AsmWriter.cpp revision 7ab6c76ad1cbf36284ca5b6bd5ee33c625fe3e60
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Assembly/AssemblyAnnotationWriter.h"
23#include "llvm/Assembly/PrintModulePass.h"
24#include "llvm/DebugInfo.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/InlineAsm.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/IR/TypeFinder.h"
34#include "llvm/IR/ValueSymbolTable.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Dwarf.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/FormattedStream.h"
40#include "llvm/Support/MathExtras.h"
41#include <algorithm>
42#include <cctype>
43using namespace llvm;
44
45// Make virtual table appear in this compilation unit.
46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48//===----------------------------------------------------------------------===//
49// Helper Functions
50//===----------------------------------------------------------------------===//
51
52static const Module *getModuleFromVal(const Value *V) {
53  if (const Argument *MA = dyn_cast<Argument>(V))
54    return MA->getParent() ? MA->getParent()->getParent() : 0;
55
56  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57    return BB->getParent() ? BB->getParent()->getParent() : 0;
58
59  if (const Instruction *I = dyn_cast<Instruction>(V)) {
60    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61    return M ? M->getParent() : 0;
62  }
63
64  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65    return GV->getParent();
66  return 0;
67}
68
69static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
70  switch (cc) {
71  default:                         Out << "cc" << cc; break;
72  case CallingConv::Fast:          Out << "fastcc"; break;
73  case CallingConv::Cold:          Out << "coldcc"; break;
74  case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
75  case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
76  case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
77  case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
78  case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
79  case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
80  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
81  case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
82  case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
83  case CallingConv::PTX_Device:    Out << "ptx_device"; break;
84  }
85}
86
87// PrintEscapedString - Print each character of the specified string, escaping
88// it if it is not printable or if it is an escape char.
89static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
90  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
91    unsigned char C = Name[i];
92    if (isprint(C) && C != '\\' && C != '"')
93      Out << C;
94    else
95      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
96  }
97}
98
99enum PrefixType {
100  GlobalPrefix,
101  LabelPrefix,
102  LocalPrefix,
103  NoPrefix
104};
105
106/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
107/// prefixed with % (if the string only contains simple characters) or is
108/// surrounded with ""'s (if it has special chars in it).  Print it out.
109static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
110  assert(!Name.empty() && "Cannot get empty name!");
111  switch (Prefix) {
112  case NoPrefix: break;
113  case GlobalPrefix: OS << '@'; break;
114  case LabelPrefix:  break;
115  case LocalPrefix:  OS << '%'; break;
116  }
117
118  // Scan the name to see if it needs quotes first.
119  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
120  if (!NeedsQuotes) {
121    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
122      // By making this unsigned, the value passed in to isalnum will always be
123      // in the range 0-255.  This is important when building with MSVC because
124      // its implementation will assert.  This situation can arise when dealing
125      // with UTF-8 multibyte characters.
126      unsigned char C = Name[i];
127      if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
128          C != '_') {
129        NeedsQuotes = true;
130        break;
131      }
132    }
133  }
134
135  // If we didn't need any quotes, just write out the name in one blast.
136  if (!NeedsQuotes) {
137    OS << Name;
138    return;
139  }
140
141  // Okay, we need quotes.  Output the quotes and escape any scary characters as
142  // needed.
143  OS << '"';
144  PrintEscapedString(Name, OS);
145  OS << '"';
146}
147
148/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
149/// prefixed with % (if the string only contains simple characters) or is
150/// surrounded with ""'s (if it has special chars in it).  Print it out.
151static void PrintLLVMName(raw_ostream &OS, const Value *V) {
152  PrintLLVMName(OS, V->getName(),
153                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
154}
155
156//===----------------------------------------------------------------------===//
157// TypePrinting Class: Type printing machinery
158//===----------------------------------------------------------------------===//
159
160/// TypePrinting - Type printing machinery.
161namespace {
162class TypePrinting {
163  TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION;
164  void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION;
165public:
166
167  /// NamedTypes - The named types that are used by the current module.
168  TypeFinder NamedTypes;
169
170  /// NumberedTypes - The numbered types, along with their value.
171  DenseMap<StructType*, unsigned> NumberedTypes;
172
173
174  TypePrinting() {}
175  ~TypePrinting() {}
176
177  void incorporateTypes(const Module &M);
178
179  void print(Type *Ty, raw_ostream &OS);
180
181  void printStructBody(StructType *Ty, raw_ostream &OS);
182};
183} // end anonymous namespace.
184
185
186void TypePrinting::incorporateTypes(const Module &M) {
187  NamedTypes.run(M, false);
188
189  // The list of struct types we got back includes all the struct types, split
190  // the unnamed ones out to a numbering and remove the anonymous structs.
191  unsigned NextNumber = 0;
192
193  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
194  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
195    StructType *STy = *I;
196
197    // Ignore anonymous types.
198    if (STy->isLiteral())
199      continue;
200
201    if (STy->getName().empty())
202      NumberedTypes[STy] = NextNumber++;
203    else
204      *NextToUse++ = STy;
205  }
206
207  NamedTypes.erase(NextToUse, NamedTypes.end());
208}
209
210
211/// CalcTypeName - Write the specified type to the specified raw_ostream, making
212/// use of type names or up references to shorten the type name where possible.
213void TypePrinting::print(Type *Ty, raw_ostream &OS) {
214  switch (Ty->getTypeID()) {
215  case Type::VoidTyID:      OS << "void"; break;
216  case Type::HalfTyID:      OS << "half"; break;
217  case Type::FloatTyID:     OS << "float"; break;
218  case Type::DoubleTyID:    OS << "double"; break;
219  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
220  case Type::FP128TyID:     OS << "fp128"; break;
221  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
222  case Type::LabelTyID:     OS << "label"; break;
223  case Type::MetadataTyID:  OS << "metadata"; break;
224  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
225  case Type::IntegerTyID:
226    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
227    return;
228
229  case Type::FunctionTyID: {
230    FunctionType *FTy = cast<FunctionType>(Ty);
231    print(FTy->getReturnType(), OS);
232    OS << " (";
233    for (FunctionType::param_iterator I = FTy->param_begin(),
234         E = FTy->param_end(); I != E; ++I) {
235      if (I != FTy->param_begin())
236        OS << ", ";
237      print(*I, OS);
238    }
239    if (FTy->isVarArg()) {
240      if (FTy->getNumParams()) OS << ", ";
241      OS << "...";
242    }
243    OS << ')';
244    return;
245  }
246  case Type::StructTyID: {
247    StructType *STy = cast<StructType>(Ty);
248
249    if (STy->isLiteral())
250      return printStructBody(STy, OS);
251
252    if (!STy->getName().empty())
253      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
254
255    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
256    if (I != NumberedTypes.end())
257      OS << '%' << I->second;
258    else  // Not enumerated, print the hex address.
259      OS << "%\"type " << STy << '\"';
260    return;
261  }
262  case Type::PointerTyID: {
263    PointerType *PTy = cast<PointerType>(Ty);
264    print(PTy->getElementType(), OS);
265    if (unsigned AddressSpace = PTy->getAddressSpace())
266      OS << " addrspace(" << AddressSpace << ')';
267    OS << '*';
268    return;
269  }
270  case Type::ArrayTyID: {
271    ArrayType *ATy = cast<ArrayType>(Ty);
272    OS << '[' << ATy->getNumElements() << " x ";
273    print(ATy->getElementType(), OS);
274    OS << ']';
275    return;
276  }
277  case Type::VectorTyID: {
278    VectorType *PTy = cast<VectorType>(Ty);
279    OS << "<" << PTy->getNumElements() << " x ";
280    print(PTy->getElementType(), OS);
281    OS << '>';
282    return;
283  }
284  default:
285    OS << "<unrecognized-type>";
286    return;
287  }
288}
289
290void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
291  if (STy->isOpaque()) {
292    OS << "opaque";
293    return;
294  }
295
296  if (STy->isPacked())
297    OS << '<';
298
299  if (STy->getNumElements() == 0) {
300    OS << "{}";
301  } else {
302    StructType::element_iterator I = STy->element_begin();
303    OS << "{ ";
304    print(*I++, OS);
305    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
306      OS << ", ";
307      print(*I, OS);
308    }
309
310    OS << " }";
311  }
312  if (STy->isPacked())
313    OS << '>';
314}
315
316
317
318//===----------------------------------------------------------------------===//
319// SlotTracker Class: Enumerate slot numbers for unnamed values
320//===----------------------------------------------------------------------===//
321
322namespace {
323
324/// This class provides computation of slot numbers for LLVM Assembly writing.
325///
326class SlotTracker {
327public:
328  /// ValueMap - A mapping of Values to slot numbers.
329  typedef DenseMap<const Value*, unsigned> ValueMap;
330
331private:
332  /// TheModule - The module for which we are holding slot numbers.
333  const Module* TheModule;
334
335  /// TheFunction - The function for which we are holding slot numbers.
336  const Function* TheFunction;
337  bool FunctionProcessed;
338
339  /// mMap - The slot map for the module level data.
340  ValueMap mMap;
341  unsigned mNext;
342
343  /// fMap - The slot map for the function level data.
344  ValueMap fMap;
345  unsigned fNext;
346
347  /// mdnMap - Map for MDNodes.
348  DenseMap<const MDNode*, unsigned> mdnMap;
349  unsigned mdnNext;
350
351  /// asMap - The slot map for attribute sets.
352  DenseMap<AttributeSet, unsigned> asMap;
353  unsigned asNext;
354public:
355  /// Construct from a module
356  explicit SlotTracker(const Module *M);
357  /// Construct from a function, starting out in incorp state.
358  explicit SlotTracker(const Function *F);
359
360  /// Return the slot number of the specified value in it's type
361  /// plane.  If something is not in the SlotTracker, return -1.
362  int getLocalSlot(const Value *V);
363  int getGlobalSlot(const GlobalValue *V);
364  int getMetadataSlot(const MDNode *N);
365  int getAttributeGroupSlot(AttributeSet AS);
366
367  /// If you'd like to deal with a function instead of just a module, use
368  /// this method to get its data into the SlotTracker.
369  void incorporateFunction(const Function *F) {
370    TheFunction = F;
371    FunctionProcessed = false;
372  }
373
374  /// After calling incorporateFunction, use this method to remove the
375  /// most recently incorporated function from the SlotTracker. This
376  /// will reset the state of the machine back to just the module contents.
377  void purgeFunction();
378
379  /// MDNode map iterators.
380  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
381  mdn_iterator mdn_begin() { return mdnMap.begin(); }
382  mdn_iterator mdn_end() { return mdnMap.end(); }
383  unsigned mdn_size() const { return mdnMap.size(); }
384  bool mdn_empty() const { return mdnMap.empty(); }
385
386  /// AttributeSet map iterators.
387  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
388  as_iterator as_begin()   { return asMap.begin(); }
389  as_iterator as_end()     { return asMap.end(); }
390  unsigned as_size() const { return asMap.size(); }
391  bool as_empty() const    { return asMap.empty(); }
392
393  /// This function does the actual initialization.
394  inline void initialize();
395
396  // Implementation Details
397private:
398  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
399  void CreateModuleSlot(const GlobalValue *V);
400
401  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
402  void CreateMetadataSlot(const MDNode *N);
403
404  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
405  void CreateFunctionSlot(const Value *V);
406
407  /// \brief Insert the specified AttributeSet into the slot table.
408  void CreateAttributeSetSlot(AttributeSet AS);
409
410  /// Add all of the module level global variables (and their initializers)
411  /// and function declarations, but not the contents of those functions.
412  void processModule();
413
414  /// Add all of the functions arguments, basic blocks, and instructions.
415  void processFunction();
416
417  SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
418  void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
419};
420
421}  // end anonymous namespace
422
423
424static SlotTracker *createSlotTracker(const Value *V) {
425  if (const Argument *FA = dyn_cast<Argument>(V))
426    return new SlotTracker(FA->getParent());
427
428  if (const Instruction *I = dyn_cast<Instruction>(V))
429    if (I->getParent())
430      return new SlotTracker(I->getParent()->getParent());
431
432  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
433    return new SlotTracker(BB->getParent());
434
435  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
436    return new SlotTracker(GV->getParent());
437
438  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
439    return new SlotTracker(GA->getParent());
440
441  if (const Function *Func = dyn_cast<Function>(V))
442    return new SlotTracker(Func);
443
444  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
445    if (!MD->isFunctionLocal())
446      return new SlotTracker(MD->getFunction());
447
448    return new SlotTracker((Function *)0);
449  }
450
451  return 0;
452}
453
454#if 0
455#define ST_DEBUG(X) dbgs() << X
456#else
457#define ST_DEBUG(X)
458#endif
459
460// Module level constructor. Causes the contents of the Module (sans functions)
461// to be added to the slot table.
462SlotTracker::SlotTracker(const Module *M)
463  : TheModule(M), TheFunction(0), FunctionProcessed(false),
464    mNext(0), fNext(0),  mdnNext(0), asNext(0) {
465}
466
467// Function level constructor. Causes the contents of the Module and the one
468// function provided to be added to the slot table.
469SlotTracker::SlotTracker(const Function *F)
470  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
471    mNext(0), fNext(0), mdnNext(0), asNext(0) {
472}
473
474inline void SlotTracker::initialize() {
475  if (TheModule) {
476    processModule();
477    TheModule = 0; ///< Prevent re-processing next time we're called.
478  }
479
480  if (TheFunction && !FunctionProcessed)
481    processFunction();
482}
483
484// Iterate through all the global variables, functions, and global
485// variable initializers and create slots for them.
486void SlotTracker::processModule() {
487  ST_DEBUG("begin processModule!\n");
488
489  // Add all of the unnamed global variables to the value table.
490  for (Module::const_global_iterator I = TheModule->global_begin(),
491         E = TheModule->global_end(); I != E; ++I) {
492    if (!I->hasName())
493      CreateModuleSlot(I);
494  }
495
496  // Add metadata used by named metadata.
497  for (Module::const_named_metadata_iterator
498         I = TheModule->named_metadata_begin(),
499         E = TheModule->named_metadata_end(); I != E; ++I) {
500    const NamedMDNode *NMD = I;
501    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
502      CreateMetadataSlot(NMD->getOperand(i));
503  }
504
505  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
506       I != E; ++I) {
507    if (!I->hasName())
508      // Add all the unnamed functions to the table.
509      CreateModuleSlot(I);
510
511    // Add all the function attributes to the table.
512    // FIXME: Add attributes of other objects?
513    AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
514    if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
515      CreateAttributeSetSlot(FnAttrs);
516  }
517
518  ST_DEBUG("end processModule!\n");
519}
520
521// Process the arguments, basic blocks, and instructions  of a function.
522void SlotTracker::processFunction() {
523  ST_DEBUG("begin processFunction!\n");
524  fNext = 0;
525
526  // Add all the function arguments with no names.
527  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
528      AE = TheFunction->arg_end(); AI != AE; ++AI)
529    if (!AI->hasName())
530      CreateFunctionSlot(AI);
531
532  ST_DEBUG("Inserting Instructions:\n");
533
534  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
535
536  // Add all of the basic blocks and instructions with no names.
537  for (Function::const_iterator BB = TheFunction->begin(),
538       E = TheFunction->end(); BB != E; ++BB) {
539    if (!BB->hasName())
540      CreateFunctionSlot(BB);
541
542    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
543         ++I) {
544      if (!I->getType()->isVoidTy() && !I->hasName())
545        CreateFunctionSlot(I);
546
547      // Intrinsics can directly use metadata.  We allow direct calls to any
548      // llvm.foo function here, because the target may not be linked into the
549      // optimizer.
550      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
551        if (Function *F = CI->getCalledFunction())
552          if (F->getName().startswith("llvm."))
553            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
554              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
555                CreateMetadataSlot(N);
556
557        // Add all the call attributes to the table. This is important for
558        // inline ASM, which may have attributes but no declaration.
559        if (CI->isInlineAsm()) {
560          AttributeSet Attrs = CI->getAttributes().getFnAttributes();
561          if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
562            CreateAttributeSetSlot(Attrs);
563        }
564      }
565
566      // Process metadata attached with this instruction.
567      I->getAllMetadata(MDForInst);
568      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
569        CreateMetadataSlot(MDForInst[i].second);
570      MDForInst.clear();
571    }
572  }
573
574  FunctionProcessed = true;
575
576  ST_DEBUG("end processFunction!\n");
577}
578
579/// Clean up after incorporating a function. This is the only way to get out of
580/// the function incorporation state that affects get*Slot/Create*Slot. Function
581/// incorporation state is indicated by TheFunction != 0.
582void SlotTracker::purgeFunction() {
583  ST_DEBUG("begin purgeFunction!\n");
584  fMap.clear(); // Simply discard the function level map
585  TheFunction = 0;
586  FunctionProcessed = false;
587  ST_DEBUG("end purgeFunction!\n");
588}
589
590/// getGlobalSlot - Get the slot number of a global value.
591int SlotTracker::getGlobalSlot(const GlobalValue *V) {
592  // Check for uninitialized state and do lazy initialization.
593  initialize();
594
595  // Find the value in the module map
596  ValueMap::iterator MI = mMap.find(V);
597  return MI == mMap.end() ? -1 : (int)MI->second;
598}
599
600/// getMetadataSlot - Get the slot number of a MDNode.
601int SlotTracker::getMetadataSlot(const MDNode *N) {
602  // Check for uninitialized state and do lazy initialization.
603  initialize();
604
605  // Find the MDNode in the module map
606  mdn_iterator MI = mdnMap.find(N);
607  return MI == mdnMap.end() ? -1 : (int)MI->second;
608}
609
610
611/// getLocalSlot - Get the slot number for a value that is local to a function.
612int SlotTracker::getLocalSlot(const Value *V) {
613  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
614
615  // Check for uninitialized state and do lazy initialization.
616  initialize();
617
618  ValueMap::iterator FI = fMap.find(V);
619  return FI == fMap.end() ? -1 : (int)FI->second;
620}
621
622int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
623  // Check for uninitialized state and do lazy initialization.
624  initialize();
625
626  // Find the AttributeSet in the module map.
627  as_iterator AI = asMap.find(AS);
628  return AI == asMap.end() ? -1 : (int)AI->second;
629}
630
631/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
632void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
633  assert(V && "Can't insert a null Value into SlotTracker!");
634  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
635  assert(!V->hasName() && "Doesn't need a slot!");
636
637  unsigned DestSlot = mNext++;
638  mMap[V] = DestSlot;
639
640  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
641           DestSlot << " [");
642  // G = Global, F = Function, A = Alias, o = other
643  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
644            (isa<Function>(V) ? 'F' :
645             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
646}
647
648/// CreateSlot - Create a new slot for the specified value if it has no name.
649void SlotTracker::CreateFunctionSlot(const Value *V) {
650  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
651
652  unsigned DestSlot = fNext++;
653  fMap[V] = DestSlot;
654
655  // G = Global, F = Function, o = other
656  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
657           DestSlot << " [o]\n");
658}
659
660/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
661void SlotTracker::CreateMetadataSlot(const MDNode *N) {
662  assert(N && "Can't insert a null Value into SlotTracker!");
663
664  // Don't insert if N is a function-local metadata, these are always printed
665  // inline.
666  if (!N->isFunctionLocal()) {
667    mdn_iterator I = mdnMap.find(N);
668    if (I != mdnMap.end())
669      return;
670
671    unsigned DestSlot = mdnNext++;
672    mdnMap[N] = DestSlot;
673  }
674
675  // Recursively add any MDNodes referenced by operands.
676  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
677    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
678      CreateMetadataSlot(Op);
679}
680
681void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
682  assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
683         "Doesn't need a slot!");
684
685  as_iterator I = asMap.find(AS);
686  if (I != asMap.end())
687    return;
688
689  unsigned DestSlot = asNext++;
690  asMap[AS] = DestSlot;
691}
692
693//===----------------------------------------------------------------------===//
694// AsmWriter Implementation
695//===----------------------------------------------------------------------===//
696
697static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
698                                   TypePrinting *TypePrinter,
699                                   SlotTracker *Machine,
700                                   const Module *Context);
701
702
703
704static const char *getPredicateText(unsigned predicate) {
705  const char * pred = "unknown";
706  switch (predicate) {
707  case FCmpInst::FCMP_FALSE: pred = "false"; break;
708  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
709  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
710  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
711  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
712  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
713  case FCmpInst::FCMP_ONE:   pred = "one"; break;
714  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
715  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
716  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
717  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
718  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
719  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
720  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
721  case FCmpInst::FCMP_UNE:   pred = "une"; break;
722  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
723  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
724  case ICmpInst::ICMP_NE:    pred = "ne"; break;
725  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
726  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
727  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
728  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
729  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
730  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
731  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
732  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
733  }
734  return pred;
735}
736
737static void writeAtomicRMWOperation(raw_ostream &Out,
738                                    AtomicRMWInst::BinOp Op) {
739  switch (Op) {
740  default: Out << " <unknown operation " << Op << ">"; break;
741  case AtomicRMWInst::Xchg: Out << " xchg"; break;
742  case AtomicRMWInst::Add:  Out << " add"; break;
743  case AtomicRMWInst::Sub:  Out << " sub"; break;
744  case AtomicRMWInst::And:  Out << " and"; break;
745  case AtomicRMWInst::Nand: Out << " nand"; break;
746  case AtomicRMWInst::Or:   Out << " or"; break;
747  case AtomicRMWInst::Xor:  Out << " xor"; break;
748  case AtomicRMWInst::Max:  Out << " max"; break;
749  case AtomicRMWInst::Min:  Out << " min"; break;
750  case AtomicRMWInst::UMax: Out << " umax"; break;
751  case AtomicRMWInst::UMin: Out << " umin"; break;
752  }
753}
754
755static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
756  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
757    // Unsafe algebra implies all the others, no need to write them all out
758    if (FPO->hasUnsafeAlgebra())
759      Out << " fast";
760    else {
761      if (FPO->hasNoNaNs())
762        Out << " nnan";
763      if (FPO->hasNoInfs())
764        Out << " ninf";
765      if (FPO->hasNoSignedZeros())
766        Out << " nsz";
767      if (FPO->hasAllowReciprocal())
768        Out << " arcp";
769    }
770  }
771
772  if (const OverflowingBinaryOperator *OBO =
773        dyn_cast<OverflowingBinaryOperator>(U)) {
774    if (OBO->hasNoUnsignedWrap())
775      Out << " nuw";
776    if (OBO->hasNoSignedWrap())
777      Out << " nsw";
778  } else if (const PossiblyExactOperator *Div =
779               dyn_cast<PossiblyExactOperator>(U)) {
780    if (Div->isExact())
781      Out << " exact";
782  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
783    if (GEP->isInBounds())
784      Out << " inbounds";
785  }
786}
787
788static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
789                                  TypePrinting &TypePrinter,
790                                  SlotTracker *Machine,
791                                  const Module *Context) {
792  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
793    if (CI->getType()->isIntegerTy(1)) {
794      Out << (CI->getZExtValue() ? "true" : "false");
795      return;
796    }
797    Out << CI->getValue();
798    return;
799  }
800
801  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
802    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
803        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
804      // We would like to output the FP constant value in exponential notation,
805      // but we cannot do this if doing so will lose precision.  Check here to
806      // make sure that we only output it in exponential format if we can parse
807      // the value back and get the same value.
808      //
809      bool ignored;
810      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
811      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
812      bool isInf = CFP->getValueAPF().isInfinity();
813      bool isNaN = CFP->getValueAPF().isNaN();
814      if (!isHalf && !isInf && !isNaN) {
815        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
816                                CFP->getValueAPF().convertToFloat();
817        SmallString<128> StrVal;
818        raw_svector_ostream(StrVal) << Val;
819
820        // Check to make sure that the stringized number is not some string like
821        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
822        // that the string matches the "[-+]?[0-9]" regex.
823        //
824        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
825            ((StrVal[0] == '-' || StrVal[0] == '+') &&
826             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
827          // Reparse stringized version!
828          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
829            Out << StrVal.str();
830            return;
831          }
832        }
833      }
834      // Otherwise we could not reparse it to exactly the same value, so we must
835      // output the string in hexadecimal format!  Note that loading and storing
836      // floating point types changes the bits of NaNs on some hosts, notably
837      // x86, so we must not use these types.
838      assert(sizeof(double) == sizeof(uint64_t) &&
839             "assuming that double is 64 bits!");
840      char Buffer[40];
841      APFloat apf = CFP->getValueAPF();
842      // Halves and floats are represented in ASCII IR as double, convert.
843      if (!isDouble)
844        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
845                          &ignored);
846      Out << "0x" <<
847              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
848                            Buffer+40);
849      return;
850    }
851
852    // Either half, or some form of long double.
853    // These appear as a magic letter identifying the type, then a
854    // fixed number of hex digits.
855    Out << "0x";
856    // Bit position, in the current word, of the next nibble to print.
857    int shiftcount;
858
859    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
860      Out << 'K';
861      // api needed to prevent premature destruction
862      APInt api = CFP->getValueAPF().bitcastToAPInt();
863      const uint64_t* p = api.getRawData();
864      uint64_t word = p[1];
865      shiftcount = 12;
866      int width = api.getBitWidth();
867      for (int j=0; j<width; j+=4, shiftcount-=4) {
868        unsigned int nibble = (word>>shiftcount) & 15;
869        if (nibble < 10)
870          Out << (unsigned char)(nibble + '0');
871        else
872          Out << (unsigned char)(nibble - 10 + 'A');
873        if (shiftcount == 0 && j+4 < width) {
874          word = *p;
875          shiftcount = 64;
876          if (width-j-4 < 64)
877            shiftcount = width-j-4;
878        }
879      }
880      return;
881    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
882      shiftcount = 60;
883      Out << 'L';
884    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
885      shiftcount = 60;
886      Out << 'M';
887    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
888      shiftcount = 12;
889      Out << 'H';
890    } else
891      llvm_unreachable("Unsupported floating point type");
892    // api needed to prevent premature destruction
893    APInt api = CFP->getValueAPF().bitcastToAPInt();
894    const uint64_t* p = api.getRawData();
895    uint64_t word = *p;
896    int width = api.getBitWidth();
897    for (int j=0; j<width; j+=4, shiftcount-=4) {
898      unsigned int nibble = (word>>shiftcount) & 15;
899      if (nibble < 10)
900        Out << (unsigned char)(nibble + '0');
901      else
902        Out << (unsigned char)(nibble - 10 + 'A');
903      if (shiftcount == 0 && j+4 < width) {
904        word = *(++p);
905        shiftcount = 64;
906        if (width-j-4 < 64)
907          shiftcount = width-j-4;
908      }
909    }
910    return;
911  }
912
913  if (isa<ConstantAggregateZero>(CV)) {
914    Out << "zeroinitializer";
915    return;
916  }
917
918  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
919    Out << "blockaddress(";
920    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
921                           Context);
922    Out << ", ";
923    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
924                           Context);
925    Out << ")";
926    return;
927  }
928
929  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
930    Type *ETy = CA->getType()->getElementType();
931    Out << '[';
932    TypePrinter.print(ETy, Out);
933    Out << ' ';
934    WriteAsOperandInternal(Out, CA->getOperand(0),
935                           &TypePrinter, Machine,
936                           Context);
937    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
938      Out << ", ";
939      TypePrinter.print(ETy, Out);
940      Out << ' ';
941      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
942                             Context);
943    }
944    Out << ']';
945    return;
946  }
947
948  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
949    // As a special case, print the array as a string if it is an array of
950    // i8 with ConstantInt values.
951    if (CA->isString()) {
952      Out << "c\"";
953      PrintEscapedString(CA->getAsString(), Out);
954      Out << '"';
955      return;
956    }
957
958    Type *ETy = CA->getType()->getElementType();
959    Out << '[';
960    TypePrinter.print(ETy, Out);
961    Out << ' ';
962    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
963                           &TypePrinter, Machine,
964                           Context);
965    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
966      Out << ", ";
967      TypePrinter.print(ETy, Out);
968      Out << ' ';
969      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
970                             Machine, Context);
971    }
972    Out << ']';
973    return;
974  }
975
976
977  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
978    if (CS->getType()->isPacked())
979      Out << '<';
980    Out << '{';
981    unsigned N = CS->getNumOperands();
982    if (N) {
983      Out << ' ';
984      TypePrinter.print(CS->getOperand(0)->getType(), Out);
985      Out << ' ';
986
987      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
988                             Context);
989
990      for (unsigned i = 1; i < N; i++) {
991        Out << ", ";
992        TypePrinter.print(CS->getOperand(i)->getType(), Out);
993        Out << ' ';
994
995        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
996                               Context);
997      }
998      Out << ' ';
999    }
1000
1001    Out << '}';
1002    if (CS->getType()->isPacked())
1003      Out << '>';
1004    return;
1005  }
1006
1007  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1008    Type *ETy = CV->getType()->getVectorElementType();
1009    Out << '<';
1010    TypePrinter.print(ETy, Out);
1011    Out << ' ';
1012    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1013                           Machine, Context);
1014    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1015      Out << ", ";
1016      TypePrinter.print(ETy, Out);
1017      Out << ' ';
1018      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1019                             Machine, Context);
1020    }
1021    Out << '>';
1022    return;
1023  }
1024
1025  if (isa<ConstantPointerNull>(CV)) {
1026    Out << "null";
1027    return;
1028  }
1029
1030  if (isa<UndefValue>(CV)) {
1031    Out << "undef";
1032    return;
1033  }
1034
1035  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1036    Out << CE->getOpcodeName();
1037    WriteOptimizationInfo(Out, CE);
1038    if (CE->isCompare())
1039      Out << ' ' << getPredicateText(CE->getPredicate());
1040    Out << " (";
1041
1042    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1043      TypePrinter.print((*OI)->getType(), Out);
1044      Out << ' ';
1045      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1046      if (OI+1 != CE->op_end())
1047        Out << ", ";
1048    }
1049
1050    if (CE->hasIndices()) {
1051      ArrayRef<unsigned> Indices = CE->getIndices();
1052      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1053        Out << ", " << Indices[i];
1054    }
1055
1056    if (CE->isCast()) {
1057      Out << " to ";
1058      TypePrinter.print(CE->getType(), Out);
1059    }
1060
1061    Out << ')';
1062    return;
1063  }
1064
1065  Out << "<placeholder or erroneous Constant>";
1066}
1067
1068static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1069                                    TypePrinting *TypePrinter,
1070                                    SlotTracker *Machine,
1071                                    const Module *Context) {
1072  Out << "!{";
1073  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1074    const Value *V = Node->getOperand(mi);
1075    if (V == 0)
1076      Out << "null";
1077    else {
1078      TypePrinter->print(V->getType(), Out);
1079      Out << ' ';
1080      WriteAsOperandInternal(Out, Node->getOperand(mi),
1081                             TypePrinter, Machine, Context);
1082    }
1083    if (mi + 1 != me)
1084      Out << ", ";
1085  }
1086
1087  Out << "}";
1088}
1089
1090
1091/// WriteAsOperand - Write the name of the specified value out to the specified
1092/// ostream.  This can be useful when you just want to print int %reg126, not
1093/// the whole instruction that generated it.
1094///
1095static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1096                                   TypePrinting *TypePrinter,
1097                                   SlotTracker *Machine,
1098                                   const Module *Context) {
1099  if (V->hasName()) {
1100    PrintLLVMName(Out, V);
1101    return;
1102  }
1103
1104  const Constant *CV = dyn_cast<Constant>(V);
1105  if (CV && !isa<GlobalValue>(CV)) {
1106    assert(TypePrinter && "Constants require TypePrinting!");
1107    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1108    return;
1109  }
1110
1111  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1112    Out << "asm ";
1113    if (IA->hasSideEffects())
1114      Out << "sideeffect ";
1115    if (IA->isAlignStack())
1116      Out << "alignstack ";
1117    // We don't emit the AD_ATT dialect as it's the assumed default.
1118    if (IA->getDialect() == InlineAsm::AD_Intel)
1119      Out << "inteldialect ";
1120    Out << '"';
1121    PrintEscapedString(IA->getAsmString(), Out);
1122    Out << "\", \"";
1123    PrintEscapedString(IA->getConstraintString(), Out);
1124    Out << '"';
1125    return;
1126  }
1127
1128  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1129    if (N->isFunctionLocal()) {
1130      // Print metadata inline, not via slot reference number.
1131      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1132      return;
1133    }
1134
1135    if (!Machine) {
1136      if (N->isFunctionLocal())
1137        Machine = new SlotTracker(N->getFunction());
1138      else
1139        Machine = new SlotTracker(Context);
1140    }
1141    int Slot = Machine->getMetadataSlot(N);
1142    if (Slot == -1)
1143      Out << "<badref>";
1144    else
1145      Out << '!' << Slot;
1146    return;
1147  }
1148
1149  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1150    Out << "!\"";
1151    PrintEscapedString(MDS->getString(), Out);
1152    Out << '"';
1153    return;
1154  }
1155
1156  if (V->getValueID() == Value::PseudoSourceValueVal ||
1157      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1158    V->print(Out);
1159    return;
1160  }
1161
1162  char Prefix = '%';
1163  int Slot;
1164  // If we have a SlotTracker, use it.
1165  if (Machine) {
1166    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1167      Slot = Machine->getGlobalSlot(GV);
1168      Prefix = '@';
1169    } else {
1170      Slot = Machine->getLocalSlot(V);
1171
1172      // If the local value didn't succeed, then we may be referring to a value
1173      // from a different function.  Translate it, as this can happen when using
1174      // address of blocks.
1175      if (Slot == -1)
1176        if ((Machine = createSlotTracker(V))) {
1177          Slot = Machine->getLocalSlot(V);
1178          delete Machine;
1179        }
1180    }
1181  } else if ((Machine = createSlotTracker(V))) {
1182    // Otherwise, create one to get the # and then destroy it.
1183    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1184      Slot = Machine->getGlobalSlot(GV);
1185      Prefix = '@';
1186    } else {
1187      Slot = Machine->getLocalSlot(V);
1188    }
1189    delete Machine;
1190    Machine = 0;
1191  } else {
1192    Slot = -1;
1193  }
1194
1195  if (Slot != -1)
1196    Out << Prefix << Slot;
1197  else
1198    Out << "<badref>";
1199}
1200
1201void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1202                          bool PrintType, const Module *Context) {
1203
1204  // Fast path: Don't construct and populate a TypePrinting object if we
1205  // won't be needing any types printed.
1206  if (!PrintType &&
1207      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1208       V->hasName() || isa<GlobalValue>(V))) {
1209    WriteAsOperandInternal(Out, V, 0, 0, Context);
1210    return;
1211  }
1212
1213  if (Context == 0) Context = getModuleFromVal(V);
1214
1215  TypePrinting TypePrinter;
1216  if (Context)
1217    TypePrinter.incorporateTypes(*Context);
1218  if (PrintType) {
1219    TypePrinter.print(V->getType(), Out);
1220    Out << ' ';
1221  }
1222
1223  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1224}
1225
1226namespace {
1227
1228class AssemblyWriter {
1229  formatted_raw_ostream &Out;
1230  SlotTracker &Machine;
1231  const Module *TheModule;
1232  TypePrinting TypePrinter;
1233  AssemblyAnnotationWriter *AnnotationWriter;
1234
1235public:
1236  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1237                        const Module *M,
1238                        AssemblyAnnotationWriter *AAW)
1239    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1240    if (M)
1241      TypePrinter.incorporateTypes(*M);
1242  }
1243
1244  void printMDNodeBody(const MDNode *MD);
1245  void printNamedMDNode(const NamedMDNode *NMD);
1246
1247  void printModule(const Module *M);
1248
1249  void writeOperand(const Value *Op, bool PrintType);
1250  void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
1251  void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
1252
1253  void writeAllMDNodes();
1254  void writeAllAttributeGroups();
1255
1256  void printTypeIdentities();
1257  void printGlobal(const GlobalVariable *GV);
1258  void printAlias(const GlobalAlias *GV);
1259  void printFunction(const Function *F);
1260  void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
1261  void printBasicBlock(const BasicBlock *BB);
1262  void printInstruction(const Instruction &I);
1263
1264private:
1265  // printInfoComment - Print a little comment after the instruction indicating
1266  // which slot it occupies.
1267  void printInfoComment(const Value &V);
1268};
1269}  // end of anonymous namespace
1270
1271void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1272  if (Operand == 0) {
1273    Out << "<null operand!>";
1274    return;
1275  }
1276  if (PrintType) {
1277    TypePrinter.print(Operand->getType(), Out);
1278    Out << ' ';
1279  }
1280  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1281}
1282
1283void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1284                                 SynchronizationScope SynchScope) {
1285  if (Ordering == NotAtomic)
1286    return;
1287
1288  switch (SynchScope) {
1289  case SingleThread: Out << " singlethread"; break;
1290  case CrossThread: break;
1291  }
1292
1293  switch (Ordering) {
1294  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1295  case Unordered: Out << " unordered"; break;
1296  case Monotonic: Out << " monotonic"; break;
1297  case Acquire: Out << " acquire"; break;
1298  case Release: Out << " release"; break;
1299  case AcquireRelease: Out << " acq_rel"; break;
1300  case SequentiallyConsistent: Out << " seq_cst"; break;
1301  }
1302}
1303
1304void AssemblyWriter::writeParamOperand(const Value *Operand,
1305                                       AttributeSet Attrs, unsigned Idx) {
1306  if (Operand == 0) {
1307    Out << "<null operand!>";
1308    return;
1309  }
1310
1311  // Print the type
1312  TypePrinter.print(Operand->getType(), Out);
1313  // Print parameter attributes list
1314  if (Attrs.hasAttributes(Idx))
1315    Out << ' ' << Attrs.getAsString(Idx);
1316  Out << ' ';
1317  // Print the operand
1318  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1319}
1320
1321void AssemblyWriter::printModule(const Module *M) {
1322  Machine.initialize();
1323
1324  if (!M->getModuleIdentifier().empty() &&
1325      // Don't print the ID if it will start a new line (which would
1326      // require a comment char before it).
1327      M->getModuleIdentifier().find('\n') == std::string::npos)
1328    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1329
1330  if (!M->getDataLayout().empty())
1331    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1332  if (!M->getTargetTriple().empty())
1333    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1334
1335  if (!M->getModuleInlineAsm().empty()) {
1336    // Split the string into lines, to make it easier to read the .ll file.
1337    std::string Asm = M->getModuleInlineAsm();
1338    size_t CurPos = 0;
1339    size_t NewLine = Asm.find_first_of('\n', CurPos);
1340    Out << '\n';
1341    while (NewLine != std::string::npos) {
1342      // We found a newline, print the portion of the asm string from the
1343      // last newline up to this newline.
1344      Out << "module asm \"";
1345      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1346                         Out);
1347      Out << "\"\n";
1348      CurPos = NewLine+1;
1349      NewLine = Asm.find_first_of('\n', CurPos);
1350    }
1351    std::string rest(Asm.begin()+CurPos, Asm.end());
1352    if (!rest.empty()) {
1353      Out << "module asm \"";
1354      PrintEscapedString(rest, Out);
1355      Out << "\"\n";
1356    }
1357  }
1358
1359  printTypeIdentities();
1360
1361  // Output all globals.
1362  if (!M->global_empty()) Out << '\n';
1363  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1364       I != E; ++I) {
1365    printGlobal(I); Out << '\n';
1366  }
1367
1368  // Output all aliases.
1369  if (!M->alias_empty()) Out << "\n";
1370  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1371       I != E; ++I)
1372    printAlias(I);
1373
1374  // Output all of the functions.
1375  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1376    printFunction(I);
1377
1378  // Output all attribute groups.
1379  if (!Machine.as_empty()) {
1380    Out << '\n';
1381    writeAllAttributeGroups();
1382  }
1383
1384  // Output named metadata.
1385  if (!M->named_metadata_empty()) Out << '\n';
1386
1387  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1388       E = M->named_metadata_end(); I != E; ++I)
1389    printNamedMDNode(I);
1390
1391  // Output metadata.
1392  if (!Machine.mdn_empty()) {
1393    Out << '\n';
1394    writeAllMDNodes();
1395  }
1396}
1397
1398void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1399  Out << '!';
1400  StringRef Name = NMD->getName();
1401  if (Name.empty()) {
1402    Out << "<empty name> ";
1403  } else {
1404    if (isalpha(static_cast<unsigned char>(Name[0])) ||
1405        Name[0] == '-' || Name[0] == '$' ||
1406        Name[0] == '.' || Name[0] == '_')
1407      Out << Name[0];
1408    else
1409      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1410    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1411      unsigned char C = Name[i];
1412      if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
1413          C == '.' || C == '_')
1414        Out << C;
1415      else
1416        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1417    }
1418  }
1419  Out << " = !{";
1420  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1421    if (i) Out << ", ";
1422    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1423    if (Slot == -1)
1424      Out << "<badref>";
1425    else
1426      Out << '!' << Slot;
1427  }
1428  Out << "}\n";
1429}
1430
1431
1432static void PrintLinkage(GlobalValue::LinkageTypes LT,
1433                         formatted_raw_ostream &Out) {
1434  switch (LT) {
1435  case GlobalValue::ExternalLinkage: break;
1436  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1437  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1438  case GlobalValue::LinkerPrivateWeakLinkage:
1439    Out << "linker_private_weak ";
1440    break;
1441  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1442  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1443  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1444  case GlobalValue::LinkOnceODRAutoHideLinkage:
1445    Out << "linkonce_odr_auto_hide ";
1446    break;
1447  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1448  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1449  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1450  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1451  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1452  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1453  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1454  case GlobalValue::AvailableExternallyLinkage:
1455    Out << "available_externally ";
1456    break;
1457  }
1458}
1459
1460
1461static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1462                            formatted_raw_ostream &Out) {
1463  switch (Vis) {
1464  case GlobalValue::DefaultVisibility: break;
1465  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1466  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1467  }
1468}
1469
1470static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1471                                  formatted_raw_ostream &Out) {
1472  switch (TLM) {
1473    case GlobalVariable::NotThreadLocal:
1474      break;
1475    case GlobalVariable::GeneralDynamicTLSModel:
1476      Out << "thread_local ";
1477      break;
1478    case GlobalVariable::LocalDynamicTLSModel:
1479      Out << "thread_local(localdynamic) ";
1480      break;
1481    case GlobalVariable::InitialExecTLSModel:
1482      Out << "thread_local(initialexec) ";
1483      break;
1484    case GlobalVariable::LocalExecTLSModel:
1485      Out << "thread_local(localexec) ";
1486      break;
1487  }
1488}
1489
1490void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1491  if (GV->isMaterializable())
1492    Out << "; Materializable\n";
1493
1494  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1495  Out << " = ";
1496
1497  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1498    Out << "external ";
1499
1500  PrintLinkage(GV->getLinkage(), Out);
1501  PrintVisibility(GV->getVisibility(), Out);
1502  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1503
1504  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1505    Out << "addrspace(" << AddressSpace << ") ";
1506  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1507  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
1508  Out << (GV->isConstant() ? "constant " : "global ");
1509  TypePrinter.print(GV->getType()->getElementType(), Out);
1510
1511  if (GV->hasInitializer()) {
1512    Out << ' ';
1513    writeOperand(GV->getInitializer(), false);
1514  }
1515
1516  if (GV->hasSection()) {
1517    Out << ", section \"";
1518    PrintEscapedString(GV->getSection(), Out);
1519    Out << '"';
1520  }
1521  if (GV->getAlignment())
1522    Out << ", align " << GV->getAlignment();
1523
1524  printInfoComment(*GV);
1525}
1526
1527void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1528  if (GA->isMaterializable())
1529    Out << "; Materializable\n";
1530
1531  // Don't crash when dumping partially built GA
1532  if (!GA->hasName())
1533    Out << "<<nameless>> = ";
1534  else {
1535    PrintLLVMName(Out, GA);
1536    Out << " = ";
1537  }
1538  PrintVisibility(GA->getVisibility(), Out);
1539
1540  Out << "alias ";
1541
1542  PrintLinkage(GA->getLinkage(), Out);
1543
1544  const Constant *Aliasee = GA->getAliasee();
1545
1546  if (Aliasee == 0) {
1547    TypePrinter.print(GA->getType(), Out);
1548    Out << " <<NULL ALIASEE>>";
1549  } else {
1550    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1551  }
1552
1553  printInfoComment(*GA);
1554  Out << '\n';
1555}
1556
1557void AssemblyWriter::printTypeIdentities() {
1558  if (TypePrinter.NumberedTypes.empty() &&
1559      TypePrinter.NamedTypes.empty())
1560    return;
1561
1562  Out << '\n';
1563
1564  // We know all the numbers that each type is used and we know that it is a
1565  // dense assignment.  Convert the map to an index table.
1566  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1567  for (DenseMap<StructType*, unsigned>::iterator I =
1568       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1569       I != E; ++I) {
1570    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1571    NumberedTypes[I->second] = I->first;
1572  }
1573
1574  // Emit all numbered types.
1575  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1576    Out << '%' << i << " = type ";
1577
1578    // Make sure we print out at least one level of the type structure, so
1579    // that we do not get %2 = type %2
1580    TypePrinter.printStructBody(NumberedTypes[i], Out);
1581    Out << '\n';
1582  }
1583
1584  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1585    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1586    Out << " = type ";
1587
1588    // Make sure we print out at least one level of the type structure, so
1589    // that we do not get %FILE = type %FILE
1590    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1591    Out << '\n';
1592  }
1593}
1594
1595/// printFunction - Print all aspects of a function.
1596///
1597void AssemblyWriter::printFunction(const Function *F) {
1598  // Print out the return type and name.
1599  Out << '\n';
1600
1601  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1602
1603  if (F->isMaterializable())
1604    Out << "; Materializable\n";
1605
1606  if (F->isDeclaration())
1607    Out << "declare ";
1608  else
1609    Out << "define ";
1610
1611  PrintLinkage(F->getLinkage(), Out);
1612  PrintVisibility(F->getVisibility(), Out);
1613
1614  // Print the calling convention.
1615  if (F->getCallingConv() != CallingConv::C) {
1616    PrintCallingConv(F->getCallingConv(), Out);
1617    Out << " ";
1618  }
1619
1620  FunctionType *FT = F->getFunctionType();
1621  const AttributeSet &Attrs = F->getAttributes();
1622  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1623    Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
1624  TypePrinter.print(F->getReturnType(), Out);
1625  Out << ' ';
1626  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1627  Out << '(';
1628  Machine.incorporateFunction(F);
1629
1630  // Loop over the arguments, printing them...
1631
1632  unsigned Idx = 1;
1633  if (!F->isDeclaration()) {
1634    // If this isn't a declaration, print the argument names as well.
1635    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1636         I != E; ++I) {
1637      // Insert commas as we go... the first arg doesn't get a comma
1638      if (I != F->arg_begin()) Out << ", ";
1639      printArgument(I, Attrs, Idx);
1640      Idx++;
1641    }
1642  } else {
1643    // Otherwise, print the types from the function type.
1644    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1645      // Insert commas as we go... the first arg doesn't get a comma
1646      if (i) Out << ", ";
1647
1648      // Output type...
1649      TypePrinter.print(FT->getParamType(i), Out);
1650
1651      if (Attrs.hasAttributes(i+1))
1652        Out << ' ' << Attrs.getAsString(i+1);
1653    }
1654  }
1655
1656  // Finish printing arguments...
1657  if (FT->isVarArg()) {
1658    if (FT->getNumParams()) Out << ", ";
1659    Out << "...";  // Output varargs portion of signature!
1660  }
1661  Out << ')';
1662  if (F->hasUnnamedAddr())
1663    Out << " unnamed_addr";
1664  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1665    Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
1666  if (F->hasSection()) {
1667    Out << " section \"";
1668    PrintEscapedString(F->getSection(), Out);
1669    Out << '"';
1670  }
1671  if (F->getAlignment())
1672    Out << " align " << F->getAlignment();
1673  if (F->hasGC())
1674    Out << " gc \"" << F->getGC() << '"';
1675  if (F->isDeclaration()) {
1676    Out << '\n';
1677  } else {
1678    Out << " {";
1679    // Output all of the function's basic blocks.
1680    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1681      printBasicBlock(I);
1682
1683    Out << "}\n";
1684  }
1685
1686  Machine.purgeFunction();
1687}
1688
1689/// printArgument - This member is called for every argument that is passed into
1690/// the function.  Simply print it out
1691///
1692void AssemblyWriter::printArgument(const Argument *Arg,
1693                                   AttributeSet Attrs, unsigned Idx) {
1694  // Output type...
1695  TypePrinter.print(Arg->getType(), Out);
1696
1697  // Output parameter attributes list
1698  if (Attrs.hasAttributes(Idx))
1699    Out << ' ' << Attrs.getAsString(Idx);
1700
1701  // Output name, if available...
1702  if (Arg->hasName()) {
1703    Out << ' ';
1704    PrintLLVMName(Out, Arg);
1705  }
1706}
1707
1708/// printBasicBlock - This member is called for each basic block in a method.
1709///
1710void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1711  if (BB->hasName()) {              // Print out the label if it exists...
1712    Out << "\n";
1713    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1714    Out << ':';
1715  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1716    Out << "\n; <label>:";
1717    int Slot = Machine.getLocalSlot(BB);
1718    if (Slot != -1)
1719      Out << Slot;
1720    else
1721      Out << "<badref>";
1722  }
1723
1724  if (BB->getParent() == 0) {
1725    Out.PadToColumn(50);
1726    Out << "; Error: Block without parent!";
1727  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1728    // Output predecessors for the block.
1729    Out.PadToColumn(50);
1730    Out << ";";
1731    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1732
1733    if (PI == PE) {
1734      Out << " No predecessors!";
1735    } else {
1736      Out << " preds = ";
1737      writeOperand(*PI, false);
1738      for (++PI; PI != PE; ++PI) {
1739        Out << ", ";
1740        writeOperand(*PI, false);
1741      }
1742    }
1743  }
1744
1745  Out << "\n";
1746
1747  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1748
1749  // Output all of the instructions in the basic block...
1750  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1751    printInstruction(*I);
1752    Out << '\n';
1753  }
1754
1755  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1756}
1757
1758/// printInfoComment - Print a little comment after the instruction indicating
1759/// which slot it occupies.
1760///
1761void AssemblyWriter::printInfoComment(const Value &V) {
1762  if (AnnotationWriter) {
1763    AnnotationWriter->printInfoComment(V, Out);
1764    return;
1765  }
1766}
1767
1768// This member is called for each Instruction in a function..
1769void AssemblyWriter::printInstruction(const Instruction &I) {
1770  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1771
1772  // Print out indentation for an instruction.
1773  Out << "  ";
1774
1775  // Print out name if it exists...
1776  if (I.hasName()) {
1777    PrintLLVMName(Out, &I);
1778    Out << " = ";
1779  } else if (!I.getType()->isVoidTy()) {
1780    // Print out the def slot taken.
1781    int SlotNum = Machine.getLocalSlot(&I);
1782    if (SlotNum == -1)
1783      Out << "<badref> = ";
1784    else
1785      Out << '%' << SlotNum << " = ";
1786  }
1787
1788  if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1789    Out << "tail ";
1790
1791  // Print out the opcode...
1792  Out << I.getOpcodeName();
1793
1794  // If this is an atomic load or store, print out the atomic marker.
1795  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
1796      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1797    Out << " atomic";
1798
1799  // If this is a volatile operation, print out the volatile marker.
1800  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1801      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1802      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1803      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1804    Out << " volatile";
1805
1806  // Print out optimization information.
1807  WriteOptimizationInfo(Out, &I);
1808
1809  // Print out the compare instruction predicates
1810  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1811    Out << ' ' << getPredicateText(CI->getPredicate());
1812
1813  // Print out the atomicrmw operation
1814  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1815    writeAtomicRMWOperation(Out, RMWI->getOperation());
1816
1817  // Print out the type of the operands...
1818  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1819
1820  // Special case conditional branches to swizzle the condition out to the front
1821  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1822    const BranchInst &BI(cast<BranchInst>(I));
1823    Out << ' ';
1824    writeOperand(BI.getCondition(), true);
1825    Out << ", ";
1826    writeOperand(BI.getSuccessor(0), true);
1827    Out << ", ";
1828    writeOperand(BI.getSuccessor(1), true);
1829
1830  } else if (isa<SwitchInst>(I)) {
1831    const SwitchInst& SI(cast<SwitchInst>(I));
1832    // Special case switch instruction to get formatting nice and correct.
1833    Out << ' ';
1834    writeOperand(SI.getCondition(), true);
1835    Out << ", ";
1836    writeOperand(SI.getDefaultDest(), true);
1837    Out << " [";
1838    for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1839         i != e; ++i) {
1840      Out << "\n    ";
1841      writeOperand(i.getCaseValue(), true);
1842      Out << ", ";
1843      writeOperand(i.getCaseSuccessor(), true);
1844    }
1845    Out << "\n  ]";
1846  } else if (isa<IndirectBrInst>(I)) {
1847    // Special case indirectbr instruction to get formatting nice and correct.
1848    Out << ' ';
1849    writeOperand(Operand, true);
1850    Out << ", [";
1851
1852    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1853      if (i != 1)
1854        Out << ", ";
1855      writeOperand(I.getOperand(i), true);
1856    }
1857    Out << ']';
1858  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1859    Out << ' ';
1860    TypePrinter.print(I.getType(), Out);
1861    Out << ' ';
1862
1863    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1864      if (op) Out << ", ";
1865      Out << "[ ";
1866      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1867      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1868    }
1869  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1870    Out << ' ';
1871    writeOperand(I.getOperand(0), true);
1872    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1873      Out << ", " << *i;
1874  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1875    Out << ' ';
1876    writeOperand(I.getOperand(0), true); Out << ", ";
1877    writeOperand(I.getOperand(1), true);
1878    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1879      Out << ", " << *i;
1880  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1881    Out << ' ';
1882    TypePrinter.print(I.getType(), Out);
1883    Out << " personality ";
1884    writeOperand(I.getOperand(0), true); Out << '\n';
1885
1886    if (LPI->isCleanup())
1887      Out << "          cleanup";
1888
1889    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1890      if (i != 0 || LPI->isCleanup()) Out << "\n";
1891      if (LPI->isCatch(i))
1892        Out << "          catch ";
1893      else
1894        Out << "          filter ";
1895
1896      writeOperand(LPI->getClause(i), true);
1897    }
1898  } else if (isa<ReturnInst>(I) && !Operand) {
1899    Out << " void";
1900  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1901    // Print the calling convention being used.
1902    if (CI->getCallingConv() != CallingConv::C) {
1903      Out << " ";
1904      PrintCallingConv(CI->getCallingConv(), Out);
1905    }
1906
1907    Operand = CI->getCalledValue();
1908    PointerType *PTy = cast<PointerType>(Operand->getType());
1909    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1910    Type *RetTy = FTy->getReturnType();
1911    const AttributeSet &PAL = CI->getAttributes();
1912
1913    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1914      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1915
1916    // If possible, print out the short form of the call instruction.  We can
1917    // only do this if the first argument is a pointer to a nonvararg function,
1918    // and if the return type is not a pointer to a function.
1919    //
1920    Out << ' ';
1921    if (!FTy->isVarArg() &&
1922        (!RetTy->isPointerTy() ||
1923         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1924      TypePrinter.print(RetTy, Out);
1925      Out << ' ';
1926      writeOperand(Operand, false);
1927    } else {
1928      writeOperand(Operand, true);
1929    }
1930    Out << '(';
1931    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1932      if (op > 0)
1933        Out << ", ";
1934      writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
1935    }
1936    Out << ')';
1937    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1938      Out << ' ' << PAL.getAsString(AttributeSet::FunctionIndex);
1939  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1940    Operand = II->getCalledValue();
1941    PointerType *PTy = cast<PointerType>(Operand->getType());
1942    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1943    Type *RetTy = FTy->getReturnType();
1944    const AttributeSet &PAL = II->getAttributes();
1945
1946    // Print the calling convention being used.
1947    if (II->getCallingConv() != CallingConv::C) {
1948      Out << " ";
1949      PrintCallingConv(II->getCallingConv(), Out);
1950    }
1951
1952    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1953      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1954
1955    // If possible, print out the short form of the invoke instruction. We can
1956    // only do this if the first argument is a pointer to a nonvararg function,
1957    // and if the return type is not a pointer to a function.
1958    //
1959    Out << ' ';
1960    if (!FTy->isVarArg() &&
1961        (!RetTy->isPointerTy() ||
1962         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1963      TypePrinter.print(RetTy, Out);
1964      Out << ' ';
1965      writeOperand(Operand, false);
1966    } else {
1967      writeOperand(Operand, true);
1968    }
1969    Out << '(';
1970    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1971      if (op)
1972        Out << ", ";
1973      writeParamOperand(II->getArgOperand(op), PAL, op + 1);
1974    }
1975
1976    Out << ')';
1977    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1978      Out << ' ' << PAL.getAsString(AttributeSet::FunctionIndex);
1979
1980    Out << "\n          to ";
1981    writeOperand(II->getNormalDest(), true);
1982    Out << " unwind ";
1983    writeOperand(II->getUnwindDest(), true);
1984
1985  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1986    Out << ' ';
1987    TypePrinter.print(AI->getAllocatedType(), Out);
1988    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1989      Out << ", ";
1990      writeOperand(AI->getArraySize(), true);
1991    }
1992    if (AI->getAlignment()) {
1993      Out << ", align " << AI->getAlignment();
1994    }
1995  } else if (isa<CastInst>(I)) {
1996    if (Operand) {
1997      Out << ' ';
1998      writeOperand(Operand, true);   // Work with broken code
1999    }
2000    Out << " to ";
2001    TypePrinter.print(I.getType(), Out);
2002  } else if (isa<VAArgInst>(I)) {
2003    if (Operand) {
2004      Out << ' ';
2005      writeOperand(Operand, true);   // Work with broken code
2006    }
2007    Out << ", ";
2008    TypePrinter.print(I.getType(), Out);
2009  } else if (Operand) {   // Print the normal way.
2010
2011    // PrintAllTypes - Instructions who have operands of all the same type
2012    // omit the type from all but the first operand.  If the instruction has
2013    // different type operands (for example br), then they are all printed.
2014    bool PrintAllTypes = false;
2015    Type *TheType = Operand->getType();
2016
2017    // Select, Store and ShuffleVector always print all types.
2018    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2019        || isa<ReturnInst>(I)) {
2020      PrintAllTypes = true;
2021    } else {
2022      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2023        Operand = I.getOperand(i);
2024        // note that Operand shouldn't be null, but the test helps make dump()
2025        // more tolerant of malformed IR
2026        if (Operand && Operand->getType() != TheType) {
2027          PrintAllTypes = true;    // We have differing types!  Print them all!
2028          break;
2029        }
2030      }
2031    }
2032
2033    if (!PrintAllTypes) {
2034      Out << ' ';
2035      TypePrinter.print(TheType, Out);
2036    }
2037
2038    Out << ' ';
2039    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2040      if (i) Out << ", ";
2041      writeOperand(I.getOperand(i), PrintAllTypes);
2042    }
2043  }
2044
2045  // Print atomic ordering/alignment for memory operations
2046  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
2047    if (LI->isAtomic())
2048      writeAtomic(LI->getOrdering(), LI->getSynchScope());
2049    if (LI->getAlignment())
2050      Out << ", align " << LI->getAlignment();
2051  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
2052    if (SI->isAtomic())
2053      writeAtomic(SI->getOrdering(), SI->getSynchScope());
2054    if (SI->getAlignment())
2055      Out << ", align " << SI->getAlignment();
2056  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
2057    writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
2058  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
2059    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2060  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2061    writeAtomic(FI->getOrdering(), FI->getSynchScope());
2062  }
2063
2064  // Print Metadata info.
2065  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2066  I.getAllMetadata(InstMD);
2067  if (!InstMD.empty()) {
2068    SmallVector<StringRef, 8> MDNames;
2069    I.getType()->getContext().getMDKindNames(MDNames);
2070    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2071      unsigned Kind = InstMD[i].first;
2072       if (Kind < MDNames.size()) {
2073         Out << ", !" << MDNames[Kind];
2074      } else {
2075        Out << ", !<unknown kind #" << Kind << ">";
2076      }
2077      Out << ' ';
2078      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2079                             TheModule);
2080    }
2081  }
2082  printInfoComment(I);
2083}
2084
2085static void WriteMDNodeComment(const MDNode *Node,
2086                               formatted_raw_ostream &Out) {
2087  if (Node->getNumOperands() < 1)
2088    return;
2089
2090  Value *Op = Node->getOperand(0);
2091  if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2092    return;
2093
2094  DIDescriptor Desc(Node);
2095  if (Desc.getVersion() < LLVMDebugVersion11)
2096    return;
2097
2098  unsigned Tag = Desc.getTag();
2099  Out.PadToColumn(50);
2100  if (dwarf::TagString(Tag)) {
2101    Out << "; ";
2102    Desc.print(Out);
2103  } else if (Tag == dwarf::DW_TAG_user_base) {
2104    Out << "; [ DW_TAG_user_base ]";
2105  }
2106}
2107
2108void AssemblyWriter::writeAllMDNodes() {
2109  SmallVector<const MDNode *, 16> Nodes;
2110  Nodes.resize(Machine.mdn_size());
2111  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2112       I != E; ++I)
2113    Nodes[I->second] = cast<MDNode>(I->first);
2114
2115  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2116    Out << '!' << i << " = metadata ";
2117    printMDNodeBody(Nodes[i]);
2118  }
2119}
2120
2121void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2122  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2123  WriteMDNodeComment(Node, Out);
2124  Out << "\n";
2125}
2126
2127void AssemblyWriter::writeAllAttributeGroups() {
2128  std::vector<std::pair<AttributeSet, unsigned> > asVec;
2129  asVec.resize(Machine.as_size());
2130
2131  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
2132       I != E; ++I)
2133    asVec[I->second] = *I;
2134
2135  for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
2136         I = asVec.begin(), E = asVec.end(); I != E; ++I)
2137    Out << "attributes #" << I->second << " = { "
2138        << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
2139}
2140
2141//===----------------------------------------------------------------------===//
2142//                       External Interface declarations
2143//===----------------------------------------------------------------------===//
2144
2145void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2146  SlotTracker SlotTable(this);
2147  formatted_raw_ostream OS(ROS);
2148  AssemblyWriter W(OS, SlotTable, this, AAW);
2149  W.printModule(this);
2150}
2151
2152void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2153  SlotTracker SlotTable(getParent());
2154  formatted_raw_ostream OS(ROS);
2155  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2156  W.printNamedMDNode(this);
2157}
2158
2159void Type::print(raw_ostream &OS) const {
2160  if (this == 0) {
2161    OS << "<null Type>";
2162    return;
2163  }
2164  TypePrinting TP;
2165  TP.print(const_cast<Type*>(this), OS);
2166
2167  // If the type is a named struct type, print the body as well.
2168  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2169    if (!STy->isLiteral()) {
2170      OS << " = type ";
2171      TP.printStructBody(STy, OS);
2172    }
2173}
2174
2175void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2176  if (this == 0) {
2177    ROS << "printing a <null> value\n";
2178    return;
2179  }
2180  formatted_raw_ostream OS(ROS);
2181  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2182    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2183    SlotTracker SlotTable(F);
2184    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2185    W.printInstruction(*I);
2186  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2187    SlotTracker SlotTable(BB->getParent());
2188    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2189    W.printBasicBlock(BB);
2190  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2191    SlotTracker SlotTable(GV->getParent());
2192    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2193    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2194      W.printGlobal(V);
2195    else if (const Function *F = dyn_cast<Function>(GV))
2196      W.printFunction(F);
2197    else
2198      W.printAlias(cast<GlobalAlias>(GV));
2199  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2200    const Function *F = N->getFunction();
2201    SlotTracker SlotTable(F);
2202    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2203    W.printMDNodeBody(N);
2204  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2205    TypePrinting TypePrinter;
2206    TypePrinter.print(C->getType(), OS);
2207    OS << ' ';
2208    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2209  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2210             isa<Argument>(this)) {
2211    WriteAsOperand(OS, this, true, 0);
2212  } else {
2213    // Otherwise we don't know what it is. Call the virtual function to
2214    // allow a subclass to print itself.
2215    printCustom(OS);
2216  }
2217}
2218
2219// Value::printCustom - subclasses should override this to implement printing.
2220void Value::printCustom(raw_ostream &OS) const {
2221  llvm_unreachable("Unknown value to print out!");
2222}
2223
2224// Value::dump - allow easy printing of Values from the debugger.
2225void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2226
2227// Type::dump - allow easy printing of Types from the debugger.
2228void Type::dump() const { print(dbgs()); }
2229
2230// Module::dump() - Allow printing of Modules from the debugger.
2231void Module::dump() const { print(dbgs(), 0); }
2232
2233// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2234void NamedMDNode::dump() const { print(dbgs(), 0); }
2235