MachineInstr.cpp revision 95d594cac3737ae1594a391276942a443cac426b
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Methods common to all machine instructions. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/MachineInstr.h" 15#include "llvm/Constants.h" 16#include "llvm/Function.h" 17#include "llvm/InlineAsm.h" 18#include "llvm/LLVMContext.h" 19#include "llvm/Metadata.h" 20#include "llvm/Module.h" 21#include "llvm/Type.h" 22#include "llvm/Value.h" 23#include "llvm/Assembly/Writer.h" 24#include "llvm/CodeGen/MachineConstantPool.h" 25#include "llvm/CodeGen/MachineFunction.h" 26#include "llvm/CodeGen/MachineMemOperand.h" 27#include "llvm/CodeGen/MachineModuleInfo.h" 28#include "llvm/CodeGen/MachineRegisterInfo.h" 29#include "llvm/CodeGen/PseudoSourceValue.h" 30#include "llvm/MC/MCInstrDesc.h" 31#include "llvm/MC/MCSymbol.h" 32#include "llvm/Target/TargetMachine.h" 33#include "llvm/Target/TargetInstrInfo.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/Analysis/AliasAnalysis.h" 36#include "llvm/Analysis/DebugInfo.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/LeakDetector.h" 40#include "llvm/Support/MathExtras.h" 41#include "llvm/Support/raw_ostream.h" 42#include "llvm/ADT/FoldingSet.h" 43#include "llvm/ADT/Hashing.h" 44using namespace llvm; 45 46//===----------------------------------------------------------------------===// 47// MachineOperand Implementation 48//===----------------------------------------------------------------------===// 49 50/// AddRegOperandToRegInfo - Add this register operand to the specified 51/// MachineRegisterInfo. If it is null, then the next/prev fields should be 52/// explicitly nulled out. 53void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 54 assert(isReg() && "Can only add reg operand to use lists"); 55 56 // If the reginfo pointer is null, just explicitly null out or next/prev 57 // pointers, to ensure they are not garbage. 58 if (RegInfo == 0) { 59 Contents.Reg.Prev = 0; 60 Contents.Reg.Next = 0; 61 return; 62 } 63 64 // Otherwise, add this operand to the head of the registers use/def list. 65 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 66 67 // For SSA values, we prefer to keep the definition at the start of the list. 68 // we do this by skipping over the definition if it is at the head of the 69 // list. 70 if (*Head && (*Head)->isDef()) 71 Head = &(*Head)->Contents.Reg.Next; 72 73 Contents.Reg.Next = *Head; 74 if (Contents.Reg.Next) { 75 assert(getReg() == Contents.Reg.Next->getReg() && 76 "Different regs on the same list!"); 77 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 78 } 79 80 Contents.Reg.Prev = Head; 81 *Head = this; 82} 83 84/// RemoveRegOperandFromRegInfo - Remove this register operand from the 85/// MachineRegisterInfo it is linked with. 86void MachineOperand::RemoveRegOperandFromRegInfo() { 87 assert(isOnRegUseList() && "Reg operand is not on a use list"); 88 // Unlink this from the doubly linked list of operands. 89 MachineOperand *NextOp = Contents.Reg.Next; 90 *Contents.Reg.Prev = NextOp; 91 if (NextOp) { 92 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 93 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 94 } 95 Contents.Reg.Prev = 0; 96 Contents.Reg.Next = 0; 97} 98 99void MachineOperand::setReg(unsigned Reg) { 100 if (getReg() == Reg) return; // No change. 101 102 // Otherwise, we have to change the register. If this operand is embedded 103 // into a machine function, we need to update the old and new register's 104 // use/def lists. 105 if (MachineInstr *MI = getParent()) 106 if (MachineBasicBlock *MBB = MI->getParent()) 107 if (MachineFunction *MF = MBB->getParent()) { 108 RemoveRegOperandFromRegInfo(); 109 SmallContents.RegNo = Reg; 110 AddRegOperandToRegInfo(&MF->getRegInfo()); 111 return; 112 } 113 114 // Otherwise, just change the register, no problem. :) 115 SmallContents.RegNo = Reg; 116} 117 118void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 119 const TargetRegisterInfo &TRI) { 120 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 121 if (SubIdx && getSubReg()) 122 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 123 setReg(Reg); 124 if (SubIdx) 125 setSubReg(SubIdx); 126} 127 128void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 129 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 130 if (getSubReg()) { 131 Reg = TRI.getSubReg(Reg, getSubReg()); 132 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 133 // That won't happen in legal code. 134 setSubReg(0); 135 } 136 setReg(Reg); 137} 138 139/// ChangeToImmediate - Replace this operand with a new immediate operand of 140/// the specified value. If an operand is known to be an immediate already, 141/// the setImm method should be used. 142void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 143 // If this operand is currently a register operand, and if this is in a 144 // function, deregister the operand from the register's use/def list. 145 if (isReg() && getParent() && getParent()->getParent() && 146 getParent()->getParent()->getParent()) 147 RemoveRegOperandFromRegInfo(); 148 149 OpKind = MO_Immediate; 150 Contents.ImmVal = ImmVal; 151} 152 153/// ChangeToRegister - Replace this operand with a new register operand of 154/// the specified value. If an operand is known to be an register already, 155/// the setReg method should be used. 156void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 157 bool isKill, bool isDead, bool isUndef, 158 bool isDebug) { 159 // If this operand is already a register operand, use setReg to update the 160 // register's use/def lists. 161 if (isReg()) { 162 assert(!isEarlyClobber()); 163 setReg(Reg); 164 } else { 165 // Otherwise, change this to a register and set the reg#. 166 OpKind = MO_Register; 167 SmallContents.RegNo = Reg; 168 169 // If this operand is embedded in a function, add the operand to the 170 // register's use/def list. 171 if (MachineInstr *MI = getParent()) 172 if (MachineBasicBlock *MBB = MI->getParent()) 173 if (MachineFunction *MF = MBB->getParent()) 174 AddRegOperandToRegInfo(&MF->getRegInfo()); 175 } 176 177 IsDef = isDef; 178 IsImp = isImp; 179 IsKill = isKill; 180 IsDead = isDead; 181 IsUndef = isUndef; 182 IsInternalRead = false; 183 IsEarlyClobber = false; 184 IsDebug = isDebug; 185 SubReg = 0; 186} 187 188/// isIdenticalTo - Return true if this operand is identical to the specified 189/// operand. 190bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 191 if (getType() != Other.getType() || 192 getTargetFlags() != Other.getTargetFlags()) 193 return false; 194 195 switch (getType()) { 196 case MachineOperand::MO_Register: 197 return getReg() == Other.getReg() && isDef() == Other.isDef() && 198 getSubReg() == Other.getSubReg(); 199 case MachineOperand::MO_Immediate: 200 return getImm() == Other.getImm(); 201 case MachineOperand::MO_CImmediate: 202 return getCImm() == Other.getCImm(); 203 case MachineOperand::MO_FPImmediate: 204 return getFPImm() == Other.getFPImm(); 205 case MachineOperand::MO_MachineBasicBlock: 206 return getMBB() == Other.getMBB(); 207 case MachineOperand::MO_FrameIndex: 208 return getIndex() == Other.getIndex(); 209 case MachineOperand::MO_ConstantPoolIndex: 210 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 211 case MachineOperand::MO_JumpTableIndex: 212 return getIndex() == Other.getIndex(); 213 case MachineOperand::MO_GlobalAddress: 214 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 215 case MachineOperand::MO_ExternalSymbol: 216 return !strcmp(getSymbolName(), Other.getSymbolName()) && 217 getOffset() == Other.getOffset(); 218 case MachineOperand::MO_BlockAddress: 219 return getBlockAddress() == Other.getBlockAddress(); 220 case MO_RegisterMask: 221 return getRegMask() == Other.getRegMask(); 222 case MachineOperand::MO_MCSymbol: 223 return getMCSymbol() == Other.getMCSymbol(); 224 case MachineOperand::MO_Metadata: 225 return getMetadata() == Other.getMetadata(); 226 } 227 llvm_unreachable("Invalid machine operand type"); 228} 229 230/// print - Print the specified machine operand. 231/// 232void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 233 // If the instruction is embedded into a basic block, we can find the 234 // target info for the instruction. 235 if (!TM) 236 if (const MachineInstr *MI = getParent()) 237 if (const MachineBasicBlock *MBB = MI->getParent()) 238 if (const MachineFunction *MF = MBB->getParent()) 239 TM = &MF->getTarget(); 240 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 241 242 switch (getType()) { 243 case MachineOperand::MO_Register: 244 OS << PrintReg(getReg(), TRI, getSubReg()); 245 246 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 247 isInternalRead() || isEarlyClobber()) { 248 OS << '<'; 249 bool NeedComma = false; 250 if (isDef()) { 251 if (NeedComma) OS << ','; 252 if (isEarlyClobber()) 253 OS << "earlyclobber,"; 254 if (isImplicit()) 255 OS << "imp-"; 256 OS << "def"; 257 NeedComma = true; 258 } else if (isImplicit()) { 259 OS << "imp-use"; 260 NeedComma = true; 261 } 262 263 if (isKill() || isDead() || isUndef() || isInternalRead()) { 264 if (NeedComma) OS << ','; 265 NeedComma = false; 266 if (isKill()) { 267 OS << "kill"; 268 NeedComma = true; 269 } 270 if (isDead()) { 271 OS << "dead"; 272 NeedComma = true; 273 } 274 if (isUndef()) { 275 if (NeedComma) OS << ','; 276 OS << "undef"; 277 NeedComma = true; 278 } 279 if (isInternalRead()) { 280 if (NeedComma) OS << ','; 281 OS << "internal"; 282 NeedComma = true; 283 } 284 } 285 OS << '>'; 286 } 287 break; 288 case MachineOperand::MO_Immediate: 289 OS << getImm(); 290 break; 291 case MachineOperand::MO_CImmediate: 292 getCImm()->getValue().print(OS, false); 293 break; 294 case MachineOperand::MO_FPImmediate: 295 if (getFPImm()->getType()->isFloatTy()) 296 OS << getFPImm()->getValueAPF().convertToFloat(); 297 else 298 OS << getFPImm()->getValueAPF().convertToDouble(); 299 break; 300 case MachineOperand::MO_MachineBasicBlock: 301 OS << "<BB#" << getMBB()->getNumber() << ">"; 302 break; 303 case MachineOperand::MO_FrameIndex: 304 OS << "<fi#" << getIndex() << '>'; 305 break; 306 case MachineOperand::MO_ConstantPoolIndex: 307 OS << "<cp#" << getIndex(); 308 if (getOffset()) OS << "+" << getOffset(); 309 OS << '>'; 310 break; 311 case MachineOperand::MO_JumpTableIndex: 312 OS << "<jt#" << getIndex() << '>'; 313 break; 314 case MachineOperand::MO_GlobalAddress: 315 OS << "<ga:"; 316 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 317 if (getOffset()) OS << "+" << getOffset(); 318 OS << '>'; 319 break; 320 case MachineOperand::MO_ExternalSymbol: 321 OS << "<es:" << getSymbolName(); 322 if (getOffset()) OS << "+" << getOffset(); 323 OS << '>'; 324 break; 325 case MachineOperand::MO_BlockAddress: 326 OS << '<'; 327 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 328 OS << '>'; 329 break; 330 case MachineOperand::MO_RegisterMask: 331 OS << "<regmask>"; 332 break; 333 case MachineOperand::MO_Metadata: 334 OS << '<'; 335 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 336 OS << '>'; 337 break; 338 case MachineOperand::MO_MCSymbol: 339 OS << "<MCSym=" << *getMCSymbol() << '>'; 340 break; 341 } 342 343 if (unsigned TF = getTargetFlags()) 344 OS << "[TF=" << TF << ']'; 345} 346 347//===----------------------------------------------------------------------===// 348// MachineMemOperand Implementation 349//===----------------------------------------------------------------------===// 350 351/// getAddrSpace - Return the LLVM IR address space number that this pointer 352/// points into. 353unsigned MachinePointerInfo::getAddrSpace() const { 354 if (V == 0) return 0; 355 return cast<PointerType>(V->getType())->getAddressSpace(); 356} 357 358/// getConstantPool - Return a MachinePointerInfo record that refers to the 359/// constant pool. 360MachinePointerInfo MachinePointerInfo::getConstantPool() { 361 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 362} 363 364/// getFixedStack - Return a MachinePointerInfo record that refers to the 365/// the specified FrameIndex. 366MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 367 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 368} 369 370MachinePointerInfo MachinePointerInfo::getJumpTable() { 371 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 372} 373 374MachinePointerInfo MachinePointerInfo::getGOT() { 375 return MachinePointerInfo(PseudoSourceValue::getGOT()); 376} 377 378MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 379 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 380} 381 382MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 383 uint64_t s, unsigned int a, 384 const MDNode *TBAAInfo, 385 const MDNode *Ranges) 386 : PtrInfo(ptrinfo), Size(s), 387 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 388 TBAAInfo(TBAAInfo), Ranges(Ranges) { 389 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 390 "invalid pointer value"); 391 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 392 assert((isLoad() || isStore()) && "Not a load/store!"); 393} 394 395/// Profile - Gather unique data for the object. 396/// 397void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 398 ID.AddInteger(getOffset()); 399 ID.AddInteger(Size); 400 ID.AddPointer(getValue()); 401 ID.AddInteger(Flags); 402} 403 404void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 405 // The Value and Offset may differ due to CSE. But the flags and size 406 // should be the same. 407 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 408 assert(MMO->getSize() == getSize() && "Size mismatch!"); 409 410 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 411 // Update the alignment value. 412 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 413 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 414 // Also update the base and offset, because the new alignment may 415 // not be applicable with the old ones. 416 PtrInfo = MMO->PtrInfo; 417 } 418} 419 420/// getAlignment - Return the minimum known alignment in bytes of the 421/// actual memory reference. 422uint64_t MachineMemOperand::getAlignment() const { 423 return MinAlign(getBaseAlignment(), getOffset()); 424} 425 426raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 427 assert((MMO.isLoad() || MMO.isStore()) && 428 "SV has to be a load, store or both."); 429 430 if (MMO.isVolatile()) 431 OS << "Volatile "; 432 433 if (MMO.isLoad()) 434 OS << "LD"; 435 if (MMO.isStore()) 436 OS << "ST"; 437 OS << MMO.getSize(); 438 439 // Print the address information. 440 OS << "["; 441 if (!MMO.getValue()) 442 OS << "<unknown>"; 443 else 444 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 445 446 // If the alignment of the memory reference itself differs from the alignment 447 // of the base pointer, print the base alignment explicitly, next to the base 448 // pointer. 449 if (MMO.getBaseAlignment() != MMO.getAlignment()) 450 OS << "(align=" << MMO.getBaseAlignment() << ")"; 451 452 if (MMO.getOffset() != 0) 453 OS << "+" << MMO.getOffset(); 454 OS << "]"; 455 456 // Print the alignment of the reference. 457 if (MMO.getBaseAlignment() != MMO.getAlignment() || 458 MMO.getBaseAlignment() != MMO.getSize()) 459 OS << "(align=" << MMO.getAlignment() << ")"; 460 461 // Print TBAA info. 462 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 463 OS << "(tbaa="; 464 if (TBAAInfo->getNumOperands() > 0) 465 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 466 else 467 OS << "<unknown>"; 468 OS << ")"; 469 } 470 471 // Print nontemporal info. 472 if (MMO.isNonTemporal()) 473 OS << "(nontemporal)"; 474 475 return OS; 476} 477 478//===----------------------------------------------------------------------===// 479// MachineInstr Implementation 480//===----------------------------------------------------------------------===// 481 482/// MachineInstr ctor - This constructor creates a dummy MachineInstr with 483/// MCID NULL and no operands. 484MachineInstr::MachineInstr() 485 : MCID(0), Flags(0), AsmPrinterFlags(0), 486 NumMemRefs(0), MemRefs(0), 487 Parent(0) { 488 // Make sure that we get added to a machine basicblock 489 LeakDetector::addGarbageObject(this); 490} 491 492void MachineInstr::addImplicitDefUseOperands() { 493 if (MCID->ImplicitDefs) 494 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 495 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 496 if (MCID->ImplicitUses) 497 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 498 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 499} 500 501/// MachineInstr ctor - This constructor creates a MachineInstr and adds the 502/// implicit operands. It reserves space for the number of operands specified by 503/// the MCInstrDesc. 504MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 505 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 506 NumMemRefs(0), MemRefs(0), Parent(0) { 507 unsigned NumImplicitOps = 0; 508 if (!NoImp) 509 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 510 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 511 if (!NoImp) 512 addImplicitDefUseOperands(); 513 // Make sure that we get added to a machine basicblock 514 LeakDetector::addGarbageObject(this); 515} 516 517/// MachineInstr ctor - As above, but with a DebugLoc. 518MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 519 bool NoImp) 520 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 521 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 522 unsigned NumImplicitOps = 0; 523 if (!NoImp) 524 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 525 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 526 if (!NoImp) 527 addImplicitDefUseOperands(); 528 // Make sure that we get added to a machine basicblock 529 LeakDetector::addGarbageObject(this); 530} 531 532/// MachineInstr ctor - Work exactly the same as the ctor two above, except 533/// that the MachineInstr is created and added to the end of the specified 534/// basic block. 535MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 536 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 537 NumMemRefs(0), MemRefs(0), Parent(0) { 538 assert(MBB && "Cannot use inserting ctor with null basic block!"); 539 unsigned NumImplicitOps = 540 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 541 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 542 addImplicitDefUseOperands(); 543 // Make sure that we get added to a machine basicblock 544 LeakDetector::addGarbageObject(this); 545 MBB->push_back(this); // Add instruction to end of basic block! 546} 547 548/// MachineInstr ctor - As above, but with a DebugLoc. 549/// 550MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 551 const MCInstrDesc &tid) 552 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 553 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 554 assert(MBB && "Cannot use inserting ctor with null basic block!"); 555 unsigned NumImplicitOps = 556 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 557 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 558 addImplicitDefUseOperands(); 559 // Make sure that we get added to a machine basicblock 560 LeakDetector::addGarbageObject(this); 561 MBB->push_back(this); // Add instruction to end of basic block! 562} 563 564/// MachineInstr ctor - Copies MachineInstr arg exactly 565/// 566MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 567 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 568 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 569 Parent(0), debugLoc(MI.getDebugLoc()) { 570 Operands.reserve(MI.getNumOperands()); 571 572 // Add operands 573 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 574 addOperand(MI.getOperand(i)); 575 576 // Copy all the flags. 577 Flags = MI.Flags; 578 579 // Set parent to null. 580 Parent = 0; 581 582 LeakDetector::addGarbageObject(this); 583} 584 585MachineInstr::~MachineInstr() { 586 LeakDetector::removeGarbageObject(this); 587#ifndef NDEBUG 588 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 589 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 590 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 591 "Reg operand def/use list corrupted"); 592 } 593#endif 594} 595 596/// getRegInfo - If this instruction is embedded into a MachineFunction, 597/// return the MachineRegisterInfo object for the current function, otherwise 598/// return null. 599MachineRegisterInfo *MachineInstr::getRegInfo() { 600 if (MachineBasicBlock *MBB = getParent()) 601 return &MBB->getParent()->getRegInfo(); 602 return 0; 603} 604 605/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 606/// this instruction from their respective use lists. This requires that the 607/// operands already be on their use lists. 608void MachineInstr::RemoveRegOperandsFromUseLists() { 609 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 610 if (Operands[i].isReg()) 611 Operands[i].RemoveRegOperandFromRegInfo(); 612 } 613} 614 615/// AddRegOperandsToUseLists - Add all of the register operands in 616/// this instruction from their respective use lists. This requires that the 617/// operands not be on their use lists yet. 618void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 619 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 620 if (Operands[i].isReg()) 621 Operands[i].AddRegOperandToRegInfo(&RegInfo); 622 } 623} 624 625 626/// addOperand - Add the specified operand to the instruction. If it is an 627/// implicit operand, it is added to the end of the operand list. If it is 628/// an explicit operand it is added at the end of the explicit operand list 629/// (before the first implicit operand). 630void MachineInstr::addOperand(const MachineOperand &Op) { 631 assert(MCID && "Cannot add operands before providing an instr descriptor"); 632 bool isImpReg = Op.isReg() && Op.isImplicit(); 633 MachineRegisterInfo *RegInfo = getRegInfo(); 634 635 // If the Operands backing store is reallocated, all register operands must 636 // be removed and re-added to RegInfo. It is storing pointers to operands. 637 bool Reallocate = RegInfo && 638 !Operands.empty() && Operands.size() == Operands.capacity(); 639 640 // Find the insert location for the new operand. Implicit registers go at 641 // the end, everything goes before the implicit regs. 642 unsigned OpNo = Operands.size(); 643 644 // Remove all the implicit operands from RegInfo if they need to be shifted. 645 // FIXME: Allow mixed explicit and implicit operands on inline asm. 646 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 647 // implicit-defs, but they must not be moved around. See the FIXME in 648 // InstrEmitter.cpp. 649 if (!isImpReg && !isInlineAsm()) { 650 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 651 --OpNo; 652 if (RegInfo) 653 Operands[OpNo].RemoveRegOperandFromRegInfo(); 654 } 655 } 656 657 // OpNo now points as the desired insertion point. Unless this is a variadic 658 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 659 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && 660 "Trying to add an operand to a machine instr that is already done!"); 661 662 // All operands from OpNo have been removed from RegInfo. If the Operands 663 // backing store needs to be reallocated, we also need to remove any other 664 // register operands. 665 if (Reallocate) 666 for (unsigned i = 0; i != OpNo; ++i) 667 if (Operands[i].isReg()) 668 Operands[i].RemoveRegOperandFromRegInfo(); 669 670 // Insert the new operand at OpNo. 671 Operands.insert(Operands.begin() + OpNo, Op); 672 Operands[OpNo].ParentMI = this; 673 674 // The Operands backing store has now been reallocated, so we can re-add the 675 // operands before OpNo. 676 if (Reallocate) 677 for (unsigned i = 0; i != OpNo; ++i) 678 if (Operands[i].isReg()) 679 Operands[i].AddRegOperandToRegInfo(RegInfo); 680 681 // When adding a register operand, tell RegInfo about it. 682 if (Operands[OpNo].isReg()) { 683 // Add the new operand to RegInfo, even when RegInfo is NULL. 684 // This will initialize the linked list pointers. 685 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 686 // If the register operand is flagged as early, mark the operand as such. 687 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 688 Operands[OpNo].setIsEarlyClobber(true); 689 } 690 691 // Re-add all the implicit ops. 692 if (RegInfo) { 693 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 694 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 695 Operands[i].AddRegOperandToRegInfo(RegInfo); 696 } 697 } 698} 699 700/// RemoveOperand - Erase an operand from an instruction, leaving it with one 701/// fewer operand than it started with. 702/// 703void MachineInstr::RemoveOperand(unsigned OpNo) { 704 assert(OpNo < Operands.size() && "Invalid operand number"); 705 706 // Special case removing the last one. 707 if (OpNo == Operands.size()-1) { 708 // If needed, remove from the reg def/use list. 709 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 710 Operands.back().RemoveRegOperandFromRegInfo(); 711 712 Operands.pop_back(); 713 return; 714 } 715 716 // Otherwise, we are removing an interior operand. If we have reginfo to 717 // update, remove all operands that will be shifted down from their reg lists, 718 // move everything down, then re-add them. 719 MachineRegisterInfo *RegInfo = getRegInfo(); 720 if (RegInfo) { 721 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 722 if (Operands[i].isReg()) 723 Operands[i].RemoveRegOperandFromRegInfo(); 724 } 725 } 726 727 Operands.erase(Operands.begin()+OpNo); 728 729 if (RegInfo) { 730 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 731 if (Operands[i].isReg()) 732 Operands[i].AddRegOperandToRegInfo(RegInfo); 733 } 734 } 735} 736 737/// addMemOperand - Add a MachineMemOperand to the machine instruction. 738/// This function should be used only occasionally. The setMemRefs function 739/// is the primary method for setting up a MachineInstr's MemRefs list. 740void MachineInstr::addMemOperand(MachineFunction &MF, 741 MachineMemOperand *MO) { 742 mmo_iterator OldMemRefs = MemRefs; 743 uint16_t OldNumMemRefs = NumMemRefs; 744 745 uint16_t NewNum = NumMemRefs + 1; 746 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 747 748 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 749 NewMemRefs[NewNum - 1] = MO; 750 751 MemRefs = NewMemRefs; 752 NumMemRefs = NewNum; 753} 754 755bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 756 const MachineBasicBlock *MBB = getParent(); 757 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 758 while (MII != MBB->end() && MII->isInsideBundle()) { 759 if (MII->getDesc().getFlags() & Mask) { 760 if (Type == AnyInBundle) 761 return true; 762 } else { 763 if (Type == AllInBundle) 764 return false; 765 } 766 ++MII; 767 } 768 769 return Type == AllInBundle; 770} 771 772bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 773 MICheckType Check) const { 774 // If opcodes or number of operands are not the same then the two 775 // instructions are obviously not identical. 776 if (Other->getOpcode() != getOpcode() || 777 Other->getNumOperands() != getNumOperands()) 778 return false; 779 780 if (isBundle()) { 781 // Both instructions are bundles, compare MIs inside the bundle. 782 MachineBasicBlock::const_instr_iterator I1 = *this; 783 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 784 MachineBasicBlock::const_instr_iterator I2 = *Other; 785 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 786 while (++I1 != E1 && I1->isInsideBundle()) { 787 ++I2; 788 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 789 return false; 790 } 791 } 792 793 // Check operands to make sure they match. 794 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 795 const MachineOperand &MO = getOperand(i); 796 const MachineOperand &OMO = Other->getOperand(i); 797 if (!MO.isReg()) { 798 if (!MO.isIdenticalTo(OMO)) 799 return false; 800 continue; 801 } 802 803 // Clients may or may not want to ignore defs when testing for equality. 804 // For example, machine CSE pass only cares about finding common 805 // subexpressions, so it's safe to ignore virtual register defs. 806 if (MO.isDef()) { 807 if (Check == IgnoreDefs) 808 continue; 809 else if (Check == IgnoreVRegDefs) { 810 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 811 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 812 if (MO.getReg() != OMO.getReg()) 813 return false; 814 } else { 815 if (!MO.isIdenticalTo(OMO)) 816 return false; 817 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 818 return false; 819 } 820 } else { 821 if (!MO.isIdenticalTo(OMO)) 822 return false; 823 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 824 return false; 825 } 826 } 827 // If DebugLoc does not match then two dbg.values are not identical. 828 if (isDebugValue()) 829 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 830 && getDebugLoc() != Other->getDebugLoc()) 831 return false; 832 return true; 833} 834 835/// removeFromParent - This method unlinks 'this' from the containing basic 836/// block, and returns it, but does not delete it. 837MachineInstr *MachineInstr::removeFromParent() { 838 assert(getParent() && "Not embedded in a basic block!"); 839 840 // If it's a bundle then remove the MIs inside the bundle as well. 841 if (isBundle()) { 842 MachineBasicBlock *MBB = getParent(); 843 MachineBasicBlock::instr_iterator MII = *this; ++MII; 844 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 845 while (MII != E && MII->isInsideBundle()) { 846 MachineInstr *MI = &*MII; 847 ++MII; 848 MBB->remove(MI); 849 } 850 } 851 getParent()->remove(this); 852 return this; 853} 854 855 856/// eraseFromParent - This method unlinks 'this' from the containing basic 857/// block, and deletes it. 858void MachineInstr::eraseFromParent() { 859 assert(getParent() && "Not embedded in a basic block!"); 860 // If it's a bundle then remove the MIs inside the bundle as well. 861 if (isBundle()) { 862 MachineBasicBlock *MBB = getParent(); 863 MachineBasicBlock::instr_iterator MII = *this; ++MII; 864 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 865 while (MII != E && MII->isInsideBundle()) { 866 MachineInstr *MI = &*MII; 867 ++MII; 868 MBB->erase(MI); 869 } 870 } 871 getParent()->erase(this); 872} 873 874 875/// getNumExplicitOperands - Returns the number of non-implicit operands. 876/// 877unsigned MachineInstr::getNumExplicitOperands() const { 878 unsigned NumOperands = MCID->getNumOperands(); 879 if (!MCID->isVariadic()) 880 return NumOperands; 881 882 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 883 const MachineOperand &MO = getOperand(i); 884 if (!MO.isReg() || !MO.isImplicit()) 885 NumOperands++; 886 } 887 return NumOperands; 888} 889 890/// isBundled - Return true if this instruction part of a bundle. This is true 891/// if either itself or its following instruction is marked "InsideBundle". 892bool MachineInstr::isBundled() const { 893 if (isInsideBundle()) 894 return true; 895 MachineBasicBlock::const_instr_iterator nextMI = this; 896 ++nextMI; 897 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 898} 899 900bool MachineInstr::isStackAligningInlineAsm() const { 901 if (isInlineAsm()) { 902 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 903 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 904 return true; 905 } 906 return false; 907} 908 909int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 910 unsigned *GroupNo) const { 911 assert(isInlineAsm() && "Expected an inline asm instruction"); 912 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 913 914 // Ignore queries about the initial operands. 915 if (OpIdx < InlineAsm::MIOp_FirstOperand) 916 return -1; 917 918 unsigned Group = 0; 919 unsigned NumOps; 920 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 921 i += NumOps) { 922 const MachineOperand &FlagMO = getOperand(i); 923 // If we reach the implicit register operands, stop looking. 924 if (!FlagMO.isImm()) 925 return -1; 926 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 927 if (i + NumOps > OpIdx) { 928 if (GroupNo) 929 *GroupNo = Group; 930 return i; 931 } 932 ++Group; 933 } 934 return -1; 935} 936 937const TargetRegisterClass* 938MachineInstr::getRegClassConstraint(unsigned OpIdx, 939 const TargetInstrInfo *TII, 940 const TargetRegisterInfo *TRI) const { 941 // Most opcodes have fixed constraints in their MCInstrDesc. 942 if (!isInlineAsm()) 943 return TII->getRegClass(getDesc(), OpIdx, TRI); 944 945 if (!getOperand(OpIdx).isReg()) 946 return NULL; 947 948 // For tied uses on inline asm, get the constraint from the def. 949 unsigned DefIdx; 950 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 951 OpIdx = DefIdx; 952 953 // Inline asm stores register class constraints in the flag word. 954 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 955 if (FlagIdx < 0) 956 return NULL; 957 958 unsigned Flag = getOperand(FlagIdx).getImm(); 959 unsigned RCID; 960 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 961 return TRI->getRegClass(RCID); 962 963 // Assume that all registers in a memory operand are pointers. 964 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 965 return TRI->getPointerRegClass(); 966 967 return NULL; 968} 969 970/// getBundleSize - Return the number of instructions inside the MI bundle. 971unsigned MachineInstr::getBundleSize() const { 972 assert(isBundle() && "Expecting a bundle"); 973 974 MachineBasicBlock::const_instr_iterator I = *this; 975 unsigned Size = 0; 976 while ((++I)->isInsideBundle()) { 977 ++Size; 978 } 979 assert(Size > 1 && "Malformed bundle"); 980 981 return Size; 982} 983 984/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 985/// the specific register or -1 if it is not found. It further tightens 986/// the search criteria to a use that kills the register if isKill is true. 987int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 988 const TargetRegisterInfo *TRI) const { 989 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 990 const MachineOperand &MO = getOperand(i); 991 if (!MO.isReg() || !MO.isUse()) 992 continue; 993 unsigned MOReg = MO.getReg(); 994 if (!MOReg) 995 continue; 996 if (MOReg == Reg || 997 (TRI && 998 TargetRegisterInfo::isPhysicalRegister(MOReg) && 999 TargetRegisterInfo::isPhysicalRegister(Reg) && 1000 TRI->isSubRegister(MOReg, Reg))) 1001 if (!isKill || MO.isKill()) 1002 return i; 1003 } 1004 return -1; 1005} 1006 1007/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1008/// indicating if this instruction reads or writes Reg. This also considers 1009/// partial defines. 1010std::pair<bool,bool> 1011MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1012 SmallVectorImpl<unsigned> *Ops) const { 1013 bool PartDef = false; // Partial redefine. 1014 bool FullDef = false; // Full define. 1015 bool Use = false; 1016 1017 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1018 const MachineOperand &MO = getOperand(i); 1019 if (!MO.isReg() || MO.getReg() != Reg) 1020 continue; 1021 if (Ops) 1022 Ops->push_back(i); 1023 if (MO.isUse()) 1024 Use |= !MO.isUndef(); 1025 else if (MO.getSubReg() && !MO.isUndef()) 1026 // A partial <def,undef> doesn't count as reading the register. 1027 PartDef = true; 1028 else 1029 FullDef = true; 1030 } 1031 // A partial redefine uses Reg unless there is also a full define. 1032 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1033} 1034 1035/// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1036/// the specified register or -1 if it is not found. If isDead is true, defs 1037/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1038/// also checks if there is a def of a super-register. 1039int 1040MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1041 const TargetRegisterInfo *TRI) const { 1042 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1043 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1044 const MachineOperand &MO = getOperand(i); 1045 // Accept regmask operands when Overlap is set. 1046 // Ignore them when looking for a specific def operand (Overlap == false). 1047 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1048 return i; 1049 if (!MO.isReg() || !MO.isDef()) 1050 continue; 1051 unsigned MOReg = MO.getReg(); 1052 bool Found = (MOReg == Reg); 1053 if (!Found && TRI && isPhys && 1054 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1055 if (Overlap) 1056 Found = TRI->regsOverlap(MOReg, Reg); 1057 else 1058 Found = TRI->isSubRegister(MOReg, Reg); 1059 } 1060 if (Found && (!isDead || MO.isDead())) 1061 return i; 1062 } 1063 return -1; 1064} 1065 1066/// findFirstPredOperandIdx() - Find the index of the first operand in the 1067/// operand list that is used to represent the predicate. It returns -1 if 1068/// none is found. 1069int MachineInstr::findFirstPredOperandIdx() const { 1070 // Don't call MCID.findFirstPredOperandIdx() because this variant 1071 // is sometimes called on an instruction that's not yet complete, and 1072 // so the number of operands is less than the MCID indicates. In 1073 // particular, the PTX target does this. 1074 const MCInstrDesc &MCID = getDesc(); 1075 if (MCID.isPredicable()) { 1076 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1077 if (MCID.OpInfo[i].isPredicate()) 1078 return i; 1079 } 1080 1081 return -1; 1082} 1083 1084/// isRegTiedToUseOperand - Given the index of a register def operand, 1085/// check if the register def is tied to a source operand, due to either 1086/// two-address elimination or inline assembly constraints. Returns the 1087/// first tied use operand index by reference is UseOpIdx is not null. 1088bool MachineInstr:: 1089isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 1090 if (isInlineAsm()) { 1091 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 1092 const MachineOperand &MO = getOperand(DefOpIdx); 1093 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 1094 return false; 1095 // Determine the actual operand index that corresponds to this index. 1096 unsigned DefNo = 0; 1097 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 1098 if (FlagIdx < 0) 1099 return false; 1100 1101 // Which part of the group is DefOpIdx? 1102 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 1103 1104 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 1105 i != e; ++i) { 1106 const MachineOperand &FMO = getOperand(i); 1107 if (!FMO.isImm()) 1108 continue; 1109 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 1110 continue; 1111 unsigned Idx; 1112 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 1113 Idx == DefNo) { 1114 if (UseOpIdx) 1115 *UseOpIdx = (unsigned)i + 1 + DefPart; 1116 return true; 1117 } 1118 } 1119 return false; 1120 } 1121 1122 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1123 const MCInstrDesc &MCID = getDesc(); 1124 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1125 const MachineOperand &MO = getOperand(i); 1126 if (MO.isReg() && MO.isUse() && 1127 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1128 if (UseOpIdx) 1129 *UseOpIdx = (unsigned)i; 1130 return true; 1131 } 1132 } 1133 return false; 1134} 1135 1136/// isRegTiedToDefOperand - Return true if the operand of the specified index 1137/// is a register use and it is tied to an def operand. It also returns the def 1138/// operand index by reference. 1139bool MachineInstr:: 1140isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1141 if (isInlineAsm()) { 1142 const MachineOperand &MO = getOperand(UseOpIdx); 1143 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1144 return false; 1145 1146 // Find the flag operand corresponding to UseOpIdx 1147 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1148 if (FlagIdx < 0) 1149 return false; 1150 1151 const MachineOperand &UFMO = getOperand(FlagIdx); 1152 unsigned DefNo; 1153 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1154 if (!DefOpIdx) 1155 return true; 1156 1157 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1158 // Remember to adjust the index. First operand is asm string, second is 1159 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1160 while (DefNo) { 1161 const MachineOperand &FMO = getOperand(DefIdx); 1162 assert(FMO.isImm()); 1163 // Skip over this def. 1164 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1165 --DefNo; 1166 } 1167 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1168 return true; 1169 } 1170 return false; 1171 } 1172 1173 const MCInstrDesc &MCID = getDesc(); 1174 if (UseOpIdx >= MCID.getNumOperands()) 1175 return false; 1176 const MachineOperand &MO = getOperand(UseOpIdx); 1177 if (!MO.isReg() || !MO.isUse()) 1178 return false; 1179 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1180 if (DefIdx == -1) 1181 return false; 1182 if (DefOpIdx) 1183 *DefOpIdx = (unsigned)DefIdx; 1184 return true; 1185} 1186 1187/// clearKillInfo - Clears kill flags on all operands. 1188/// 1189void MachineInstr::clearKillInfo() { 1190 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1191 MachineOperand &MO = getOperand(i); 1192 if (MO.isReg() && MO.isUse()) 1193 MO.setIsKill(false); 1194 } 1195} 1196 1197/// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1198/// 1199void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1200 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1201 const MachineOperand &MO = MI->getOperand(i); 1202 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1203 continue; 1204 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1205 MachineOperand &MOp = getOperand(j); 1206 if (!MOp.isIdenticalTo(MO)) 1207 continue; 1208 if (MO.isKill()) 1209 MOp.setIsKill(); 1210 else 1211 MOp.setIsDead(); 1212 break; 1213 } 1214 } 1215} 1216 1217/// copyPredicates - Copies predicate operand(s) from MI. 1218void MachineInstr::copyPredicates(const MachineInstr *MI) { 1219 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1220 1221 const MCInstrDesc &MCID = MI->getDesc(); 1222 if (!MCID.isPredicable()) 1223 return; 1224 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1225 if (MCID.OpInfo[i].isPredicate()) { 1226 // Predicated operands must be last operands. 1227 addOperand(MI->getOperand(i)); 1228 } 1229 } 1230} 1231 1232void MachineInstr::substituteRegister(unsigned FromReg, 1233 unsigned ToReg, 1234 unsigned SubIdx, 1235 const TargetRegisterInfo &RegInfo) { 1236 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1237 if (SubIdx) 1238 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1239 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1240 MachineOperand &MO = getOperand(i); 1241 if (!MO.isReg() || MO.getReg() != FromReg) 1242 continue; 1243 MO.substPhysReg(ToReg, RegInfo); 1244 } 1245 } else { 1246 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1247 MachineOperand &MO = getOperand(i); 1248 if (!MO.isReg() || MO.getReg() != FromReg) 1249 continue; 1250 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1251 } 1252 } 1253} 1254 1255/// isSafeToMove - Return true if it is safe to move this instruction. If 1256/// SawStore is set to true, it means that there is a store (or call) between 1257/// the instruction's location and its intended destination. 1258bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1259 AliasAnalysis *AA, 1260 bool &SawStore) const { 1261 // Ignore stuff that we obviously can't move. 1262 if (mayStore() || isCall()) { 1263 SawStore = true; 1264 return false; 1265 } 1266 1267 if (isLabel() || isDebugValue() || 1268 isTerminator() || hasUnmodeledSideEffects()) 1269 return false; 1270 1271 // See if this instruction does a load. If so, we have to guarantee that the 1272 // loaded value doesn't change between the load and the its intended 1273 // destination. The check for isInvariantLoad gives the targe the chance to 1274 // classify the load as always returning a constant, e.g. a constant pool 1275 // load. 1276 if (mayLoad() && !isInvariantLoad(AA)) 1277 // Otherwise, this is a real load. If there is a store between the load and 1278 // end of block, or if the load is volatile, we can't move it. 1279 return !SawStore && !hasVolatileMemoryRef(); 1280 1281 return true; 1282} 1283 1284/// isSafeToReMat - Return true if it's safe to rematerialize the specified 1285/// instruction which defined the specified register instead of copying it. 1286bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1287 AliasAnalysis *AA, 1288 unsigned DstReg) const { 1289 bool SawStore = false; 1290 if (!TII->isTriviallyReMaterializable(this, AA) || 1291 !isSafeToMove(TII, AA, SawStore)) 1292 return false; 1293 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1294 const MachineOperand &MO = getOperand(i); 1295 if (!MO.isReg()) 1296 continue; 1297 // FIXME: For now, do not remat any instruction with register operands. 1298 // Later on, we can loosen the restriction is the register operands have 1299 // not been modified between the def and use. Note, this is different from 1300 // MachineSink because the code is no longer in two-address form (at least 1301 // partially). 1302 if (MO.isUse()) 1303 return false; 1304 else if (!MO.isDead() && MO.getReg() != DstReg) 1305 return false; 1306 } 1307 return true; 1308} 1309 1310/// hasVolatileMemoryRef - Return true if this instruction may have a 1311/// volatile memory reference, or if the information describing the 1312/// memory reference is not available. Return false if it is known to 1313/// have no volatile memory references. 1314bool MachineInstr::hasVolatileMemoryRef() const { 1315 // An instruction known never to access memory won't have a volatile access. 1316 if (!mayStore() && 1317 !mayLoad() && 1318 !isCall() && 1319 !hasUnmodeledSideEffects()) 1320 return false; 1321 1322 // Otherwise, if the instruction has no memory reference information, 1323 // conservatively assume it wasn't preserved. 1324 if (memoperands_empty()) 1325 return true; 1326 1327 // Check the memory reference information for volatile references. 1328 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1329 if ((*I)->isVolatile()) 1330 return true; 1331 1332 return false; 1333} 1334 1335/// isInvariantLoad - Return true if this instruction is loading from a 1336/// location whose value is invariant across the function. For example, 1337/// loading a value from the constant pool or from the argument area 1338/// of a function if it does not change. This should only return true of 1339/// *all* loads the instruction does are invariant (if it does multiple loads). 1340bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1341 // If the instruction doesn't load at all, it isn't an invariant load. 1342 if (!mayLoad()) 1343 return false; 1344 1345 // If the instruction has lost its memoperands, conservatively assume that 1346 // it may not be an invariant load. 1347 if (memoperands_empty()) 1348 return false; 1349 1350 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1351 1352 for (mmo_iterator I = memoperands_begin(), 1353 E = memoperands_end(); I != E; ++I) { 1354 if ((*I)->isVolatile()) return false; 1355 if ((*I)->isStore()) return false; 1356 if ((*I)->isInvariant()) return true; 1357 1358 if (const Value *V = (*I)->getValue()) { 1359 // A load from a constant PseudoSourceValue is invariant. 1360 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1361 if (PSV->isConstant(MFI)) 1362 continue; 1363 // If we have an AliasAnalysis, ask it whether the memory is constant. 1364 if (AA && AA->pointsToConstantMemory( 1365 AliasAnalysis::Location(V, (*I)->getSize(), 1366 (*I)->getTBAAInfo()))) 1367 continue; 1368 } 1369 1370 // Otherwise assume conservatively. 1371 return false; 1372 } 1373 1374 // Everything checks out. 1375 return true; 1376} 1377 1378/// isConstantValuePHI - If the specified instruction is a PHI that always 1379/// merges together the same virtual register, return the register, otherwise 1380/// return 0. 1381unsigned MachineInstr::isConstantValuePHI() const { 1382 if (!isPHI()) 1383 return 0; 1384 assert(getNumOperands() >= 3 && 1385 "It's illegal to have a PHI without source operands"); 1386 1387 unsigned Reg = getOperand(1).getReg(); 1388 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1389 if (getOperand(i).getReg() != Reg) 1390 return 0; 1391 return Reg; 1392} 1393 1394bool MachineInstr::hasUnmodeledSideEffects() const { 1395 if (hasProperty(MCID::UnmodeledSideEffects)) 1396 return true; 1397 if (isInlineAsm()) { 1398 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1399 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1400 return true; 1401 } 1402 1403 return false; 1404} 1405 1406/// allDefsAreDead - Return true if all the defs of this instruction are dead. 1407/// 1408bool MachineInstr::allDefsAreDead() const { 1409 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1410 const MachineOperand &MO = getOperand(i); 1411 if (!MO.isReg() || MO.isUse()) 1412 continue; 1413 if (!MO.isDead()) 1414 return false; 1415 } 1416 return true; 1417} 1418 1419/// copyImplicitOps - Copy implicit register operands from specified 1420/// instruction to this instruction. 1421void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1422 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1423 i != e; ++i) { 1424 const MachineOperand &MO = MI->getOperand(i); 1425 if (MO.isReg() && MO.isImplicit()) 1426 addOperand(MO); 1427 } 1428} 1429 1430void MachineInstr::dump() const { 1431 dbgs() << " " << *this; 1432} 1433 1434static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1435 raw_ostream &CommentOS) { 1436 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1437 if (!DL.isUnknown()) { // Print source line info. 1438 DIScope Scope(DL.getScope(Ctx)); 1439 // Omit the directory, because it's likely to be long and uninteresting. 1440 if (Scope.Verify()) 1441 CommentOS << Scope.getFilename(); 1442 else 1443 CommentOS << "<unknown>"; 1444 CommentOS << ':' << DL.getLine(); 1445 if (DL.getCol() != 0) 1446 CommentOS << ':' << DL.getCol(); 1447 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1448 if (!InlinedAtDL.isUnknown()) { 1449 CommentOS << " @[ "; 1450 printDebugLoc(InlinedAtDL, MF, CommentOS); 1451 CommentOS << " ]"; 1452 } 1453 } 1454} 1455 1456void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1457 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1458 const MachineFunction *MF = 0; 1459 const MachineRegisterInfo *MRI = 0; 1460 if (const MachineBasicBlock *MBB = getParent()) { 1461 MF = MBB->getParent(); 1462 if (!TM && MF) 1463 TM = &MF->getTarget(); 1464 if (MF) 1465 MRI = &MF->getRegInfo(); 1466 } 1467 1468 // Save a list of virtual registers. 1469 SmallVector<unsigned, 8> VirtRegs; 1470 1471 // Print explicitly defined operands on the left of an assignment syntax. 1472 unsigned StartOp = 0, e = getNumOperands(); 1473 for (; StartOp < e && getOperand(StartOp).isReg() && 1474 getOperand(StartOp).isDef() && 1475 !getOperand(StartOp).isImplicit(); 1476 ++StartOp) { 1477 if (StartOp != 0) OS << ", "; 1478 getOperand(StartOp).print(OS, TM); 1479 unsigned Reg = getOperand(StartOp).getReg(); 1480 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1481 VirtRegs.push_back(Reg); 1482 } 1483 1484 if (StartOp != 0) 1485 OS << " = "; 1486 1487 // Print the opcode name. 1488 if (TM && TM->getInstrInfo()) 1489 OS << TM->getInstrInfo()->getName(getOpcode()); 1490 else 1491 OS << "UNKNOWN"; 1492 1493 // Print the rest of the operands. 1494 bool OmittedAnyCallClobbers = false; 1495 bool FirstOp = true; 1496 unsigned AsmDescOp = ~0u; 1497 unsigned AsmOpCount = 0; 1498 1499 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1500 // Print asm string. 1501 OS << " "; 1502 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1503 1504 // Print HasSideEffects, IsAlignStack 1505 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1506 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1507 OS << " [sideeffect]"; 1508 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1509 OS << " [alignstack]"; 1510 1511 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1512 FirstOp = false; 1513 } 1514 1515 1516 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1517 const MachineOperand &MO = getOperand(i); 1518 1519 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1520 VirtRegs.push_back(MO.getReg()); 1521 1522 // Omit call-clobbered registers which aren't used anywhere. This makes 1523 // call instructions much less noisy on targets where calls clobber lots 1524 // of registers. Don't rely on MO.isDead() because we may be called before 1525 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1526 if (MF && isCall() && 1527 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1528 unsigned Reg = MO.getReg(); 1529 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1530 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1531 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1532 bool HasAliasLive = false; 1533 for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1534 unsigned AliasReg = *Alias; ++Alias) 1535 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1536 HasAliasLive = true; 1537 break; 1538 } 1539 if (!HasAliasLive) { 1540 OmittedAnyCallClobbers = true; 1541 continue; 1542 } 1543 } 1544 } 1545 } 1546 1547 if (FirstOp) FirstOp = false; else OS << ","; 1548 OS << " "; 1549 if (i < getDesc().NumOperands) { 1550 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1551 if (MCOI.isPredicate()) 1552 OS << "pred:"; 1553 if (MCOI.isOptionalDef()) 1554 OS << "opt:"; 1555 } 1556 if (isDebugValue() && MO.isMetadata()) { 1557 // Pretty print DBG_VALUE instructions. 1558 const MDNode *MD = MO.getMetadata(); 1559 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1560 OS << "!\"" << MDS->getString() << '\"'; 1561 else 1562 MO.print(OS, TM); 1563 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1564 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1565 } else if (i == AsmDescOp && MO.isImm()) { 1566 // Pretty print the inline asm operand descriptor. 1567 OS << '$' << AsmOpCount++; 1568 unsigned Flag = MO.getImm(); 1569 switch (InlineAsm::getKind(Flag)) { 1570 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1571 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1572 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1573 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1574 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1575 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1576 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1577 } 1578 1579 unsigned RCID = 0; 1580 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1581 if (TM) 1582 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1583 else 1584 OS << ":RC" << RCID; 1585 } 1586 1587 unsigned TiedTo = 0; 1588 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1589 OS << " tiedto:$" << TiedTo; 1590 1591 OS << ']'; 1592 1593 // Compute the index of the next operand descriptor. 1594 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1595 } else 1596 MO.print(OS, TM); 1597 } 1598 1599 // Briefly indicate whether any call clobbers were omitted. 1600 if (OmittedAnyCallClobbers) { 1601 if (!FirstOp) OS << ","; 1602 OS << " ..."; 1603 } 1604 1605 bool HaveSemi = false; 1606 if (Flags) { 1607 if (!HaveSemi) OS << ";"; HaveSemi = true; 1608 OS << " flags: "; 1609 1610 if (Flags & FrameSetup) 1611 OS << "FrameSetup"; 1612 } 1613 1614 if (!memoperands_empty()) { 1615 if (!HaveSemi) OS << ";"; HaveSemi = true; 1616 1617 OS << " mem:"; 1618 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1619 i != e; ++i) { 1620 OS << **i; 1621 if (llvm::next(i) != e) 1622 OS << " "; 1623 } 1624 } 1625 1626 // Print the regclass of any virtual registers encountered. 1627 if (MRI && !VirtRegs.empty()) { 1628 if (!HaveSemi) OS << ";"; HaveSemi = true; 1629 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1630 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1631 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1632 for (unsigned j = i+1; j != VirtRegs.size();) { 1633 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1634 ++j; 1635 continue; 1636 } 1637 if (VirtRegs[i] != VirtRegs[j]) 1638 OS << "," << PrintReg(VirtRegs[j]); 1639 VirtRegs.erase(VirtRegs.begin()+j); 1640 } 1641 } 1642 } 1643 1644 // Print debug location information. 1645 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1646 if (!HaveSemi) OS << ";"; HaveSemi = true; 1647 DIVariable DV(getOperand(e - 1).getMetadata()); 1648 OS << " line no:" << DV.getLineNumber(); 1649 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1650 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1651 if (!InlinedAtDL.isUnknown()) { 1652 OS << " inlined @[ "; 1653 printDebugLoc(InlinedAtDL, MF, OS); 1654 OS << " ]"; 1655 } 1656 } 1657 } else if (!debugLoc.isUnknown() && MF) { 1658 if (!HaveSemi) OS << ";"; HaveSemi = true; 1659 OS << " dbg:"; 1660 printDebugLoc(debugLoc, MF, OS); 1661 } 1662 1663 OS << '\n'; 1664} 1665 1666bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1667 const TargetRegisterInfo *RegInfo, 1668 bool AddIfNotFound) { 1669 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1670 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1671 bool Found = false; 1672 SmallVector<unsigned,4> DeadOps; 1673 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1674 MachineOperand &MO = getOperand(i); 1675 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1676 continue; 1677 unsigned Reg = MO.getReg(); 1678 if (!Reg) 1679 continue; 1680 1681 if (Reg == IncomingReg) { 1682 if (!Found) { 1683 if (MO.isKill()) 1684 // The register is already marked kill. 1685 return true; 1686 if (isPhysReg && isRegTiedToDefOperand(i)) 1687 // Two-address uses of physregs must not be marked kill. 1688 return true; 1689 MO.setIsKill(); 1690 Found = true; 1691 } 1692 } else if (hasAliases && MO.isKill() && 1693 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1694 // A super-register kill already exists. 1695 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1696 return true; 1697 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1698 DeadOps.push_back(i); 1699 } 1700 } 1701 1702 // Trim unneeded kill operands. 1703 while (!DeadOps.empty()) { 1704 unsigned OpIdx = DeadOps.back(); 1705 if (getOperand(OpIdx).isImplicit()) 1706 RemoveOperand(OpIdx); 1707 else 1708 getOperand(OpIdx).setIsKill(false); 1709 DeadOps.pop_back(); 1710 } 1711 1712 // If not found, this means an alias of one of the operands is killed. Add a 1713 // new implicit operand if required. 1714 if (!Found && AddIfNotFound) { 1715 addOperand(MachineOperand::CreateReg(IncomingReg, 1716 false /*IsDef*/, 1717 true /*IsImp*/, 1718 true /*IsKill*/)); 1719 return true; 1720 } 1721 return Found; 1722} 1723 1724void MachineInstr::clearRegisterKills(unsigned Reg, 1725 const TargetRegisterInfo *RegInfo) { 1726 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1727 RegInfo = 0; 1728 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1729 MachineOperand &MO = getOperand(i); 1730 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1731 continue; 1732 unsigned OpReg = MO.getReg(); 1733 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1734 MO.setIsKill(false); 1735 } 1736} 1737 1738bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1739 const TargetRegisterInfo *RegInfo, 1740 bool AddIfNotFound) { 1741 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1742 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1743 bool Found = false; 1744 SmallVector<unsigned,4> DeadOps; 1745 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1746 MachineOperand &MO = getOperand(i); 1747 if (!MO.isReg() || !MO.isDef()) 1748 continue; 1749 unsigned Reg = MO.getReg(); 1750 if (!Reg) 1751 continue; 1752 1753 if (Reg == IncomingReg) { 1754 MO.setIsDead(); 1755 Found = true; 1756 } else if (hasAliases && MO.isDead() && 1757 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1758 // There exists a super-register that's marked dead. 1759 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1760 return true; 1761 if (RegInfo->getSubRegisters(IncomingReg) && 1762 RegInfo->getSuperRegisters(Reg) && 1763 RegInfo->isSubRegister(IncomingReg, Reg)) 1764 DeadOps.push_back(i); 1765 } 1766 } 1767 1768 // Trim unneeded dead operands. 1769 while (!DeadOps.empty()) { 1770 unsigned OpIdx = DeadOps.back(); 1771 if (getOperand(OpIdx).isImplicit()) 1772 RemoveOperand(OpIdx); 1773 else 1774 getOperand(OpIdx).setIsDead(false); 1775 DeadOps.pop_back(); 1776 } 1777 1778 // If not found, this means an alias of one of the operands is dead. Add a 1779 // new implicit operand if required. 1780 if (Found || !AddIfNotFound) 1781 return Found; 1782 1783 addOperand(MachineOperand::CreateReg(IncomingReg, 1784 true /*IsDef*/, 1785 true /*IsImp*/, 1786 false /*IsKill*/, 1787 true /*IsDead*/)); 1788 return true; 1789} 1790 1791void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1792 const TargetRegisterInfo *RegInfo) { 1793 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1794 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1795 if (MO) 1796 return; 1797 } else { 1798 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1799 const MachineOperand &MO = getOperand(i); 1800 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1801 MO.getSubReg() == 0) 1802 return; 1803 } 1804 } 1805 addOperand(MachineOperand::CreateReg(IncomingReg, 1806 true /*IsDef*/, 1807 true /*IsImp*/)); 1808} 1809 1810void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1811 const TargetRegisterInfo &TRI) { 1812 bool HasRegMask = false; 1813 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1814 MachineOperand &MO = getOperand(i); 1815 if (MO.isRegMask()) { 1816 HasRegMask = true; 1817 continue; 1818 } 1819 if (!MO.isReg() || !MO.isDef()) continue; 1820 unsigned Reg = MO.getReg(); 1821 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1822 bool Dead = true; 1823 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1824 I != E; ++I) 1825 if (TRI.regsOverlap(*I, Reg)) { 1826 Dead = false; 1827 break; 1828 } 1829 // If there are no uses, including partial uses, the def is dead. 1830 if (Dead) MO.setIsDead(); 1831 } 1832 1833 // This is a call with a register mask operand. 1834 // Mask clobbers are always dead, so add defs for the non-dead defines. 1835 if (HasRegMask) 1836 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1837 I != E; ++I) 1838 addRegisterDefined(*I, &TRI); 1839} 1840 1841unsigned 1842MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1843 // Build up a buffer of hash code components. 1844 // 1845 // FIXME: This is a total hack. We should have a hash_value overload for 1846 // MachineOperand, but currently that doesn't work because there are many 1847 // different ideas of "equality" and thus different sets of information that 1848 // contribute to the hash code. This one happens to want to take a specific 1849 // subset. And it's still not clear that this routine uses the *correct* 1850 // subset of information when computing the hash code. The goal is to use the 1851 // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to 1852 // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would 1853 // be very useful to factor the selection of relevant inputs out of the two 1854 // functions and into a common routine, but it's not clear how that can be 1855 // done. 1856 SmallVector<size_t, 8> HashComponents; 1857 HashComponents.reserve(MI->getNumOperands() + 1); 1858 HashComponents.push_back(MI->getOpcode()); 1859 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1860 const MachineOperand &MO = MI->getOperand(i); 1861 switch (MO.getType()) { 1862 default: break; 1863 case MachineOperand::MO_Register: 1864 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1865 continue; // Skip virtual register defs. 1866 HashComponents.push_back(hash_combine(MO.getType(), MO.getReg())); 1867 break; 1868 case MachineOperand::MO_Immediate: 1869 HashComponents.push_back(hash_combine(MO.getType(), MO.getImm())); 1870 break; 1871 case MachineOperand::MO_FrameIndex: 1872 case MachineOperand::MO_ConstantPoolIndex: 1873 case MachineOperand::MO_JumpTableIndex: 1874 HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex())); 1875 break; 1876 case MachineOperand::MO_MachineBasicBlock: 1877 HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB())); 1878 break; 1879 case MachineOperand::MO_GlobalAddress: 1880 HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal())); 1881 break; 1882 case MachineOperand::MO_BlockAddress: 1883 HashComponents.push_back(hash_combine(MO.getType(), 1884 MO.getBlockAddress())); 1885 break; 1886 case MachineOperand::MO_MCSymbol: 1887 HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol())); 1888 break; 1889 } 1890 } 1891 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1892} 1893 1894void MachineInstr::emitError(StringRef Msg) const { 1895 // Find the source location cookie. 1896 unsigned LocCookie = 0; 1897 const MDNode *LocMD = 0; 1898 for (unsigned i = getNumOperands(); i != 0; --i) { 1899 if (getOperand(i-1).isMetadata() && 1900 (LocMD = getOperand(i-1).getMetadata()) && 1901 LocMD->getNumOperands() != 0) { 1902 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1903 LocCookie = CI->getZExtValue(); 1904 break; 1905 } 1906 } 1907 } 1908 1909 if (const MachineBasicBlock *MBB = getParent()) 1910 if (const MachineFunction *MF = MBB->getParent()) 1911 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1912 report_fatal_error(Msg); 1913} 1914