AsmWriter.cpp revision 1e3037f0be430ef2339838bbdede11f45658bd82
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "AsmWriter.h"
18
19#include "llvm/Assembly/Writer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Assembly/AssemblyAnnotationWriter.h"
25#include "llvm/Assembly/PrintModulePass.h"
26#include "llvm/DebugInfo.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/InlineAsm.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/IR/TypeFinder.h"
36#include "llvm/IR/ValueSymbolTable.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/Dwarf.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/FormattedStream.h"
42#include "llvm/Support/MathExtras.h"
43
44#include <algorithm>
45#include <cctype>
46using namespace llvm;
47
48// Make virtual table appear in this compilation unit.
49AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
50
51//===----------------------------------------------------------------------===//
52// Helper Functions
53//===----------------------------------------------------------------------===//
54
55static const Module *getModuleFromVal(const Value *V) {
56  if (const Argument *MA = dyn_cast<Argument>(V))
57    return MA->getParent() ? MA->getParent()->getParent() : 0;
58
59  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
60    return BB->getParent() ? BB->getParent()->getParent() : 0;
61
62  if (const Instruction *I = dyn_cast<Instruction>(V)) {
63    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
64    return M ? M->getParent() : 0;
65  }
66
67  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
68    return GV->getParent();
69  return 0;
70}
71
72static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
73  switch (cc) {
74  default:                         Out << "cc" << cc; break;
75  case CallingConv::Fast:          Out << "fastcc"; break;
76  case CallingConv::Cold:          Out << "coldcc"; break;
77  case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
78  case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
79  case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
80  case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
81  case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
82  case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
83  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
84  case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
85  case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
86  case CallingConv::PTX_Device:    Out << "ptx_device"; break;
87  case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
88  case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
89  }
90}
91
92// PrintEscapedString - Print each character of the specified string, escaping
93// it if it is not printable or if it is an escape char.
94static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
95  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
96    unsigned char C = Name[i];
97    if (isprint(C) && C != '\\' && C != '"')
98      Out << C;
99    else
100      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
101  }
102}
103
104enum PrefixType {
105  GlobalPrefix,
106  LabelPrefix,
107  LocalPrefix,
108  NoPrefix
109};
110
111/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
112/// prefixed with % (if the string only contains simple characters) or is
113/// surrounded with ""'s (if it has special chars in it).  Print it out.
114static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
115  assert(!Name.empty() && "Cannot get empty name!");
116  switch (Prefix) {
117  case NoPrefix: break;
118  case GlobalPrefix: OS << '@'; break;
119  case LabelPrefix:  break;
120  case LocalPrefix:  OS << '%'; break;
121  }
122
123  // Scan the name to see if it needs quotes first.
124  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
125  if (!NeedsQuotes) {
126    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
127      // By making this unsigned, the value passed in to isalnum will always be
128      // in the range 0-255.  This is important when building with MSVC because
129      // its implementation will assert.  This situation can arise when dealing
130      // with UTF-8 multibyte characters.
131      unsigned char C = Name[i];
132      if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
133          C != '_') {
134        NeedsQuotes = true;
135        break;
136      }
137    }
138  }
139
140  // If we didn't need any quotes, just write out the name in one blast.
141  if (!NeedsQuotes) {
142    OS << Name;
143    return;
144  }
145
146  // Okay, we need quotes.  Output the quotes and escape any scary characters as
147  // needed.
148  OS << '"';
149  PrintEscapedString(Name, OS);
150  OS << '"';
151}
152
153/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
154/// prefixed with % (if the string only contains simple characters) or is
155/// surrounded with ""'s (if it has special chars in it).  Print it out.
156static void PrintLLVMName(raw_ostream &OS, const Value *V) {
157  PrintLLVMName(OS, V->getName(),
158                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
159}
160
161
162namespace llvm {
163
164void TypePrinting::incorporateTypes(const Module &M) {
165  NamedTypes.run(M, false);
166
167  // The list of struct types we got back includes all the struct types, split
168  // the unnamed ones out to a numbering and remove the anonymous structs.
169  unsigned NextNumber = 0;
170
171  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
172  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
173    StructType *STy = *I;
174
175    // Ignore anonymous types.
176    if (STy->isLiteral())
177      continue;
178
179    if (STy->getName().empty())
180      NumberedTypes[STy] = NextNumber++;
181    else
182      *NextToUse++ = STy;
183  }
184
185  NamedTypes.erase(NextToUse, NamedTypes.end());
186}
187
188
189/// CalcTypeName - Write the specified type to the specified raw_ostream, making
190/// use of type names or up references to shorten the type name where possible.
191void TypePrinting::print(Type *Ty, raw_ostream &OS) {
192  switch (Ty->getTypeID()) {
193  case Type::VoidTyID:      OS << "void"; break;
194  case Type::HalfTyID:      OS << "half"; break;
195  case Type::FloatTyID:     OS << "float"; break;
196  case Type::DoubleTyID:    OS << "double"; break;
197  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
198  case Type::FP128TyID:     OS << "fp128"; break;
199  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
200  case Type::LabelTyID:     OS << "label"; break;
201  case Type::MetadataTyID:  OS << "metadata"; break;
202  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
203  case Type::IntegerTyID:
204    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
205    return;
206
207  case Type::FunctionTyID: {
208    FunctionType *FTy = cast<FunctionType>(Ty);
209    print(FTy->getReturnType(), OS);
210    OS << " (";
211    for (FunctionType::param_iterator I = FTy->param_begin(),
212         E = FTy->param_end(); I != E; ++I) {
213      if (I != FTy->param_begin())
214        OS << ", ";
215      print(*I, OS);
216    }
217    if (FTy->isVarArg()) {
218      if (FTy->getNumParams()) OS << ", ";
219      OS << "...";
220    }
221    OS << ')';
222    return;
223  }
224  case Type::StructTyID: {
225    StructType *STy = cast<StructType>(Ty);
226
227    if (STy->isLiteral())
228      return printStructBody(STy, OS);
229
230    if (!STy->getName().empty())
231      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
232
233    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
234    if (I != NumberedTypes.end())
235      OS << '%' << I->second;
236    else  // Not enumerated, print the hex address.
237      OS << "%\"type " << STy << '\"';
238    return;
239  }
240  case Type::PointerTyID: {
241    PointerType *PTy = cast<PointerType>(Ty);
242    print(PTy->getElementType(), OS);
243    if (unsigned AddressSpace = PTy->getAddressSpace())
244      OS << " addrspace(" << AddressSpace << ')';
245    OS << '*';
246    return;
247  }
248  case Type::ArrayTyID: {
249    ArrayType *ATy = cast<ArrayType>(Ty);
250    OS << '[' << ATy->getNumElements() << " x ";
251    print(ATy->getElementType(), OS);
252    OS << ']';
253    return;
254  }
255  case Type::VectorTyID: {
256    VectorType *PTy = cast<VectorType>(Ty);
257    OS << "<" << PTy->getNumElements() << " x ";
258    print(PTy->getElementType(), OS);
259    OS << '>';
260    return;
261  }
262  default:
263    OS << "<unrecognized-type>";
264    return;
265  }
266}
267
268void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
269  if (STy->isOpaque()) {
270    OS << "opaque";
271    return;
272  }
273
274  if (STy->isPacked())
275    OS << '<';
276
277  if (STy->getNumElements() == 0) {
278    OS << "{}";
279  } else {
280    StructType::element_iterator I = STy->element_begin();
281    OS << "{ ";
282    print(*I++, OS);
283    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
284      OS << ", ";
285      print(*I, OS);
286    }
287
288    OS << " }";
289  }
290  if (STy->isPacked())
291    OS << '>';
292}
293
294//===----------------------------------------------------------------------===//
295// SlotTracker Class: Enumerate slot numbers for unnamed values
296//===----------------------------------------------------------------------===//
297/// This class provides computation of slot numbers for LLVM Assembly writing.
298///
299class SlotTracker {
300public:
301  /// ValueMap - A mapping of Values to slot numbers.
302  typedef DenseMap<const Value*, unsigned> ValueMap;
303
304private:
305  /// TheModule - The module for which we are holding slot numbers.
306  const Module* TheModule;
307
308  /// TheFunction - The function for which we are holding slot numbers.
309  const Function* TheFunction;
310  bool FunctionProcessed;
311
312  /// mMap - The slot map for the module level data.
313  ValueMap mMap;
314  unsigned mNext;
315
316  /// fMap - The slot map for the function level data.
317  ValueMap fMap;
318  unsigned fNext;
319
320  /// mdnMap - Map for MDNodes.
321  DenseMap<const MDNode*, unsigned> mdnMap;
322  unsigned mdnNext;
323
324  /// asMap - The slot map for attribute sets.
325  DenseMap<AttributeSet, unsigned> asMap;
326  unsigned asNext;
327public:
328  /// Construct from a module
329  explicit SlotTracker(const Module *M);
330  /// Construct from a function, starting out in incorp state.
331  explicit SlotTracker(const Function *F);
332
333  /// Return the slot number of the specified value in it's type
334  /// plane.  If something is not in the SlotTracker, return -1.
335  int getLocalSlot(const Value *V);
336  int getGlobalSlot(const GlobalValue *V);
337  int getMetadataSlot(const MDNode *N);
338  int getAttributeGroupSlot(AttributeSet AS);
339
340  /// If you'd like to deal with a function instead of just a module, use
341  /// this method to get its data into the SlotTracker.
342  void incorporateFunction(const Function *F) {
343    TheFunction = F;
344    FunctionProcessed = false;
345  }
346
347  /// After calling incorporateFunction, use this method to remove the
348  /// most recently incorporated function from the SlotTracker. This
349  /// will reset the state of the machine back to just the module contents.
350  void purgeFunction();
351
352  /// MDNode map iterators.
353  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
354  mdn_iterator mdn_begin() { return mdnMap.begin(); }
355  mdn_iterator mdn_end() { return mdnMap.end(); }
356  unsigned mdn_size() const { return mdnMap.size(); }
357  bool mdn_empty() const { return mdnMap.empty(); }
358
359  /// AttributeSet map iterators.
360  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
361  as_iterator as_begin()   { return asMap.begin(); }
362  as_iterator as_end()     { return asMap.end(); }
363  unsigned as_size() const { return asMap.size(); }
364  bool as_empty() const    { return asMap.empty(); }
365
366  /// This function does the actual initialization.
367  inline void initialize();
368
369  // Implementation Details
370private:
371  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
372  void CreateModuleSlot(const GlobalValue *V);
373
374  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
375  void CreateMetadataSlot(const MDNode *N);
376
377  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
378  void CreateFunctionSlot(const Value *V);
379
380  /// \brief Insert the specified AttributeSet into the slot table.
381  void CreateAttributeSetSlot(AttributeSet AS);
382
383  /// Add all of the module level global variables (and their initializers)
384  /// and function declarations, but not the contents of those functions.
385  void processModule();
386
387  /// Add all of the functions arguments, basic blocks, and instructions.
388  void processFunction();
389
390  SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
391  void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
392};
393
394SlotTracker *createSlotTracker(const Module *M) {
395  return new SlotTracker(M);
396}
397
398static SlotTracker *createSlotTracker(const Value *V) {
399  if (const Argument *FA = dyn_cast<Argument>(V))
400    return new SlotTracker(FA->getParent());
401
402  if (const Instruction *I = dyn_cast<Instruction>(V))
403    if (I->getParent())
404      return new SlotTracker(I->getParent()->getParent());
405
406  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
407    return new SlotTracker(BB->getParent());
408
409  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
410    return new SlotTracker(GV->getParent());
411
412  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
413    return new SlotTracker(GA->getParent());
414
415  if (const Function *Func = dyn_cast<Function>(V))
416    return new SlotTracker(Func);
417
418  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
419    if (!MD->isFunctionLocal())
420      return new SlotTracker(MD->getFunction());
421
422    return new SlotTracker((Function *)0);
423  }
424
425  return 0;
426}
427
428#if 0
429#define ST_DEBUG(X) dbgs() << X
430#else
431#define ST_DEBUG(X)
432#endif
433
434// Module level constructor. Causes the contents of the Module (sans functions)
435// to be added to the slot table.
436SlotTracker::SlotTracker(const Module *M)
437  : TheModule(M), TheFunction(0), FunctionProcessed(false),
438    mNext(0), fNext(0),  mdnNext(0), asNext(0) {
439}
440
441// Function level constructor. Causes the contents of the Module and the one
442// function provided to be added to the slot table.
443SlotTracker::SlotTracker(const Function *F)
444  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
445    mNext(0), fNext(0), mdnNext(0), asNext(0) {
446}
447
448inline void SlotTracker::initialize() {
449  if (TheModule) {
450    processModule();
451    TheModule = 0; ///< Prevent re-processing next time we're called.
452  }
453
454  if (TheFunction && !FunctionProcessed)
455    processFunction();
456}
457
458// Iterate through all the global variables, functions, and global
459// variable initializers and create slots for them.
460void SlotTracker::processModule() {
461  ST_DEBUG("begin processModule!\n");
462
463  // Add all of the unnamed global variables to the value table.
464  for (Module::const_global_iterator I = TheModule->global_begin(),
465         E = TheModule->global_end(); I != E; ++I) {
466    if (!I->hasName())
467      CreateModuleSlot(I);
468  }
469
470  // Add metadata used by named metadata.
471  for (Module::const_named_metadata_iterator
472         I = TheModule->named_metadata_begin(),
473         E = TheModule->named_metadata_end(); I != E; ++I) {
474    const NamedMDNode *NMD = I;
475    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
476      CreateMetadataSlot(NMD->getOperand(i));
477  }
478
479  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
480       I != E; ++I) {
481    if (!I->hasName())
482      // Add all the unnamed functions to the table.
483      CreateModuleSlot(I);
484
485    // Add all the function attributes to the table.
486    // FIXME: Add attributes of other objects?
487    AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
488    if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
489      CreateAttributeSetSlot(FnAttrs);
490  }
491
492  ST_DEBUG("end processModule!\n");
493}
494
495// Process the arguments, basic blocks, and instructions  of a function.
496void SlotTracker::processFunction() {
497  ST_DEBUG("begin processFunction!\n");
498  fNext = 0;
499
500  // Add all the function arguments with no names.
501  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
502      AE = TheFunction->arg_end(); AI != AE; ++AI)
503    if (!AI->hasName())
504      CreateFunctionSlot(AI);
505
506  ST_DEBUG("Inserting Instructions:\n");
507
508  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
509
510  // Add all of the basic blocks and instructions with no names.
511  for (Function::const_iterator BB = TheFunction->begin(),
512       E = TheFunction->end(); BB != E; ++BB) {
513    if (!BB->hasName())
514      CreateFunctionSlot(BB);
515
516    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
517         ++I) {
518      if (!I->getType()->isVoidTy() && !I->hasName())
519        CreateFunctionSlot(I);
520
521      // Intrinsics can directly use metadata.  We allow direct calls to any
522      // llvm.foo function here, because the target may not be linked into the
523      // optimizer.
524      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
525        if (Function *F = CI->getCalledFunction())
526          if (F->getName().startswith("llvm."))
527            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
528              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
529                CreateMetadataSlot(N);
530
531        // Add all the call attributes to the table.
532        AttributeSet Attrs = CI->getAttributes().getFnAttributes();
533        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
534          CreateAttributeSetSlot(Attrs);
535      } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
536        // Add all the call attributes to the table.
537        AttributeSet Attrs = II->getAttributes().getFnAttributes();
538        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
539          CreateAttributeSetSlot(Attrs);
540      }
541
542      // Process metadata attached with this instruction.
543      I->getAllMetadata(MDForInst);
544      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
545        CreateMetadataSlot(MDForInst[i].second);
546      MDForInst.clear();
547    }
548  }
549
550  FunctionProcessed = true;
551
552  ST_DEBUG("end processFunction!\n");
553}
554
555/// Clean up after incorporating a function. This is the only way to get out of
556/// the function incorporation state that affects get*Slot/Create*Slot. Function
557/// incorporation state is indicated by TheFunction != 0.
558void SlotTracker::purgeFunction() {
559  ST_DEBUG("begin purgeFunction!\n");
560  fMap.clear(); // Simply discard the function level map
561  TheFunction = 0;
562  FunctionProcessed = false;
563  ST_DEBUG("end purgeFunction!\n");
564}
565
566/// getGlobalSlot - Get the slot number of a global value.
567int SlotTracker::getGlobalSlot(const GlobalValue *V) {
568  // Check for uninitialized state and do lazy initialization.
569  initialize();
570
571  // Find the value in the module map
572  ValueMap::iterator MI = mMap.find(V);
573  return MI == mMap.end() ? -1 : (int)MI->second;
574}
575
576/// getMetadataSlot - Get the slot number of a MDNode.
577int SlotTracker::getMetadataSlot(const MDNode *N) {
578  // Check for uninitialized state and do lazy initialization.
579  initialize();
580
581  // Find the MDNode in the module map
582  mdn_iterator MI = mdnMap.find(N);
583  return MI == mdnMap.end() ? -1 : (int)MI->second;
584}
585
586
587/// getLocalSlot - Get the slot number for a value that is local to a function.
588int SlotTracker::getLocalSlot(const Value *V) {
589  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
590
591  // Check for uninitialized state and do lazy initialization.
592  initialize();
593
594  ValueMap::iterator FI = fMap.find(V);
595  return FI == fMap.end() ? -1 : (int)FI->second;
596}
597
598int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
599  // Check for uninitialized state and do lazy initialization.
600  initialize();
601
602  // Find the AttributeSet in the module map.
603  as_iterator AI = asMap.find(AS);
604  return AI == asMap.end() ? -1 : (int)AI->second;
605}
606
607/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
608void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
609  assert(V && "Can't insert a null Value into SlotTracker!");
610  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
611  assert(!V->hasName() && "Doesn't need a slot!");
612
613  unsigned DestSlot = mNext++;
614  mMap[V] = DestSlot;
615
616  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
617           DestSlot << " [");
618  // G = Global, F = Function, A = Alias, o = other
619  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
620            (isa<Function>(V) ? 'F' :
621             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
622}
623
624/// CreateSlot - Create a new slot for the specified value if it has no name.
625void SlotTracker::CreateFunctionSlot(const Value *V) {
626  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
627
628  unsigned DestSlot = fNext++;
629  fMap[V] = DestSlot;
630
631  // G = Global, F = Function, o = other
632  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
633           DestSlot << " [o]\n");
634}
635
636/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
637void SlotTracker::CreateMetadataSlot(const MDNode *N) {
638  assert(N && "Can't insert a null Value into SlotTracker!");
639
640  // Don't insert if N is a function-local metadata, these are always printed
641  // inline.
642  if (!N->isFunctionLocal()) {
643    mdn_iterator I = mdnMap.find(N);
644    if (I != mdnMap.end())
645      return;
646
647    unsigned DestSlot = mdnNext++;
648    mdnMap[N] = DestSlot;
649  }
650
651  // Recursively add any MDNodes referenced by operands.
652  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
653    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
654      CreateMetadataSlot(Op);
655}
656
657void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
658  assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
659         "Doesn't need a slot!");
660
661  as_iterator I = asMap.find(AS);
662  if (I != asMap.end())
663    return;
664
665  unsigned DestSlot = asNext++;
666  asMap[AS] = DestSlot;
667}
668
669//===----------------------------------------------------------------------===//
670// AsmWriter Implementation
671//===----------------------------------------------------------------------===//
672
673static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
674                                   TypePrinting *TypePrinter,
675                                   SlotTracker *Machine,
676                                   const Module *Context);
677
678
679
680static const char *getPredicateText(unsigned predicate) {
681  const char * pred = "unknown";
682  switch (predicate) {
683  case FCmpInst::FCMP_FALSE: pred = "false"; break;
684  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
685  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
686  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
687  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
688  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
689  case FCmpInst::FCMP_ONE:   pred = "one"; break;
690  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
691  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
692  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
693  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
694  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
695  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
696  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
697  case FCmpInst::FCMP_UNE:   pred = "une"; break;
698  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
699  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
700  case ICmpInst::ICMP_NE:    pred = "ne"; break;
701  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
702  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
703  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
704  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
705  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
706  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
707  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
708  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
709  }
710  return pred;
711}
712
713static void writeAtomicRMWOperation(raw_ostream &Out,
714                                    AtomicRMWInst::BinOp Op) {
715  switch (Op) {
716  default: Out << " <unknown operation " << Op << ">"; break;
717  case AtomicRMWInst::Xchg: Out << " xchg"; break;
718  case AtomicRMWInst::Add:  Out << " add"; break;
719  case AtomicRMWInst::Sub:  Out << " sub"; break;
720  case AtomicRMWInst::And:  Out << " and"; break;
721  case AtomicRMWInst::Nand: Out << " nand"; break;
722  case AtomicRMWInst::Or:   Out << " or"; break;
723  case AtomicRMWInst::Xor:  Out << " xor"; break;
724  case AtomicRMWInst::Max:  Out << " max"; break;
725  case AtomicRMWInst::Min:  Out << " min"; break;
726  case AtomicRMWInst::UMax: Out << " umax"; break;
727  case AtomicRMWInst::UMin: Out << " umin"; break;
728  }
729}
730
731static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
732  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
733    // Unsafe algebra implies all the others, no need to write them all out
734    if (FPO->hasUnsafeAlgebra())
735      Out << " fast";
736    else {
737      if (FPO->hasNoNaNs())
738        Out << " nnan";
739      if (FPO->hasNoInfs())
740        Out << " ninf";
741      if (FPO->hasNoSignedZeros())
742        Out << " nsz";
743      if (FPO->hasAllowReciprocal())
744        Out << " arcp";
745    }
746  }
747
748  if (const OverflowingBinaryOperator *OBO =
749        dyn_cast<OverflowingBinaryOperator>(U)) {
750    if (OBO->hasNoUnsignedWrap())
751      Out << " nuw";
752    if (OBO->hasNoSignedWrap())
753      Out << " nsw";
754  } else if (const PossiblyExactOperator *Div =
755               dyn_cast<PossiblyExactOperator>(U)) {
756    if (Div->isExact())
757      Out << " exact";
758  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
759    if (GEP->isInBounds())
760      Out << " inbounds";
761  }
762}
763
764static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
765                                  TypePrinting &TypePrinter,
766                                  SlotTracker *Machine,
767                                  const Module *Context) {
768  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
769    if (CI->getType()->isIntegerTy(1)) {
770      Out << (CI->getZExtValue() ? "true" : "false");
771      return;
772    }
773    Out << CI->getValue();
774    return;
775  }
776
777  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
778    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
779        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
780      // We would like to output the FP constant value in exponential notation,
781      // but we cannot do this if doing so will lose precision.  Check here to
782      // make sure that we only output it in exponential format if we can parse
783      // the value back and get the same value.
784      //
785      bool ignored;
786      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
787      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
788      bool isInf = CFP->getValueAPF().isInfinity();
789      bool isNaN = CFP->getValueAPF().isNaN();
790      if (!isHalf && !isInf && !isNaN) {
791        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
792                                CFP->getValueAPF().convertToFloat();
793        SmallString<128> StrVal;
794        raw_svector_ostream(StrVal) << Val;
795
796        // Check to make sure that the stringized number is not some string like
797        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
798        // that the string matches the "[-+]?[0-9]" regex.
799        //
800        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
801            ((StrVal[0] == '-' || StrVal[0] == '+') &&
802             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
803          // Reparse stringized version!
804          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
805            Out << StrVal.str();
806            return;
807          }
808        }
809      }
810      // Otherwise we could not reparse it to exactly the same value, so we must
811      // output the string in hexadecimal format!  Note that loading and storing
812      // floating point types changes the bits of NaNs on some hosts, notably
813      // x86, so we must not use these types.
814      assert(sizeof(double) == sizeof(uint64_t) &&
815             "assuming that double is 64 bits!");
816      char Buffer[40];
817      APFloat apf = CFP->getValueAPF();
818      // Halves and floats are represented in ASCII IR as double, convert.
819      if (!isDouble)
820        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
821                          &ignored);
822      Out << "0x" <<
823              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
824                            Buffer+40);
825      return;
826    }
827
828    // Either half, or some form of long double.
829    // These appear as a magic letter identifying the type, then a
830    // fixed number of hex digits.
831    Out << "0x";
832    // Bit position, in the current word, of the next nibble to print.
833    int shiftcount;
834
835    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
836      Out << 'K';
837      // api needed to prevent premature destruction
838      APInt api = CFP->getValueAPF().bitcastToAPInt();
839      const uint64_t* p = api.getRawData();
840      uint64_t word = p[1];
841      shiftcount = 12;
842      int width = api.getBitWidth();
843      for (int j=0; j<width; j+=4, shiftcount-=4) {
844        unsigned int nibble = (word>>shiftcount) & 15;
845        if (nibble < 10)
846          Out << (unsigned char)(nibble + '0');
847        else
848          Out << (unsigned char)(nibble - 10 + 'A');
849        if (shiftcount == 0 && j+4 < width) {
850          word = *p;
851          shiftcount = 64;
852          if (width-j-4 < 64)
853            shiftcount = width-j-4;
854        }
855      }
856      return;
857    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
858      shiftcount = 60;
859      Out << 'L';
860    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
861      shiftcount = 60;
862      Out << 'M';
863    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
864      shiftcount = 12;
865      Out << 'H';
866    } else
867      llvm_unreachable("Unsupported floating point type");
868    // api needed to prevent premature destruction
869    APInt api = CFP->getValueAPF().bitcastToAPInt();
870    const uint64_t* p = api.getRawData();
871    uint64_t word = *p;
872    int width = api.getBitWidth();
873    for (int j=0; j<width; j+=4, shiftcount-=4) {
874      unsigned int nibble = (word>>shiftcount) & 15;
875      if (nibble < 10)
876        Out << (unsigned char)(nibble + '0');
877      else
878        Out << (unsigned char)(nibble - 10 + 'A');
879      if (shiftcount == 0 && j+4 < width) {
880        word = *(++p);
881        shiftcount = 64;
882        if (width-j-4 < 64)
883          shiftcount = width-j-4;
884      }
885    }
886    return;
887  }
888
889  if (isa<ConstantAggregateZero>(CV)) {
890    Out << "zeroinitializer";
891    return;
892  }
893
894  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
895    Out << "blockaddress(";
896    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
897                           Context);
898    Out << ", ";
899    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
900                           Context);
901    Out << ")";
902    return;
903  }
904
905  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
906    Type *ETy = CA->getType()->getElementType();
907    Out << '[';
908    TypePrinter.print(ETy, Out);
909    Out << ' ';
910    WriteAsOperandInternal(Out, CA->getOperand(0),
911                           &TypePrinter, Machine,
912                           Context);
913    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
914      Out << ", ";
915      TypePrinter.print(ETy, Out);
916      Out << ' ';
917      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
918                             Context);
919    }
920    Out << ']';
921    return;
922  }
923
924  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
925    // As a special case, print the array as a string if it is an array of
926    // i8 with ConstantInt values.
927    if (CA->isString()) {
928      Out << "c\"";
929      PrintEscapedString(CA->getAsString(), Out);
930      Out << '"';
931      return;
932    }
933
934    Type *ETy = CA->getType()->getElementType();
935    Out << '[';
936    TypePrinter.print(ETy, Out);
937    Out << ' ';
938    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
939                           &TypePrinter, Machine,
940                           Context);
941    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
942      Out << ", ";
943      TypePrinter.print(ETy, Out);
944      Out << ' ';
945      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
946                             Machine, Context);
947    }
948    Out << ']';
949    return;
950  }
951
952
953  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
954    if (CS->getType()->isPacked())
955      Out << '<';
956    Out << '{';
957    unsigned N = CS->getNumOperands();
958    if (N) {
959      Out << ' ';
960      TypePrinter.print(CS->getOperand(0)->getType(), Out);
961      Out << ' ';
962
963      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
964                             Context);
965
966      for (unsigned i = 1; i < N; i++) {
967        Out << ", ";
968        TypePrinter.print(CS->getOperand(i)->getType(), Out);
969        Out << ' ';
970
971        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
972                               Context);
973      }
974      Out << ' ';
975    }
976
977    Out << '}';
978    if (CS->getType()->isPacked())
979      Out << '>';
980    return;
981  }
982
983  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
984    Type *ETy = CV->getType()->getVectorElementType();
985    Out << '<';
986    TypePrinter.print(ETy, Out);
987    Out << ' ';
988    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
989                           Machine, Context);
990    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
991      Out << ", ";
992      TypePrinter.print(ETy, Out);
993      Out << ' ';
994      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
995                             Machine, Context);
996    }
997    Out << '>';
998    return;
999  }
1000
1001  if (isa<ConstantPointerNull>(CV)) {
1002    Out << "null";
1003    return;
1004  }
1005
1006  if (isa<UndefValue>(CV)) {
1007    Out << "undef";
1008    return;
1009  }
1010
1011  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1012    Out << CE->getOpcodeName();
1013    WriteOptimizationInfo(Out, CE);
1014    if (CE->isCompare())
1015      Out << ' ' << getPredicateText(CE->getPredicate());
1016    Out << " (";
1017
1018    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1019      TypePrinter.print((*OI)->getType(), Out);
1020      Out << ' ';
1021      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1022      if (OI+1 != CE->op_end())
1023        Out << ", ";
1024    }
1025
1026    if (CE->hasIndices()) {
1027      ArrayRef<unsigned> Indices = CE->getIndices();
1028      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1029        Out << ", " << Indices[i];
1030    }
1031
1032    if (CE->isCast()) {
1033      Out << " to ";
1034      TypePrinter.print(CE->getType(), Out);
1035    }
1036
1037    Out << ')';
1038    return;
1039  }
1040
1041  Out << "<placeholder or erroneous Constant>";
1042}
1043
1044static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1045                                    TypePrinting *TypePrinter,
1046                                    SlotTracker *Machine,
1047                                    const Module *Context) {
1048  Out << "!{";
1049  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1050    const Value *V = Node->getOperand(mi);
1051    if (V == 0)
1052      Out << "null";
1053    else {
1054      TypePrinter->print(V->getType(), Out);
1055      Out << ' ';
1056      WriteAsOperandInternal(Out, Node->getOperand(mi),
1057                             TypePrinter, Machine, Context);
1058    }
1059    if (mi + 1 != me)
1060      Out << ", ";
1061  }
1062
1063  Out << "}";
1064}
1065
1066
1067/// WriteAsOperand - Write the name of the specified value out to the specified
1068/// ostream.  This can be useful when you just want to print int %reg126, not
1069/// the whole instruction that generated it.
1070///
1071static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1072                                   TypePrinting *TypePrinter,
1073                                   SlotTracker *Machine,
1074                                   const Module *Context) {
1075  if (V->hasName()) {
1076    PrintLLVMName(Out, V);
1077    return;
1078  }
1079
1080  const Constant *CV = dyn_cast<Constant>(V);
1081  if (CV && !isa<GlobalValue>(CV)) {
1082    assert(TypePrinter && "Constants require TypePrinting!");
1083    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1084    return;
1085  }
1086
1087  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1088    Out << "asm ";
1089    if (IA->hasSideEffects())
1090      Out << "sideeffect ";
1091    if (IA->isAlignStack())
1092      Out << "alignstack ";
1093    // We don't emit the AD_ATT dialect as it's the assumed default.
1094    if (IA->getDialect() == InlineAsm::AD_Intel)
1095      Out << "inteldialect ";
1096    Out << '"';
1097    PrintEscapedString(IA->getAsmString(), Out);
1098    Out << "\", \"";
1099    PrintEscapedString(IA->getConstraintString(), Out);
1100    Out << '"';
1101    return;
1102  }
1103
1104  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1105    if (N->isFunctionLocal()) {
1106      // Print metadata inline, not via slot reference number.
1107      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1108      return;
1109    }
1110
1111    if (!Machine) {
1112      if (N->isFunctionLocal())
1113        Machine = new SlotTracker(N->getFunction());
1114      else
1115        Machine = new SlotTracker(Context);
1116    }
1117    int Slot = Machine->getMetadataSlot(N);
1118    if (Slot == -1)
1119      Out << "<badref>";
1120    else
1121      Out << '!' << Slot;
1122    return;
1123  }
1124
1125  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1126    Out << "!\"";
1127    PrintEscapedString(MDS->getString(), Out);
1128    Out << '"';
1129    return;
1130  }
1131
1132  if (V->getValueID() == Value::PseudoSourceValueVal ||
1133      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1134    V->print(Out);
1135    return;
1136  }
1137
1138  char Prefix = '%';
1139  int Slot;
1140  // If we have a SlotTracker, use it.
1141  if (Machine) {
1142    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1143      Slot = Machine->getGlobalSlot(GV);
1144      Prefix = '@';
1145    } else {
1146      Slot = Machine->getLocalSlot(V);
1147
1148      // If the local value didn't succeed, then we may be referring to a value
1149      // from a different function.  Translate it, as this can happen when using
1150      // address of blocks.
1151      if (Slot == -1)
1152        if ((Machine = createSlotTracker(V))) {
1153          Slot = Machine->getLocalSlot(V);
1154          delete Machine;
1155        }
1156    }
1157  } else if ((Machine = createSlotTracker(V))) {
1158    // Otherwise, create one to get the # and then destroy it.
1159    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1160      Slot = Machine->getGlobalSlot(GV);
1161      Prefix = '@';
1162    } else {
1163      Slot = Machine->getLocalSlot(V);
1164    }
1165    delete Machine;
1166    Machine = 0;
1167  } else {
1168    Slot = -1;
1169  }
1170
1171  if (Slot != -1)
1172    Out << Prefix << Slot;
1173  else
1174    Out << "<badref>";
1175}
1176
1177void WriteAsOperand(raw_ostream &Out, const Value *V,
1178                    bool PrintType, const Module *Context) {
1179
1180  // Fast path: Don't construct and populate a TypePrinting object if we
1181  // won't be needing any types printed.
1182  if (!PrintType &&
1183      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1184       V->hasName() || isa<GlobalValue>(V))) {
1185    WriteAsOperandInternal(Out, V, 0, 0, Context);
1186    return;
1187  }
1188
1189  if (Context == 0) Context = getModuleFromVal(V);
1190
1191  TypePrinting TypePrinter;
1192  if (Context)
1193    TypePrinter.incorporateTypes(*Context);
1194  if (PrintType) {
1195    TypePrinter.print(V->getType(), Out);
1196    Out << ' ';
1197  }
1198
1199  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1200}
1201
1202void AssemblyWriter::init() {
1203  if (TheModule)
1204    TypePrinter.incorporateTypes(*TheModule);
1205}
1206
1207
1208AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1209                               const Module *M,
1210                               AssemblyAnnotationWriter *AAW)
1211  : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
1212  init();
1213}
1214
1215AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
1216                               AssemblyAnnotationWriter *AAW)
1217  : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
1218    Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
1219  init();
1220}
1221
1222AssemblyWriter::~AssemblyWriter() { }
1223
1224void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1225  if (Operand == 0) {
1226    Out << "<null operand!>";
1227    return;
1228  }
1229  if (PrintType) {
1230    TypePrinter.print(Operand->getType(), Out);
1231    Out << ' ';
1232  }
1233  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1234}
1235
1236void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1237                                 SynchronizationScope SynchScope) {
1238  if (Ordering == NotAtomic)
1239    return;
1240
1241  switch (SynchScope) {
1242  case SingleThread: Out << " singlethread"; break;
1243  case CrossThread: break;
1244  }
1245
1246  switch (Ordering) {
1247  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1248  case Unordered: Out << " unordered"; break;
1249  case Monotonic: Out << " monotonic"; break;
1250  case Acquire: Out << " acquire"; break;
1251  case Release: Out << " release"; break;
1252  case AcquireRelease: Out << " acq_rel"; break;
1253  case SequentiallyConsistent: Out << " seq_cst"; break;
1254  }
1255}
1256
1257void AssemblyWriter::writeParamOperand(const Value *Operand,
1258                                       AttributeSet Attrs, unsigned Idx) {
1259  if (Operand == 0) {
1260    Out << "<null operand!>";
1261    return;
1262  }
1263
1264  // Print the type
1265  TypePrinter.print(Operand->getType(), Out);
1266  // Print parameter attributes list
1267  if (Attrs.hasAttributes(Idx))
1268    Out << ' ' << Attrs.getAsString(Idx);
1269  Out << ' ';
1270  // Print the operand
1271  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1272}
1273
1274void AssemblyWriter::printModule(const Module *M) {
1275  Machine.initialize();
1276
1277  if (!M->getModuleIdentifier().empty() &&
1278      // Don't print the ID if it will start a new line (which would
1279      // require a comment char before it).
1280      M->getModuleIdentifier().find('\n') == std::string::npos)
1281    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1282
1283  if (!M->getDataLayout().empty())
1284    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1285  if (!M->getTargetTriple().empty())
1286    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1287
1288  if (!M->getModuleInlineAsm().empty()) {
1289    // Split the string into lines, to make it easier to read the .ll file.
1290    std::string Asm = M->getModuleInlineAsm();
1291    size_t CurPos = 0;
1292    size_t NewLine = Asm.find_first_of('\n', CurPos);
1293    Out << '\n';
1294    while (NewLine != std::string::npos) {
1295      // We found a newline, print the portion of the asm string from the
1296      // last newline up to this newline.
1297      Out << "module asm \"";
1298      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1299                         Out);
1300      Out << "\"\n";
1301      CurPos = NewLine+1;
1302      NewLine = Asm.find_first_of('\n', CurPos);
1303    }
1304    std::string rest(Asm.begin()+CurPos, Asm.end());
1305    if (!rest.empty()) {
1306      Out << "module asm \"";
1307      PrintEscapedString(rest, Out);
1308      Out << "\"\n";
1309    }
1310  }
1311
1312  printTypeIdentities();
1313
1314  // Output all globals.
1315  if (!M->global_empty()) Out << '\n';
1316  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1317       I != E; ++I) {
1318    printGlobal(I); Out << '\n';
1319  }
1320
1321  // Output all aliases.
1322  if (!M->alias_empty()) Out << "\n";
1323  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1324       I != E; ++I)
1325    printAlias(I);
1326
1327  // Output all of the functions.
1328  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1329    printFunction(I);
1330
1331  // Output all attribute groups.
1332  if (!Machine.as_empty()) {
1333    Out << '\n';
1334    writeAllAttributeGroups();
1335  }
1336
1337  // Output named metadata.
1338  if (!M->named_metadata_empty()) Out << '\n';
1339
1340  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1341       E = M->named_metadata_end(); I != E; ++I)
1342    printNamedMDNode(I);
1343
1344  // Output metadata.
1345  if (!Machine.mdn_empty()) {
1346    Out << '\n';
1347    writeAllMDNodes();
1348  }
1349}
1350
1351void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1352  Out << '!';
1353  StringRef Name = NMD->getName();
1354  if (Name.empty()) {
1355    Out << "<empty name> ";
1356  } else {
1357    if (isalpha(static_cast<unsigned char>(Name[0])) ||
1358        Name[0] == '-' || Name[0] == '$' ||
1359        Name[0] == '.' || Name[0] == '_')
1360      Out << Name[0];
1361    else
1362      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1363    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1364      unsigned char C = Name[i];
1365      if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
1366          C == '.' || C == '_')
1367        Out << C;
1368      else
1369        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1370    }
1371  }
1372  Out << " = !{";
1373  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1374    if (i) Out << ", ";
1375    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1376    if (Slot == -1)
1377      Out << "<badref>";
1378    else
1379      Out << '!' << Slot;
1380  }
1381  Out << "}\n";
1382}
1383
1384
1385static void PrintLinkage(GlobalValue::LinkageTypes LT,
1386                         formatted_raw_ostream &Out) {
1387  switch (LT) {
1388  case GlobalValue::ExternalLinkage: break;
1389  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1390  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1391  case GlobalValue::LinkerPrivateWeakLinkage:
1392    Out << "linker_private_weak ";
1393    break;
1394  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1395  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1396  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1397  case GlobalValue::LinkOnceODRAutoHideLinkage:
1398    Out << "linkonce_odr_auto_hide ";
1399    break;
1400  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1401  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1402  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1403  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1404  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1405  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1406  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1407  case GlobalValue::AvailableExternallyLinkage:
1408    Out << "available_externally ";
1409    break;
1410  }
1411}
1412
1413
1414static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1415                            formatted_raw_ostream &Out) {
1416  switch (Vis) {
1417  case GlobalValue::DefaultVisibility: break;
1418  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1419  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1420  }
1421}
1422
1423static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1424                                  formatted_raw_ostream &Out) {
1425  switch (TLM) {
1426    case GlobalVariable::NotThreadLocal:
1427      break;
1428    case GlobalVariable::GeneralDynamicTLSModel:
1429      Out << "thread_local ";
1430      break;
1431    case GlobalVariable::LocalDynamicTLSModel:
1432      Out << "thread_local(localdynamic) ";
1433      break;
1434    case GlobalVariable::InitialExecTLSModel:
1435      Out << "thread_local(initialexec) ";
1436      break;
1437    case GlobalVariable::LocalExecTLSModel:
1438      Out << "thread_local(localexec) ";
1439      break;
1440  }
1441}
1442
1443void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1444  if (GV->isMaterializable())
1445    Out << "; Materializable\n";
1446
1447  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1448  Out << " = ";
1449
1450  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1451    Out << "external ";
1452
1453  PrintLinkage(GV->getLinkage(), Out);
1454  PrintVisibility(GV->getVisibility(), Out);
1455  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1456
1457  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1458    Out << "addrspace(" << AddressSpace << ") ";
1459  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1460  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
1461  Out << (GV->isConstant() ? "constant " : "global ");
1462  TypePrinter.print(GV->getType()->getElementType(), Out);
1463
1464  if (GV->hasInitializer()) {
1465    Out << ' ';
1466    writeOperand(GV->getInitializer(), false);
1467  }
1468
1469  if (GV->hasSection()) {
1470    Out << ", section \"";
1471    PrintEscapedString(GV->getSection(), Out);
1472    Out << '"';
1473  }
1474  if (GV->getAlignment())
1475    Out << ", align " << GV->getAlignment();
1476
1477  printInfoComment(*GV);
1478}
1479
1480void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1481  if (GA->isMaterializable())
1482    Out << "; Materializable\n";
1483
1484  // Don't crash when dumping partially built GA
1485  if (!GA->hasName())
1486    Out << "<<nameless>> = ";
1487  else {
1488    PrintLLVMName(Out, GA);
1489    Out << " = ";
1490  }
1491  PrintVisibility(GA->getVisibility(), Out);
1492
1493  Out << "alias ";
1494
1495  PrintLinkage(GA->getLinkage(), Out);
1496
1497  const Constant *Aliasee = GA->getAliasee();
1498
1499  if (Aliasee == 0) {
1500    TypePrinter.print(GA->getType(), Out);
1501    Out << " <<NULL ALIASEE>>";
1502  } else {
1503    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1504  }
1505
1506  printInfoComment(*GA);
1507  Out << '\n';
1508}
1509
1510void AssemblyWriter::printTypeIdentities() {
1511  if (TypePrinter.NumberedTypes.empty() &&
1512      TypePrinter.NamedTypes.empty())
1513    return;
1514
1515  Out << '\n';
1516
1517  // We know all the numbers that each type is used and we know that it is a
1518  // dense assignment.  Convert the map to an index table.
1519  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1520  for (DenseMap<StructType*, unsigned>::iterator I =
1521       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1522       I != E; ++I) {
1523    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1524    NumberedTypes[I->second] = I->first;
1525  }
1526
1527  // Emit all numbered types.
1528  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1529    Out << '%' << i << " = type ";
1530
1531    // Make sure we print out at least one level of the type structure, so
1532    // that we do not get %2 = type %2
1533    TypePrinter.printStructBody(NumberedTypes[i], Out);
1534    Out << '\n';
1535  }
1536
1537  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1538    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1539    Out << " = type ";
1540
1541    // Make sure we print out at least one level of the type structure, so
1542    // that we do not get %FILE = type %FILE
1543    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1544    Out << '\n';
1545  }
1546}
1547
1548/// printFunction - Print all aspects of a function.
1549///
1550void AssemblyWriter::printFunction(const Function *F) {
1551  // Print out the return type and name.
1552  Out << '\n';
1553
1554  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1555
1556  if (F->isMaterializable())
1557    Out << "; Materializable\n";
1558
1559  const AttributeSet &Attrs = F->getAttributes();
1560  if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
1561    AttributeSet AS = Attrs.getFnAttributes();
1562    std::string AttrStr;
1563
1564    unsigned Idx = 0;
1565    for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
1566      if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
1567        break;
1568
1569    for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
1570         I != E; ++I) {
1571      Attribute Attr = *I;
1572      if (!Attr.isStringAttribute()) {
1573        if (!AttrStr.empty()) AttrStr += ' ';
1574        AttrStr += Attr.getAsString();
1575      }
1576    }
1577
1578    if (!AttrStr.empty())
1579      Out << "; Function Attrs: " << AttrStr << '\n';
1580  }
1581
1582  if (F->isDeclaration())
1583    Out << "declare ";
1584  else
1585    Out << "define ";
1586
1587  PrintLinkage(F->getLinkage(), Out);
1588  PrintVisibility(F->getVisibility(), Out);
1589
1590  // Print the calling convention.
1591  if (F->getCallingConv() != CallingConv::C) {
1592    PrintCallingConv(F->getCallingConv(), Out);
1593    Out << " ";
1594  }
1595
1596  FunctionType *FT = F->getFunctionType();
1597  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1598    Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
1599  TypePrinter.print(F->getReturnType(), Out);
1600  Out << ' ';
1601  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1602  Out << '(';
1603  Machine.incorporateFunction(F);
1604
1605  // Loop over the arguments, printing them...
1606
1607  unsigned Idx = 1;
1608  if (!F->isDeclaration()) {
1609    // If this isn't a declaration, print the argument names as well.
1610    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1611         I != E; ++I) {
1612      // Insert commas as we go... the first arg doesn't get a comma
1613      if (I != F->arg_begin()) Out << ", ";
1614      printArgument(I, Attrs, Idx);
1615      Idx++;
1616    }
1617  } else {
1618    // Otherwise, print the types from the function type.
1619    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1620      // Insert commas as we go... the first arg doesn't get a comma
1621      if (i) Out << ", ";
1622
1623      // Output type...
1624      TypePrinter.print(FT->getParamType(i), Out);
1625
1626      if (Attrs.hasAttributes(i+1))
1627        Out << ' ' << Attrs.getAsString(i+1);
1628    }
1629  }
1630
1631  // Finish printing arguments...
1632  if (FT->isVarArg()) {
1633    if (FT->getNumParams()) Out << ", ";
1634    Out << "...";  // Output varargs portion of signature!
1635  }
1636  Out << ')';
1637  if (F->hasUnnamedAddr())
1638    Out << " unnamed_addr";
1639  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1640    Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
1641  if (F->hasSection()) {
1642    Out << " section \"";
1643    PrintEscapedString(F->getSection(), Out);
1644    Out << '"';
1645  }
1646  if (F->getAlignment())
1647    Out << " align " << F->getAlignment();
1648  if (F->hasGC())
1649    Out << " gc \"" << F->getGC() << '"';
1650  if (F->hasPrefixData()) {
1651    Out << " prefix ";
1652    writeOperand(F->getPrefixData(), true);
1653  }
1654  if (F->isDeclaration()) {
1655    Out << '\n';
1656  } else {
1657    Out << " {";
1658    // Output all of the function's basic blocks.
1659    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1660      printBasicBlock(I);
1661
1662    Out << "}\n";
1663  }
1664
1665  Machine.purgeFunction();
1666}
1667
1668/// printArgument - This member is called for every argument that is passed into
1669/// the function.  Simply print it out
1670///
1671void AssemblyWriter::printArgument(const Argument *Arg,
1672                                   AttributeSet Attrs, unsigned Idx) {
1673  // Output type...
1674  TypePrinter.print(Arg->getType(), Out);
1675
1676  // Output parameter attributes list
1677  if (Attrs.hasAttributes(Idx))
1678    Out << ' ' << Attrs.getAsString(Idx);
1679
1680  // Output name, if available...
1681  if (Arg->hasName()) {
1682    Out << ' ';
1683    PrintLLVMName(Out, Arg);
1684  }
1685}
1686
1687/// printBasicBlock - This member is called for each basic block in a method.
1688///
1689void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1690  if (BB->hasName()) {              // Print out the label if it exists...
1691    Out << "\n";
1692    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1693    Out << ':';
1694  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1695    Out << "\n; <label>:";
1696    int Slot = Machine.getLocalSlot(BB);
1697    if (Slot != -1)
1698      Out << Slot;
1699    else
1700      Out << "<badref>";
1701  }
1702
1703  if (BB->getParent() == 0) {
1704    Out.PadToColumn(50);
1705    Out << "; Error: Block without parent!";
1706  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1707    // Output predecessors for the block.
1708    Out.PadToColumn(50);
1709    Out << ";";
1710    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1711
1712    if (PI == PE) {
1713      Out << " No predecessors!";
1714    } else {
1715      Out << " preds = ";
1716      writeOperand(*PI, false);
1717      for (++PI; PI != PE; ++PI) {
1718        Out << ", ";
1719        writeOperand(*PI, false);
1720      }
1721    }
1722  }
1723
1724  Out << "\n";
1725
1726  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1727
1728  // Output all of the instructions in the basic block...
1729  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1730    printInstructionLine(*I);
1731  }
1732
1733  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1734}
1735
1736/// printInstructionLine - Print an instruction and a newline character.
1737void AssemblyWriter::printInstructionLine(const Instruction &I) {
1738  printInstruction(I);
1739  Out << '\n';
1740}
1741
1742/// printInfoComment - Print a little comment after the instruction indicating
1743/// which slot it occupies.
1744///
1745void AssemblyWriter::printInfoComment(const Value &V) {
1746  if (AnnotationWriter)
1747    AnnotationWriter->printInfoComment(V, Out);
1748}
1749
1750// This member is called for each Instruction in a function..
1751void AssemblyWriter::printInstruction(const Instruction &I) {
1752  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1753
1754  // Print out indentation for an instruction.
1755  Out << "  ";
1756
1757  // Print out name if it exists...
1758  if (I.hasName()) {
1759    PrintLLVMName(Out, &I);
1760    Out << " = ";
1761  } else if (!I.getType()->isVoidTy()) {
1762    // Print out the def slot taken.
1763    int SlotNum = Machine.getLocalSlot(&I);
1764    if (SlotNum == -1)
1765      Out << "<badref> = ";
1766    else
1767      Out << '%' << SlotNum << " = ";
1768  }
1769
1770  if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1771    Out << "tail ";
1772
1773  // Print out the opcode...
1774  Out << I.getOpcodeName();
1775
1776  // If this is an atomic load or store, print out the atomic marker.
1777  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
1778      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1779    Out << " atomic";
1780
1781  // If this is a volatile operation, print out the volatile marker.
1782  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1783      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1784      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1785      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1786    Out << " volatile";
1787
1788  // Print out optimization information.
1789  WriteOptimizationInfo(Out, &I);
1790
1791  // Print out the compare instruction predicates
1792  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1793    Out << ' ' << getPredicateText(CI->getPredicate());
1794
1795  // Print out the atomicrmw operation
1796  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1797    writeAtomicRMWOperation(Out, RMWI->getOperation());
1798
1799  // Print out the type of the operands...
1800  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1801
1802  // Special case conditional branches to swizzle the condition out to the front
1803  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1804    const BranchInst &BI(cast<BranchInst>(I));
1805    Out << ' ';
1806    writeOperand(BI.getCondition(), true);
1807    Out << ", ";
1808    writeOperand(BI.getSuccessor(0), true);
1809    Out << ", ";
1810    writeOperand(BI.getSuccessor(1), true);
1811
1812  } else if (isa<SwitchInst>(I)) {
1813    const SwitchInst& SI(cast<SwitchInst>(I));
1814    // Special case switch instruction to get formatting nice and correct.
1815    Out << ' ';
1816    writeOperand(SI.getCondition(), true);
1817    Out << ", ";
1818    writeOperand(SI.getDefaultDest(), true);
1819    Out << " [";
1820    for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1821         i != e; ++i) {
1822      Out << "\n    ";
1823      writeOperand(i.getCaseValue(), true);
1824      Out << ", ";
1825      writeOperand(i.getCaseSuccessor(), true);
1826    }
1827    Out << "\n  ]";
1828  } else if (isa<IndirectBrInst>(I)) {
1829    // Special case indirectbr instruction to get formatting nice and correct.
1830    Out << ' ';
1831    writeOperand(Operand, true);
1832    Out << ", [";
1833
1834    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1835      if (i != 1)
1836        Out << ", ";
1837      writeOperand(I.getOperand(i), true);
1838    }
1839    Out << ']';
1840  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1841    Out << ' ';
1842    TypePrinter.print(I.getType(), Out);
1843    Out << ' ';
1844
1845    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1846      if (op) Out << ", ";
1847      Out << "[ ";
1848      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1849      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1850    }
1851  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1852    Out << ' ';
1853    writeOperand(I.getOperand(0), true);
1854    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1855      Out << ", " << *i;
1856  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1857    Out << ' ';
1858    writeOperand(I.getOperand(0), true); Out << ", ";
1859    writeOperand(I.getOperand(1), true);
1860    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1861      Out << ", " << *i;
1862  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1863    Out << ' ';
1864    TypePrinter.print(I.getType(), Out);
1865    Out << " personality ";
1866    writeOperand(I.getOperand(0), true); Out << '\n';
1867
1868    if (LPI->isCleanup())
1869      Out << "          cleanup";
1870
1871    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1872      if (i != 0 || LPI->isCleanup()) Out << "\n";
1873      if (LPI->isCatch(i))
1874        Out << "          catch ";
1875      else
1876        Out << "          filter ";
1877
1878      writeOperand(LPI->getClause(i), true);
1879    }
1880  } else if (isa<ReturnInst>(I) && !Operand) {
1881    Out << " void";
1882  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1883    // Print the calling convention being used.
1884    if (CI->getCallingConv() != CallingConv::C) {
1885      Out << " ";
1886      PrintCallingConv(CI->getCallingConv(), Out);
1887    }
1888
1889    Operand = CI->getCalledValue();
1890    PointerType *PTy = cast<PointerType>(Operand->getType());
1891    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1892    Type *RetTy = FTy->getReturnType();
1893    const AttributeSet &PAL = CI->getAttributes();
1894
1895    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1896      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1897
1898    // If possible, print out the short form of the call instruction.  We can
1899    // only do this if the first argument is a pointer to a nonvararg function,
1900    // and if the return type is not a pointer to a function.
1901    //
1902    Out << ' ';
1903    if (!FTy->isVarArg() &&
1904        (!RetTy->isPointerTy() ||
1905         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1906      TypePrinter.print(RetTy, Out);
1907      Out << ' ';
1908      writeOperand(Operand, false);
1909    } else {
1910      writeOperand(Operand, true);
1911    }
1912    Out << '(';
1913    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1914      if (op > 0)
1915        Out << ", ";
1916      writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
1917    }
1918    Out << ')';
1919    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1920      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
1921  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1922    Operand = II->getCalledValue();
1923    PointerType *PTy = cast<PointerType>(Operand->getType());
1924    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1925    Type *RetTy = FTy->getReturnType();
1926    const AttributeSet &PAL = II->getAttributes();
1927
1928    // Print the calling convention being used.
1929    if (II->getCallingConv() != CallingConv::C) {
1930      Out << " ";
1931      PrintCallingConv(II->getCallingConv(), Out);
1932    }
1933
1934    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1935      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1936
1937    // If possible, print out the short form of the invoke instruction. We can
1938    // only do this if the first argument is a pointer to a nonvararg function,
1939    // and if the return type is not a pointer to a function.
1940    //
1941    Out << ' ';
1942    if (!FTy->isVarArg() &&
1943        (!RetTy->isPointerTy() ||
1944         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1945      TypePrinter.print(RetTy, Out);
1946      Out << ' ';
1947      writeOperand(Operand, false);
1948    } else {
1949      writeOperand(Operand, true);
1950    }
1951    Out << '(';
1952    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1953      if (op)
1954        Out << ", ";
1955      writeParamOperand(II->getArgOperand(op), PAL, op + 1);
1956    }
1957
1958    Out << ')';
1959    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1960      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
1961
1962    Out << "\n          to ";
1963    writeOperand(II->getNormalDest(), true);
1964    Out << " unwind ";
1965    writeOperand(II->getUnwindDest(), true);
1966
1967  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1968    Out << ' ';
1969    TypePrinter.print(AI->getAllocatedType(), Out);
1970    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1971      Out << ", ";
1972      writeOperand(AI->getArraySize(), true);
1973    }
1974    if (AI->getAlignment()) {
1975      Out << ", align " << AI->getAlignment();
1976    }
1977  } else if (isa<CastInst>(I)) {
1978    if (Operand) {
1979      Out << ' ';
1980      writeOperand(Operand, true);   // Work with broken code
1981    }
1982    Out << " to ";
1983    TypePrinter.print(I.getType(), Out);
1984  } else if (isa<VAArgInst>(I)) {
1985    if (Operand) {
1986      Out << ' ';
1987      writeOperand(Operand, true);   // Work with broken code
1988    }
1989    Out << ", ";
1990    TypePrinter.print(I.getType(), Out);
1991  } else if (Operand) {   // Print the normal way.
1992
1993    // PrintAllTypes - Instructions who have operands of all the same type
1994    // omit the type from all but the first operand.  If the instruction has
1995    // different type operands (for example br), then they are all printed.
1996    bool PrintAllTypes = false;
1997    Type *TheType = Operand->getType();
1998
1999    // Select, Store and ShuffleVector always print all types.
2000    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2001        || isa<ReturnInst>(I)) {
2002      PrintAllTypes = true;
2003    } else {
2004      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2005        Operand = I.getOperand(i);
2006        // note that Operand shouldn't be null, but the test helps make dump()
2007        // more tolerant of malformed IR
2008        if (Operand && Operand->getType() != TheType) {
2009          PrintAllTypes = true;    // We have differing types!  Print them all!
2010          break;
2011        }
2012      }
2013    }
2014
2015    if (!PrintAllTypes) {
2016      Out << ' ';
2017      TypePrinter.print(TheType, Out);
2018    }
2019
2020    Out << ' ';
2021    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2022      if (i) Out << ", ";
2023      writeOperand(I.getOperand(i), PrintAllTypes);
2024    }
2025  }
2026
2027  // Print atomic ordering/alignment for memory operations
2028  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
2029    if (LI->isAtomic())
2030      writeAtomic(LI->getOrdering(), LI->getSynchScope());
2031    if (LI->getAlignment())
2032      Out << ", align " << LI->getAlignment();
2033  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
2034    if (SI->isAtomic())
2035      writeAtomic(SI->getOrdering(), SI->getSynchScope());
2036    if (SI->getAlignment())
2037      Out << ", align " << SI->getAlignment();
2038  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
2039    writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
2040  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
2041    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2042  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2043    writeAtomic(FI->getOrdering(), FI->getSynchScope());
2044  }
2045
2046  // Print Metadata info.
2047  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2048  I.getAllMetadata(InstMD);
2049  if (!InstMD.empty()) {
2050    SmallVector<StringRef, 8> MDNames;
2051    I.getType()->getContext().getMDKindNames(MDNames);
2052    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2053      unsigned Kind = InstMD[i].first;
2054       if (Kind < MDNames.size()) {
2055         Out << ", !" << MDNames[Kind];
2056       } else {
2057         Out << ", !<unknown kind #" << Kind << ">";
2058       }
2059      Out << ' ';
2060      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2061                             TheModule);
2062    }
2063  }
2064  printInfoComment(I);
2065}
2066
2067static void WriteMDNodeComment(const MDNode *Node,
2068                               formatted_raw_ostream &Out) {
2069  if (Node->getNumOperands() < 1)
2070    return;
2071
2072  Value *Op = Node->getOperand(0);
2073  if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2074    return;
2075
2076  DIDescriptor Desc(Node);
2077  if (!Desc.Verify())
2078    return;
2079
2080  unsigned Tag = Desc.getTag();
2081  Out.PadToColumn(50);
2082  if (dwarf::TagString(Tag)) {
2083    Out << "; ";
2084    Desc.print(Out);
2085  } else if (Tag == dwarf::DW_TAG_user_base) {
2086    Out << "; [ DW_TAG_user_base ]";
2087  }
2088}
2089
2090void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
2091  Out << '!' << Slot << " = metadata ";
2092  printMDNodeBody(Node);
2093}
2094
2095void AssemblyWriter::writeAllMDNodes() {
2096  SmallVector<const MDNode *, 16> Nodes;
2097  Nodes.resize(Machine.mdn_size());
2098  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2099       I != E; ++I)
2100    Nodes[I->second] = cast<MDNode>(I->first);
2101
2102  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2103    writeMDNode(i, Nodes[i]);
2104  }
2105}
2106
2107void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2108  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2109  WriteMDNodeComment(Node, Out);
2110  Out << "\n";
2111}
2112
2113void AssemblyWriter::writeAllAttributeGroups() {
2114  std::vector<std::pair<AttributeSet, unsigned> > asVec;
2115  asVec.resize(Machine.as_size());
2116
2117  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
2118       I != E; ++I)
2119    asVec[I->second] = *I;
2120
2121  for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
2122         I = asVec.begin(), E = asVec.end(); I != E; ++I)
2123    Out << "attributes #" << I->second << " = { "
2124        << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
2125}
2126
2127} // namespace llvm
2128
2129//===----------------------------------------------------------------------===//
2130//                       External Interface declarations
2131//===----------------------------------------------------------------------===//
2132
2133void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2134  SlotTracker SlotTable(this);
2135  formatted_raw_ostream OS(ROS);
2136  AssemblyWriter W(OS, SlotTable, this, AAW);
2137  W.printModule(this);
2138}
2139
2140void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2141  SlotTracker SlotTable(getParent());
2142  formatted_raw_ostream OS(ROS);
2143  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2144  W.printNamedMDNode(this);
2145}
2146
2147void Type::print(raw_ostream &OS) const {
2148  if (this == 0) {
2149    OS << "<null Type>";
2150    return;
2151  }
2152  TypePrinting TP;
2153  TP.print(const_cast<Type*>(this), OS);
2154
2155  // If the type is a named struct type, print the body as well.
2156  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2157    if (!STy->isLiteral()) {
2158      OS << " = type ";
2159      TP.printStructBody(STy, OS);
2160    }
2161}
2162
2163void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2164  if (this == 0) {
2165    ROS << "printing a <null> value\n";
2166    return;
2167  }
2168  formatted_raw_ostream OS(ROS);
2169  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2170    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2171    SlotTracker SlotTable(F);
2172    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2173    W.printInstruction(*I);
2174  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2175    SlotTracker SlotTable(BB->getParent());
2176    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2177    W.printBasicBlock(BB);
2178  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2179    SlotTracker SlotTable(GV->getParent());
2180    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2181    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2182      W.printGlobal(V);
2183    else if (const Function *F = dyn_cast<Function>(GV))
2184      W.printFunction(F);
2185    else
2186      W.printAlias(cast<GlobalAlias>(GV));
2187  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2188    const Function *F = N->getFunction();
2189    SlotTracker SlotTable(F);
2190    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2191    W.printMDNodeBody(N);
2192  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2193    TypePrinting TypePrinter;
2194    TypePrinter.print(C->getType(), OS);
2195    OS << ' ';
2196    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2197  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2198             isa<Argument>(this)) {
2199    WriteAsOperand(OS, this, true, 0);
2200  } else {
2201    // Otherwise we don't know what it is. Call the virtual function to
2202    // allow a subclass to print itself.
2203    printCustom(OS);
2204  }
2205}
2206
2207// Value::printCustom - subclasses should override this to implement printing.
2208void Value::printCustom(raw_ostream &OS) const {
2209  llvm_unreachable("Unknown value to print out!");
2210}
2211
2212// Value::dump - allow easy printing of Values from the debugger.
2213void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2214
2215// Type::dump - allow easy printing of Types from the debugger.
2216void Type::dump() const { print(dbgs()); }
2217
2218// Module::dump() - Allow printing of Modules from the debugger.
2219void Module::dump() const { print(dbgs(), 0); }
2220
2221// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2222void NamedMDNode::dump() const { print(dbgs(), 0); }
2223