MachineInstr.cpp revision fc22625eb04d39b0de77090702cf50a9bcda3ddb
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Methods common to all machine instructions. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/MachineInstr.h" 15#include "llvm/Constants.h" 16#include "llvm/Function.h" 17#include "llvm/InlineAsm.h" 18#include "llvm/LLVMContext.h" 19#include "llvm/Metadata.h" 20#include "llvm/Module.h" 21#include "llvm/Type.h" 22#include "llvm/Value.h" 23#include "llvm/Assembly/Writer.h" 24#include "llvm/CodeGen/MachineConstantPool.h" 25#include "llvm/CodeGen/MachineFunction.h" 26#include "llvm/CodeGen/MachineMemOperand.h" 27#include "llvm/CodeGen/MachineModuleInfo.h" 28#include "llvm/CodeGen/MachineRegisterInfo.h" 29#include "llvm/CodeGen/PseudoSourceValue.h" 30#include "llvm/MC/MCInstrDesc.h" 31#include "llvm/MC/MCSymbol.h" 32#include "llvm/Target/TargetMachine.h" 33#include "llvm/Target/TargetInstrInfo.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/Analysis/AliasAnalysis.h" 36#include "llvm/Analysis/DebugInfo.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/LeakDetector.h" 40#include "llvm/Support/MathExtras.h" 41#include "llvm/Support/raw_ostream.h" 42#include "llvm/ADT/FoldingSet.h" 43#include "llvm/ADT/Hashing.h" 44using namespace llvm; 45 46//===----------------------------------------------------------------------===// 47// MachineOperand Implementation 48//===----------------------------------------------------------------------===// 49 50/// AddRegOperandToRegInfo - Add this register operand to the specified 51/// MachineRegisterInfo. If it is null, then the next/prev fields should be 52/// explicitly nulled out. 53void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 54 assert(isReg() && "Can only add reg operand to use lists"); 55 56 // If the reginfo pointer is null, just explicitly null out or next/prev 57 // pointers, to ensure they are not garbage. 58 if (RegInfo == 0) { 59 Contents.Reg.Prev = 0; 60 Contents.Reg.Next = 0; 61 return; 62 } 63 64 // Otherwise, add this operand to the head of the registers use/def list. 65 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 66 67 // For SSA values, we prefer to keep the definition at the start of the list. 68 // we do this by skipping over the definition if it is at the head of the 69 // list. 70 if (*Head && (*Head)->isDef()) 71 Head = &(*Head)->Contents.Reg.Next; 72 73 Contents.Reg.Next = *Head; 74 if (Contents.Reg.Next) { 75 assert(getReg() == Contents.Reg.Next->getReg() && 76 "Different regs on the same list!"); 77 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 78 } 79 80 Contents.Reg.Prev = Head; 81 *Head = this; 82} 83 84/// RemoveRegOperandFromRegInfo - Remove this register operand from the 85/// MachineRegisterInfo it is linked with. 86void MachineOperand::RemoveRegOperandFromRegInfo() { 87 assert(isOnRegUseList() && "Reg operand is not on a use list"); 88 // Unlink this from the doubly linked list of operands. 89 MachineOperand *NextOp = Contents.Reg.Next; 90 *Contents.Reg.Prev = NextOp; 91 if (NextOp) { 92 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 93 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 94 } 95 Contents.Reg.Prev = 0; 96 Contents.Reg.Next = 0; 97} 98 99void MachineOperand::setReg(unsigned Reg) { 100 if (getReg() == Reg) return; // No change. 101 102 // Otherwise, we have to change the register. If this operand is embedded 103 // into a machine function, we need to update the old and new register's 104 // use/def lists. 105 if (MachineInstr *MI = getParent()) 106 if (MachineBasicBlock *MBB = MI->getParent()) 107 if (MachineFunction *MF = MBB->getParent()) { 108 RemoveRegOperandFromRegInfo(); 109 SmallContents.RegNo = Reg; 110 AddRegOperandToRegInfo(&MF->getRegInfo()); 111 return; 112 } 113 114 // Otherwise, just change the register, no problem. :) 115 SmallContents.RegNo = Reg; 116} 117 118void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 119 const TargetRegisterInfo &TRI) { 120 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 121 if (SubIdx && getSubReg()) 122 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 123 setReg(Reg); 124 if (SubIdx) 125 setSubReg(SubIdx); 126} 127 128void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 129 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 130 if (getSubReg()) { 131 Reg = TRI.getSubReg(Reg, getSubReg()); 132 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 133 // That won't happen in legal code. 134 setSubReg(0); 135 } 136 setReg(Reg); 137} 138 139/// ChangeToImmediate - Replace this operand with a new immediate operand of 140/// the specified value. If an operand is known to be an immediate already, 141/// the setImm method should be used. 142void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 143 // If this operand is currently a register operand, and if this is in a 144 // function, deregister the operand from the register's use/def list. 145 if (isReg() && getParent() && getParent()->getParent() && 146 getParent()->getParent()->getParent()) 147 RemoveRegOperandFromRegInfo(); 148 149 OpKind = MO_Immediate; 150 Contents.ImmVal = ImmVal; 151} 152 153/// ChangeToRegister - Replace this operand with a new register operand of 154/// the specified value. If an operand is known to be an register already, 155/// the setReg method should be used. 156void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 157 bool isKill, bool isDead, bool isUndef, 158 bool isDebug) { 159 // If this operand is already a register operand, use setReg to update the 160 // register's use/def lists. 161 if (isReg()) { 162 assert(!isEarlyClobber()); 163 setReg(Reg); 164 } else { 165 // Otherwise, change this to a register and set the reg#. 166 OpKind = MO_Register; 167 SmallContents.RegNo = Reg; 168 169 // If this operand is embedded in a function, add the operand to the 170 // register's use/def list. 171 if (MachineInstr *MI = getParent()) 172 if (MachineBasicBlock *MBB = MI->getParent()) 173 if (MachineFunction *MF = MBB->getParent()) 174 AddRegOperandToRegInfo(&MF->getRegInfo()); 175 } 176 177 IsDef = isDef; 178 IsImp = isImp; 179 IsKill = isKill; 180 IsDead = isDead; 181 IsUndef = isUndef; 182 IsInternalRead = false; 183 IsEarlyClobber = false; 184 IsDebug = isDebug; 185 SubReg = 0; 186} 187 188/// isIdenticalTo - Return true if this operand is identical to the specified 189/// operand. 190bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 191 if (getType() != Other.getType() || 192 getTargetFlags() != Other.getTargetFlags()) 193 return false; 194 195 switch (getType()) { 196 case MachineOperand::MO_Register: 197 return getReg() == Other.getReg() && isDef() == Other.isDef() && 198 getSubReg() == Other.getSubReg(); 199 case MachineOperand::MO_Immediate: 200 return getImm() == Other.getImm(); 201 case MachineOperand::MO_CImmediate: 202 return getCImm() == Other.getCImm(); 203 case MachineOperand::MO_FPImmediate: 204 return getFPImm() == Other.getFPImm(); 205 case MachineOperand::MO_MachineBasicBlock: 206 return getMBB() == Other.getMBB(); 207 case MachineOperand::MO_FrameIndex: 208 return getIndex() == Other.getIndex(); 209 case MachineOperand::MO_ConstantPoolIndex: 210 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 211 case MachineOperand::MO_JumpTableIndex: 212 return getIndex() == Other.getIndex(); 213 case MachineOperand::MO_GlobalAddress: 214 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 215 case MachineOperand::MO_ExternalSymbol: 216 return !strcmp(getSymbolName(), Other.getSymbolName()) && 217 getOffset() == Other.getOffset(); 218 case MachineOperand::MO_BlockAddress: 219 return getBlockAddress() == Other.getBlockAddress(); 220 case MO_RegisterMask: 221 return getRegMask() == Other.getRegMask(); 222 case MachineOperand::MO_MCSymbol: 223 return getMCSymbol() == Other.getMCSymbol(); 224 case MachineOperand::MO_Metadata: 225 return getMetadata() == Other.getMetadata(); 226 } 227 llvm_unreachable("Invalid machine operand type"); 228} 229 230/// print - Print the specified machine operand. 231/// 232void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 233 // If the instruction is embedded into a basic block, we can find the 234 // target info for the instruction. 235 if (!TM) 236 if (const MachineInstr *MI = getParent()) 237 if (const MachineBasicBlock *MBB = MI->getParent()) 238 if (const MachineFunction *MF = MBB->getParent()) 239 TM = &MF->getTarget(); 240 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 241 242 switch (getType()) { 243 case MachineOperand::MO_Register: 244 OS << PrintReg(getReg(), TRI, getSubReg()); 245 246 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 247 isInternalRead() || isEarlyClobber()) { 248 OS << '<'; 249 bool NeedComma = false; 250 if (isDef()) { 251 if (NeedComma) OS << ','; 252 if (isEarlyClobber()) 253 OS << "earlyclobber,"; 254 if (isImplicit()) 255 OS << "imp-"; 256 OS << "def"; 257 NeedComma = true; 258 } else if (isImplicit()) { 259 OS << "imp-use"; 260 NeedComma = true; 261 } 262 263 if (isKill() || isDead() || isUndef() || isInternalRead()) { 264 if (NeedComma) OS << ','; 265 NeedComma = false; 266 if (isKill()) { 267 OS << "kill"; 268 NeedComma = true; 269 } 270 if (isDead()) { 271 OS << "dead"; 272 NeedComma = true; 273 } 274 if (isUndef()) { 275 if (NeedComma) OS << ','; 276 OS << "undef"; 277 NeedComma = true; 278 } 279 if (isInternalRead()) { 280 if (NeedComma) OS << ','; 281 OS << "internal"; 282 NeedComma = true; 283 } 284 } 285 OS << '>'; 286 } 287 break; 288 case MachineOperand::MO_Immediate: 289 OS << getImm(); 290 break; 291 case MachineOperand::MO_CImmediate: 292 getCImm()->getValue().print(OS, false); 293 break; 294 case MachineOperand::MO_FPImmediate: 295 if (getFPImm()->getType()->isFloatTy()) 296 OS << getFPImm()->getValueAPF().convertToFloat(); 297 else 298 OS << getFPImm()->getValueAPF().convertToDouble(); 299 break; 300 case MachineOperand::MO_MachineBasicBlock: 301 OS << "<BB#" << getMBB()->getNumber() << ">"; 302 break; 303 case MachineOperand::MO_FrameIndex: 304 OS << "<fi#" << getIndex() << '>'; 305 break; 306 case MachineOperand::MO_ConstantPoolIndex: 307 OS << "<cp#" << getIndex(); 308 if (getOffset()) OS << "+" << getOffset(); 309 OS << '>'; 310 break; 311 case MachineOperand::MO_JumpTableIndex: 312 OS << "<jt#" << getIndex() << '>'; 313 break; 314 case MachineOperand::MO_GlobalAddress: 315 OS << "<ga:"; 316 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 317 if (getOffset()) OS << "+" << getOffset(); 318 OS << '>'; 319 break; 320 case MachineOperand::MO_ExternalSymbol: 321 OS << "<es:" << getSymbolName(); 322 if (getOffset()) OS << "+" << getOffset(); 323 OS << '>'; 324 break; 325 case MachineOperand::MO_BlockAddress: 326 OS << '<'; 327 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 328 OS << '>'; 329 break; 330 case MachineOperand::MO_RegisterMask: 331 OS << "<regmask>"; 332 break; 333 case MachineOperand::MO_Metadata: 334 OS << '<'; 335 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 336 OS << '>'; 337 break; 338 case MachineOperand::MO_MCSymbol: 339 OS << "<MCSym=" << *getMCSymbol() << '>'; 340 break; 341 } 342 343 if (unsigned TF = getTargetFlags()) 344 OS << "[TF=" << TF << ']'; 345} 346 347//===----------------------------------------------------------------------===// 348// MachineMemOperand Implementation 349//===----------------------------------------------------------------------===// 350 351/// getAddrSpace - Return the LLVM IR address space number that this pointer 352/// points into. 353unsigned MachinePointerInfo::getAddrSpace() const { 354 if (V == 0) return 0; 355 return cast<PointerType>(V->getType())->getAddressSpace(); 356} 357 358/// getConstantPool - Return a MachinePointerInfo record that refers to the 359/// constant pool. 360MachinePointerInfo MachinePointerInfo::getConstantPool() { 361 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 362} 363 364/// getFixedStack - Return a MachinePointerInfo record that refers to the 365/// the specified FrameIndex. 366MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 367 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 368} 369 370MachinePointerInfo MachinePointerInfo::getJumpTable() { 371 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 372} 373 374MachinePointerInfo MachinePointerInfo::getGOT() { 375 return MachinePointerInfo(PseudoSourceValue::getGOT()); 376} 377 378MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 379 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 380} 381 382MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 383 uint64_t s, unsigned int a, 384 const MDNode *TBAAInfo) 385 : PtrInfo(ptrinfo), Size(s), 386 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 387 TBAAInfo(TBAAInfo) { 388 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 389 "invalid pointer value"); 390 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 391 assert((isLoad() || isStore()) && "Not a load/store!"); 392} 393 394/// Profile - Gather unique data for the object. 395/// 396void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 397 ID.AddInteger(getOffset()); 398 ID.AddInteger(Size); 399 ID.AddPointer(getValue()); 400 ID.AddInteger(Flags); 401} 402 403void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 404 // The Value and Offset may differ due to CSE. But the flags and size 405 // should be the same. 406 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 407 assert(MMO->getSize() == getSize() && "Size mismatch!"); 408 409 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 410 // Update the alignment value. 411 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 412 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 413 // Also update the base and offset, because the new alignment may 414 // not be applicable with the old ones. 415 PtrInfo = MMO->PtrInfo; 416 } 417} 418 419/// getAlignment - Return the minimum known alignment in bytes of the 420/// actual memory reference. 421uint64_t MachineMemOperand::getAlignment() const { 422 return MinAlign(getBaseAlignment(), getOffset()); 423} 424 425raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 426 assert((MMO.isLoad() || MMO.isStore()) && 427 "SV has to be a load, store or both."); 428 429 if (MMO.isVolatile()) 430 OS << "Volatile "; 431 432 if (MMO.isLoad()) 433 OS << "LD"; 434 if (MMO.isStore()) 435 OS << "ST"; 436 OS << MMO.getSize(); 437 438 // Print the address information. 439 OS << "["; 440 if (!MMO.getValue()) 441 OS << "<unknown>"; 442 else 443 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 444 445 // If the alignment of the memory reference itself differs from the alignment 446 // of the base pointer, print the base alignment explicitly, next to the base 447 // pointer. 448 if (MMO.getBaseAlignment() != MMO.getAlignment()) 449 OS << "(align=" << MMO.getBaseAlignment() << ")"; 450 451 if (MMO.getOffset() != 0) 452 OS << "+" << MMO.getOffset(); 453 OS << "]"; 454 455 // Print the alignment of the reference. 456 if (MMO.getBaseAlignment() != MMO.getAlignment() || 457 MMO.getBaseAlignment() != MMO.getSize()) 458 OS << "(align=" << MMO.getAlignment() << ")"; 459 460 // Print TBAA info. 461 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 462 OS << "(tbaa="; 463 if (TBAAInfo->getNumOperands() > 0) 464 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 465 else 466 OS << "<unknown>"; 467 OS << ")"; 468 } 469 470 // Print nontemporal info. 471 if (MMO.isNonTemporal()) 472 OS << "(nontemporal)"; 473 474 return OS; 475} 476 477//===----------------------------------------------------------------------===// 478// MachineInstr Implementation 479//===----------------------------------------------------------------------===// 480 481/// MachineInstr ctor - This constructor creates a dummy MachineInstr with 482/// MCID NULL and no operands. 483MachineInstr::MachineInstr() 484 : MCID(0), Flags(0), AsmPrinterFlags(0), 485 MemRefs(0), MemRefsEnd(0), 486 Parent(0) { 487 // Make sure that we get added to a machine basicblock 488 LeakDetector::addGarbageObject(this); 489} 490 491void MachineInstr::addImplicitDefUseOperands() { 492 if (MCID->ImplicitDefs) 493 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs) 494 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 495 if (MCID->ImplicitUses) 496 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses) 497 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 498} 499 500/// MachineInstr ctor - This constructor creates a MachineInstr and adds the 501/// implicit operands. It reserves space for the number of operands specified by 502/// the MCInstrDesc. 503MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 504 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 505 MemRefs(0), MemRefsEnd(0), Parent(0) { 506 unsigned NumImplicitOps = 0; 507 if (!NoImp) 508 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 509 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 510 if (!NoImp) 511 addImplicitDefUseOperands(); 512 // Make sure that we get added to a machine basicblock 513 LeakDetector::addGarbageObject(this); 514} 515 516/// MachineInstr ctor - As above, but with a DebugLoc. 517MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 518 bool NoImp) 519 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 520 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 521 unsigned NumImplicitOps = 0; 522 if (!NoImp) 523 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 524 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 525 if (!NoImp) 526 addImplicitDefUseOperands(); 527 // Make sure that we get added to a machine basicblock 528 LeakDetector::addGarbageObject(this); 529} 530 531/// MachineInstr ctor - Work exactly the same as the ctor two above, except 532/// that the MachineInstr is created and added to the end of the specified 533/// basic block. 534MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 535 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 536 MemRefs(0), MemRefsEnd(0), Parent(0) { 537 assert(MBB && "Cannot use inserting ctor with null basic block!"); 538 unsigned NumImplicitOps = 539 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 540 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 541 addImplicitDefUseOperands(); 542 // Make sure that we get added to a machine basicblock 543 LeakDetector::addGarbageObject(this); 544 MBB->push_back(this); // Add instruction to end of basic block! 545} 546 547/// MachineInstr ctor - As above, but with a DebugLoc. 548/// 549MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 550 const MCInstrDesc &tid) 551 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 552 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 553 assert(MBB && "Cannot use inserting ctor with null basic block!"); 554 unsigned NumImplicitOps = 555 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 556 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 557 addImplicitDefUseOperands(); 558 // Make sure that we get added to a machine basicblock 559 LeakDetector::addGarbageObject(this); 560 MBB->push_back(this); // Add instruction to end of basic block! 561} 562 563/// MachineInstr ctor - Copies MachineInstr arg exactly 564/// 565MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 566 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 567 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 568 Parent(0), debugLoc(MI.getDebugLoc()) { 569 Operands.reserve(MI.getNumOperands()); 570 571 // Add operands 572 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 573 addOperand(MI.getOperand(i)); 574 575 // Copy all the flags. 576 Flags = MI.Flags; 577 578 // Set parent to null. 579 Parent = 0; 580 581 LeakDetector::addGarbageObject(this); 582} 583 584MachineInstr::~MachineInstr() { 585 LeakDetector::removeGarbageObject(this); 586#ifndef NDEBUG 587 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 588 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 589 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 590 "Reg operand def/use list corrupted"); 591 } 592#endif 593} 594 595/// getRegInfo - If this instruction is embedded into a MachineFunction, 596/// return the MachineRegisterInfo object for the current function, otherwise 597/// return null. 598MachineRegisterInfo *MachineInstr::getRegInfo() { 599 if (MachineBasicBlock *MBB = getParent()) 600 return &MBB->getParent()->getRegInfo(); 601 return 0; 602} 603 604/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 605/// this instruction from their respective use lists. This requires that the 606/// operands already be on their use lists. 607void MachineInstr::RemoveRegOperandsFromUseLists() { 608 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 609 if (Operands[i].isReg()) 610 Operands[i].RemoveRegOperandFromRegInfo(); 611 } 612} 613 614/// AddRegOperandsToUseLists - Add all of the register operands in 615/// this instruction from their respective use lists. This requires that the 616/// operands not be on their use lists yet. 617void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 618 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 619 if (Operands[i].isReg()) 620 Operands[i].AddRegOperandToRegInfo(&RegInfo); 621 } 622} 623 624 625/// addOperand - Add the specified operand to the instruction. If it is an 626/// implicit operand, it is added to the end of the operand list. If it is 627/// an explicit operand it is added at the end of the explicit operand list 628/// (before the first implicit operand). 629void MachineInstr::addOperand(const MachineOperand &Op) { 630 assert(MCID && "Cannot add operands before providing an instr descriptor"); 631 bool isImpReg = Op.isReg() && Op.isImplicit(); 632 MachineRegisterInfo *RegInfo = getRegInfo(); 633 634 // If the Operands backing store is reallocated, all register operands must 635 // be removed and re-added to RegInfo. It is storing pointers to operands. 636 bool Reallocate = RegInfo && 637 !Operands.empty() && Operands.size() == Operands.capacity(); 638 639 // Find the insert location for the new operand. Implicit registers go at 640 // the end, everything goes before the implicit regs. 641 unsigned OpNo = Operands.size(); 642 643 // Remove all the implicit operands from RegInfo if they need to be shifted. 644 // FIXME: Allow mixed explicit and implicit operands on inline asm. 645 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 646 // implicit-defs, but they must not be moved around. See the FIXME in 647 // InstrEmitter.cpp. 648 if (!isImpReg && !isInlineAsm()) { 649 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 650 --OpNo; 651 if (RegInfo) 652 Operands[OpNo].RemoveRegOperandFromRegInfo(); 653 } 654 } 655 656 // OpNo now points as the desired insertion point. Unless this is a variadic 657 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 658 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && 659 "Trying to add an operand to a machine instr that is already done!"); 660 661 // All operands from OpNo have been removed from RegInfo. If the Operands 662 // backing store needs to be reallocated, we also need to remove any other 663 // register operands. 664 if (Reallocate) 665 for (unsigned i = 0; i != OpNo; ++i) 666 if (Operands[i].isReg()) 667 Operands[i].RemoveRegOperandFromRegInfo(); 668 669 // Insert the new operand at OpNo. 670 Operands.insert(Operands.begin() + OpNo, Op); 671 Operands[OpNo].ParentMI = this; 672 673 // The Operands backing store has now been reallocated, so we can re-add the 674 // operands before OpNo. 675 if (Reallocate) 676 for (unsigned i = 0; i != OpNo; ++i) 677 if (Operands[i].isReg()) 678 Operands[i].AddRegOperandToRegInfo(RegInfo); 679 680 // When adding a register operand, tell RegInfo about it. 681 if (Operands[OpNo].isReg()) { 682 // Add the new operand to RegInfo, even when RegInfo is NULL. 683 // This will initialize the linked list pointers. 684 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 685 // If the register operand is flagged as early, mark the operand as such. 686 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 687 Operands[OpNo].setIsEarlyClobber(true); 688 } 689 690 // Re-add all the implicit ops. 691 if (RegInfo) { 692 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 693 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 694 Operands[i].AddRegOperandToRegInfo(RegInfo); 695 } 696 } 697} 698 699/// RemoveOperand - Erase an operand from an instruction, leaving it with one 700/// fewer operand than it started with. 701/// 702void MachineInstr::RemoveOperand(unsigned OpNo) { 703 assert(OpNo < Operands.size() && "Invalid operand number"); 704 705 // Special case removing the last one. 706 if (OpNo == Operands.size()-1) { 707 // If needed, remove from the reg def/use list. 708 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 709 Operands.back().RemoveRegOperandFromRegInfo(); 710 711 Operands.pop_back(); 712 return; 713 } 714 715 // Otherwise, we are removing an interior operand. If we have reginfo to 716 // update, remove all operands that will be shifted down from their reg lists, 717 // move everything down, then re-add them. 718 MachineRegisterInfo *RegInfo = getRegInfo(); 719 if (RegInfo) { 720 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 721 if (Operands[i].isReg()) 722 Operands[i].RemoveRegOperandFromRegInfo(); 723 } 724 } 725 726 Operands.erase(Operands.begin()+OpNo); 727 728 if (RegInfo) { 729 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 730 if (Operands[i].isReg()) 731 Operands[i].AddRegOperandToRegInfo(RegInfo); 732 } 733 } 734} 735 736/// addMemOperand - Add a MachineMemOperand to the machine instruction. 737/// This function should be used only occasionally. The setMemRefs function 738/// is the primary method for setting up a MachineInstr's MemRefs list. 739void MachineInstr::addMemOperand(MachineFunction &MF, 740 MachineMemOperand *MO) { 741 mmo_iterator OldMemRefs = MemRefs; 742 mmo_iterator OldMemRefsEnd = MemRefsEnd; 743 744 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 745 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 746 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 747 748 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 749 NewMemRefs[NewNum - 1] = MO; 750 751 MemRefs = NewMemRefs; 752 MemRefsEnd = NewMemRefsEnd; 753} 754 755bool 756MachineInstr::hasProperty(unsigned MCFlag, QueryType Type) const { 757 if (Type == IgnoreBundle || !isBundle()) 758 return getDesc().getFlags() & (1 << MCFlag); 759 760 const MachineBasicBlock *MBB = getParent(); 761 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 762 while (MII != MBB->end() && MII->isInsideBundle()) { 763 if (MII->getDesc().getFlags() & (1 << MCFlag)) { 764 if (Type == AnyInBundle) 765 return true; 766 } else { 767 if (Type == AllInBundle) 768 return false; 769 } 770 ++MII; 771 } 772 773 return Type == AllInBundle; 774} 775 776bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 777 MICheckType Check) const { 778 // If opcodes or number of operands are not the same then the two 779 // instructions are obviously not identical. 780 if (Other->getOpcode() != getOpcode() || 781 Other->getNumOperands() != getNumOperands()) 782 return false; 783 784 if (isBundle()) { 785 // Both instructions are bundles, compare MIs inside the bundle. 786 MachineBasicBlock::const_instr_iterator I1 = *this; 787 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 788 MachineBasicBlock::const_instr_iterator I2 = *Other; 789 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 790 while (++I1 != E1 && I1->isInsideBundle()) { 791 ++I2; 792 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 793 return false; 794 } 795 } 796 797 // Check operands to make sure they match. 798 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 799 const MachineOperand &MO = getOperand(i); 800 const MachineOperand &OMO = Other->getOperand(i); 801 if (!MO.isReg()) { 802 if (!MO.isIdenticalTo(OMO)) 803 return false; 804 continue; 805 } 806 807 // Clients may or may not want to ignore defs when testing for equality. 808 // For example, machine CSE pass only cares about finding common 809 // subexpressions, so it's safe to ignore virtual register defs. 810 if (MO.isDef()) { 811 if (Check == IgnoreDefs) 812 continue; 813 else if (Check == IgnoreVRegDefs) { 814 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 815 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 816 if (MO.getReg() != OMO.getReg()) 817 return false; 818 } else { 819 if (!MO.isIdenticalTo(OMO)) 820 return false; 821 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 822 return false; 823 } 824 } else { 825 if (!MO.isIdenticalTo(OMO)) 826 return false; 827 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 828 return false; 829 } 830 } 831 // If DebugLoc does not match then two dbg.values are not identical. 832 if (isDebugValue()) 833 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 834 && getDebugLoc() != Other->getDebugLoc()) 835 return false; 836 return true; 837} 838 839/// removeFromParent - This method unlinks 'this' from the containing basic 840/// block, and returns it, but does not delete it. 841MachineInstr *MachineInstr::removeFromParent() { 842 assert(getParent() && "Not embedded in a basic block!"); 843 844 // If it's a bundle then remove the MIs inside the bundle as well. 845 if (isBundle()) { 846 MachineBasicBlock *MBB = getParent(); 847 MachineBasicBlock::instr_iterator MII = *this; ++MII; 848 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 849 while (MII != E && MII->isInsideBundle()) { 850 MachineInstr *MI = &*MII; 851 ++MII; 852 MBB->remove(MI); 853 } 854 } 855 getParent()->remove(this); 856 return this; 857} 858 859 860/// eraseFromParent - This method unlinks 'this' from the containing basic 861/// block, and deletes it. 862void MachineInstr::eraseFromParent() { 863 assert(getParent() && "Not embedded in a basic block!"); 864 // If it's a bundle then remove the MIs inside the bundle as well. 865 if (isBundle()) { 866 MachineBasicBlock *MBB = getParent(); 867 MachineBasicBlock::instr_iterator MII = *this; ++MII; 868 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 869 while (MII != E && MII->isInsideBundle()) { 870 MachineInstr *MI = &*MII; 871 ++MII; 872 MBB->erase(MI); 873 } 874 } 875 getParent()->erase(this); 876} 877 878 879/// getNumExplicitOperands - Returns the number of non-implicit operands. 880/// 881unsigned MachineInstr::getNumExplicitOperands() const { 882 unsigned NumOperands = MCID->getNumOperands(); 883 if (!MCID->isVariadic()) 884 return NumOperands; 885 886 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 887 const MachineOperand &MO = getOperand(i); 888 if (!MO.isReg() || !MO.isImplicit()) 889 NumOperands++; 890 } 891 return NumOperands; 892} 893 894/// isBundled - Return true if this instruction part of a bundle. This is true 895/// if either itself or its following instruction is marked "InsideBundle". 896bool MachineInstr::isBundled() const { 897 if (isInsideBundle()) 898 return true; 899 MachineBasicBlock::const_instr_iterator nextMI = this; 900 ++nextMI; 901 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 902} 903 904bool MachineInstr::isStackAligningInlineAsm() const { 905 if (isInlineAsm()) { 906 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 907 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 908 return true; 909 } 910 return false; 911} 912 913int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 914 unsigned *GroupNo) const { 915 assert(isInlineAsm() && "Expected an inline asm instruction"); 916 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 917 918 // Ignore queries about the initial operands. 919 if (OpIdx < InlineAsm::MIOp_FirstOperand) 920 return -1; 921 922 unsigned Group = 0; 923 unsigned NumOps; 924 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 925 i += NumOps) { 926 const MachineOperand &FlagMO = getOperand(i); 927 // If we reach the implicit register operands, stop looking. 928 if (!FlagMO.isImm()) 929 return -1; 930 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 931 if (i + NumOps > OpIdx) { 932 if (GroupNo) 933 *GroupNo = Group; 934 return i; 935 } 936 ++Group; 937 } 938 return -1; 939} 940 941const TargetRegisterClass* 942MachineInstr::getRegClassConstraint(unsigned OpIdx, 943 const TargetInstrInfo *TII, 944 const TargetRegisterInfo *TRI) const { 945 // Most opcodes have fixed constraints in their MCInstrDesc. 946 if (!isInlineAsm()) 947 return TII->getRegClass(getDesc(), OpIdx, TRI); 948 949 if (!getOperand(OpIdx).isReg()) 950 return NULL; 951 952 // For tied uses on inline asm, get the constraint from the def. 953 unsigned DefIdx; 954 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 955 OpIdx = DefIdx; 956 957 // Inline asm stores register class constraints in the flag word. 958 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 959 if (FlagIdx < 0) 960 return NULL; 961 962 unsigned Flag = getOperand(FlagIdx).getImm(); 963 unsigned RCID; 964 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 965 return TRI->getRegClass(RCID); 966 967 // Assume that all registers in a memory operand are pointers. 968 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 969 return TRI->getPointerRegClass(); 970 971 return NULL; 972} 973 974/// getBundleSize - Return the number of instructions inside the MI bundle. 975unsigned MachineInstr::getBundleSize() const { 976 assert(isBundle() && "Expecting a bundle"); 977 978 MachineBasicBlock::const_instr_iterator I = *this; 979 unsigned Size = 0; 980 while ((++I)->isInsideBundle()) { 981 ++Size; 982 } 983 assert(Size > 1 && "Malformed bundle"); 984 985 return Size; 986} 987 988/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 989/// the specific register or -1 if it is not found. It further tightens 990/// the search criteria to a use that kills the register if isKill is true. 991int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 992 const TargetRegisterInfo *TRI) const { 993 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 994 const MachineOperand &MO = getOperand(i); 995 if (!MO.isReg() || !MO.isUse()) 996 continue; 997 unsigned MOReg = MO.getReg(); 998 if (!MOReg) 999 continue; 1000 if (MOReg == Reg || 1001 (TRI && 1002 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1003 TargetRegisterInfo::isPhysicalRegister(Reg) && 1004 TRI->isSubRegister(MOReg, Reg))) 1005 if (!isKill || MO.isKill()) 1006 return i; 1007 } 1008 return -1; 1009} 1010 1011/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1012/// indicating if this instruction reads or writes Reg. This also considers 1013/// partial defines. 1014std::pair<bool,bool> 1015MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1016 SmallVectorImpl<unsigned> *Ops) const { 1017 bool PartDef = false; // Partial redefine. 1018 bool FullDef = false; // Full define. 1019 bool Use = false; 1020 1021 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1022 const MachineOperand &MO = getOperand(i); 1023 if (!MO.isReg() || MO.getReg() != Reg) 1024 continue; 1025 if (Ops) 1026 Ops->push_back(i); 1027 if (MO.isUse()) 1028 Use |= !MO.isUndef(); 1029 else if (MO.getSubReg() && !MO.isUndef()) 1030 // A partial <def,undef> doesn't count as reading the register. 1031 PartDef = true; 1032 else 1033 FullDef = true; 1034 } 1035 // A partial redefine uses Reg unless there is also a full define. 1036 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1037} 1038 1039/// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1040/// the specified register or -1 if it is not found. If isDead is true, defs 1041/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1042/// also checks if there is a def of a super-register. 1043int 1044MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1045 const TargetRegisterInfo *TRI) const { 1046 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1047 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1048 const MachineOperand &MO = getOperand(i); 1049 // Accept regmask operands when Overlap is set. 1050 // Ignore them when looking for a specific def operand (Overlap == false). 1051 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1052 return i; 1053 if (!MO.isReg() || !MO.isDef()) 1054 continue; 1055 unsigned MOReg = MO.getReg(); 1056 bool Found = (MOReg == Reg); 1057 if (!Found && TRI && isPhys && 1058 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1059 if (Overlap) 1060 Found = TRI->regsOverlap(MOReg, Reg); 1061 else 1062 Found = TRI->isSubRegister(MOReg, Reg); 1063 } 1064 if (Found && (!isDead || MO.isDead())) 1065 return i; 1066 } 1067 return -1; 1068} 1069 1070/// findFirstPredOperandIdx() - Find the index of the first operand in the 1071/// operand list that is used to represent the predicate. It returns -1 if 1072/// none is found. 1073int MachineInstr::findFirstPredOperandIdx() const { 1074 // Don't call MCID.findFirstPredOperandIdx() because this variant 1075 // is sometimes called on an instruction that's not yet complete, and 1076 // so the number of operands is less than the MCID indicates. In 1077 // particular, the PTX target does this. 1078 const MCInstrDesc &MCID = getDesc(); 1079 if (MCID.isPredicable()) { 1080 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1081 if (MCID.OpInfo[i].isPredicate()) 1082 return i; 1083 } 1084 1085 return -1; 1086} 1087 1088/// isRegTiedToUseOperand - Given the index of a register def operand, 1089/// check if the register def is tied to a source operand, due to either 1090/// two-address elimination or inline assembly constraints. Returns the 1091/// first tied use operand index by reference is UseOpIdx is not null. 1092bool MachineInstr:: 1093isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 1094 if (isInlineAsm()) { 1095 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 1096 const MachineOperand &MO = getOperand(DefOpIdx); 1097 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 1098 return false; 1099 // Determine the actual operand index that corresponds to this index. 1100 unsigned DefNo = 0; 1101 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 1102 if (FlagIdx < 0) 1103 return false; 1104 1105 // Which part of the group is DefOpIdx? 1106 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 1107 1108 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 1109 i != e; ++i) { 1110 const MachineOperand &FMO = getOperand(i); 1111 if (!FMO.isImm()) 1112 continue; 1113 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 1114 continue; 1115 unsigned Idx; 1116 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 1117 Idx == DefNo) { 1118 if (UseOpIdx) 1119 *UseOpIdx = (unsigned)i + 1 + DefPart; 1120 return true; 1121 } 1122 } 1123 return false; 1124 } 1125 1126 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1127 const MCInstrDesc &MCID = getDesc(); 1128 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1129 const MachineOperand &MO = getOperand(i); 1130 if (MO.isReg() && MO.isUse() && 1131 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1132 if (UseOpIdx) 1133 *UseOpIdx = (unsigned)i; 1134 return true; 1135 } 1136 } 1137 return false; 1138} 1139 1140/// isRegTiedToDefOperand - Return true if the operand of the specified index 1141/// is a register use and it is tied to an def operand. It also returns the def 1142/// operand index by reference. 1143bool MachineInstr:: 1144isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1145 if (isInlineAsm()) { 1146 const MachineOperand &MO = getOperand(UseOpIdx); 1147 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1148 return false; 1149 1150 // Find the flag operand corresponding to UseOpIdx 1151 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1152 if (FlagIdx < 0) 1153 return false; 1154 1155 const MachineOperand &UFMO = getOperand(FlagIdx); 1156 unsigned DefNo; 1157 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1158 if (!DefOpIdx) 1159 return true; 1160 1161 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1162 // Remember to adjust the index. First operand is asm string, second is 1163 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1164 while (DefNo) { 1165 const MachineOperand &FMO = getOperand(DefIdx); 1166 assert(FMO.isImm()); 1167 // Skip over this def. 1168 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1169 --DefNo; 1170 } 1171 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1172 return true; 1173 } 1174 return false; 1175 } 1176 1177 const MCInstrDesc &MCID = getDesc(); 1178 if (UseOpIdx >= MCID.getNumOperands()) 1179 return false; 1180 const MachineOperand &MO = getOperand(UseOpIdx); 1181 if (!MO.isReg() || !MO.isUse()) 1182 return false; 1183 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1184 if (DefIdx == -1) 1185 return false; 1186 if (DefOpIdx) 1187 *DefOpIdx = (unsigned)DefIdx; 1188 return true; 1189} 1190 1191/// clearKillInfo - Clears kill flags on all operands. 1192/// 1193void MachineInstr::clearKillInfo() { 1194 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1195 MachineOperand &MO = getOperand(i); 1196 if (MO.isReg() && MO.isUse()) 1197 MO.setIsKill(false); 1198 } 1199} 1200 1201/// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1202/// 1203void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1204 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1205 const MachineOperand &MO = MI->getOperand(i); 1206 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1207 continue; 1208 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1209 MachineOperand &MOp = getOperand(j); 1210 if (!MOp.isIdenticalTo(MO)) 1211 continue; 1212 if (MO.isKill()) 1213 MOp.setIsKill(); 1214 else 1215 MOp.setIsDead(); 1216 break; 1217 } 1218 } 1219} 1220 1221/// copyPredicates - Copies predicate operand(s) from MI. 1222void MachineInstr::copyPredicates(const MachineInstr *MI) { 1223 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1224 1225 const MCInstrDesc &MCID = MI->getDesc(); 1226 if (!MCID.isPredicable()) 1227 return; 1228 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1229 if (MCID.OpInfo[i].isPredicate()) { 1230 // Predicated operands must be last operands. 1231 addOperand(MI->getOperand(i)); 1232 } 1233 } 1234} 1235 1236void MachineInstr::substituteRegister(unsigned FromReg, 1237 unsigned ToReg, 1238 unsigned SubIdx, 1239 const TargetRegisterInfo &RegInfo) { 1240 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1241 if (SubIdx) 1242 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1243 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1244 MachineOperand &MO = getOperand(i); 1245 if (!MO.isReg() || MO.getReg() != FromReg) 1246 continue; 1247 MO.substPhysReg(ToReg, RegInfo); 1248 } 1249 } else { 1250 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1251 MachineOperand &MO = getOperand(i); 1252 if (!MO.isReg() || MO.getReg() != FromReg) 1253 continue; 1254 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1255 } 1256 } 1257} 1258 1259/// isSafeToMove - Return true if it is safe to move this instruction. If 1260/// SawStore is set to true, it means that there is a store (or call) between 1261/// the instruction's location and its intended destination. 1262bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1263 AliasAnalysis *AA, 1264 bool &SawStore) const { 1265 // Ignore stuff that we obviously can't move. 1266 if (mayStore() || isCall()) { 1267 SawStore = true; 1268 return false; 1269 } 1270 1271 if (isLabel() || isDebugValue() || 1272 isTerminator() || hasUnmodeledSideEffects()) 1273 return false; 1274 1275 // See if this instruction does a load. If so, we have to guarantee that the 1276 // loaded value doesn't change between the load and the its intended 1277 // destination. The check for isInvariantLoad gives the targe the chance to 1278 // classify the load as always returning a constant, e.g. a constant pool 1279 // load. 1280 if (mayLoad() && !isInvariantLoad(AA)) 1281 // Otherwise, this is a real load. If there is a store between the load and 1282 // end of block, or if the load is volatile, we can't move it. 1283 return !SawStore && !hasVolatileMemoryRef(); 1284 1285 return true; 1286} 1287 1288/// isSafeToReMat - Return true if it's safe to rematerialize the specified 1289/// instruction which defined the specified register instead of copying it. 1290bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1291 AliasAnalysis *AA, 1292 unsigned DstReg) const { 1293 bool SawStore = false; 1294 if (!TII->isTriviallyReMaterializable(this, AA) || 1295 !isSafeToMove(TII, AA, SawStore)) 1296 return false; 1297 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1298 const MachineOperand &MO = getOperand(i); 1299 if (!MO.isReg()) 1300 continue; 1301 // FIXME: For now, do not remat any instruction with register operands. 1302 // Later on, we can loosen the restriction is the register operands have 1303 // not been modified between the def and use. Note, this is different from 1304 // MachineSink because the code is no longer in two-address form (at least 1305 // partially). 1306 if (MO.isUse()) 1307 return false; 1308 else if (!MO.isDead() && MO.getReg() != DstReg) 1309 return false; 1310 } 1311 return true; 1312} 1313 1314/// hasVolatileMemoryRef - Return true if this instruction may have a 1315/// volatile memory reference, or if the information describing the 1316/// memory reference is not available. Return false if it is known to 1317/// have no volatile memory references. 1318bool MachineInstr::hasVolatileMemoryRef() const { 1319 // An instruction known never to access memory won't have a volatile access. 1320 if (!mayStore() && 1321 !mayLoad() && 1322 !isCall() && 1323 !hasUnmodeledSideEffects()) 1324 return false; 1325 1326 // Otherwise, if the instruction has no memory reference information, 1327 // conservatively assume it wasn't preserved. 1328 if (memoperands_empty()) 1329 return true; 1330 1331 // Check the memory reference information for volatile references. 1332 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1333 if ((*I)->isVolatile()) 1334 return true; 1335 1336 return false; 1337} 1338 1339/// isInvariantLoad - Return true if this instruction is loading from a 1340/// location whose value is invariant across the function. For example, 1341/// loading a value from the constant pool or from the argument area 1342/// of a function if it does not change. This should only return true of 1343/// *all* loads the instruction does are invariant (if it does multiple loads). 1344bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1345 // If the instruction doesn't load at all, it isn't an invariant load. 1346 if (!mayLoad()) 1347 return false; 1348 1349 // If the instruction has lost its memoperands, conservatively assume that 1350 // it may not be an invariant load. 1351 if (memoperands_empty()) 1352 return false; 1353 1354 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1355 1356 for (mmo_iterator I = memoperands_begin(), 1357 E = memoperands_end(); I != E; ++I) { 1358 if ((*I)->isVolatile()) return false; 1359 if ((*I)->isStore()) return false; 1360 if ((*I)->isInvariant()) return true; 1361 1362 if (const Value *V = (*I)->getValue()) { 1363 // A load from a constant PseudoSourceValue is invariant. 1364 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1365 if (PSV->isConstant(MFI)) 1366 continue; 1367 // If we have an AliasAnalysis, ask it whether the memory is constant. 1368 if (AA && AA->pointsToConstantMemory( 1369 AliasAnalysis::Location(V, (*I)->getSize(), 1370 (*I)->getTBAAInfo()))) 1371 continue; 1372 } 1373 1374 // Otherwise assume conservatively. 1375 return false; 1376 } 1377 1378 // Everything checks out. 1379 return true; 1380} 1381 1382/// isConstantValuePHI - If the specified instruction is a PHI that always 1383/// merges together the same virtual register, return the register, otherwise 1384/// return 0. 1385unsigned MachineInstr::isConstantValuePHI() const { 1386 if (!isPHI()) 1387 return 0; 1388 assert(getNumOperands() >= 3 && 1389 "It's illegal to have a PHI without source operands"); 1390 1391 unsigned Reg = getOperand(1).getReg(); 1392 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1393 if (getOperand(i).getReg() != Reg) 1394 return 0; 1395 return Reg; 1396} 1397 1398bool MachineInstr::hasUnmodeledSideEffects() const { 1399 if (hasProperty(MCID::UnmodeledSideEffects)) 1400 return true; 1401 if (isInlineAsm()) { 1402 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1403 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1404 return true; 1405 } 1406 1407 return false; 1408} 1409 1410/// allDefsAreDead - Return true if all the defs of this instruction are dead. 1411/// 1412bool MachineInstr::allDefsAreDead() const { 1413 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1414 const MachineOperand &MO = getOperand(i); 1415 if (!MO.isReg() || MO.isUse()) 1416 continue; 1417 if (!MO.isDead()) 1418 return false; 1419 } 1420 return true; 1421} 1422 1423/// copyImplicitOps - Copy implicit register operands from specified 1424/// instruction to this instruction. 1425void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1426 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1427 i != e; ++i) { 1428 const MachineOperand &MO = MI->getOperand(i); 1429 if (MO.isReg() && MO.isImplicit()) 1430 addOperand(MO); 1431 } 1432} 1433 1434void MachineInstr::dump() const { 1435 dbgs() << " " << *this; 1436} 1437 1438static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1439 raw_ostream &CommentOS) { 1440 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1441 if (!DL.isUnknown()) { // Print source line info. 1442 DIScope Scope(DL.getScope(Ctx)); 1443 // Omit the directory, because it's likely to be long and uninteresting. 1444 if (Scope.Verify()) 1445 CommentOS << Scope.getFilename(); 1446 else 1447 CommentOS << "<unknown>"; 1448 CommentOS << ':' << DL.getLine(); 1449 if (DL.getCol() != 0) 1450 CommentOS << ':' << DL.getCol(); 1451 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1452 if (!InlinedAtDL.isUnknown()) { 1453 CommentOS << " @[ "; 1454 printDebugLoc(InlinedAtDL, MF, CommentOS); 1455 CommentOS << " ]"; 1456 } 1457 } 1458} 1459 1460void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1461 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1462 const MachineFunction *MF = 0; 1463 const MachineRegisterInfo *MRI = 0; 1464 if (const MachineBasicBlock *MBB = getParent()) { 1465 MF = MBB->getParent(); 1466 if (!TM && MF) 1467 TM = &MF->getTarget(); 1468 if (MF) 1469 MRI = &MF->getRegInfo(); 1470 } 1471 1472 // Save a list of virtual registers. 1473 SmallVector<unsigned, 8> VirtRegs; 1474 1475 // Print explicitly defined operands on the left of an assignment syntax. 1476 unsigned StartOp = 0, e = getNumOperands(); 1477 for (; StartOp < e && getOperand(StartOp).isReg() && 1478 getOperand(StartOp).isDef() && 1479 !getOperand(StartOp).isImplicit(); 1480 ++StartOp) { 1481 if (StartOp != 0) OS << ", "; 1482 getOperand(StartOp).print(OS, TM); 1483 unsigned Reg = getOperand(StartOp).getReg(); 1484 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1485 VirtRegs.push_back(Reg); 1486 } 1487 1488 if (StartOp != 0) 1489 OS << " = "; 1490 1491 // Print the opcode name. 1492 if (TM && TM->getInstrInfo()) 1493 OS << TM->getInstrInfo()->getName(getOpcode()); 1494 else 1495 OS << "UNKNOWN"; 1496 1497 // Print the rest of the operands. 1498 bool OmittedAnyCallClobbers = false; 1499 bool FirstOp = true; 1500 unsigned AsmDescOp = ~0u; 1501 unsigned AsmOpCount = 0; 1502 1503 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1504 // Print asm string. 1505 OS << " "; 1506 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1507 1508 // Print HasSideEffects, IsAlignStack 1509 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1510 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1511 OS << " [sideeffect]"; 1512 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1513 OS << " [alignstack]"; 1514 1515 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1516 FirstOp = false; 1517 } 1518 1519 1520 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1521 const MachineOperand &MO = getOperand(i); 1522 1523 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1524 VirtRegs.push_back(MO.getReg()); 1525 1526 // Omit call-clobbered registers which aren't used anywhere. This makes 1527 // call instructions much less noisy on targets where calls clobber lots 1528 // of registers. Don't rely on MO.isDead() because we may be called before 1529 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1530 if (MF && isCall() && 1531 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1532 unsigned Reg = MO.getReg(); 1533 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1534 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1535 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1536 bool HasAliasLive = false; 1537 for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1538 unsigned AliasReg = *Alias; ++Alias) 1539 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1540 HasAliasLive = true; 1541 break; 1542 } 1543 if (!HasAliasLive) { 1544 OmittedAnyCallClobbers = true; 1545 continue; 1546 } 1547 } 1548 } 1549 } 1550 1551 if (FirstOp) FirstOp = false; else OS << ","; 1552 OS << " "; 1553 if (i < getDesc().NumOperands) { 1554 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1555 if (MCOI.isPredicate()) 1556 OS << "pred:"; 1557 if (MCOI.isOptionalDef()) 1558 OS << "opt:"; 1559 } 1560 if (isDebugValue() && MO.isMetadata()) { 1561 // Pretty print DBG_VALUE instructions. 1562 const MDNode *MD = MO.getMetadata(); 1563 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1564 OS << "!\"" << MDS->getString() << '\"'; 1565 else 1566 MO.print(OS, TM); 1567 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1568 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1569 } else if (i == AsmDescOp && MO.isImm()) { 1570 // Pretty print the inline asm operand descriptor. 1571 OS << '$' << AsmOpCount++; 1572 unsigned Flag = MO.getImm(); 1573 switch (InlineAsm::getKind(Flag)) { 1574 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1575 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1576 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1577 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1578 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1579 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1580 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1581 } 1582 1583 unsigned RCID = 0; 1584 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1585 if (TM) 1586 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1587 else 1588 OS << ":RC" << RCID; 1589 } 1590 1591 unsigned TiedTo = 0; 1592 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1593 OS << " tiedto:$" << TiedTo; 1594 1595 OS << ']'; 1596 1597 // Compute the index of the next operand descriptor. 1598 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1599 } else 1600 MO.print(OS, TM); 1601 } 1602 1603 // Briefly indicate whether any call clobbers were omitted. 1604 if (OmittedAnyCallClobbers) { 1605 if (!FirstOp) OS << ","; 1606 OS << " ..."; 1607 } 1608 1609 bool HaveSemi = false; 1610 if (Flags) { 1611 if (!HaveSemi) OS << ";"; HaveSemi = true; 1612 OS << " flags: "; 1613 1614 if (Flags & FrameSetup) 1615 OS << "FrameSetup"; 1616 } 1617 1618 if (!memoperands_empty()) { 1619 if (!HaveSemi) OS << ";"; HaveSemi = true; 1620 1621 OS << " mem:"; 1622 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1623 i != e; ++i) { 1624 OS << **i; 1625 if (llvm::next(i) != e) 1626 OS << " "; 1627 } 1628 } 1629 1630 // Print the regclass of any virtual registers encountered. 1631 if (MRI && !VirtRegs.empty()) { 1632 if (!HaveSemi) OS << ";"; HaveSemi = true; 1633 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1634 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1635 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1636 for (unsigned j = i+1; j != VirtRegs.size();) { 1637 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1638 ++j; 1639 continue; 1640 } 1641 if (VirtRegs[i] != VirtRegs[j]) 1642 OS << "," << PrintReg(VirtRegs[j]); 1643 VirtRegs.erase(VirtRegs.begin()+j); 1644 } 1645 } 1646 } 1647 1648 // Print debug location information. 1649 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1650 if (!HaveSemi) OS << ";"; HaveSemi = true; 1651 DIVariable DV(getOperand(e - 1).getMetadata()); 1652 OS << " line no:" << DV.getLineNumber(); 1653 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1654 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1655 if (!InlinedAtDL.isUnknown()) { 1656 OS << " inlined @[ "; 1657 printDebugLoc(InlinedAtDL, MF, OS); 1658 OS << " ]"; 1659 } 1660 } 1661 } else if (!debugLoc.isUnknown() && MF) { 1662 if (!HaveSemi) OS << ";"; HaveSemi = true; 1663 OS << " dbg:"; 1664 printDebugLoc(debugLoc, MF, OS); 1665 } 1666 1667 OS << '\n'; 1668} 1669 1670bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1671 const TargetRegisterInfo *RegInfo, 1672 bool AddIfNotFound) { 1673 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1674 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1675 bool Found = false; 1676 SmallVector<unsigned,4> DeadOps; 1677 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1678 MachineOperand &MO = getOperand(i); 1679 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1680 continue; 1681 unsigned Reg = MO.getReg(); 1682 if (!Reg) 1683 continue; 1684 1685 if (Reg == IncomingReg) { 1686 if (!Found) { 1687 if (MO.isKill()) 1688 // The register is already marked kill. 1689 return true; 1690 if (isPhysReg && isRegTiedToDefOperand(i)) 1691 // Two-address uses of physregs must not be marked kill. 1692 return true; 1693 MO.setIsKill(); 1694 Found = true; 1695 } 1696 } else if (hasAliases && MO.isKill() && 1697 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1698 // A super-register kill already exists. 1699 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1700 return true; 1701 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1702 DeadOps.push_back(i); 1703 } 1704 } 1705 1706 // Trim unneeded kill operands. 1707 while (!DeadOps.empty()) { 1708 unsigned OpIdx = DeadOps.back(); 1709 if (getOperand(OpIdx).isImplicit()) 1710 RemoveOperand(OpIdx); 1711 else 1712 getOperand(OpIdx).setIsKill(false); 1713 DeadOps.pop_back(); 1714 } 1715 1716 // If not found, this means an alias of one of the operands is killed. Add a 1717 // new implicit operand if required. 1718 if (!Found && AddIfNotFound) { 1719 addOperand(MachineOperand::CreateReg(IncomingReg, 1720 false /*IsDef*/, 1721 true /*IsImp*/, 1722 true /*IsKill*/)); 1723 return true; 1724 } 1725 return Found; 1726} 1727 1728void MachineInstr::clearRegisterKills(unsigned Reg, 1729 const TargetRegisterInfo *RegInfo) { 1730 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1731 RegInfo = 0; 1732 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1733 MachineOperand &MO = getOperand(i); 1734 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1735 continue; 1736 unsigned OpReg = MO.getReg(); 1737 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1738 MO.setIsKill(false); 1739 } 1740} 1741 1742bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1743 const TargetRegisterInfo *RegInfo, 1744 bool AddIfNotFound) { 1745 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1746 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1747 bool Found = false; 1748 SmallVector<unsigned,4> DeadOps; 1749 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1750 MachineOperand &MO = getOperand(i); 1751 if (!MO.isReg() || !MO.isDef()) 1752 continue; 1753 unsigned Reg = MO.getReg(); 1754 if (!Reg) 1755 continue; 1756 1757 if (Reg == IncomingReg) { 1758 MO.setIsDead(); 1759 Found = true; 1760 } else if (hasAliases && MO.isDead() && 1761 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1762 // There exists a super-register that's marked dead. 1763 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1764 return true; 1765 if (RegInfo->getSubRegisters(IncomingReg) && 1766 RegInfo->getSuperRegisters(Reg) && 1767 RegInfo->isSubRegister(IncomingReg, Reg)) 1768 DeadOps.push_back(i); 1769 } 1770 } 1771 1772 // Trim unneeded dead operands. 1773 while (!DeadOps.empty()) { 1774 unsigned OpIdx = DeadOps.back(); 1775 if (getOperand(OpIdx).isImplicit()) 1776 RemoveOperand(OpIdx); 1777 else 1778 getOperand(OpIdx).setIsDead(false); 1779 DeadOps.pop_back(); 1780 } 1781 1782 // If not found, this means an alias of one of the operands is dead. Add a 1783 // new implicit operand if required. 1784 if (Found || !AddIfNotFound) 1785 return Found; 1786 1787 addOperand(MachineOperand::CreateReg(IncomingReg, 1788 true /*IsDef*/, 1789 true /*IsImp*/, 1790 false /*IsKill*/, 1791 true /*IsDead*/)); 1792 return true; 1793} 1794 1795void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1796 const TargetRegisterInfo *RegInfo) { 1797 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1798 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1799 if (MO) 1800 return; 1801 } else { 1802 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1803 const MachineOperand &MO = getOperand(i); 1804 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1805 MO.getSubReg() == 0) 1806 return; 1807 } 1808 } 1809 addOperand(MachineOperand::CreateReg(IncomingReg, 1810 true /*IsDef*/, 1811 true /*IsImp*/)); 1812} 1813 1814void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1815 const TargetRegisterInfo &TRI) { 1816 bool HasRegMask = false; 1817 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1818 MachineOperand &MO = getOperand(i); 1819 if (MO.isRegMask()) { 1820 HasRegMask = true; 1821 continue; 1822 } 1823 if (!MO.isReg() || !MO.isDef()) continue; 1824 unsigned Reg = MO.getReg(); 1825 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1826 bool Dead = true; 1827 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1828 I != E; ++I) 1829 if (TRI.regsOverlap(*I, Reg)) { 1830 Dead = false; 1831 break; 1832 } 1833 // If there are no uses, including partial uses, the def is dead. 1834 if (Dead) MO.setIsDead(); 1835 } 1836 1837 // This is a call with a register mask operand. 1838 // Mask clobbers are always dead, so add defs for the non-dead defines. 1839 if (HasRegMask) 1840 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1841 I != E; ++I) 1842 addRegisterDefined(*I, &TRI); 1843} 1844 1845unsigned 1846MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1847 // Build up a buffer of hash code components. 1848 // 1849 // FIXME: This is a total hack. We should have a hash_value overload for 1850 // MachineOperand, but currently that doesn't work because there are many 1851 // different ideas of "equality" and thus different sets of information that 1852 // contribute to the hash code. This one happens to want to take a specific 1853 // subset. It's not clear that this routine uses the correct set of 1854 // information, it would be good to somehow ensure this function is 1855 // MachineInstr::isIdenticalTo with the 'IgnoreVRegDefs' filter look at the 1856 // same bits. 1857 SmallVector<size_t, 8> HashComponents; 1858 HashComponents.reserve(MI->getNumOperands() + 1); 1859 HashComponents.push_back(MI->getOpcode()); 1860 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1861 const MachineOperand &MO = MI->getOperand(i); 1862 switch (MO.getType()) { 1863 default: break; 1864 case MachineOperand::MO_Register: 1865 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1866 continue; // Skip virtual register defs. 1867 HashComponents.push_back(hash_combine(MO.getType(), MO.getReg())); 1868 break; 1869 case MachineOperand::MO_Immediate: 1870 HashComponents.push_back(hash_combine(MO.getType(), MO.getImm())); 1871 break; 1872 case MachineOperand::MO_FrameIndex: 1873 case MachineOperand::MO_ConstantPoolIndex: 1874 case MachineOperand::MO_JumpTableIndex: 1875 HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex())); 1876 break; 1877 case MachineOperand::MO_MachineBasicBlock: 1878 HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB())); 1879 break; 1880 case MachineOperand::MO_GlobalAddress: 1881 HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal())); 1882 break; 1883 case MachineOperand::MO_BlockAddress: 1884 HashComponents.push_back(hash_combine(MO.getType(), 1885 MO.getBlockAddress())); 1886 break; 1887 case MachineOperand::MO_MCSymbol: 1888 HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol())); 1889 break; 1890 } 1891 } 1892 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1893} 1894 1895void MachineInstr::emitError(StringRef Msg) const { 1896 // Find the source location cookie. 1897 unsigned LocCookie = 0; 1898 const MDNode *LocMD = 0; 1899 for (unsigned i = getNumOperands(); i != 0; --i) { 1900 if (getOperand(i-1).isMetadata() && 1901 (LocMD = getOperand(i-1).getMetadata()) && 1902 LocMD->getNumOperands() != 0) { 1903 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1904 LocCookie = CI->getZExtValue(); 1905 break; 1906 } 1907 } 1908 } 1909 1910 if (const MachineBasicBlock *MBB = getParent()) 1911 if (const MachineFunction *MF = MBB->getParent()) 1912 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1913 report_fatal_error(Msg); 1914} 1915