AsmWriter.cpp revision 7ab6c76ad1cbf36284ca5b6bd5ee33c625fe3e60
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This library implements the functionality defined in llvm/Assembly/Writer.h 11// 12// Note that these routines must be extremely tolerant of various errors in the 13// LLVM code, because it can be used for debugging transformations. 14// 15//===----------------------------------------------------------------------===// 16 17#include "llvm/Assembly/Writer.h" 18#include "llvm/ADT/DenseMap.h" 19#include "llvm/ADT/STLExtras.h" 20#include "llvm/ADT/SmallString.h" 21#include "llvm/ADT/StringExtras.h" 22#include "llvm/Assembly/AssemblyAnnotationWriter.h" 23#include "llvm/Assembly/PrintModulePass.h" 24#include "llvm/DebugInfo.h" 25#include "llvm/IR/CallingConv.h" 26#include "llvm/IR/Constants.h" 27#include "llvm/IR/DerivedTypes.h" 28#include "llvm/IR/InlineAsm.h" 29#include "llvm/IR/IntrinsicInst.h" 30#include "llvm/IR/LLVMContext.h" 31#include "llvm/IR/Module.h" 32#include "llvm/IR/Operator.h" 33#include "llvm/IR/TypeFinder.h" 34#include "llvm/IR/ValueSymbolTable.h" 35#include "llvm/Support/CFG.h" 36#include "llvm/Support/Debug.h" 37#include "llvm/Support/Dwarf.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/FormattedStream.h" 40#include "llvm/Support/MathExtras.h" 41#include <algorithm> 42#include <cctype> 43using namespace llvm; 44 45// Make virtual table appear in this compilation unit. 46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} 47 48//===----------------------------------------------------------------------===// 49// Helper Functions 50//===----------------------------------------------------------------------===// 51 52static const Module *getModuleFromVal(const Value *V) { 53 if (const Argument *MA = dyn_cast<Argument>(V)) 54 return MA->getParent() ? MA->getParent()->getParent() : 0; 55 56 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 57 return BB->getParent() ? BB->getParent()->getParent() : 0; 58 59 if (const Instruction *I = dyn_cast<Instruction>(V)) { 60 const Function *M = I->getParent() ? I->getParent()->getParent() : 0; 61 return M ? M->getParent() : 0; 62 } 63 64 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 65 return GV->getParent(); 66 return 0; 67} 68 69static void PrintCallingConv(unsigned cc, raw_ostream &Out) { 70 switch (cc) { 71 default: Out << "cc" << cc; break; 72 case CallingConv::Fast: Out << "fastcc"; break; 73 case CallingConv::Cold: Out << "coldcc"; break; 74 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; 75 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; 76 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; 77 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; 78 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; 79 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; 80 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; 81 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; 82 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; 83 case CallingConv::PTX_Device: Out << "ptx_device"; break; 84 } 85} 86 87// PrintEscapedString - Print each character of the specified string, escaping 88// it if it is not printable or if it is an escape char. 89static void PrintEscapedString(StringRef Name, raw_ostream &Out) { 90 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 91 unsigned char C = Name[i]; 92 if (isprint(C) && C != '\\' && C != '"') 93 Out << C; 94 else 95 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 96 } 97} 98 99enum PrefixType { 100 GlobalPrefix, 101 LabelPrefix, 102 LocalPrefix, 103 NoPrefix 104}; 105 106/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either 107/// prefixed with % (if the string only contains simple characters) or is 108/// surrounded with ""'s (if it has special chars in it). Print it out. 109static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 110 assert(!Name.empty() && "Cannot get empty name!"); 111 switch (Prefix) { 112 case NoPrefix: break; 113 case GlobalPrefix: OS << '@'; break; 114 case LabelPrefix: break; 115 case LocalPrefix: OS << '%'; break; 116 } 117 118 // Scan the name to see if it needs quotes first. 119 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); 120 if (!NeedsQuotes) { 121 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 122 // By making this unsigned, the value passed in to isalnum will always be 123 // in the range 0-255. This is important when building with MSVC because 124 // its implementation will assert. This situation can arise when dealing 125 // with UTF-8 multibyte characters. 126 unsigned char C = Name[i]; 127 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && 128 C != '_') { 129 NeedsQuotes = true; 130 break; 131 } 132 } 133 } 134 135 // If we didn't need any quotes, just write out the name in one blast. 136 if (!NeedsQuotes) { 137 OS << Name; 138 return; 139 } 140 141 // Okay, we need quotes. Output the quotes and escape any scary characters as 142 // needed. 143 OS << '"'; 144 PrintEscapedString(Name, OS); 145 OS << '"'; 146} 147 148/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either 149/// prefixed with % (if the string only contains simple characters) or is 150/// surrounded with ""'s (if it has special chars in it). Print it out. 151static void PrintLLVMName(raw_ostream &OS, const Value *V) { 152 PrintLLVMName(OS, V->getName(), 153 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 154} 155 156//===----------------------------------------------------------------------===// 157// TypePrinting Class: Type printing machinery 158//===----------------------------------------------------------------------===// 159 160/// TypePrinting - Type printing machinery. 161namespace { 162class TypePrinting { 163 TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION; 164 void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION; 165public: 166 167 /// NamedTypes - The named types that are used by the current module. 168 TypeFinder NamedTypes; 169 170 /// NumberedTypes - The numbered types, along with their value. 171 DenseMap<StructType*, unsigned> NumberedTypes; 172 173 174 TypePrinting() {} 175 ~TypePrinting() {} 176 177 void incorporateTypes(const Module &M); 178 179 void print(Type *Ty, raw_ostream &OS); 180 181 void printStructBody(StructType *Ty, raw_ostream &OS); 182}; 183} // end anonymous namespace. 184 185 186void TypePrinting::incorporateTypes(const Module &M) { 187 NamedTypes.run(M, false); 188 189 // The list of struct types we got back includes all the struct types, split 190 // the unnamed ones out to a numbering and remove the anonymous structs. 191 unsigned NextNumber = 0; 192 193 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 194 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 195 StructType *STy = *I; 196 197 // Ignore anonymous types. 198 if (STy->isLiteral()) 199 continue; 200 201 if (STy->getName().empty()) 202 NumberedTypes[STy] = NextNumber++; 203 else 204 *NextToUse++ = STy; 205 } 206 207 NamedTypes.erase(NextToUse, NamedTypes.end()); 208} 209 210 211/// CalcTypeName - Write the specified type to the specified raw_ostream, making 212/// use of type names or up references to shorten the type name where possible. 213void TypePrinting::print(Type *Ty, raw_ostream &OS) { 214 switch (Ty->getTypeID()) { 215 case Type::VoidTyID: OS << "void"; break; 216 case Type::HalfTyID: OS << "half"; break; 217 case Type::FloatTyID: OS << "float"; break; 218 case Type::DoubleTyID: OS << "double"; break; 219 case Type::X86_FP80TyID: OS << "x86_fp80"; break; 220 case Type::FP128TyID: OS << "fp128"; break; 221 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; 222 case Type::LabelTyID: OS << "label"; break; 223 case Type::MetadataTyID: OS << "metadata"; break; 224 case Type::X86_MMXTyID: OS << "x86_mmx"; break; 225 case Type::IntegerTyID: 226 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 227 return; 228 229 case Type::FunctionTyID: { 230 FunctionType *FTy = cast<FunctionType>(Ty); 231 print(FTy->getReturnType(), OS); 232 OS << " ("; 233 for (FunctionType::param_iterator I = FTy->param_begin(), 234 E = FTy->param_end(); I != E; ++I) { 235 if (I != FTy->param_begin()) 236 OS << ", "; 237 print(*I, OS); 238 } 239 if (FTy->isVarArg()) { 240 if (FTy->getNumParams()) OS << ", "; 241 OS << "..."; 242 } 243 OS << ')'; 244 return; 245 } 246 case Type::StructTyID: { 247 StructType *STy = cast<StructType>(Ty); 248 249 if (STy->isLiteral()) 250 return printStructBody(STy, OS); 251 252 if (!STy->getName().empty()) 253 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 254 255 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy); 256 if (I != NumberedTypes.end()) 257 OS << '%' << I->second; 258 else // Not enumerated, print the hex address. 259 OS << "%\"type " << STy << '\"'; 260 return; 261 } 262 case Type::PointerTyID: { 263 PointerType *PTy = cast<PointerType>(Ty); 264 print(PTy->getElementType(), OS); 265 if (unsigned AddressSpace = PTy->getAddressSpace()) 266 OS << " addrspace(" << AddressSpace << ')'; 267 OS << '*'; 268 return; 269 } 270 case Type::ArrayTyID: { 271 ArrayType *ATy = cast<ArrayType>(Ty); 272 OS << '[' << ATy->getNumElements() << " x "; 273 print(ATy->getElementType(), OS); 274 OS << ']'; 275 return; 276 } 277 case Type::VectorTyID: { 278 VectorType *PTy = cast<VectorType>(Ty); 279 OS << "<" << PTy->getNumElements() << " x "; 280 print(PTy->getElementType(), OS); 281 OS << '>'; 282 return; 283 } 284 default: 285 OS << "<unrecognized-type>"; 286 return; 287 } 288} 289 290void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 291 if (STy->isOpaque()) { 292 OS << "opaque"; 293 return; 294 } 295 296 if (STy->isPacked()) 297 OS << '<'; 298 299 if (STy->getNumElements() == 0) { 300 OS << "{}"; 301 } else { 302 StructType::element_iterator I = STy->element_begin(); 303 OS << "{ "; 304 print(*I++, OS); 305 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { 306 OS << ", "; 307 print(*I, OS); 308 } 309 310 OS << " }"; 311 } 312 if (STy->isPacked()) 313 OS << '>'; 314} 315 316 317 318//===----------------------------------------------------------------------===// 319// SlotTracker Class: Enumerate slot numbers for unnamed values 320//===----------------------------------------------------------------------===// 321 322namespace { 323 324/// This class provides computation of slot numbers for LLVM Assembly writing. 325/// 326class SlotTracker { 327public: 328 /// ValueMap - A mapping of Values to slot numbers. 329 typedef DenseMap<const Value*, unsigned> ValueMap; 330 331private: 332 /// TheModule - The module for which we are holding slot numbers. 333 const Module* TheModule; 334 335 /// TheFunction - The function for which we are holding slot numbers. 336 const Function* TheFunction; 337 bool FunctionProcessed; 338 339 /// mMap - The slot map for the module level data. 340 ValueMap mMap; 341 unsigned mNext; 342 343 /// fMap - The slot map for the function level data. 344 ValueMap fMap; 345 unsigned fNext; 346 347 /// mdnMap - Map for MDNodes. 348 DenseMap<const MDNode*, unsigned> mdnMap; 349 unsigned mdnNext; 350 351 /// asMap - The slot map for attribute sets. 352 DenseMap<AttributeSet, unsigned> asMap; 353 unsigned asNext; 354public: 355 /// Construct from a module 356 explicit SlotTracker(const Module *M); 357 /// Construct from a function, starting out in incorp state. 358 explicit SlotTracker(const Function *F); 359 360 /// Return the slot number of the specified value in it's type 361 /// plane. If something is not in the SlotTracker, return -1. 362 int getLocalSlot(const Value *V); 363 int getGlobalSlot(const GlobalValue *V); 364 int getMetadataSlot(const MDNode *N); 365 int getAttributeGroupSlot(AttributeSet AS); 366 367 /// If you'd like to deal with a function instead of just a module, use 368 /// this method to get its data into the SlotTracker. 369 void incorporateFunction(const Function *F) { 370 TheFunction = F; 371 FunctionProcessed = false; 372 } 373 374 /// After calling incorporateFunction, use this method to remove the 375 /// most recently incorporated function from the SlotTracker. This 376 /// will reset the state of the machine back to just the module contents. 377 void purgeFunction(); 378 379 /// MDNode map iterators. 380 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; 381 mdn_iterator mdn_begin() { return mdnMap.begin(); } 382 mdn_iterator mdn_end() { return mdnMap.end(); } 383 unsigned mdn_size() const { return mdnMap.size(); } 384 bool mdn_empty() const { return mdnMap.empty(); } 385 386 /// AttributeSet map iterators. 387 typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator; 388 as_iterator as_begin() { return asMap.begin(); } 389 as_iterator as_end() { return asMap.end(); } 390 unsigned as_size() const { return asMap.size(); } 391 bool as_empty() const { return asMap.empty(); } 392 393 /// This function does the actual initialization. 394 inline void initialize(); 395 396 // Implementation Details 397private: 398 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 399 void CreateModuleSlot(const GlobalValue *V); 400 401 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 402 void CreateMetadataSlot(const MDNode *N); 403 404 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 405 void CreateFunctionSlot(const Value *V); 406 407 /// \brief Insert the specified AttributeSet into the slot table. 408 void CreateAttributeSetSlot(AttributeSet AS); 409 410 /// Add all of the module level global variables (and their initializers) 411 /// and function declarations, but not the contents of those functions. 412 void processModule(); 413 414 /// Add all of the functions arguments, basic blocks, and instructions. 415 void processFunction(); 416 417 SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION; 418 void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION; 419}; 420 421} // end anonymous namespace 422 423 424static SlotTracker *createSlotTracker(const Value *V) { 425 if (const Argument *FA = dyn_cast<Argument>(V)) 426 return new SlotTracker(FA->getParent()); 427 428 if (const Instruction *I = dyn_cast<Instruction>(V)) 429 if (I->getParent()) 430 return new SlotTracker(I->getParent()->getParent()); 431 432 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 433 return new SlotTracker(BB->getParent()); 434 435 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 436 return new SlotTracker(GV->getParent()); 437 438 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 439 return new SlotTracker(GA->getParent()); 440 441 if (const Function *Func = dyn_cast<Function>(V)) 442 return new SlotTracker(Func); 443 444 if (const MDNode *MD = dyn_cast<MDNode>(V)) { 445 if (!MD->isFunctionLocal()) 446 return new SlotTracker(MD->getFunction()); 447 448 return new SlotTracker((Function *)0); 449 } 450 451 return 0; 452} 453 454#if 0 455#define ST_DEBUG(X) dbgs() << X 456#else 457#define ST_DEBUG(X) 458#endif 459 460// Module level constructor. Causes the contents of the Module (sans functions) 461// to be added to the slot table. 462SlotTracker::SlotTracker(const Module *M) 463 : TheModule(M), TheFunction(0), FunctionProcessed(false), 464 mNext(0), fNext(0), mdnNext(0), asNext(0) { 465} 466 467// Function level constructor. Causes the contents of the Module and the one 468// function provided to be added to the slot table. 469SlotTracker::SlotTracker(const Function *F) 470 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), 471 mNext(0), fNext(0), mdnNext(0), asNext(0) { 472} 473 474inline void SlotTracker::initialize() { 475 if (TheModule) { 476 processModule(); 477 TheModule = 0; ///< Prevent re-processing next time we're called. 478 } 479 480 if (TheFunction && !FunctionProcessed) 481 processFunction(); 482} 483 484// Iterate through all the global variables, functions, and global 485// variable initializers and create slots for them. 486void SlotTracker::processModule() { 487 ST_DEBUG("begin processModule!\n"); 488 489 // Add all of the unnamed global variables to the value table. 490 for (Module::const_global_iterator I = TheModule->global_begin(), 491 E = TheModule->global_end(); I != E; ++I) { 492 if (!I->hasName()) 493 CreateModuleSlot(I); 494 } 495 496 // Add metadata used by named metadata. 497 for (Module::const_named_metadata_iterator 498 I = TheModule->named_metadata_begin(), 499 E = TheModule->named_metadata_end(); I != E; ++I) { 500 const NamedMDNode *NMD = I; 501 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 502 CreateMetadataSlot(NMD->getOperand(i)); 503 } 504 505 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 506 I != E; ++I) { 507 if (!I->hasName()) 508 // Add all the unnamed functions to the table. 509 CreateModuleSlot(I); 510 511 // Add all the function attributes to the table. 512 // FIXME: Add attributes of other objects? 513 AttributeSet FnAttrs = I->getAttributes().getFnAttributes(); 514 if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex)) 515 CreateAttributeSetSlot(FnAttrs); 516 } 517 518 ST_DEBUG("end processModule!\n"); 519} 520 521// Process the arguments, basic blocks, and instructions of a function. 522void SlotTracker::processFunction() { 523 ST_DEBUG("begin processFunction!\n"); 524 fNext = 0; 525 526 // Add all the function arguments with no names. 527 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 528 AE = TheFunction->arg_end(); AI != AE; ++AI) 529 if (!AI->hasName()) 530 CreateFunctionSlot(AI); 531 532 ST_DEBUG("Inserting Instructions:\n"); 533 534 SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; 535 536 // Add all of the basic blocks and instructions with no names. 537 for (Function::const_iterator BB = TheFunction->begin(), 538 E = TheFunction->end(); BB != E; ++BB) { 539 if (!BB->hasName()) 540 CreateFunctionSlot(BB); 541 542 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 543 ++I) { 544 if (!I->getType()->isVoidTy() && !I->hasName()) 545 CreateFunctionSlot(I); 546 547 // Intrinsics can directly use metadata. We allow direct calls to any 548 // llvm.foo function here, because the target may not be linked into the 549 // optimizer. 550 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 551 if (Function *F = CI->getCalledFunction()) 552 if (F->getName().startswith("llvm.")) 553 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 554 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) 555 CreateMetadataSlot(N); 556 557 // Add all the call attributes to the table. This is important for 558 // inline ASM, which may have attributes but no declaration. 559 if (CI->isInlineAsm()) { 560 AttributeSet Attrs = CI->getAttributes().getFnAttributes(); 561 if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) 562 CreateAttributeSetSlot(Attrs); 563 } 564 } 565 566 // Process metadata attached with this instruction. 567 I->getAllMetadata(MDForInst); 568 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) 569 CreateMetadataSlot(MDForInst[i].second); 570 MDForInst.clear(); 571 } 572 } 573 574 FunctionProcessed = true; 575 576 ST_DEBUG("end processFunction!\n"); 577} 578 579/// Clean up after incorporating a function. This is the only way to get out of 580/// the function incorporation state that affects get*Slot/Create*Slot. Function 581/// incorporation state is indicated by TheFunction != 0. 582void SlotTracker::purgeFunction() { 583 ST_DEBUG("begin purgeFunction!\n"); 584 fMap.clear(); // Simply discard the function level map 585 TheFunction = 0; 586 FunctionProcessed = false; 587 ST_DEBUG("end purgeFunction!\n"); 588} 589 590/// getGlobalSlot - Get the slot number of a global value. 591int SlotTracker::getGlobalSlot(const GlobalValue *V) { 592 // Check for uninitialized state and do lazy initialization. 593 initialize(); 594 595 // Find the value in the module map 596 ValueMap::iterator MI = mMap.find(V); 597 return MI == mMap.end() ? -1 : (int)MI->second; 598} 599 600/// getMetadataSlot - Get the slot number of a MDNode. 601int SlotTracker::getMetadataSlot(const MDNode *N) { 602 // Check for uninitialized state and do lazy initialization. 603 initialize(); 604 605 // Find the MDNode in the module map 606 mdn_iterator MI = mdnMap.find(N); 607 return MI == mdnMap.end() ? -1 : (int)MI->second; 608} 609 610 611/// getLocalSlot - Get the slot number for a value that is local to a function. 612int SlotTracker::getLocalSlot(const Value *V) { 613 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 614 615 // Check for uninitialized state and do lazy initialization. 616 initialize(); 617 618 ValueMap::iterator FI = fMap.find(V); 619 return FI == fMap.end() ? -1 : (int)FI->second; 620} 621 622int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { 623 // Check for uninitialized state and do lazy initialization. 624 initialize(); 625 626 // Find the AttributeSet in the module map. 627 as_iterator AI = asMap.find(AS); 628 return AI == asMap.end() ? -1 : (int)AI->second; 629} 630 631/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 632void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 633 assert(V && "Can't insert a null Value into SlotTracker!"); 634 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 635 assert(!V->hasName() && "Doesn't need a slot!"); 636 637 unsigned DestSlot = mNext++; 638 mMap[V] = DestSlot; 639 640 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 641 DestSlot << " ["); 642 // G = Global, F = Function, A = Alias, o = other 643 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 644 (isa<Function>(V) ? 'F' : 645 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); 646} 647 648/// CreateSlot - Create a new slot for the specified value if it has no name. 649void SlotTracker::CreateFunctionSlot(const Value *V) { 650 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 651 652 unsigned DestSlot = fNext++; 653 fMap[V] = DestSlot; 654 655 // G = Global, F = Function, o = other 656 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 657 DestSlot << " [o]\n"); 658} 659 660/// CreateModuleSlot - Insert the specified MDNode* into the slot table. 661void SlotTracker::CreateMetadataSlot(const MDNode *N) { 662 assert(N && "Can't insert a null Value into SlotTracker!"); 663 664 // Don't insert if N is a function-local metadata, these are always printed 665 // inline. 666 if (!N->isFunctionLocal()) { 667 mdn_iterator I = mdnMap.find(N); 668 if (I != mdnMap.end()) 669 return; 670 671 unsigned DestSlot = mdnNext++; 672 mdnMap[N] = DestSlot; 673 } 674 675 // Recursively add any MDNodes referenced by operands. 676 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 677 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 678 CreateMetadataSlot(Op); 679} 680 681void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { 682 assert(AS.hasAttributes(AttributeSet::FunctionIndex) && 683 "Doesn't need a slot!"); 684 685 as_iterator I = asMap.find(AS); 686 if (I != asMap.end()) 687 return; 688 689 unsigned DestSlot = asNext++; 690 asMap[AS] = DestSlot; 691} 692 693//===----------------------------------------------------------------------===// 694// AsmWriter Implementation 695//===----------------------------------------------------------------------===// 696 697static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 698 TypePrinting *TypePrinter, 699 SlotTracker *Machine, 700 const Module *Context); 701 702 703 704static const char *getPredicateText(unsigned predicate) { 705 const char * pred = "unknown"; 706 switch (predicate) { 707 case FCmpInst::FCMP_FALSE: pred = "false"; break; 708 case FCmpInst::FCMP_OEQ: pred = "oeq"; break; 709 case FCmpInst::FCMP_OGT: pred = "ogt"; break; 710 case FCmpInst::FCMP_OGE: pred = "oge"; break; 711 case FCmpInst::FCMP_OLT: pred = "olt"; break; 712 case FCmpInst::FCMP_OLE: pred = "ole"; break; 713 case FCmpInst::FCMP_ONE: pred = "one"; break; 714 case FCmpInst::FCMP_ORD: pred = "ord"; break; 715 case FCmpInst::FCMP_UNO: pred = "uno"; break; 716 case FCmpInst::FCMP_UEQ: pred = "ueq"; break; 717 case FCmpInst::FCMP_UGT: pred = "ugt"; break; 718 case FCmpInst::FCMP_UGE: pred = "uge"; break; 719 case FCmpInst::FCMP_ULT: pred = "ult"; break; 720 case FCmpInst::FCMP_ULE: pred = "ule"; break; 721 case FCmpInst::FCMP_UNE: pred = "une"; break; 722 case FCmpInst::FCMP_TRUE: pred = "true"; break; 723 case ICmpInst::ICMP_EQ: pred = "eq"; break; 724 case ICmpInst::ICMP_NE: pred = "ne"; break; 725 case ICmpInst::ICMP_SGT: pred = "sgt"; break; 726 case ICmpInst::ICMP_SGE: pred = "sge"; break; 727 case ICmpInst::ICMP_SLT: pred = "slt"; break; 728 case ICmpInst::ICMP_SLE: pred = "sle"; break; 729 case ICmpInst::ICMP_UGT: pred = "ugt"; break; 730 case ICmpInst::ICMP_UGE: pred = "uge"; break; 731 case ICmpInst::ICMP_ULT: pred = "ult"; break; 732 case ICmpInst::ICMP_ULE: pred = "ule"; break; 733 } 734 return pred; 735} 736 737static void writeAtomicRMWOperation(raw_ostream &Out, 738 AtomicRMWInst::BinOp Op) { 739 switch (Op) { 740 default: Out << " <unknown operation " << Op << ">"; break; 741 case AtomicRMWInst::Xchg: Out << " xchg"; break; 742 case AtomicRMWInst::Add: Out << " add"; break; 743 case AtomicRMWInst::Sub: Out << " sub"; break; 744 case AtomicRMWInst::And: Out << " and"; break; 745 case AtomicRMWInst::Nand: Out << " nand"; break; 746 case AtomicRMWInst::Or: Out << " or"; break; 747 case AtomicRMWInst::Xor: Out << " xor"; break; 748 case AtomicRMWInst::Max: Out << " max"; break; 749 case AtomicRMWInst::Min: Out << " min"; break; 750 case AtomicRMWInst::UMax: Out << " umax"; break; 751 case AtomicRMWInst::UMin: Out << " umin"; break; 752 } 753} 754 755static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 756 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { 757 // Unsafe algebra implies all the others, no need to write them all out 758 if (FPO->hasUnsafeAlgebra()) 759 Out << " fast"; 760 else { 761 if (FPO->hasNoNaNs()) 762 Out << " nnan"; 763 if (FPO->hasNoInfs()) 764 Out << " ninf"; 765 if (FPO->hasNoSignedZeros()) 766 Out << " nsz"; 767 if (FPO->hasAllowReciprocal()) 768 Out << " arcp"; 769 } 770 } 771 772 if (const OverflowingBinaryOperator *OBO = 773 dyn_cast<OverflowingBinaryOperator>(U)) { 774 if (OBO->hasNoUnsignedWrap()) 775 Out << " nuw"; 776 if (OBO->hasNoSignedWrap()) 777 Out << " nsw"; 778 } else if (const PossiblyExactOperator *Div = 779 dyn_cast<PossiblyExactOperator>(U)) { 780 if (Div->isExact()) 781 Out << " exact"; 782 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 783 if (GEP->isInBounds()) 784 Out << " inbounds"; 785 } 786} 787 788static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 789 TypePrinting &TypePrinter, 790 SlotTracker *Machine, 791 const Module *Context) { 792 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 793 if (CI->getType()->isIntegerTy(1)) { 794 Out << (CI->getZExtValue() ? "true" : "false"); 795 return; 796 } 797 Out << CI->getValue(); 798 return; 799 } 800 801 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 802 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle || 803 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) { 804 // We would like to output the FP constant value in exponential notation, 805 // but we cannot do this if doing so will lose precision. Check here to 806 // make sure that we only output it in exponential format if we can parse 807 // the value back and get the same value. 808 // 809 bool ignored; 810 bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf; 811 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; 812 bool isInf = CFP->getValueAPF().isInfinity(); 813 bool isNaN = CFP->getValueAPF().isNaN(); 814 if (!isHalf && !isInf && !isNaN) { 815 double Val = isDouble ? CFP->getValueAPF().convertToDouble() : 816 CFP->getValueAPF().convertToFloat(); 817 SmallString<128> StrVal; 818 raw_svector_ostream(StrVal) << Val; 819 820 // Check to make sure that the stringized number is not some string like 821 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 822 // that the string matches the "[-+]?[0-9]" regex. 823 // 824 if ((StrVal[0] >= '0' && StrVal[0] <= '9') || 825 ((StrVal[0] == '-' || StrVal[0] == '+') && 826 (StrVal[1] >= '0' && StrVal[1] <= '9'))) { 827 // Reparse stringized version! 828 if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) { 829 Out << StrVal.str(); 830 return; 831 } 832 } 833 } 834 // Otherwise we could not reparse it to exactly the same value, so we must 835 // output the string in hexadecimal format! Note that loading and storing 836 // floating point types changes the bits of NaNs on some hosts, notably 837 // x86, so we must not use these types. 838 assert(sizeof(double) == sizeof(uint64_t) && 839 "assuming that double is 64 bits!"); 840 char Buffer[40]; 841 APFloat apf = CFP->getValueAPF(); 842 // Halves and floats are represented in ASCII IR as double, convert. 843 if (!isDouble) 844 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 845 &ignored); 846 Out << "0x" << 847 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), 848 Buffer+40); 849 return; 850 } 851 852 // Either half, or some form of long double. 853 // These appear as a magic letter identifying the type, then a 854 // fixed number of hex digits. 855 Out << "0x"; 856 // Bit position, in the current word, of the next nibble to print. 857 int shiftcount; 858 859 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { 860 Out << 'K'; 861 // api needed to prevent premature destruction 862 APInt api = CFP->getValueAPF().bitcastToAPInt(); 863 const uint64_t* p = api.getRawData(); 864 uint64_t word = p[1]; 865 shiftcount = 12; 866 int width = api.getBitWidth(); 867 for (int j=0; j<width; j+=4, shiftcount-=4) { 868 unsigned int nibble = (word>>shiftcount) & 15; 869 if (nibble < 10) 870 Out << (unsigned char)(nibble + '0'); 871 else 872 Out << (unsigned char)(nibble - 10 + 'A'); 873 if (shiftcount == 0 && j+4 < width) { 874 word = *p; 875 shiftcount = 64; 876 if (width-j-4 < 64) 877 shiftcount = width-j-4; 878 } 879 } 880 return; 881 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) { 882 shiftcount = 60; 883 Out << 'L'; 884 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) { 885 shiftcount = 60; 886 Out << 'M'; 887 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) { 888 shiftcount = 12; 889 Out << 'H'; 890 } else 891 llvm_unreachable("Unsupported floating point type"); 892 // api needed to prevent premature destruction 893 APInt api = CFP->getValueAPF().bitcastToAPInt(); 894 const uint64_t* p = api.getRawData(); 895 uint64_t word = *p; 896 int width = api.getBitWidth(); 897 for (int j=0; j<width; j+=4, shiftcount-=4) { 898 unsigned int nibble = (word>>shiftcount) & 15; 899 if (nibble < 10) 900 Out << (unsigned char)(nibble + '0'); 901 else 902 Out << (unsigned char)(nibble - 10 + 'A'); 903 if (shiftcount == 0 && j+4 < width) { 904 word = *(++p); 905 shiftcount = 64; 906 if (width-j-4 < 64) 907 shiftcount = width-j-4; 908 } 909 } 910 return; 911 } 912 913 if (isa<ConstantAggregateZero>(CV)) { 914 Out << "zeroinitializer"; 915 return; 916 } 917 918 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 919 Out << "blockaddress("; 920 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, 921 Context); 922 Out << ", "; 923 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, 924 Context); 925 Out << ")"; 926 return; 927 } 928 929 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 930 Type *ETy = CA->getType()->getElementType(); 931 Out << '['; 932 TypePrinter.print(ETy, Out); 933 Out << ' '; 934 WriteAsOperandInternal(Out, CA->getOperand(0), 935 &TypePrinter, Machine, 936 Context); 937 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 938 Out << ", "; 939 TypePrinter.print(ETy, Out); 940 Out << ' '; 941 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, 942 Context); 943 } 944 Out << ']'; 945 return; 946 } 947 948 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { 949 // As a special case, print the array as a string if it is an array of 950 // i8 with ConstantInt values. 951 if (CA->isString()) { 952 Out << "c\""; 953 PrintEscapedString(CA->getAsString(), Out); 954 Out << '"'; 955 return; 956 } 957 958 Type *ETy = CA->getType()->getElementType(); 959 Out << '['; 960 TypePrinter.print(ETy, Out); 961 Out << ' '; 962 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), 963 &TypePrinter, Machine, 964 Context); 965 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { 966 Out << ", "; 967 TypePrinter.print(ETy, Out); 968 Out << ' '; 969 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, 970 Machine, Context); 971 } 972 Out << ']'; 973 return; 974 } 975 976 977 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 978 if (CS->getType()->isPacked()) 979 Out << '<'; 980 Out << '{'; 981 unsigned N = CS->getNumOperands(); 982 if (N) { 983 Out << ' '; 984 TypePrinter.print(CS->getOperand(0)->getType(), Out); 985 Out << ' '; 986 987 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, 988 Context); 989 990 for (unsigned i = 1; i < N; i++) { 991 Out << ", "; 992 TypePrinter.print(CS->getOperand(i)->getType(), Out); 993 Out << ' '; 994 995 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, 996 Context); 997 } 998 Out << ' '; 999 } 1000 1001 Out << '}'; 1002 if (CS->getType()->isPacked()) 1003 Out << '>'; 1004 return; 1005 } 1006 1007 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { 1008 Type *ETy = CV->getType()->getVectorElementType(); 1009 Out << '<'; 1010 TypePrinter.print(ETy, Out); 1011 Out << ' '; 1012 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, 1013 Machine, Context); 1014 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ 1015 Out << ", "; 1016 TypePrinter.print(ETy, Out); 1017 Out << ' '; 1018 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, 1019 Machine, Context); 1020 } 1021 Out << '>'; 1022 return; 1023 } 1024 1025 if (isa<ConstantPointerNull>(CV)) { 1026 Out << "null"; 1027 return; 1028 } 1029 1030 if (isa<UndefValue>(CV)) { 1031 Out << "undef"; 1032 return; 1033 } 1034 1035 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1036 Out << CE->getOpcodeName(); 1037 WriteOptimizationInfo(Out, CE); 1038 if (CE->isCompare()) 1039 Out << ' ' << getPredicateText(CE->getPredicate()); 1040 Out << " ("; 1041 1042 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 1043 TypePrinter.print((*OI)->getType(), Out); 1044 Out << ' '; 1045 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); 1046 if (OI+1 != CE->op_end()) 1047 Out << ", "; 1048 } 1049 1050 if (CE->hasIndices()) { 1051 ArrayRef<unsigned> Indices = CE->getIndices(); 1052 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1053 Out << ", " << Indices[i]; 1054 } 1055 1056 if (CE->isCast()) { 1057 Out << " to "; 1058 TypePrinter.print(CE->getType(), Out); 1059 } 1060 1061 Out << ')'; 1062 return; 1063 } 1064 1065 Out << "<placeholder or erroneous Constant>"; 1066} 1067 1068static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 1069 TypePrinting *TypePrinter, 1070 SlotTracker *Machine, 1071 const Module *Context) { 1072 Out << "!{"; 1073 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 1074 const Value *V = Node->getOperand(mi); 1075 if (V == 0) 1076 Out << "null"; 1077 else { 1078 TypePrinter->print(V->getType(), Out); 1079 Out << ' '; 1080 WriteAsOperandInternal(Out, Node->getOperand(mi), 1081 TypePrinter, Machine, Context); 1082 } 1083 if (mi + 1 != me) 1084 Out << ", "; 1085 } 1086 1087 Out << "}"; 1088} 1089 1090 1091/// WriteAsOperand - Write the name of the specified value out to the specified 1092/// ostream. This can be useful when you just want to print int %reg126, not 1093/// the whole instruction that generated it. 1094/// 1095static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 1096 TypePrinting *TypePrinter, 1097 SlotTracker *Machine, 1098 const Module *Context) { 1099 if (V->hasName()) { 1100 PrintLLVMName(Out, V); 1101 return; 1102 } 1103 1104 const Constant *CV = dyn_cast<Constant>(V); 1105 if (CV && !isa<GlobalValue>(CV)) { 1106 assert(TypePrinter && "Constants require TypePrinting!"); 1107 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); 1108 return; 1109 } 1110 1111 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1112 Out << "asm "; 1113 if (IA->hasSideEffects()) 1114 Out << "sideeffect "; 1115 if (IA->isAlignStack()) 1116 Out << "alignstack "; 1117 // We don't emit the AD_ATT dialect as it's the assumed default. 1118 if (IA->getDialect() == InlineAsm::AD_Intel) 1119 Out << "inteldialect "; 1120 Out << '"'; 1121 PrintEscapedString(IA->getAsmString(), Out); 1122 Out << "\", \""; 1123 PrintEscapedString(IA->getConstraintString(), Out); 1124 Out << '"'; 1125 return; 1126 } 1127 1128 if (const MDNode *N = dyn_cast<MDNode>(V)) { 1129 if (N->isFunctionLocal()) { 1130 // Print metadata inline, not via slot reference number. 1131 WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context); 1132 return; 1133 } 1134 1135 if (!Machine) { 1136 if (N->isFunctionLocal()) 1137 Machine = new SlotTracker(N->getFunction()); 1138 else 1139 Machine = new SlotTracker(Context); 1140 } 1141 int Slot = Machine->getMetadataSlot(N); 1142 if (Slot == -1) 1143 Out << "<badref>"; 1144 else 1145 Out << '!' << Slot; 1146 return; 1147 } 1148 1149 if (const MDString *MDS = dyn_cast<MDString>(V)) { 1150 Out << "!\""; 1151 PrintEscapedString(MDS->getString(), Out); 1152 Out << '"'; 1153 return; 1154 } 1155 1156 if (V->getValueID() == Value::PseudoSourceValueVal || 1157 V->getValueID() == Value::FixedStackPseudoSourceValueVal) { 1158 V->print(Out); 1159 return; 1160 } 1161 1162 char Prefix = '%'; 1163 int Slot; 1164 // If we have a SlotTracker, use it. 1165 if (Machine) { 1166 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1167 Slot = Machine->getGlobalSlot(GV); 1168 Prefix = '@'; 1169 } else { 1170 Slot = Machine->getLocalSlot(V); 1171 1172 // If the local value didn't succeed, then we may be referring to a value 1173 // from a different function. Translate it, as this can happen when using 1174 // address of blocks. 1175 if (Slot == -1) 1176 if ((Machine = createSlotTracker(V))) { 1177 Slot = Machine->getLocalSlot(V); 1178 delete Machine; 1179 } 1180 } 1181 } else if ((Machine = createSlotTracker(V))) { 1182 // Otherwise, create one to get the # and then destroy it. 1183 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1184 Slot = Machine->getGlobalSlot(GV); 1185 Prefix = '@'; 1186 } else { 1187 Slot = Machine->getLocalSlot(V); 1188 } 1189 delete Machine; 1190 Machine = 0; 1191 } else { 1192 Slot = -1; 1193 } 1194 1195 if (Slot != -1) 1196 Out << Prefix << Slot; 1197 else 1198 Out << "<badref>"; 1199} 1200 1201void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, 1202 bool PrintType, const Module *Context) { 1203 1204 // Fast path: Don't construct and populate a TypePrinting object if we 1205 // won't be needing any types printed. 1206 if (!PrintType && 1207 ((!isa<Constant>(V) && !isa<MDNode>(V)) || 1208 V->hasName() || isa<GlobalValue>(V))) { 1209 WriteAsOperandInternal(Out, V, 0, 0, Context); 1210 return; 1211 } 1212 1213 if (Context == 0) Context = getModuleFromVal(V); 1214 1215 TypePrinting TypePrinter; 1216 if (Context) 1217 TypePrinter.incorporateTypes(*Context); 1218 if (PrintType) { 1219 TypePrinter.print(V->getType(), Out); 1220 Out << ' '; 1221 } 1222 1223 WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context); 1224} 1225 1226namespace { 1227 1228class AssemblyWriter { 1229 formatted_raw_ostream &Out; 1230 SlotTracker &Machine; 1231 const Module *TheModule; 1232 TypePrinting TypePrinter; 1233 AssemblyAnnotationWriter *AnnotationWriter; 1234 1235public: 1236 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 1237 const Module *M, 1238 AssemblyAnnotationWriter *AAW) 1239 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { 1240 if (M) 1241 TypePrinter.incorporateTypes(*M); 1242 } 1243 1244 void printMDNodeBody(const MDNode *MD); 1245 void printNamedMDNode(const NamedMDNode *NMD); 1246 1247 void printModule(const Module *M); 1248 1249 void writeOperand(const Value *Op, bool PrintType); 1250 void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx); 1251 void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope); 1252 1253 void writeAllMDNodes(); 1254 void writeAllAttributeGroups(); 1255 1256 void printTypeIdentities(); 1257 void printGlobal(const GlobalVariable *GV); 1258 void printAlias(const GlobalAlias *GV); 1259 void printFunction(const Function *F); 1260 void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx); 1261 void printBasicBlock(const BasicBlock *BB); 1262 void printInstruction(const Instruction &I); 1263 1264private: 1265 // printInfoComment - Print a little comment after the instruction indicating 1266 // which slot it occupies. 1267 void printInfoComment(const Value &V); 1268}; 1269} // end of anonymous namespace 1270 1271void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 1272 if (Operand == 0) { 1273 Out << "<null operand!>"; 1274 return; 1275 } 1276 if (PrintType) { 1277 TypePrinter.print(Operand->getType(), Out); 1278 Out << ' '; 1279 } 1280 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 1281} 1282 1283void AssemblyWriter::writeAtomic(AtomicOrdering Ordering, 1284 SynchronizationScope SynchScope) { 1285 if (Ordering == NotAtomic) 1286 return; 1287 1288 switch (SynchScope) { 1289 case SingleThread: Out << " singlethread"; break; 1290 case CrossThread: break; 1291 } 1292 1293 switch (Ordering) { 1294 default: Out << " <bad ordering " << int(Ordering) << ">"; break; 1295 case Unordered: Out << " unordered"; break; 1296 case Monotonic: Out << " monotonic"; break; 1297 case Acquire: Out << " acquire"; break; 1298 case Release: Out << " release"; break; 1299 case AcquireRelease: Out << " acq_rel"; break; 1300 case SequentiallyConsistent: Out << " seq_cst"; break; 1301 } 1302} 1303 1304void AssemblyWriter::writeParamOperand(const Value *Operand, 1305 AttributeSet Attrs, unsigned Idx) { 1306 if (Operand == 0) { 1307 Out << "<null operand!>"; 1308 return; 1309 } 1310 1311 // Print the type 1312 TypePrinter.print(Operand->getType(), Out); 1313 // Print parameter attributes list 1314 if (Attrs.hasAttributes(Idx)) 1315 Out << ' ' << Attrs.getAsString(Idx); 1316 Out << ' '; 1317 // Print the operand 1318 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 1319} 1320 1321void AssemblyWriter::printModule(const Module *M) { 1322 Machine.initialize(); 1323 1324 if (!M->getModuleIdentifier().empty() && 1325 // Don't print the ID if it will start a new line (which would 1326 // require a comment char before it). 1327 M->getModuleIdentifier().find('\n') == std::string::npos) 1328 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 1329 1330 if (!M->getDataLayout().empty()) 1331 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; 1332 if (!M->getTargetTriple().empty()) 1333 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 1334 1335 if (!M->getModuleInlineAsm().empty()) { 1336 // Split the string into lines, to make it easier to read the .ll file. 1337 std::string Asm = M->getModuleInlineAsm(); 1338 size_t CurPos = 0; 1339 size_t NewLine = Asm.find_first_of('\n', CurPos); 1340 Out << '\n'; 1341 while (NewLine != std::string::npos) { 1342 // We found a newline, print the portion of the asm string from the 1343 // last newline up to this newline. 1344 Out << "module asm \""; 1345 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), 1346 Out); 1347 Out << "\"\n"; 1348 CurPos = NewLine+1; 1349 NewLine = Asm.find_first_of('\n', CurPos); 1350 } 1351 std::string rest(Asm.begin()+CurPos, Asm.end()); 1352 if (!rest.empty()) { 1353 Out << "module asm \""; 1354 PrintEscapedString(rest, Out); 1355 Out << "\"\n"; 1356 } 1357 } 1358 1359 printTypeIdentities(); 1360 1361 // Output all globals. 1362 if (!M->global_empty()) Out << '\n'; 1363 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1364 I != E; ++I) { 1365 printGlobal(I); Out << '\n'; 1366 } 1367 1368 // Output all aliases. 1369 if (!M->alias_empty()) Out << "\n"; 1370 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); 1371 I != E; ++I) 1372 printAlias(I); 1373 1374 // Output all of the functions. 1375 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1376 printFunction(I); 1377 1378 // Output all attribute groups. 1379 if (!Machine.as_empty()) { 1380 Out << '\n'; 1381 writeAllAttributeGroups(); 1382 } 1383 1384 // Output named metadata. 1385 if (!M->named_metadata_empty()) Out << '\n'; 1386 1387 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 1388 E = M->named_metadata_end(); I != E; ++I) 1389 printNamedMDNode(I); 1390 1391 // Output metadata. 1392 if (!Machine.mdn_empty()) { 1393 Out << '\n'; 1394 writeAllMDNodes(); 1395 } 1396} 1397 1398void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 1399 Out << '!'; 1400 StringRef Name = NMD->getName(); 1401 if (Name.empty()) { 1402 Out << "<empty name> "; 1403 } else { 1404 if (isalpha(static_cast<unsigned char>(Name[0])) || 1405 Name[0] == '-' || Name[0] == '$' || 1406 Name[0] == '.' || Name[0] == '_') 1407 Out << Name[0]; 1408 else 1409 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 1410 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 1411 unsigned char C = Name[i]; 1412 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || 1413 C == '.' || C == '_') 1414 Out << C; 1415 else 1416 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 1417 } 1418 } 1419 Out << " = !{"; 1420 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1421 if (i) Out << ", "; 1422 int Slot = Machine.getMetadataSlot(NMD->getOperand(i)); 1423 if (Slot == -1) 1424 Out << "<badref>"; 1425 else 1426 Out << '!' << Slot; 1427 } 1428 Out << "}\n"; 1429} 1430 1431 1432static void PrintLinkage(GlobalValue::LinkageTypes LT, 1433 formatted_raw_ostream &Out) { 1434 switch (LT) { 1435 case GlobalValue::ExternalLinkage: break; 1436 case GlobalValue::PrivateLinkage: Out << "private "; break; 1437 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; 1438 case GlobalValue::LinkerPrivateWeakLinkage: 1439 Out << "linker_private_weak "; 1440 break; 1441 case GlobalValue::InternalLinkage: Out << "internal "; break; 1442 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; 1443 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; 1444 case GlobalValue::LinkOnceODRAutoHideLinkage: 1445 Out << "linkonce_odr_auto_hide "; 1446 break; 1447 case GlobalValue::WeakAnyLinkage: Out << "weak "; break; 1448 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; 1449 case GlobalValue::CommonLinkage: Out << "common "; break; 1450 case GlobalValue::AppendingLinkage: Out << "appending "; break; 1451 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; 1452 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; 1453 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; 1454 case GlobalValue::AvailableExternallyLinkage: 1455 Out << "available_externally "; 1456 break; 1457 } 1458} 1459 1460 1461static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 1462 formatted_raw_ostream &Out) { 1463 switch (Vis) { 1464 case GlobalValue::DefaultVisibility: break; 1465 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 1466 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 1467 } 1468} 1469 1470static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, 1471 formatted_raw_ostream &Out) { 1472 switch (TLM) { 1473 case GlobalVariable::NotThreadLocal: 1474 break; 1475 case GlobalVariable::GeneralDynamicTLSModel: 1476 Out << "thread_local "; 1477 break; 1478 case GlobalVariable::LocalDynamicTLSModel: 1479 Out << "thread_local(localdynamic) "; 1480 break; 1481 case GlobalVariable::InitialExecTLSModel: 1482 Out << "thread_local(initialexec) "; 1483 break; 1484 case GlobalVariable::LocalExecTLSModel: 1485 Out << "thread_local(localexec) "; 1486 break; 1487 } 1488} 1489 1490void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 1491 if (GV->isMaterializable()) 1492 Out << "; Materializable\n"; 1493 1494 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); 1495 Out << " = "; 1496 1497 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 1498 Out << "external "; 1499 1500 PrintLinkage(GV->getLinkage(), Out); 1501 PrintVisibility(GV->getVisibility(), Out); 1502 PrintThreadLocalModel(GV->getThreadLocalMode(), Out); 1503 1504 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 1505 Out << "addrspace(" << AddressSpace << ") "; 1506 if (GV->hasUnnamedAddr()) Out << "unnamed_addr "; 1507 if (GV->isExternallyInitialized()) Out << "externally_initialized "; 1508 Out << (GV->isConstant() ? "constant " : "global "); 1509 TypePrinter.print(GV->getType()->getElementType(), Out); 1510 1511 if (GV->hasInitializer()) { 1512 Out << ' '; 1513 writeOperand(GV->getInitializer(), false); 1514 } 1515 1516 if (GV->hasSection()) { 1517 Out << ", section \""; 1518 PrintEscapedString(GV->getSection(), Out); 1519 Out << '"'; 1520 } 1521 if (GV->getAlignment()) 1522 Out << ", align " << GV->getAlignment(); 1523 1524 printInfoComment(*GV); 1525} 1526 1527void AssemblyWriter::printAlias(const GlobalAlias *GA) { 1528 if (GA->isMaterializable()) 1529 Out << "; Materializable\n"; 1530 1531 // Don't crash when dumping partially built GA 1532 if (!GA->hasName()) 1533 Out << "<<nameless>> = "; 1534 else { 1535 PrintLLVMName(Out, GA); 1536 Out << " = "; 1537 } 1538 PrintVisibility(GA->getVisibility(), Out); 1539 1540 Out << "alias "; 1541 1542 PrintLinkage(GA->getLinkage(), Out); 1543 1544 const Constant *Aliasee = GA->getAliasee(); 1545 1546 if (Aliasee == 0) { 1547 TypePrinter.print(GA->getType(), Out); 1548 Out << " <<NULL ALIASEE>>"; 1549 } else { 1550 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee)); 1551 } 1552 1553 printInfoComment(*GA); 1554 Out << '\n'; 1555} 1556 1557void AssemblyWriter::printTypeIdentities() { 1558 if (TypePrinter.NumberedTypes.empty() && 1559 TypePrinter.NamedTypes.empty()) 1560 return; 1561 1562 Out << '\n'; 1563 1564 // We know all the numbers that each type is used and we know that it is a 1565 // dense assignment. Convert the map to an index table. 1566 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size()); 1567 for (DenseMap<StructType*, unsigned>::iterator I = 1568 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end(); 1569 I != E; ++I) { 1570 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?"); 1571 NumberedTypes[I->second] = I->first; 1572 } 1573 1574 // Emit all numbered types. 1575 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { 1576 Out << '%' << i << " = type "; 1577 1578 // Make sure we print out at least one level of the type structure, so 1579 // that we do not get %2 = type %2 1580 TypePrinter.printStructBody(NumberedTypes[i], Out); 1581 Out << '\n'; 1582 } 1583 1584 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) { 1585 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix); 1586 Out << " = type "; 1587 1588 // Make sure we print out at least one level of the type structure, so 1589 // that we do not get %FILE = type %FILE 1590 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out); 1591 Out << '\n'; 1592 } 1593} 1594 1595/// printFunction - Print all aspects of a function. 1596/// 1597void AssemblyWriter::printFunction(const Function *F) { 1598 // Print out the return type and name. 1599 Out << '\n'; 1600 1601 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 1602 1603 if (F->isMaterializable()) 1604 Out << "; Materializable\n"; 1605 1606 if (F->isDeclaration()) 1607 Out << "declare "; 1608 else 1609 Out << "define "; 1610 1611 PrintLinkage(F->getLinkage(), Out); 1612 PrintVisibility(F->getVisibility(), Out); 1613 1614 // Print the calling convention. 1615 if (F->getCallingConv() != CallingConv::C) { 1616 PrintCallingConv(F->getCallingConv(), Out); 1617 Out << " "; 1618 } 1619 1620 FunctionType *FT = F->getFunctionType(); 1621 const AttributeSet &Attrs = F->getAttributes(); 1622 if (Attrs.hasAttributes(AttributeSet::ReturnIndex)) 1623 Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' '; 1624 TypePrinter.print(F->getReturnType(), Out); 1625 Out << ' '; 1626 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 1627 Out << '('; 1628 Machine.incorporateFunction(F); 1629 1630 // Loop over the arguments, printing them... 1631 1632 unsigned Idx = 1; 1633 if (!F->isDeclaration()) { 1634 // If this isn't a declaration, print the argument names as well. 1635 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 1636 I != E; ++I) { 1637 // Insert commas as we go... the first arg doesn't get a comma 1638 if (I != F->arg_begin()) Out << ", "; 1639 printArgument(I, Attrs, Idx); 1640 Idx++; 1641 } 1642 } else { 1643 // Otherwise, print the types from the function type. 1644 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1645 // Insert commas as we go... the first arg doesn't get a comma 1646 if (i) Out << ", "; 1647 1648 // Output type... 1649 TypePrinter.print(FT->getParamType(i), Out); 1650 1651 if (Attrs.hasAttributes(i+1)) 1652 Out << ' ' << Attrs.getAsString(i+1); 1653 } 1654 } 1655 1656 // Finish printing arguments... 1657 if (FT->isVarArg()) { 1658 if (FT->getNumParams()) Out << ", "; 1659 Out << "..."; // Output varargs portion of signature! 1660 } 1661 Out << ')'; 1662 if (F->hasUnnamedAddr()) 1663 Out << " unnamed_addr"; 1664 if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) 1665 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); 1666 if (F->hasSection()) { 1667 Out << " section \""; 1668 PrintEscapedString(F->getSection(), Out); 1669 Out << '"'; 1670 } 1671 if (F->getAlignment()) 1672 Out << " align " << F->getAlignment(); 1673 if (F->hasGC()) 1674 Out << " gc \"" << F->getGC() << '"'; 1675 if (F->isDeclaration()) { 1676 Out << '\n'; 1677 } else { 1678 Out << " {"; 1679 // Output all of the function's basic blocks. 1680 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) 1681 printBasicBlock(I); 1682 1683 Out << "}\n"; 1684 } 1685 1686 Machine.purgeFunction(); 1687} 1688 1689/// printArgument - This member is called for every argument that is passed into 1690/// the function. Simply print it out 1691/// 1692void AssemblyWriter::printArgument(const Argument *Arg, 1693 AttributeSet Attrs, unsigned Idx) { 1694 // Output type... 1695 TypePrinter.print(Arg->getType(), Out); 1696 1697 // Output parameter attributes list 1698 if (Attrs.hasAttributes(Idx)) 1699 Out << ' ' << Attrs.getAsString(Idx); 1700 1701 // Output name, if available... 1702 if (Arg->hasName()) { 1703 Out << ' '; 1704 PrintLLVMName(Out, Arg); 1705 } 1706} 1707 1708/// printBasicBlock - This member is called for each basic block in a method. 1709/// 1710void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 1711 if (BB->hasName()) { // Print out the label if it exists... 1712 Out << "\n"; 1713 PrintLLVMName(Out, BB->getName(), LabelPrefix); 1714 Out << ':'; 1715 } else if (!BB->use_empty()) { // Don't print block # of no uses... 1716 Out << "\n; <label>:"; 1717 int Slot = Machine.getLocalSlot(BB); 1718 if (Slot != -1) 1719 Out << Slot; 1720 else 1721 Out << "<badref>"; 1722 } 1723 1724 if (BB->getParent() == 0) { 1725 Out.PadToColumn(50); 1726 Out << "; Error: Block without parent!"; 1727 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? 1728 // Output predecessors for the block. 1729 Out.PadToColumn(50); 1730 Out << ";"; 1731 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1732 1733 if (PI == PE) { 1734 Out << " No predecessors!"; 1735 } else { 1736 Out << " preds = "; 1737 writeOperand(*PI, false); 1738 for (++PI; PI != PE; ++PI) { 1739 Out << ", "; 1740 writeOperand(*PI, false); 1741 } 1742 } 1743 } 1744 1745 Out << "\n"; 1746 1747 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 1748 1749 // Output all of the instructions in the basic block... 1750 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1751 printInstruction(*I); 1752 Out << '\n'; 1753 } 1754 1755 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 1756} 1757 1758/// printInfoComment - Print a little comment after the instruction indicating 1759/// which slot it occupies. 1760/// 1761void AssemblyWriter::printInfoComment(const Value &V) { 1762 if (AnnotationWriter) { 1763 AnnotationWriter->printInfoComment(V, Out); 1764 return; 1765 } 1766} 1767 1768// This member is called for each Instruction in a function.. 1769void AssemblyWriter::printInstruction(const Instruction &I) { 1770 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 1771 1772 // Print out indentation for an instruction. 1773 Out << " "; 1774 1775 // Print out name if it exists... 1776 if (I.hasName()) { 1777 PrintLLVMName(Out, &I); 1778 Out << " = "; 1779 } else if (!I.getType()->isVoidTy()) { 1780 // Print out the def slot taken. 1781 int SlotNum = Machine.getLocalSlot(&I); 1782 if (SlotNum == -1) 1783 Out << "<badref> = "; 1784 else 1785 Out << '%' << SlotNum << " = "; 1786 } 1787 1788 if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) 1789 Out << "tail "; 1790 1791 // Print out the opcode... 1792 Out << I.getOpcodeName(); 1793 1794 // If this is an atomic load or store, print out the atomic marker. 1795 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 1796 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 1797 Out << " atomic"; 1798 1799 // If this is a volatile operation, print out the volatile marker. 1800 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 1801 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 1802 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 1803 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 1804 Out << " volatile"; 1805 1806 // Print out optimization information. 1807 WriteOptimizationInfo(Out, &I); 1808 1809 // Print out the compare instruction predicates 1810 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 1811 Out << ' ' << getPredicateText(CI->getPredicate()); 1812 1813 // Print out the atomicrmw operation 1814 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 1815 writeAtomicRMWOperation(Out, RMWI->getOperation()); 1816 1817 // Print out the type of the operands... 1818 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; 1819 1820 // Special case conditional branches to swizzle the condition out to the front 1821 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 1822 const BranchInst &BI(cast<BranchInst>(I)); 1823 Out << ' '; 1824 writeOperand(BI.getCondition(), true); 1825 Out << ", "; 1826 writeOperand(BI.getSuccessor(0), true); 1827 Out << ", "; 1828 writeOperand(BI.getSuccessor(1), true); 1829 1830 } else if (isa<SwitchInst>(I)) { 1831 const SwitchInst& SI(cast<SwitchInst>(I)); 1832 // Special case switch instruction to get formatting nice and correct. 1833 Out << ' '; 1834 writeOperand(SI.getCondition(), true); 1835 Out << ", "; 1836 writeOperand(SI.getDefaultDest(), true); 1837 Out << " ["; 1838 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1839 i != e; ++i) { 1840 Out << "\n "; 1841 writeOperand(i.getCaseValue(), true); 1842 Out << ", "; 1843 writeOperand(i.getCaseSuccessor(), true); 1844 } 1845 Out << "\n ]"; 1846 } else if (isa<IndirectBrInst>(I)) { 1847 // Special case indirectbr instruction to get formatting nice and correct. 1848 Out << ' '; 1849 writeOperand(Operand, true); 1850 Out << ", ["; 1851 1852 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 1853 if (i != 1) 1854 Out << ", "; 1855 writeOperand(I.getOperand(i), true); 1856 } 1857 Out << ']'; 1858 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 1859 Out << ' '; 1860 TypePrinter.print(I.getType(), Out); 1861 Out << ' '; 1862 1863 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 1864 if (op) Out << ", "; 1865 Out << "[ "; 1866 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 1867 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 1868 } 1869 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 1870 Out << ' '; 1871 writeOperand(I.getOperand(0), true); 1872 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1873 Out << ", " << *i; 1874 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 1875 Out << ' '; 1876 writeOperand(I.getOperand(0), true); Out << ", "; 1877 writeOperand(I.getOperand(1), true); 1878 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1879 Out << ", " << *i; 1880 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 1881 Out << ' '; 1882 TypePrinter.print(I.getType(), Out); 1883 Out << " personality "; 1884 writeOperand(I.getOperand(0), true); Out << '\n'; 1885 1886 if (LPI->isCleanup()) 1887 Out << " cleanup"; 1888 1889 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 1890 if (i != 0 || LPI->isCleanup()) Out << "\n"; 1891 if (LPI->isCatch(i)) 1892 Out << " catch "; 1893 else 1894 Out << " filter "; 1895 1896 writeOperand(LPI->getClause(i), true); 1897 } 1898 } else if (isa<ReturnInst>(I) && !Operand) { 1899 Out << " void"; 1900 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 1901 // Print the calling convention being used. 1902 if (CI->getCallingConv() != CallingConv::C) { 1903 Out << " "; 1904 PrintCallingConv(CI->getCallingConv(), Out); 1905 } 1906 1907 Operand = CI->getCalledValue(); 1908 PointerType *PTy = cast<PointerType>(Operand->getType()); 1909 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1910 Type *RetTy = FTy->getReturnType(); 1911 const AttributeSet &PAL = CI->getAttributes(); 1912 1913 if (PAL.hasAttributes(AttributeSet::ReturnIndex)) 1914 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex); 1915 1916 // If possible, print out the short form of the call instruction. We can 1917 // only do this if the first argument is a pointer to a nonvararg function, 1918 // and if the return type is not a pointer to a function. 1919 // 1920 Out << ' '; 1921 if (!FTy->isVarArg() && 1922 (!RetTy->isPointerTy() || 1923 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { 1924 TypePrinter.print(RetTy, Out); 1925 Out << ' '; 1926 writeOperand(Operand, false); 1927 } else { 1928 writeOperand(Operand, true); 1929 } 1930 Out << '('; 1931 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { 1932 if (op > 0) 1933 Out << ", "; 1934 writeParamOperand(CI->getArgOperand(op), PAL, op + 1); 1935 } 1936 Out << ')'; 1937 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 1938 Out << ' ' << PAL.getAsString(AttributeSet::FunctionIndex); 1939 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 1940 Operand = II->getCalledValue(); 1941 PointerType *PTy = cast<PointerType>(Operand->getType()); 1942 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1943 Type *RetTy = FTy->getReturnType(); 1944 const AttributeSet &PAL = II->getAttributes(); 1945 1946 // Print the calling convention being used. 1947 if (II->getCallingConv() != CallingConv::C) { 1948 Out << " "; 1949 PrintCallingConv(II->getCallingConv(), Out); 1950 } 1951 1952 if (PAL.hasAttributes(AttributeSet::ReturnIndex)) 1953 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex); 1954 1955 // If possible, print out the short form of the invoke instruction. We can 1956 // only do this if the first argument is a pointer to a nonvararg function, 1957 // and if the return type is not a pointer to a function. 1958 // 1959 Out << ' '; 1960 if (!FTy->isVarArg() && 1961 (!RetTy->isPointerTy() || 1962 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { 1963 TypePrinter.print(RetTy, Out); 1964 Out << ' '; 1965 writeOperand(Operand, false); 1966 } else { 1967 writeOperand(Operand, true); 1968 } 1969 Out << '('; 1970 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { 1971 if (op) 1972 Out << ", "; 1973 writeParamOperand(II->getArgOperand(op), PAL, op + 1); 1974 } 1975 1976 Out << ')'; 1977 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 1978 Out << ' ' << PAL.getAsString(AttributeSet::FunctionIndex); 1979 1980 Out << "\n to "; 1981 writeOperand(II->getNormalDest(), true); 1982 Out << " unwind "; 1983 writeOperand(II->getUnwindDest(), true); 1984 1985 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 1986 Out << ' '; 1987 TypePrinter.print(AI->getAllocatedType(), Out); 1988 if (!AI->getArraySize() || AI->isArrayAllocation()) { 1989 Out << ", "; 1990 writeOperand(AI->getArraySize(), true); 1991 } 1992 if (AI->getAlignment()) { 1993 Out << ", align " << AI->getAlignment(); 1994 } 1995 } else if (isa<CastInst>(I)) { 1996 if (Operand) { 1997 Out << ' '; 1998 writeOperand(Operand, true); // Work with broken code 1999 } 2000 Out << " to "; 2001 TypePrinter.print(I.getType(), Out); 2002 } else if (isa<VAArgInst>(I)) { 2003 if (Operand) { 2004 Out << ' '; 2005 writeOperand(Operand, true); // Work with broken code 2006 } 2007 Out << ", "; 2008 TypePrinter.print(I.getType(), Out); 2009 } else if (Operand) { // Print the normal way. 2010 2011 // PrintAllTypes - Instructions who have operands of all the same type 2012 // omit the type from all but the first operand. If the instruction has 2013 // different type operands (for example br), then they are all printed. 2014 bool PrintAllTypes = false; 2015 Type *TheType = Operand->getType(); 2016 2017 // Select, Store and ShuffleVector always print all types. 2018 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 2019 || isa<ReturnInst>(I)) { 2020 PrintAllTypes = true; 2021 } else { 2022 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 2023 Operand = I.getOperand(i); 2024 // note that Operand shouldn't be null, but the test helps make dump() 2025 // more tolerant of malformed IR 2026 if (Operand && Operand->getType() != TheType) { 2027 PrintAllTypes = true; // We have differing types! Print them all! 2028 break; 2029 } 2030 } 2031 } 2032 2033 if (!PrintAllTypes) { 2034 Out << ' '; 2035 TypePrinter.print(TheType, Out); 2036 } 2037 2038 Out << ' '; 2039 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 2040 if (i) Out << ", "; 2041 writeOperand(I.getOperand(i), PrintAllTypes); 2042 } 2043 } 2044 2045 // Print atomic ordering/alignment for memory operations 2046 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 2047 if (LI->isAtomic()) 2048 writeAtomic(LI->getOrdering(), LI->getSynchScope()); 2049 if (LI->getAlignment()) 2050 Out << ", align " << LI->getAlignment(); 2051 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 2052 if (SI->isAtomic()) 2053 writeAtomic(SI->getOrdering(), SI->getSynchScope()); 2054 if (SI->getAlignment()) 2055 Out << ", align " << SI->getAlignment(); 2056 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 2057 writeAtomic(CXI->getOrdering(), CXI->getSynchScope()); 2058 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 2059 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope()); 2060 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 2061 writeAtomic(FI->getOrdering(), FI->getSynchScope()); 2062 } 2063 2064 // Print Metadata info. 2065 SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD; 2066 I.getAllMetadata(InstMD); 2067 if (!InstMD.empty()) { 2068 SmallVector<StringRef, 8> MDNames; 2069 I.getType()->getContext().getMDKindNames(MDNames); 2070 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) { 2071 unsigned Kind = InstMD[i].first; 2072 if (Kind < MDNames.size()) { 2073 Out << ", !" << MDNames[Kind]; 2074 } else { 2075 Out << ", !<unknown kind #" << Kind << ">"; 2076 } 2077 Out << ' '; 2078 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine, 2079 TheModule); 2080 } 2081 } 2082 printInfoComment(I); 2083} 2084 2085static void WriteMDNodeComment(const MDNode *Node, 2086 formatted_raw_ostream &Out) { 2087 if (Node->getNumOperands() < 1) 2088 return; 2089 2090 Value *Op = Node->getOperand(0); 2091 if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32) 2092 return; 2093 2094 DIDescriptor Desc(Node); 2095 if (Desc.getVersion() < LLVMDebugVersion11) 2096 return; 2097 2098 unsigned Tag = Desc.getTag(); 2099 Out.PadToColumn(50); 2100 if (dwarf::TagString(Tag)) { 2101 Out << "; "; 2102 Desc.print(Out); 2103 } else if (Tag == dwarf::DW_TAG_user_base) { 2104 Out << "; [ DW_TAG_user_base ]"; 2105 } 2106} 2107 2108void AssemblyWriter::writeAllMDNodes() { 2109 SmallVector<const MDNode *, 16> Nodes; 2110 Nodes.resize(Machine.mdn_size()); 2111 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); 2112 I != E; ++I) 2113 Nodes[I->second] = cast<MDNode>(I->first); 2114 2115 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 2116 Out << '!' << i << " = metadata "; 2117 printMDNodeBody(Nodes[i]); 2118 } 2119} 2120 2121void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 2122 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); 2123 WriteMDNodeComment(Node, Out); 2124 Out << "\n"; 2125} 2126 2127void AssemblyWriter::writeAllAttributeGroups() { 2128 std::vector<std::pair<AttributeSet, unsigned> > asVec; 2129 asVec.resize(Machine.as_size()); 2130 2131 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end(); 2132 I != E; ++I) 2133 asVec[I->second] = *I; 2134 2135 for (std::vector<std::pair<AttributeSet, unsigned> >::iterator 2136 I = asVec.begin(), E = asVec.end(); I != E; ++I) 2137 Out << "attributes #" << I->second << " = { " 2138 << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n"; 2139} 2140 2141//===----------------------------------------------------------------------===// 2142// External Interface declarations 2143//===----------------------------------------------------------------------===// 2144 2145void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 2146 SlotTracker SlotTable(this); 2147 formatted_raw_ostream OS(ROS); 2148 AssemblyWriter W(OS, SlotTable, this, AAW); 2149 W.printModule(this); 2150} 2151 2152void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 2153 SlotTracker SlotTable(getParent()); 2154 formatted_raw_ostream OS(ROS); 2155 AssemblyWriter W(OS, SlotTable, getParent(), AAW); 2156 W.printNamedMDNode(this); 2157} 2158 2159void Type::print(raw_ostream &OS) const { 2160 if (this == 0) { 2161 OS << "<null Type>"; 2162 return; 2163 } 2164 TypePrinting TP; 2165 TP.print(const_cast<Type*>(this), OS); 2166 2167 // If the type is a named struct type, print the body as well. 2168 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 2169 if (!STy->isLiteral()) { 2170 OS << " = type "; 2171 TP.printStructBody(STy, OS); 2172 } 2173} 2174 2175void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 2176 if (this == 0) { 2177 ROS << "printing a <null> value\n"; 2178 return; 2179 } 2180 formatted_raw_ostream OS(ROS); 2181 if (const Instruction *I = dyn_cast<Instruction>(this)) { 2182 const Function *F = I->getParent() ? I->getParent()->getParent() : 0; 2183 SlotTracker SlotTable(F); 2184 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW); 2185 W.printInstruction(*I); 2186 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 2187 SlotTracker SlotTable(BB->getParent()); 2188 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW); 2189 W.printBasicBlock(BB); 2190 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 2191 SlotTracker SlotTable(GV->getParent()); 2192 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW); 2193 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 2194 W.printGlobal(V); 2195 else if (const Function *F = dyn_cast<Function>(GV)) 2196 W.printFunction(F); 2197 else 2198 W.printAlias(cast<GlobalAlias>(GV)); 2199 } else if (const MDNode *N = dyn_cast<MDNode>(this)) { 2200 const Function *F = N->getFunction(); 2201 SlotTracker SlotTable(F); 2202 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW); 2203 W.printMDNodeBody(N); 2204 } else if (const Constant *C = dyn_cast<Constant>(this)) { 2205 TypePrinting TypePrinter; 2206 TypePrinter.print(C->getType(), OS); 2207 OS << ' '; 2208 WriteConstantInternal(OS, C, TypePrinter, 0, 0); 2209 } else if (isa<InlineAsm>(this) || isa<MDString>(this) || 2210 isa<Argument>(this)) { 2211 WriteAsOperand(OS, this, true, 0); 2212 } else { 2213 // Otherwise we don't know what it is. Call the virtual function to 2214 // allow a subclass to print itself. 2215 printCustom(OS); 2216 } 2217} 2218 2219// Value::printCustom - subclasses should override this to implement printing. 2220void Value::printCustom(raw_ostream &OS) const { 2221 llvm_unreachable("Unknown value to print out!"); 2222} 2223 2224// Value::dump - allow easy printing of Values from the debugger. 2225void Value::dump() const { print(dbgs()); dbgs() << '\n'; } 2226 2227// Type::dump - allow easy printing of Types from the debugger. 2228void Type::dump() const { print(dbgs()); } 2229 2230// Module::dump() - Allow printing of Modules from the debugger. 2231void Module::dump() const { print(dbgs(), 0); } 2232 2233// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. 2234void NamedMDNode::dump() const { print(dbgs(), 0); } 2235