 NeedComma = true; 309 } 310 if (isTied()) { 311 if (NeedComma) OS << ','; 312 OS << "tied"; 313 if (TiedTo != 15) 314 OS << unsigned(TiedTo - 1); 315 NeedComma = true; 316 } 317 OS << '>'; 318 } 319 break; 320 case MachineOperand::MO_Immediate: 321 OS << getImm(); 322 break; 323 case MachineOperand::MO_CImmediate: 324 getCImm()->getValue().print(OS, false); 325 break; 326 case MachineOperand::MO_FPImmediate: 327 if (getFPImm()->getType()->isFloatTy()) 328 OS << getFPImm()->getValueAPF().convertToFloat(); 329 else 330 OS << getFPImm()->getValueAPF().convertToDouble(); 331 break; 332 case MachineOperand::MO_MachineBasicBlock: 333 OS << "<BB#" << getMBB()->getNumber() << ">"; 334 break; 335 case MachineOperand::MO_FrameIndex: 336 OS << "<fi#" << getIndex() << '>'; 337 break; 338 case MachineOperand::MO_ConstantPoolIndex: 339 OS << "<cp#" << getIndex(); 340 if (getOffset()) OS << "+" << getOffset(); 341 OS << '>'; 342 break; 343 case MachineOperand::MO_TargetIndex: 344 OS << "<ti#" << getIndex(); 345 if (getOffset()) OS << "+" << getOffset(); 346 OS << '>'; 347 break; 348 case MachineOperand::MO_JumpTableIndex: 349 OS << "<jt#" << getIndex() << '>'; 350 break; 351 case MachineOperand::MO_GlobalAddress: 352 OS << "<ga:"; 353 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 354 if (getOffset()) OS << "+" << getOffset(); 355 OS << '>'; 356 break; 357 case MachineOperand::MO_ExternalSymbol: 358 OS << "<es:" << getSymbolName(); 359 if (getOffset()) OS << "+" << getOffset(); 360 OS << '>'; 361 break; 362 case MachineOperand::MO_BlockAddress: 363 OS << '<'; 364 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 365 OS << '>'; 366 break; 367 case MachineOperand::MO_RegisterMask: 368 OS << "<regmask>"; 369 break; 370 case MachineOperand::MO_Metadata: 371 OS << '<'; 372 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 373 OS << '>'; 374 break; 375 case MachineOperand::MO_MCSymbol: 376 OS << "<MCSym=" << *getMCSymbol() << '>'; 377 break; 378 } 379 380 if (unsigned TF = getTargetFlags()) 381 OS << "[TF=" << TF << ']'; 382} 383 384//===----------------------------------------------------------------------===// 385// MachineMemOperand Implementation 386//===----------------------------------------------------------------------===// 387 388/// getAddrSpace - Return the LLVM IR address space number that this pointer 389/// points into. 390unsigned MachinePointerInfo::getAddrSpace() const { 391 if (V == 0) return 0; 392 return cast<PointerType>(V->getType())->getAddressSpace(); 393} 394 395/// getConstantPool - Return a MachinePointerInfo record that refers to the 396/// constant pool. 397MachinePointerInfo MachinePointerInfo::getConstantPool() { 398 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 399} 400 401/// getFixedStack - Return a MachinePointerInfo record that refers to the 402/// the specified FrameIndex. 403MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 404 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 405} 406 407MachinePointerInfo MachinePointerInfo::getJumpTable() { 408 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 409} 410 411MachinePointerInfo MachinePointerInfo::getGOT() { 412 return MachinePointerInfo(PseudoSourceValue::getGOT()); 413} 414 415MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 416 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 417} 418 419MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 420 uint64_t s, unsigned int a, 421 const MDNode *TBAAInfo, 422 const MDNode *Ranges) 423 : PtrInfo(ptrinfo), Size(s), 424 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 425 TBAAInfo(TBAAInfo), Ranges(Ranges) { 426 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 427 "invalid pointer value"); 428 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 429 assert((isLoad() || isStore()) && "Not a load/store!"); 430} 431 432/// Profile - Gather unique data for the object. 433/// 434void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 435 ID.AddInteger(getOffset()); 436 ID.AddInteger(Size); 437 ID.AddPointer(getValue()); 438 ID.AddInteger(Flags); 439} 440 441void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 442 // The Value and Offset may differ due to CSE. But the flags and size 443 // should be the same. 444 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 445 assert(MMO->getSize() == getSize() && "Size mismatch!"); 446 447 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 448 // Update the alignment value. 449 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 450 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 451 // Also update the base and offset, because the new alignment may 452 // not be applicable with the old ones. 453 PtrInfo = MMO->PtrInfo; 454 } 455} 456 457/// getAlignment - Return the minimum known alignment in bytes of the 458/// actual memory reference. 459uint64_t MachineMemOperand::getAlignment() const { 460 return MinAlign(getBaseAlignment(), getOffset()); 461} 462 463raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 464 assert((MMO.isLoad() || MMO.isStore()) && 465 "SV has to be a load, store or both."); 466 467 if (MMO.isVolatile()) 468 OS << "Volatile "; 469 470 if (MMO.isLoad()) 471 OS << "LD"; 472 if (MMO.isStore()) 473 OS << "ST"; 474 OS << MMO.getSize(); 475 476 // Print the address information. 477 OS << "["; 478 if (!MMO.getValue()) 479 OS << "<unknown>"; 480 else 481 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 482 483 // If the alignment of the memory reference itself differs from the alignment 484 // of the base pointer, print the base alignment explicitly, next to the base 485 // pointer. 486 if (MMO.getBaseAlignment() != MMO.getAlignment()) 487 OS << "(align=" << MMO.getBaseAlignment() << ")"; 488 489 if (MMO.getOffset() != 0) 490 OS << "+" << MMO.getOffset(); 491 OS << "]"; 492 493 // Print the alignment of the reference. 494 if (MMO.getBaseAlignment() != MMO.getAlignment() || 495 MMO.getBaseAlignment() != MMO.getSize()) 496 OS << "(align=" << MMO.getAlignment() << ")"; 497 498 // Print TBAA info. 499 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 500 OS << "(tbaa="; 501 if (TBAAInfo->getNumOperands() > 0) 502 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 503 else 504 OS << "<unknown>"; 505 OS << ")"; 506 } 507 508 // Print nontemporal info. 509 if (MMO.isNonTemporal()) 510 OS << "(nontemporal)"; 511 512 return OS; 513} 514 515//===----------------------------------------------------------------------===// 516// MachineInstr Implementation 517//===----------------------------------------------------------------------===// 518 519/// MachineInstr ctor - This constructor creates a dummy MachineInstr with 520/// MCID NULL and no operands. 521MachineInstr::MachineInstr() 522 : MCID(0), Flags(0), AsmPrinterFlags(0), 523 NumMemRefs(0), MemRefs(0), 524 Parent(0) { 525 // Make sure that we get added to a machine basicblock 526 LeakDetector::addGarbageObject(this); 527} 528 529void MachineInstr::addImplicitDefUseOperands() { 530 if (MCID->ImplicitDefs) 531 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 532 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 533 if (MCID->ImplicitUses) 534 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 535 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 536} 537 538/// MachineInstr ctor - This constructor creates a MachineInstr and adds the 539/// implicit operands. It reserves space for the number of operands specified by 540/// the MCInstrDesc. 541MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 542 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 543 NumMemRefs(0), MemRefs(0), Parent(0) { 544 unsigned NumImplicitOps = 0; 545 if (!NoImp) 546 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 547 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 548 if (!NoImp) 549 addImplicitDefUseOperands(); 550 // Make sure that we get added to a machine basicblock 551 LeakDetector::addGarbageObject(this); 552} 553 554/// MachineInstr ctor - As above, but with a DebugLoc. 555MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 556 bool NoImp) 557 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 558 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 559 unsigned NumImplicitOps = 0; 560 if (!NoImp) 561 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 562 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 563 if (!NoImp) 564 addImplicitDefUseOperands(); 565 // Make sure that we get added to a machine basicblock 566 LeakDetector::addGarbageObject(this); 567} 568 569/// MachineInstr ctor - Work exactly the same as the ctor two above, except 570/// that the MachineInstr is created and added to the end of the specified 571/// basic block. 572MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 573 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 574 NumMemRefs(0), MemRefs(0), Parent(0) { 575 assert(MBB && "Cannot use inserting ctor with null basic block!"); 576 unsigned NumImplicitOps = 577 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 578 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 579 addImplicitDefUseOperands(); 580 // Make sure that we get added to a machine basicblock 581 LeakDetector::addGarbageObject(this); 582 MBB->push_back(this); // Add instruction to end of basic block! 583} 584 585/// MachineInstr ctor - As above, but with a DebugLoc. 586/// 587MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 588 const MCInstrDesc &tid) 589 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 590 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 591 assert(MBB && "Cannot use inserting ctor with null basic block!"); 592 unsigned NumImplicitOps = 593 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 594 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 595 addImplicitDefUseOperands(); 596 // Make sure that we get added to a machine basicblock 597 LeakDetector::addGarbageObject(this); 598 MBB->push_back(this); // Add instruction to end of basic block! 599} 600 601/// MachineInstr ctor - Copies MachineInstr arg exactly 602/// 603MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 604 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 605 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 606 Parent(0), debugLoc(MI.getDebugLoc()) { 607 Operands.reserve(MI.getNumOperands()); 608 609 // Add operands 610 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 611 addOperand(MI.getOperand(i)); 612 613 // Copy all the flags. 614 Flags = MI.Flags; 615 616 // Set parent to null. 617 Parent = 0; 618 619 LeakDetector::addGarbageObject(this); 620} 621 622MachineInstr::~MachineInstr() { 623 LeakDetector::removeGarbageObject(this); 624#ifndef NDEBUG 625 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 626 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 627 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 628 "Reg operand def/use list corrupted"); 629 } 630#endif 631} 632 633/// getRegInfo - If this instruction is embedded into a MachineFunction, 634/// return the MachineRegisterInfo object for the current function, otherwise 635/// return null. 636MachineRegisterInfo *MachineInstr::getRegInfo() { 637 if (MachineBasicBlock *MBB = getParent()) 638 return &MBB->getParent()->getRegInfo(); 639 return 0; 640} 641 642/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 643/// this instruction from their respective use lists. This requires that the 644/// operands already be on their use lists. 645void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 646 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 647 if (Operands[i].isReg()) 648 MRI.removeRegOperandFromUseList(&Operands[i]); 649} 650 651/// AddRegOperandsToUseLists - Add all of the register operands in 652/// this instruction from their respective use lists. This requires that the 653/// operands not be on their use lists yet. 654void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 655 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 656 if (Operands[i].isReg()) 657 MRI.addRegOperandToUseList(&Operands[i]); 658} 659 660/// addOperand - Add the specified operand to the instruction. If it is an 661/// implicit operand, it is added to the end of the operand list. If it is 662/// an explicit operand it is added at the end of the explicit operand list 663/// (before the first implicit operand). 664void MachineInstr::addOperand(const MachineOperand &Op) { 665 assert(MCID && "Cannot add operands before providing an instr descriptor"); 666 bool isImpReg = Op.isReg() && Op.isImplicit(); 667 MachineRegisterInfo *RegInfo = getRegInfo(); 668 669 // If the Operands backing store is reallocated, all register operands must 670 // be removed and re-added to RegInfo. It is storing pointers to operands. 671 bool Reallocate = RegInfo && 672 !Operands.empty() && Operands.size() == Operands.capacity(); 673 674 // Find the insert location for the new operand. Implicit registers go at 675 // the end, everything goes before the implicit regs. 676 unsigned OpNo = Operands.size(); 677 678 // Remove all the implicit operands from RegInfo if they need to be shifted. 679 // FIXME: Allow mixed explicit and implicit operands on inline asm. 680 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 681 // implicit-defs, but they must not be moved around. See the FIXME in 682 // InstrEmitter.cpp. 683 if (!isImpReg && !isInlineAsm()) { 684 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 685 --OpNo; 686 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 687 if (RegInfo) 688 RegInfo->removeRegOperandFromUseList(&Operands[OpNo]); 689 } 690 } 691 692 // OpNo now points as the desired insertion point. Unless this is a variadic 693 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 694 // RegMask operands go between the explicit and implicit operands. 695 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 696 OpNo < MCID->getNumOperands()) && 697 "Trying to add an operand to a machine instr that is already done!"); 698 699 // All operands from OpNo have been removed from RegInfo. If the Operands 700 // backing store needs to be reallocated, we also need to remove any other 701 // register operands. 702 if (Reallocate) 703 for (unsigned i = 0; i != OpNo; ++i) 704 if (Operands[i].isReg()) 705 RegInfo->removeRegOperandFromUseList(&Operands[i]); 706 707 // Insert the new operand at OpNo. 708 Operands.insert(Operands.begin() + OpNo, Op); 709 Operands[OpNo].ParentMI = this; 710 711 // The Operands backing store has now been reallocated, so we can re-add the 712 // operands before OpNo. 713 if (Reallocate) 714 for (unsigned i = 0; i != OpNo; ++i) 715 if (Operands[i].isReg()) 716 RegInfo->addRegOperandToUseList(&Operands[i]); 717 718 // When adding a register operand, tell RegInfo about it. 719 if (Operands[OpNo].isReg()) { 720 // Ensure isOnRegUseList() returns false, regardless of Op's status. 721 Operands[OpNo].Contents.Reg.Prev = 0; 722 // Ignore existing ties. This is not a property that can be copied. 723 Operands[OpNo].TiedTo = 0; 724 // Add the new operand to RegInfo. 725 if (RegInfo) 726 RegInfo->addRegOperandToUseList(&Operands[OpNo]); 727 // The MCID operand information isn't accurate until we start adding 728 // explicit operands. The implicit operands are added first, then the 729 // explicits are inserted before them. 730 if (!isImpReg) { 731 // Tie uses to defs as indicated in MCInstrDesc. 732 if (Operands[OpNo].isUse()) { 733 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 734 if (DefIdx != -1) 735 tieOperands(DefIdx, OpNo); 736 } 737 // If the register operand is flagged as early, mark the operand as such. 738 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 739 Operands[OpNo].setIsEarlyClobber(true); 740 } 741 } 742 743 // Re-add all the implicit ops. 744 if (RegInfo) { 745 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 746 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 747 RegInfo->addRegOperandToUseList(&Operands[i]); 748 } 749 } 750} 751 752/// RemoveOperand - Erase an operand from an instruction, leaving it with one 753/// fewer operand than it started with. 754/// 755void MachineInstr::RemoveOperand(unsigned OpNo) { 756 assert(OpNo < Operands.size() && "Invalid operand number"); 757 untieRegOperand(OpNo); 758 MachineRegisterInfo *RegInfo = getRegInfo(); 759 760 // Special case removing the last one. 761 if (OpNo == Operands.size()-1) { 762 // If needed, remove from the reg def/use list. 763 if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList()) 764 RegInfo->removeRegOperandFromUseList(&Operands.back()); 765 766 Operands.pop_back(); 767 return; 768 } 769 770 // Otherwise, we are removing an interior operand. If we have reginfo to 771 // update, remove all operands that will be shifted down from their reg lists, 772 // move everything down, then re-add them. 773 if (RegInfo) { 774 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 775 if (Operands[i].isReg()) 776 RegInfo->removeRegOperandFromUseList(&Operands[i]); 777 } 778 } 779 780#ifndef NDEBUG 781 // Moving tied operands would break the ties. 782 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) 783 if (Operands[i].isReg()) 784 assert(!Operands[i].isTied() && "Cannot move tied operands"); 785#endif 786 787 Operands.erase(Operands.begin()+OpNo); 788 789 if (RegInfo) { 790 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 791 if (Operands[i].isReg()) 792 RegInfo->addRegOperandToUseList(&Operands[i]); 793 } 794 } 795} 796 797/// addMemOperand - Add a MachineMemOperand to the machine instruction. 798/// This function should be used only occasionally. The setMemRefs function 799/// is the primary method for setting up a MachineInstr's MemRefs list. 800void MachineInstr::addMemOperand(MachineFunction &MF, 801 MachineMemOperand *MO) { 802 mmo_iterator OldMemRefs = MemRefs; 803 uint16_t OldNumMemRefs = NumMemRefs; 804 805 uint16_t NewNum = NumMemRefs + 1; 806 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 807 808 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 809 NewMemRefs[NewNum - 1] = MO; 810 811 MemRefs = NewMemRefs; 812 NumMemRefs = NewNum; 813} 814 815bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 816 const MachineBasicBlock *MBB = getParent(); 817 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 818 while (MII != MBB->end() && MII->isInsideBundle()) { 819 if (MII->getDesc().getFlags() & Mask) { 820 if (Type == AnyInBundle) 821 return true; 822 } else { 823 if (Type == AllInBundle) 824 return false; 825 } 826 ++MII; 827 } 828 829 return Type == AllInBundle; 830} 831 832bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 833 MICheckType Check) const { 834 // If opcodes or number of operands are not the same then the two 835 // instructions are obviously not identical. 836 if (Other->getOpcode() != getOpcode() || 837 Other->getNumOperands() != getNumOperands()) 838 return false; 839 840 if (isBundle()) { 841 // Both instructions are bundles, compare MIs inside the bundle. 842 MachineBasicBlock::const_instr_iterator I1 = *this; 843 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 844 MachineBasicBlock::const_instr_iterator I2 = *Other; 845 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 846 while (++I1 != E1 && I1->isInsideBundle()) { 847 ++I2; 848 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 849 return false; 850 } 851 } 852 853 // Check operands to make sure they match. 854 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 855 const MachineOperand &MO = getOperand(i); 856 const MachineOperand &OMO = Other->getOperand(i); 857 if (!MO.isReg()) { 858 if (!MO.isIdenticalTo(OMO)) 859 return false; 860 continue; 861 } 862 863 // Clients may or may not want to ignore defs when testing for equality. 864 // For example, machine CSE pass only cares about finding common 865 // subexpressions, so it's safe to ignore virtual register defs. 866 if (MO.isDef()) { 867 if (Check == IgnoreDefs) 868 continue; 869 else if (Check == IgnoreVRegDefs) { 870 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 871 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 872 if (MO.getReg() != OMO.getReg()) 873 return false; 874 } else { 875 if (!MO.isIdenticalTo(OMO)) 876 return false; 877 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 878 return false; 879 } 880 } else { 881 if (!MO.isIdenticalTo(OMO)) 882 return false; 883 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 884 return false; 885 } 886 } 887 // If DebugLoc does not match then two dbg.values are not identical. 888 if (isDebugValue()) 889 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 890 && getDebugLoc() != Other->getDebugLoc()) 891 return false; 892 return true; 893} 894 895/// removeFromParent - This method unlinks 'this' from the containing basic 896/// block, and returns it, but does not delete it. 897MachineInstr *MachineInstr::removeFromParent() { 898 assert(getParent() && "Not embedded in a basic block!"); 899 900 // If it's a bundle then remove the MIs inside the bundle as well. 901 if (isBundle()) { 902 MachineBasicBlock *MBB = getParent(); 903 MachineBasicBlock::instr_iterator MII = *this; ++MII; 904 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 905 while (MII != E && MII->isInsideBundle()) { 906 MachineInstr *MI = &*MII; 907 ++MII; 908 MBB->remove(MI); 909 } 910 } 911 getParent()->remove(this); 912 return this; 913} 914 915 916/// eraseFromParent - This method unlinks 'this' from the containing basic 917/// block, and deletes it. 918void MachineInstr::eraseFromParent() { 919 assert(getParent() && "Not embedded in a basic block!"); 920 // If it's a bundle then remove the MIs inside the bundle as well. 921 if (isBundle()) { 922 MachineBasicBlock *MBB = getParent(); 923 MachineBasicBlock::instr_iterator MII = *this; ++MII; 924 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 925 while (MII != E && MII->isInsideBundle()) { 926 MachineInstr *MI = &*MII; 927 ++MII; 928 MBB->erase(MI); 929 } 930 } 931 // Erase the individual instruction, which may itself be inside a bundle. 932 getParent()->erase_instr(this); 933} 934 935 936/// getNumExplicitOperands - Returns the number of non-implicit operands. 937/// 938unsigned MachineInstr::getNumExplicitOperands() const { 939 unsigned NumOperands = MCID->getNumOperands(); 940 if (!MCID->isVariadic()) 941 return NumOperands; 942 943 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 944 const MachineOperand &MO = getOperand(i); 945 if (!MO.isReg() || !MO.isImplicit()) 946 NumOperands++; 947 } 948 return NumOperands; 949} 950 951/// isBundled - Return true if this instruction part of a bundle. This is true 952/// if either itself or its following instruction is marked "InsideBundle". 953bool MachineInstr::isBundled() const { 954 if (isInsideBundle()) 955 return true; 956 MachineBasicBlock::const_instr_iterator nextMI = this; 957 ++nextMI; 958 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 959} 960 961bool MachineInstr::isStackAligningInlineAsm() const { 962 if (isInlineAsm()) { 963 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 964 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 965 return true; 966 } 967 return false; 968} 969 970InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 971 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 972 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 973 if (ExtraInfo & InlineAsm::Extra_IntelDialect) 974 return InlineAsm::AD_Intel; 975 976 assert((ExtraInfo & InlineAsm::Extra_ATTDialect) && "Expected AT&T dialect!"); 977 return InlineAsm::AD_ATT; // The default. 978} 979 980int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 981 unsigned *GroupNo) const { 982 assert(isInlineAsm() && "Expected an inline asm instruction"); 983 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 984 985 // Ignore queries about the initial operands. 986 if (OpIdx < InlineAsm::MIOp_FirstOperand) 987 return -1; 988 989 unsigned Group = 0; 990 unsigned NumOps; 991 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 992 i += NumOps) { 993 const MachineOperand &FlagMO = getOperand(i); 994 // If we reach the implicit register operands, stop looking. 995 if (!FlagMO.isImm()) 996 return -1; 997 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 998 if (i + NumOps > OpIdx) { 999 if (GroupNo) 1000 *GroupNo = Group; 1001 return i; 1002 } 1003 ++Group; 1004 } 1005 return -1; 1006} 1007 1008const TargetRegisterClass* 1009MachineInstr::getRegClassConstraint(unsigned OpIdx, 1010 const TargetInstrInfo *TII, 1011 const TargetRegisterInfo *TRI) const { 1012 assert(getParent() && "Can't have an MBB reference here!"); 1013 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1014 const MachineFunction &MF = *getParent()->getParent(); 1015 1016 // Most opcodes have fixed constraints in their MCInstrDesc. 1017 if (!isInlineAsm()) 1018 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1019 1020 if (!getOperand(OpIdx).isReg()) 1021 return NULL; 1022 1023 // For tied uses on inline asm, get the constraint from the def. 1024 unsigned DefIdx; 1025 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1026 OpIdx = DefIdx; 1027 1028 // Inline asm stores register class constraints in the flag word. 1029 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1030 if (FlagIdx < 0) 1031 return NULL; 1032 1033 unsigned Flag = getOperand(FlagIdx).getImm(); 1034 unsigned RCID; 1035 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1036 return TRI->getRegClass(RCID); 1037 1038 // Assume that all registers in a memory operand are pointers. 1039 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1040 return TRI->getPointerRegClass(MF); 1041 1042 return NULL; 1043} 1044 1045/// getBundleSize - Return the number of instructions inside the MI bundle. 1046unsigned MachineInstr::getBundleSize() const { 1047 assert(isBundle() && "Expecting a bundle"); 1048 1049 MachineBasicBlock::const_instr_iterator I = *this; 1050 unsigned Size = 0; 1051 while ((++I)->isInsideBundle()) { 1052 ++Size; 1053 } 1054 assert(Size > 1 && "Malformed bundle"); 1055 1056 return Size; 1057} 1058 1059/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1060/// the specific register or -1 if it is not found. It further tightens 1061/// the search criteria to a use that kills the register if isKill is true. 1062int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1063 const TargetRegisterInfo *TRI) const { 1064 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1065 const MachineOperand &MO = getOperand(i); 1066 if (!MO.isReg() || !MO.isUse()) 1067 continue; 1068 unsigned MOReg = MO.getReg(); 1069 if (!MOReg) 1070 continue; 1071 if (MOReg == Reg || 1072 (TRI && 1073 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1074 TargetRegisterInfo::isPhysicalRegister(Reg) && 1075 TRI->isSubRegister(MOReg, Reg))) 1076 if (!isKill || MO.isKill()) 1077 return i; 1078 } 1079 return -1; 1080} 1081 1082/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1083/// indicating if this instruction reads or writes Reg. This also considers 1084/// partial defines. 1085std::pair<bool,bool> 1086MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1087 SmallVectorImpl<unsigned> *Ops) const { 1088 bool PartDef = false; // Partial redefine. 1089 bool FullDef = false; // Full define. 1090 bool Use = false; 1091 1092 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1093 const MachineOperand &MO = getOperand(i); 1094 if (!MO.isReg() || MO.getReg() != Reg) 1095 continue; 1096 if (Ops) 1097 Ops->push_back(i); 1098 if (MO.isUse()) 1099 Use |= !MO.isUndef(); 1100 else if (MO.getSubReg() && !MO.isUndef()) 1101 // A partial <def,undef> doesn't count as reading the register. 1102 PartDef = true; 1103 else 1104 FullDef = true; 1105 } 1106 // A partial redefine uses Reg unless there is also a full define. 1107 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1108} 1109 1110/// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1111/// the specified register or -1 if it is not found. If isDead is true, defs 1112/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1113/// also checks if there is a def of a super-register. 1114int 1115MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1116 const TargetRegisterInfo *TRI) const { 1117 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1118 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1119 const MachineOperand &MO = getOperand(i); 1120 // Accept regmask operands when Overlap is set. 1121 // Ignore them when looking for a specific def operand (Overlap == false). 1122 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1123 return i; 1124 if (!MO.isReg() || !MO.isDef()) 1125 continue; 1126 unsigned MOReg = MO.getReg(); 1127 bool Found = (MOReg == Reg); 1128 if (!Found && TRI && isPhys && 1129 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1130 if (Overlap) 1131 Found = TRI->regsOverlap(MOReg, Reg); 1132 else 1133 Found = TRI->isSubRegister(MOReg, Reg); 1134 } 1135 if (Found && (!isDead || MO.isDead())) 1136 return i; 1137 } 1138 return -1; 1139} 1140 1141/// findFirstPredOperandIdx() - Find the index of the first operand in the 1142/// operand list that is used to represent the predicate. It returns -1 if 1143/// none is found. 1144int MachineInstr::findFirstPredOperandIdx() const { 1145 // Don't call MCID.findFirstPredOperandIdx() because this variant 1146 // is sometimes called on an instruction that's not yet complete, and 1147 // so the number of operands is less than the MCID indicates. In 1148 // particular, the PTX target does this. 1149 const MCInstrDesc &MCID = getDesc(); 1150 if (MCID.isPredicable()) { 1151 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1152 if (MCID.OpInfo[i].isPredicate()) 1153 return i; 1154 } 1155 1156 return -1; 1157} 1158 1159// MachineOperand::TiedTo is 4 bits wide. 1160const unsigned TiedMax = 15; 1161 1162/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1163/// 1164/// Use and def operands can be tied together, indicated by a non-zero TiedTo 1165/// field. TiedTo can have these values: 1166/// 1167/// 0: Operand is not tied to anything. 1168/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1169/// TiedMax: Tied to an operand >= TiedMax-1. 1170/// 1171/// The tied def must be one of the first TiedMax operands on a normal 1172/// instruction. INLINEASM instructions allow more tied defs. 1173/// 1174void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1175 MachineOperand &DefMO = getOperand(DefIdx); 1176 MachineOperand &UseMO = getOperand(UseIdx); 1177 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1178 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1179 assert(!DefMO.isTied() && "Def is already tied to another use"); 1180 assert(!UseMO.isTied() && "Use is already tied to another def"); 1181 1182 if (DefIdx < TiedMax) 1183 UseMO.TiedTo = DefIdx + 1; 1184 else { 1185 // Inline asm can use the group descriptors to find tied operands, but on 1186 // normal instruction, the tied def must be within the first TiedMax 1187 // operands. 1188 assert(isInlineAsm() && "DefIdx out of range"); 1189 UseMO.TiedTo = TiedMax; 1190 } 1191 1192 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1193 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1194} 1195 1196/// Given the index of a tied register operand, find the operand it is tied to. 1197/// Defs are tied to uses and vice versa. Returns the index of the tied operand 1198/// which must exist. 1199unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1200 const MachineOperand &MO = getOperand(OpIdx); 1201 assert(MO.isTied() && "Operand isn't tied"); 1202 1203 // Normally TiedTo is in range. 1204 if (MO.TiedTo < TiedMax) 1205 return MO.TiedTo - 1; 1206 1207 // Uses on normal instructions can be out of range. 1208 if (!isInlineAsm()) { 1209 // Normal tied defs must be in the 0..TiedMax-1 range. 1210 if (MO.isUse()) 1211 return TiedMax - 1; 1212 // MO is a def. Search for the tied use. 1213 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1214 const MachineOperand &UseMO = getOperand(i); 1215 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1216 return i; 1217 } 1218 llvm_unreachable("Can't find tied use"); 1219 } 1220 1221 // Now deal with inline asm by parsing the operand group descriptor flags. 1222 // Find the beginning of each operand group. 1223 SmallVector<unsigned, 8> GroupIdx; 1224 unsigned OpIdxGroup = ~0u; 1225 unsigned NumOps; 1226 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1227 i += NumOps) { 1228 const MachineOperand &FlagMO = getOperand(i); 1229 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1230 unsigned CurGroup = GroupIdx.size(); 1231 GroupIdx.push_back(i); 1232 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1233 // OpIdx belongs to this operand group. 1234 if (OpIdx > i && OpIdx < i + NumOps) 1235 OpIdxGroup = CurGroup; 1236 unsigned TiedGroup; 1237 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1238 continue; 1239 // Operands in this group are tied to operands in TiedGroup which must be 1240 // earlier. Find the number of operands between the two groups. 1241 unsigned Delta = i - GroupIdx[TiedGroup]; 1242 1243 // OpIdx is a use tied to TiedGroup. 1244 if (OpIdxGroup == CurGroup) 1245 return OpIdx - Delta; 1246 1247 // OpIdx is a def tied to this use group. 1248 if (OpIdxGroup == TiedGroup) 1249 return OpIdx + Delta; 1250 } 1251 llvm_unreachable("Invalid tied operand on inline asm"); 1252} 1253 1254/// clearKillInfo - Clears kill flags on all operands. 1255/// 1256void MachineInstr::clearKillInfo() { 1257 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1258 MachineOperand &MO = getOperand(i); 1259 if (MO.isReg() && MO.isUse()) 1260 MO.setIsKill(false); 1261 } 1262} 1263 1264/// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1265/// 1266void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1267 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1268 const MachineOperand &MO = MI->getOperand(i); 1269 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1270 continue; 1271 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1272 MachineOperand &MOp = getOperand(j); 1273 if (!MOp.isIdenticalTo(MO)) 1274 continue; 1275 if (MO.isKill()) 1276 MOp.setIsKill(); 1277 else 1278 MOp.setIsDead(); 1279 break; 1280 } 1281 } 1282} 1283 1284/// copyPredicates - Copies predicate operand(s) from MI. 1285void MachineInstr::copyPredicates(const MachineInstr *MI) { 1286 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1287 1288 const MCInstrDesc &MCID = MI->getDesc(); 1289 if (!MCID.isPredicable()) 1290 return; 1291 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1292 if (MCID.OpInfo[i].isPredicate()) { 1293 // Predicated operands must be last operands. 1294 addOperand(MI->getOperand(i)); 1295 } 1296 } 1297} 1298 1299void MachineInstr::substituteRegister(unsigned FromReg, 1300 unsigned ToReg, 1301 unsigned SubIdx, 1302 const TargetRegisterInfo &RegInfo) { 1303 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1304 if (SubIdx) 1305 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1306 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1307 MachineOperand &MO = getOperand(i); 1308 if (!MO.isReg() || MO.getReg() != FromReg) 1309 continue; 1310 MO.substPhysReg(ToReg, RegInfo); 1311 } 1312 } else { 1313 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1314 MachineOperand &MO = getOperand(i); 1315 if (!MO.isReg() || MO.getReg() != FromReg) 1316 continue; 1317 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1318 } 1319 } 1320} 1321 1322/// isSafeToMove - Return true if it is safe to move this instruction. If 1323/// SawStore is set to true, it means that there is a store (or call) between 1324/// the instruction's location and its intended destination. 1325bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1326 AliasAnalysis *AA, 1327 bool &SawStore) const { 1328 // Ignore stuff that we obviously can't move. 1329 // 1330 // Treat volatile loads as stores. This is not strictly necessary for 1331 // volatiles, but it is required for atomic loads. It is not allowed to move 1332 // a load across an atomic load with Ordering > Monotonic. 1333 if (mayStore() || isCall() || 1334 (mayLoad() && hasOrderedMemoryRef())) { 1335 SawStore = true; 1336 return false; 1337 } 1338 1339 if (isLabel() || isDebugValue() || 1340 isTerminator() || hasUnmodeledSideEffects()) 1341 return false; 1342 1343 // See if this instruction does a load. If so, we have to guarantee that the 1344 // loaded value doesn't change between the load and the its intended 1345 // destination. The check for isInvariantLoad gives the targe the chance to 1346 // classify the load as always returning a constant, e.g. a constant pool 1347 // load. 1348 if (mayLoad() && !isInvariantLoad(AA)) 1349 // Otherwise, this is a real load. If there is a store between the load and 1350 // end of block, we can't move it. 1351 return !SawStore; 1352 1353 return true; 1354} 1355 1356/// isSafeToReMat - Return true if it's safe to rematerialize the specified 1357/// instruction which defined the specified register instead of copying it. 1358bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1359 AliasAnalysis *AA, 1360 unsigned DstReg) const { 1361 bool SawStore = false; 1362 if (!TII->isTriviallyReMaterializable(this, AA) || 1363 !isSafeToMove(TII, AA, SawStore)) 1364 return false; 1365 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1366 const MachineOperand &MO = getOperand(i); 1367 if (!MO.isReg()) 1368 continue; 1369 // FIXME: For now, do not remat any instruction with register operands. 1370 // Later on, we can loosen the restriction is the register operands have 1371 // not been modified between the def and use. Note, this is different from 1372 // MachineSink because the code is no longer in two-address form (at least 1373 // partially). 1374 if (MO.isUse()) 1375 return false; 1376 else if (!MO.isDead() && MO.getReg() != DstReg) 1377 return false; 1378 } 1379 return true; 1380} 1381 1382/// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1383/// or volatile memory reference, or if the information describing the memory 1384/// reference is not available. Return false if it is known to have no ordered 1385/// memory references. 1386bool MachineInstr::hasOrderedMemoryRef() const { 1387 // An instruction known never to access memory won't have a volatile access. 1388 if (!mayStore() && 1389 !mayLoad() && 1390 !isCall() && 1391 !hasUnmodeledSideEffects()) 1392 return false; 1393 1394 // Otherwise, if the instruction has no memory reference information, 1395 // conservatively assume it wasn't preserved. 1396 if (memoperands_empty()) 1397 return true; 1398 1399 // Check the memory reference information for ordered references. 1400 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1401 if (!(*I)->isUnordered()) 1402 return true; 1403 1404 return false; 1405} 1406 1407/// isInvariantLoad - Return true if this instruction is loading from a 1408/// location whose value is invariant across the function. For example, 1409/// loading a value from the constant pool or from the argument area 1410/// of a function if it does not change. This should only return true of 1411/// *all* loads the instruction does are invariant (if it does multiple loads). 1412bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1413 // If the instruction doesn't load at all, it isn't an invariant load. 1414 if (!mayLoad()) 1415 return false; 1416 1417 // If the instruction has lost its memoperands, conservatively assume that 1418 // it may not be an invariant load. 1419 if (memoperands_empty()) 1420 return false; 1421 1422 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1423 1424 for (mmo_iterator I = memoperands_begin(), 1425 E = memoperands_end(); I != E; ++I) { 1426 if ((*I)->isVolatile()) return false; 1427 if ((*I)->isStore()) return false; 1428 if ((*I)->isInvariant()) return true; 1429 1430 if (const Value *V = (*I)->getValue()) { 1431 // A load from a constant PseudoSourceValue is invariant. 1432 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1433 if (PSV->isConstant(MFI)) 1434 continue; 1435 // If we have an AliasAnalysis, ask it whether the memory is constant. 1436 if (AA && AA->pointsToConstantMemory( 1437 AliasAnalysis::Location(V, (*I)->getSize(), 1438 (*I)->getTBAAInfo()))) 1439 continue; 1440 } 1441 1442 // Otherwise assume conservatively. 1443 return false; 1444 } 1445 1446 // Everything checks out. 1447 return true; 1448} 1449 1450/// isConstantValuePHI - If the specified instruction is a PHI that always 1451/// merges together the same virtual register, return the register, otherwise 1452/// return 0. 1453unsigned MachineInstr::isConstantValuePHI() const { 1454 if (!isPHI()) 1455 return 0; 1456 assert(getNumOperands() >= 3 && 1457 "It's illegal to have a PHI without source operands"); 1458 1459 unsigned Reg = getOperand(1).getReg(); 1460 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1461 if (getOperand(i).getReg() != Reg) 1462 return 0; 1463 return Reg; 1464} 1465 1466bool MachineInstr::hasUnmodeledSideEffects() const { 1467 if (hasProperty(MCID::UnmodeledSideEffects)) 1468 return true; 1469 if (isInlineAsm()) { 1470 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1471 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1472 return true; 1473 } 1474 1475 return false; 1476} 1477 1478/// allDefsAreDead - Return true if all the defs of this instruction are dead. 1479/// 1480bool MachineInstr::allDefsAreDead() const { 1481 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1482 const MachineOperand &MO = getOperand(i); 1483 if (!MO.isReg() || MO.isUse()) 1484 continue; 1485 if (!MO.isDead()) 1486 return false; 1487 } 1488 return true; 1489} 1490 1491/// copyImplicitOps - Copy implicit register operands from specified 1492/// instruction to this instruction. 1493void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1494 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1495 i != e; ++i) { 1496 const MachineOperand &MO = MI->getOperand(i); 1497 if (MO.isReg() && MO.isImplicit()) 1498 addOperand(MO); 1499 } 1500} 1501 1502void MachineInstr::dump() const { 1503 dbgs() << " " << *this; 1504} 1505 1506static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1507 raw_ostream &CommentOS) { 1508 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1509 if (!DL.isUnknown()) { // Print source line info. 1510 DIScope Scope(DL.getScope(Ctx)); 1511 // Omit the directory, because it's likely to be long and uninteresting. 1512 if (Scope.Verify()) 1513 CommentOS << Scope.getFilename(); 1514 else 1515 CommentOS << "<unknown>"; 1516 CommentOS << ':' << DL.getLine(); 1517 if (DL.getCol() != 0) 1518 CommentOS << ':' << DL.getCol(); 1519 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1520 if (!InlinedAtDL.isUnknown()) { 1521 CommentOS << " @[ "; 1522 printDebugLoc(InlinedAtDL, MF, CommentOS); 1523 CommentOS << " ]"; 1524 } 1525 } 1526} 1527 1528void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1529 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1530 const MachineFunction *MF = 0; 1531 const MachineRegisterInfo *MRI = 0; 1532 if (const MachineBasicBlock *MBB = getParent()) { 1533 MF = MBB->getParent(); 1534 if (!TM && MF) 1535 TM = &MF->getTarget(); 1536 if (MF) 1537 MRI = &MF->getRegInfo(); 1538 } 1539 1540 // Save a list of virtual registers. 1541 SmallVector<unsigned, 8> VirtRegs; 1542 1543 // Print explicitly defined operands on the left of an assignment syntax. 1544 unsigned StartOp = 0, e = getNumOperands(); 1545 for (; StartOp < e && getOperand(StartOp).isReg() && 1546 getOperand(StartOp).isDef() && 1547 !getOperand(StartOp).isImplicit(); 1548 ++StartOp) { 1549 if (StartOp != 0) OS << ", "; 1550 getOperand(StartOp).print(OS, TM); 1551 unsigned Reg = getOperand(StartOp).getReg(); 1552 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1553 VirtRegs.push_back(Reg); 1554 } 1555 1556 if (StartOp != 0) 1557 OS << " = "; 1558 1559 // Print the opcode name. 1560 if (TM && TM->getInstrInfo()) 1561 OS << TM->getInstrInfo()->getName(getOpcode()); 1562 else 1563 OS << "UNKNOWN"; 1564 1565 // Print the rest of the operands. 1566 bool OmittedAnyCallClobbers = false; 1567 bool FirstOp = true; 1568 unsigned AsmDescOp = ~0u; 1569 unsigned AsmOpCount = 0; 1570 1571 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1572 // Print asm string. 1573 OS << " "; 1574 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1575 1576 // Print HasSideEffects, IsAlignStack 1577 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1578 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1579 OS << " [sideeffect]"; 1580 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1581 OS << " [alignstack]"; 1582 if (ExtraInfo & InlineAsm::Extra_ATTDialect) 1583 OS << " [attdialect]"; 1584 if (ExtraInfo & InlineAsm::Extra_IntelDialect) 1585 OS << " [inteldialect]"; 1586 1587 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1588 FirstOp = false; 1589 } 1590 1591 1592 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1593 const MachineOperand &MO = getOperand(i); 1594 1595 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1596 VirtRegs.push_back(MO.getReg()); 1597 1598 // Omit call-clobbered registers which aren't used anywhere. This makes 1599 // call instructions much less noisy on targets where calls clobber lots 1600 // of registers. Don't rely on MO.isDead() because we may be called before 1601 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1602 if (MF && isCall() && 1603 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1604 unsigned Reg = MO.getReg(); 1605 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1606 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1607 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1608 bool HasAliasLive = false; 1609 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1610 AI.isValid(); ++AI) { 1611 unsigned AliasReg = *AI; 1612 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1613 HasAliasLive = true; 1614 break; 1615 } 1616 } 1617 if (!HasAliasLive) { 1618 OmittedAnyCallClobbers = true; 1619 continue; 1620 } 1621 } 1622 } 1623 } 1624 1625 if (FirstOp) FirstOp = false; else OS << ","; 1626 OS << " "; 1627 if (i < getDesc().NumOperands) { 1628 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1629 if (MCOI.isPredicate()) 1630 OS << "pred:"; 1631 if (MCOI.isOptionalDef()) 1632 OS << "opt:"; 1633 } 1634 if (isDebugValue() && MO.isMetadata()) { 1635 // Pretty print DBG_VALUE instructions. 1636 const MDNode *MD = MO.getMetadata(); 1637 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1638 OS << "!\"" << MDS->getString() << '\"'; 1639 else 1640 MO.print(OS, TM); 1641 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1642 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1643 } else if (i == AsmDescOp && MO.isImm()) { 1644 // Pretty print the inline asm operand descriptor. 1645 OS << '$' << AsmOpCount++; 1646 unsigned Flag = MO.getImm(); 1647 switch (InlineAsm::getKind(Flag)) { 1648 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1649 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1650 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1651 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1652 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1653 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1654 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1655 } 1656 1657 unsigned RCID = 0; 1658 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1659 if (TM) 1660 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1661 else 1662 OS << ":RC" << RCID; 1663 } 1664 1665 unsigned TiedTo = 0; 1666 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1667 OS << " tiedto:$" << TiedTo; 1668 1669 OS << ']'; 1670 1671 // Compute the index of the next operand descriptor. 1672 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1673 } else 1674 MO.print(OS, TM); 1675 } 1676 1677 // Briefly indicate whether any call clobbers were omitted. 1678 if (OmittedAnyCallClobbers) { 1679 if (!FirstOp) OS << ","; 1680 OS << " ..."; 1681 } 1682 1683 bool HaveSemi = false; 1684 if (Flags) { 1685 if (!HaveSemi) OS << ";"; HaveSemi = true; 1686 OS << " flags: "; 1687 1688 if (Flags & FrameSetup) 1689 OS << "FrameSetup"; 1690 } 1691 1692 if (!memoperands_empty()) { 1693 if (!HaveSemi) OS << ";"; HaveSemi = true; 1694 1695 OS << " mem:"; 1696 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1697 i != e; ++i) { 1698 OS << **i; 1699 if (llvm::next(i) != e) 1700 OS << " "; 1701 } 1702 } 1703 1704 // Print the regclass of any virtual registers encountered. 1705 if (MRI && !VirtRegs.empty()) { 1706 if (!HaveSemi) OS << ";"; HaveSemi = true; 1707 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1708 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1709 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1710 for (unsigned j = i+1; j != VirtRegs.size();) { 1711 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1712 ++j; 1713 continue; 1714 } 1715 if (VirtRegs[i] != VirtRegs[j]) 1716 OS << "," << PrintReg(VirtRegs[j]); 1717 VirtRegs.erase(VirtRegs.begin()+j); 1718 } 1719 } 1720 } 1721 1722 // Print debug location information. 1723 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1724 if (!HaveSemi) OS << ";"; HaveSemi = true; 1725 DIVariable DV(getOperand(e - 1).getMetadata()); 1726 OS << " line no:" << DV.getLineNumber(); 1727 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1728 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1729 if (!InlinedAtDL.isUnknown()) { 1730 OS << " inlined @[ "; 1731 printDebugLoc(InlinedAtDL, MF, OS); 1732 OS << " ]"; 1733 } 1734 } 1735 } else if (!debugLoc.isUnknown() && MF) { 1736 if (!HaveSemi) OS << ";"; HaveSemi = true; 1737 OS << " dbg:"; 1738 printDebugLoc(debugLoc, MF, OS); 1739 } 1740 1741 OS << '\n'; 1742} 1743 1744bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1745 const TargetRegisterInfo *RegInfo, 1746 bool AddIfNotFound) { 1747 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1748 bool hasAliases = isPhysReg && 1749 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1750 bool Found = false; 1751 SmallVector<unsigned,4> DeadOps; 1752 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1753 MachineOperand &MO = getOperand(i); 1754 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1755 continue; 1756 unsigned Reg = MO.getReg(); 1757 if (!Reg) 1758 continue; 1759 1760 if (Reg == IncomingReg) { 1761 if (!Found) { 1762 if (MO.isKill()) 1763 // The register is already marked kill. 1764 return true; 1765 if (isPhysReg && isRegTiedToDefOperand(i)) 1766 // Two-address uses of physregs must not be marked kill. 1767 return true; 1768 MO.setIsKill(); 1769 Found = true; 1770 } 1771 } else if (hasAliases && MO.isKill() && 1772 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1773 // A super-register kill already exists. 1774 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1775 return true; 1776 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1777 DeadOps.push_back(i); 1778 } 1779 } 1780 1781 // Trim unneeded kill operands. 1782 while (!DeadOps.empty()) { 1783 unsigned OpIdx = DeadOps.back(); 1784 if (getOperand(OpIdx).isImplicit()) 1785 RemoveOperand(OpIdx); 1786 else 1787 getOperand(OpIdx).setIsKill(false); 1788 DeadOps.pop_back(); 1789 } 1790 1791 // If not found, this means an alias of one of the operands is killed. Add a 1792 // new implicit operand if required. 1793 if (!Found && AddIfNotFound) { 1794 addOperand(MachineOperand::CreateReg(IncomingReg, 1795 false /*IsDef*/, 1796 true /*IsImp*/, 1797 true /*IsKill*/)); 1798 return true; 1799 } 1800 return Found; 1801} 1802 1803void MachineInstr::clearRegisterKills(unsigned Reg, 1804 const TargetRegisterInfo *RegInfo) { 1805 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1806 RegInfo = 0; 1807 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1808 MachineOperand &MO = getOperand(i); 1809 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1810 continue; 1811 unsigned OpReg = MO.getReg(); 1812 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1813 MO.setIsKill(false); 1814 } 1815} 1816 1817bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1818 const TargetRegisterInfo *RegInfo, 1819 bool AddIfNotFound) { 1820 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1821 bool hasAliases = isPhysReg && 1822 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1823 bool Found = false; 1824 SmallVector<unsigned,4> DeadOps; 1825 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1826 MachineOperand &MO = getOperand(i); 1827 if (!MO.isReg() || !MO.isDef()) 1828 continue; 1829 unsigned Reg = MO.getReg(); 1830 if (!Reg) 1831 continue; 1832 1833 if (Reg == IncomingReg) { 1834 MO.setIsDead(); 1835 Found = true; 1836 } else if (hasAliases && MO.isDead() && 1837 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1838 // There exists a super-register that's marked dead. 1839 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1840 return true; 1841 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1842 DeadOps.push_back(i); 1843 } 1844 } 1845 1846 // Trim unneeded dead operands. 1847 while (!DeadOps.empty()) { 1848 unsigned OpIdx = DeadOps.back(); 1849 if (getOperand(OpIdx).isImplicit()) 1850 RemoveOperand(OpIdx); 1851 else 1852 getOperand(OpIdx).setIsDead(false); 1853 DeadOps.pop_back(); 1854 } 1855 1856 // If not found, this means an alias of one of the operands is dead. Add a 1857 // new implicit operand if required. 1858 if (Found || !AddIfNotFound) 1859 return Found; 1860 1861 addOperand(MachineOperand::CreateReg(IncomingReg, 1862 true /*IsDef*/, 1863 true /*IsImp*/, 1864 false /*IsKill*/, 1865 true /*IsDead*/)); 1866 return true; 1867} 1868 1869void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1870 const TargetRegisterInfo *RegInfo) { 1871 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1872 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1873 if (MO) 1874 return; 1875 } else { 1876 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1877 const MachineOperand &MO = getOperand(i); 1878 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1879 MO.getSubReg() == 0) 1880 return; 1881 } 1882 } 1883 addOperand(MachineOperand::CreateReg(IncomingReg, 1884 true /*IsDef*/, 1885 true /*IsImp*/)); 1886} 1887 1888void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1889 const TargetRegisterInfo &TRI) { 1890 bool HasRegMask = false; 1891 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1892 MachineOperand &MO = getOperand(i); 1893 if (MO.isRegMask()) { 1894 HasRegMask = true; 1895 continue; 1896 } 1897 if (!MO.isReg() || !MO.isDef()) continue; 1898 unsigned Reg = MO.getReg(); 1899 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1900 bool Dead = true; 1901 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1902 I != E; ++I) 1903 if (TRI.regsOverlap(*I, Reg)) { 1904 Dead = false; 1905 break; 1906 } 1907 // If there are no uses, including partial uses, the def is dead. 1908 if (Dead) MO.setIsDead(); 1909 } 1910 1911 // This is a call with a register mask operand. 1912 // Mask clobbers are always dead, so add defs for the non-dead defines. 1913 if (HasRegMask) 1914 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1915 I != E; ++I) 1916 addRegisterDefined(*I, &TRI); 1917} 1918 1919unsigned 1920MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1921 // Build up a buffer of hash code components. 1922 SmallVector<size_t, 8> HashComponents; 1923 HashComponents.reserve(MI->getNumOperands() + 1); 1924 HashComponents.push_back(MI->getOpcode()); 1925 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1926 const MachineOperand &MO = MI->getOperand(i); 1927 if (MO.isReg() && MO.isDef() && 1928 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1929 continue; // Skip virtual register defs. 1930 1931 HashComponents.push_back(hash_value(MO)); 1932 } 1933 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1934} 1935 1936void MachineInstr::emitError(StringRef Msg) const { 1937 // Find the source location cookie. 1938 unsigned LocCookie = 0; 1939 const MDNode *LocMD = 0; 1940 for (unsigned i = getNumOperands(); i != 0; --i) { 1941 if (getOperand(i-1).isMetadata() && 1942 (LocMD = getOperand(i-1).getMetadata()) && 1943 LocMD->getNumOperands() != 0) { 1944 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1945 LocCookie = CI->getZExtValue(); 1946 break; 1947 } 1948 } 1949 } 1950 1951 if (const MachineBasicBlock *MBB = getParent()) 1952 if (const MachineFunction *MF = MBB->getParent()) 1953 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1954 report_fatal_error(Msg); 1955} 1956