1//===--- HexagonGenInsert.cpp ---------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexinsert"
11
12#include "llvm/Pass.h"
13#include "llvm/PassRegistry.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/PostOrderIterator.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Support/Timer.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30
31#include "Hexagon.h"
32#include "HexagonRegisterInfo.h"
33#include "HexagonTargetMachine.h"
34#include "HexagonBitTracker.h"
35
36#include <map>
37#include <vector>
38
39using namespace llvm;
40
41static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
42  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
43// The distance cutoff is selected based on the precheckin-perf results:
44// cutoffs 20, 25, 35, and 40 are worse than 30.
45static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
46  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
47  "generation."));
48
49static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
50  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
51static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
52  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
53  "generation"));
54
55static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
56  cl::ZeroOrMore);
57static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
58  cl::ZeroOrMore);
59// Whether to construct constant values via "insert". Could eliminate constant
60// extenders, but often not practical.
61static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
62  cl::ZeroOrMore);
63
64namespace {
65  // The preprocessor gets confused when the DEBUG macro is passed larger
66  // chunks of code. Use this function to detect debugging.
67  inline bool isDebug() {
68#ifndef NDEBUG
69    return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
70#else
71    return false;
72#endif
73  }
74}
75
76
77namespace {
78  // Set of virtual registers, based on BitVector.
79  struct RegisterSet : private BitVector {
80    RegisterSet() = default;
81    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
82
83    using BitVector::clear;
84
85    unsigned find_first() const {
86      int First = BitVector::find_first();
87      if (First < 0)
88        return 0;
89      return x2v(First);
90    }
91
92    unsigned find_next(unsigned Prev) const {
93      int Next = BitVector::find_next(v2x(Prev));
94      if (Next < 0)
95        return 0;
96      return x2v(Next);
97    }
98
99    RegisterSet &insert(unsigned R) {
100      unsigned Idx = v2x(R);
101      ensure(Idx);
102      return static_cast<RegisterSet&>(BitVector::set(Idx));
103    }
104    RegisterSet &remove(unsigned R) {
105      unsigned Idx = v2x(R);
106      if (Idx >= size())
107        return *this;
108      return static_cast<RegisterSet&>(BitVector::reset(Idx));
109    }
110
111    RegisterSet &insert(const RegisterSet &Rs) {
112      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
113    }
114    RegisterSet &remove(const RegisterSet &Rs) {
115      return static_cast<RegisterSet&>(BitVector::reset(Rs));
116    }
117
118    reference operator[](unsigned R) {
119      unsigned Idx = v2x(R);
120      ensure(Idx);
121      return BitVector::operator[](Idx);
122    }
123    bool operator[](unsigned R) const {
124      unsigned Idx = v2x(R);
125      assert(Idx < size());
126      return BitVector::operator[](Idx);
127    }
128    bool has(unsigned R) const {
129      unsigned Idx = v2x(R);
130      if (Idx >= size())
131        return false;
132      return BitVector::test(Idx);
133    }
134
135    bool empty() const {
136      return !BitVector::any();
137    }
138    bool includes(const RegisterSet &Rs) const {
139      // A.BitVector::test(B)  <=>  A-B != {}
140      return !Rs.BitVector::test(*this);
141    }
142    bool intersects(const RegisterSet &Rs) const {
143      return BitVector::anyCommon(Rs);
144    }
145
146  private:
147    void ensure(unsigned Idx) {
148      if (size() <= Idx)
149        resize(std::max(Idx+1, 32U));
150    }
151    static inline unsigned v2x(unsigned v) {
152      return TargetRegisterInfo::virtReg2Index(v);
153    }
154    static inline unsigned x2v(unsigned x) {
155      return TargetRegisterInfo::index2VirtReg(x);
156    }
157  };
158
159
160  struct PrintRegSet {
161    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
162      : RS(S), TRI(RI) {}
163    friend raw_ostream &operator<< (raw_ostream &OS,
164          const PrintRegSet &P);
165  private:
166    const RegisterSet &RS;
167    const TargetRegisterInfo *TRI;
168  };
169
170  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
171    OS << '{';
172    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
173      OS << ' ' << PrintReg(R, P.TRI);
174    OS << " }";
175    return OS;
176  }
177}
178
179
180namespace {
181  // A convenience class to associate unsigned numbers (such as virtual
182  // registers) with unsigned numbers.
183  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
184    UnsignedMap() : BaseType() {}
185  private:
186    typedef DenseMap<unsigned,unsigned> BaseType;
187  };
188
189  // A utility to establish an ordering between virtual registers:
190  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
191  // This is meant as a cache for the ordering of virtual registers defined
192  // by a potentially expensive comparison function, or obtained by a proce-
193  // dure that should not be repeated each time two registers are compared.
194  struct RegisterOrdering : public UnsignedMap {
195    RegisterOrdering() : UnsignedMap() {}
196    unsigned operator[](unsigned VR) const {
197      const_iterator F = find(VR);
198      assert(F != end());
199      return F->second;
200    }
201    // Add operator(), so that objects of this class can be used as
202    // comparators in std::sort et al.
203    bool operator() (unsigned VR1, unsigned VR2) const {
204      return operator[](VR1) < operator[](VR2);
205    }
206  };
207}
208
209
210namespace {
211  // Ordering of bit values. This class does not have operator[], but
212  // is supplies a comparison operator() for use in std:: algorithms.
213  // The order is as follows:
214  // - 0 < 1 < ref
215  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
216  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
217  struct BitValueOrdering {
218    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
219    bool operator() (const BitTracker::BitValue &V1,
220          const BitTracker::BitValue &V2) const;
221    const RegisterOrdering &BaseOrd;
222  };
223}
224
225
226bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
227      const BitTracker::BitValue &V2) const {
228  if (V1 == V2)
229    return false;
230  // V1==0 => true, V2==0 => false
231  if (V1.is(0) || V2.is(0))
232    return V1.is(0);
233  // Neither of V1,V2 is 0, and V1!=V2.
234  // V2==1 => false, V1==1 => true
235  if (V2.is(1) || V1.is(1))
236    return !V2.is(1);
237  // Both V1,V2 are refs.
238  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
239  if (Ind1 != Ind2)
240    return Ind1 < Ind2;
241  // If V1.Pos==V2.Pos
242  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
243  return V1.RefI.Pos < V2.RefI.Pos;
244}
245
246
247namespace {
248  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
249  // complexity, this class will memoize the lookup results to reduce
250  // the access time for repeated lookups of the same cell.
251  struct CellMapShadow {
252    CellMapShadow(const BitTracker &T) : BT(T) {}
253    const BitTracker::RegisterCell &lookup(unsigned VR) {
254      unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
255      // Grow the vector to at least 32 elements.
256      if (RInd >= CVect.size())
257        CVect.resize(std::max(RInd+16, 32U), 0);
258      const BitTracker::RegisterCell *CP = CVect[RInd];
259      if (CP == 0)
260        CP = CVect[RInd] = &BT.lookup(VR);
261      return *CP;
262    }
263
264    const BitTracker &BT;
265
266  private:
267    typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
268    CellVectType CVect;
269  };
270}
271
272
273namespace {
274  // Comparator class for lexicographic ordering of virtual registers
275  // according to the corresponding BitTracker::RegisterCell objects.
276  struct RegisterCellLexCompare {
277    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
278      : BitOrd(BO), CM(M) {}
279    bool operator() (unsigned VR1, unsigned VR2) const;
280  private:
281    const BitValueOrdering &BitOrd;
282    CellMapShadow &CM;
283  };
284
285  // Comparator class for lexicographic ordering of virtual registers
286  // according to the specified bits of the corresponding BitTracker::
287  // RegisterCell objects.
288  // Specifically, this class will be used to compare bit B of a register
289  // cell for a selected virtual register R with bit N of any register
290  // other than R.
291  struct RegisterCellBitCompareSel {
292    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
293          const BitValueOrdering &BO, CellMapShadow &M)
294      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
295    bool operator() (unsigned VR1, unsigned VR2) const;
296  private:
297    const unsigned SelR, SelB;
298    const unsigned BitN;
299    const BitValueOrdering &BitOrd;
300    CellMapShadow &CM;
301  };
302}
303
304
305bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
306  // Ordering of registers, made up from two given orderings:
307  // - the ordering of the register numbers, and
308  // - the ordering of register cells.
309  // Def. R1 < R2 if:
310  // - cell(R1) < cell(R2), or
311  // - cell(R1) == cell(R2), and index(R1) < index(R2).
312  //
313  // For register cells, the ordering is lexicographic, with index 0 being
314  // the most significant.
315  if (VR1 == VR2)
316    return false;
317
318  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
319  uint16_t W1 = RC1.width(), W2 = RC2.width();
320  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
321    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
322    if (V1 != V2)
323      return BitOrd(V1, V2);
324  }
325  // Cells are equal up until the common length.
326  if (W1 != W2)
327    return W1 < W2;
328
329  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
330}
331
332
333bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
334  if (VR1 == VR2)
335    return false;
336  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
337  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
338  uint16_t W1 = RC1.width(), W2 = RC2.width();
339  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
340  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
341  // If Bit1 exceeds the width of VR1, then:
342  // - return false, if at the same time Bit2 exceeds VR2, or
343  // - return true, otherwise.
344  // (I.e. "a bit value that does not exist is less than any bit value
345  // that does exist".)
346  if (W1 <= Bit1)
347    return Bit2 < W2;
348  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
349  if (W2 <= Bit2)
350    return false;
351
352  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
353  if (V1 != V2)
354    return BitOrd(V1, V2);
355  return false;
356}
357
358
359namespace {
360  class OrderedRegisterList {
361    typedef std::vector<unsigned> ListType;
362  public:
363    OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
364    void insert(unsigned VR);
365    void remove(unsigned VR);
366    unsigned operator[](unsigned Idx) const {
367      assert(Idx < Seq.size());
368      return Seq[Idx];
369    }
370    unsigned size() const {
371      return Seq.size();
372    }
373
374    typedef ListType::iterator iterator;
375    typedef ListType::const_iterator const_iterator;
376    iterator begin() { return Seq.begin(); }
377    iterator end() { return Seq.end(); }
378    const_iterator begin() const { return Seq.begin(); }
379    const_iterator end() const { return Seq.end(); }
380
381    // Convenience function to convert an iterator to the corresponding index.
382    unsigned idx(iterator It) const { return It-begin(); }
383  private:
384    ListType Seq;
385    const RegisterOrdering &Ord;
386  };
387
388
389  struct PrintORL {
390    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
391      : RL(L), TRI(RI) {}
392    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
393  private:
394    const OrderedRegisterList &RL;
395    const TargetRegisterInfo *TRI;
396  };
397
398  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
399    OS << '(';
400    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
401    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
402      if (I != B)
403        OS << ", ";
404      OS << PrintReg(*I, P.TRI);
405    }
406    OS << ')';
407    return OS;
408  }
409}
410
411
412void OrderedRegisterList::insert(unsigned VR) {
413  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
414  if (L == Seq.end())
415    Seq.push_back(VR);
416  else
417    Seq.insert(L, VR);
418}
419
420
421void OrderedRegisterList::remove(unsigned VR) {
422  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
423  assert(L != Seq.end());
424  Seq.erase(L);
425}
426
427
428namespace {
429  // A record of the insert form. The fields correspond to the operands
430  // of the "insert" instruction:
431  // ... = insert(SrcR, InsR, #Wdh, #Off)
432  struct IFRecord {
433    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
434      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
435    unsigned SrcR, InsR;
436    uint16_t Wdh, Off;
437  };
438
439  struct PrintIFR {
440    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
441      : IFR(R), TRI(RI) {}
442  private:
443    const IFRecord &IFR;
444    const TargetRegisterInfo *TRI;
445    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
446  };
447
448  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
449    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
450    OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
451       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
452    return OS;
453  }
454
455  typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
456}
457
458
459namespace llvm {
460  void initializeHexagonGenInsertPass(PassRegistry&);
461  FunctionPass *createHexagonGenInsert();
462}
463
464
465namespace {
466  class HexagonGenInsert : public MachineFunctionPass {
467  public:
468    static char ID;
469    HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
470      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
471    }
472    virtual const char *getPassName() const {
473      return "Hexagon generate \"insert\" instructions";
474    }
475    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
476      AU.addRequired<MachineDominatorTree>();
477      AU.addPreserved<MachineDominatorTree>();
478      MachineFunctionPass::getAnalysisUsage(AU);
479    }
480    virtual bool runOnMachineFunction(MachineFunction &MF);
481
482  private:
483    typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
484
485    void buildOrderingMF(RegisterOrdering &RO) const;
486    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
487    bool isIntClass(const TargetRegisterClass *RC) const;
488    bool isConstant(unsigned VR) const;
489    bool isSmallConstant(unsigned VR) const;
490    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
491          uint16_t L, uint16_t S) const;
492    bool findSelfReference(unsigned VR) const;
493    bool findNonSelfReference(unsigned VR) const;
494    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
495    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
496    unsigned distance(const MachineBasicBlock *FromB,
497          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
498          PairMapType &M) const;
499    unsigned distance(MachineBasicBlock::const_iterator FromI,
500          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
501          PairMapType &M) const;
502    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
503    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
504    void findRemovableRegisters(unsigned VR, IFRecord IF,
505          RegisterSet &RMs) const;
506    void computeRemovableRegisters();
507
508    void pruneEmptyLists();
509    void pruneCoveredSets(unsigned VR);
510    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
511    void pruneRegCopies(unsigned VR);
512    void pruneCandidates();
513    void selectCandidates();
514    bool generateInserts();
515
516    bool removeDeadCode(MachineDomTreeNode *N);
517
518    // IFRecord coupled with a set of potentially removable registers:
519    typedef std::vector<IFRecordWithRegSet> IFListType;
520    typedef DenseMap<unsigned,IFListType> IFMapType;  // vreg -> IFListType
521
522    void dump_map() const;
523
524    const HexagonInstrInfo *HII;
525    const HexagonRegisterInfo *HRI;
526
527    MachineFunction *MFN;
528    MachineRegisterInfo *MRI;
529    MachineDominatorTree *MDT;
530    CellMapShadow *CMS;
531
532    RegisterOrdering BaseOrd;
533    RegisterOrdering CellOrd;
534    IFMapType IFMap;
535  };
536
537  char HexagonGenInsert::ID = 0;
538}
539
540
541void HexagonGenInsert::dump_map() const {
542  typedef IFMapType::const_iterator iterator;
543  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
544    dbgs() << "  " << PrintReg(I->first, HRI) << ":\n";
545    const IFListType &LL = I->second;
546    for (unsigned i = 0, n = LL.size(); i < n; ++i)
547      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
548             << PrintRegSet(LL[i].second, HRI) << '\n';
549  }
550}
551
552
553void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
554  unsigned Index = 0;
555  typedef MachineFunction::const_iterator mf_iterator;
556  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
557    const MachineBasicBlock &B = *A;
558    if (!CMS->BT.reached(&B))
559      continue;
560    typedef MachineBasicBlock::const_iterator mb_iterator;
561    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
562      const MachineInstr *MI = &*I;
563      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
564        const MachineOperand &MO = MI->getOperand(i);
565        if (MO.isReg() && MO.isDef()) {
566          unsigned R = MO.getReg();
567          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
568          if (TargetRegisterInfo::isVirtualRegister(R))
569            RO.insert(std::make_pair(R, Index++));
570        }
571      }
572    }
573  }
574  // Since some virtual registers may have had their def and uses eliminated,
575  // they are no longer referenced in the code, and so they will not appear
576  // in the map.
577}
578
579
580void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
581      RegisterOrdering &RO) const {
582  // Create a vector of all virtual registers (collect them from the base
583  // ordering RB), and then sort it using the RegisterCell comparator.
584  BitValueOrdering BVO(RB);
585  RegisterCellLexCompare LexCmp(BVO, *CMS);
586  typedef std::vector<unsigned> SortableVectorType;
587  SortableVectorType VRs;
588  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
589    VRs.push_back(I->first);
590  std::sort(VRs.begin(), VRs.end(), LexCmp);
591  // Transfer the results to the outgoing register ordering.
592  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
593    RO.insert(std::make_pair(VRs[i], i));
594}
595
596
597inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
598  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
599}
600
601
602bool HexagonGenInsert::isConstant(unsigned VR) const {
603  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
604  uint16_t W = RC.width();
605  for (uint16_t i = 0; i < W; ++i) {
606    const BitTracker::BitValue &BV = RC[i];
607    if (BV.is(0) || BV.is(1))
608      continue;
609    return false;
610  }
611  return true;
612}
613
614
615bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
616  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
617  uint16_t W = RC.width();
618  if (W > 64)
619    return false;
620  uint64_t V = 0, B = 1;
621  for (uint16_t i = 0; i < W; ++i) {
622    const BitTracker::BitValue &BV = RC[i];
623    if (BV.is(1))
624      V |= B;
625    else if (!BV.is(0))
626      return false;
627    B <<= 1;
628  }
629
630  // For 32-bit registers, consider: Rd = #s16.
631  if (W == 32)
632    return isInt<16>(V);
633
634  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
635  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
636}
637
638
639bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
640      unsigned InsR, uint16_t L, uint16_t S) const {
641  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
642  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
643  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
644  // Only integet (32-/64-bit) register classes.
645  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
646    return false;
647  // The "source" register must be of the same class as DstR.
648  if (DstRC != SrcRC)
649    return false;
650  if (DstRC == InsRC)
651    return true;
652  // A 64-bit register can only be generated from other 64-bit registers.
653  if (DstRC == &Hexagon::DoubleRegsRegClass)
654    return false;
655  // Otherwise, the L and S cannot span 32-bit word boundary.
656  if (S < 32 && S+L > 32)
657    return false;
658  return true;
659}
660
661
662bool HexagonGenInsert::findSelfReference(unsigned VR) const {
663  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
664  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
665    const BitTracker::BitValue &V = RC[i];
666    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
667      return true;
668  }
669  return false;
670}
671
672
673bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
674  BitTracker::RegisterCell RC = CMS->lookup(VR);
675  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
676    const BitTracker::BitValue &V = RC[i];
677    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
678      return true;
679  }
680  return false;
681}
682
683
684void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
685      RegisterSet &Defs) const {
686  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
687    const MachineOperand &MO = MI->getOperand(i);
688    if (!MO.isReg() || !MO.isDef())
689      continue;
690    unsigned R = MO.getReg();
691    if (!TargetRegisterInfo::isVirtualRegister(R))
692      continue;
693    Defs.insert(R);
694  }
695}
696
697
698void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
699      RegisterSet &Uses) const {
700  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
701    const MachineOperand &MO = MI->getOperand(i);
702    if (!MO.isReg() || !MO.isUse())
703      continue;
704    unsigned R = MO.getReg();
705    if (!TargetRegisterInfo::isVirtualRegister(R))
706      continue;
707    Uses.insert(R);
708  }
709}
710
711
712unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
713      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
714      PairMapType &M) const {
715  // Forward distance from the end of a block to the beginning of it does
716  // not make sense. This function should not be called with FromB == ToB.
717  assert(FromB != ToB);
718
719  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
720  // If we have already computed it, return the cached result.
721  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
722  if (F != M.end())
723    return F->second;
724  unsigned ToRPO = RPO.lookup(ToN);
725
726  unsigned MaxD = 0;
727  typedef MachineBasicBlock::const_pred_iterator pred_iterator;
728  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
729    const MachineBasicBlock *PB = *I;
730    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
731    // along that path will be 0, and we don't need to do any calculations
732    // on it.
733    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
734      continue;
735    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
736    if (D > MaxD)
737      MaxD = D;
738  }
739
740  // Memoize the result for later lookup.
741  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
742  return MaxD;
743}
744
745
746unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
747      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
748      PairMapType &M) const {
749  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
750  if (FB == TB)
751    return std::distance(FromI, ToI);
752  unsigned D1 = std::distance(TB->begin(), ToI);
753  unsigned D2 = distance(FB, TB, RPO, M);
754  unsigned D3 = std::distance(FromI, FB->end());
755  return D1+D2+D3;
756}
757
758
759bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
760      OrderedRegisterList &AVs) {
761  if (isDebug()) {
762    dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
763           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
764  }
765  if (AVs.size() == 0)
766    return false;
767
768  typedef OrderedRegisterList::iterator iterator;
769  BitValueOrdering BVO(BaseOrd);
770  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
771  uint16_t W = RC.width();
772
773  typedef std::pair<unsigned,uint16_t> RSRecord;  // (reg,shift)
774  typedef std::vector<RSRecord> RSListType;
775  // Have a map, with key being the matching prefix length, and the value
776  // being the list of pairs (R,S), where R's prefix matches VR at S.
777  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
778  typedef DenseMap<unsigned,RSListType> LRSMapType;
779  LRSMapType LM;
780
781  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
782  // and find matching prefixes from AVs with the rotated RC. Such a prefix
783  // would match a string of bits (of length L) in RC starting at S.
784  for (uint16_t S = 0; S < W; ++S) {
785    iterator B = AVs.begin(), E = AVs.end();
786    // The registers in AVs are ordered according to the lexical order of
787    // the corresponding register cells. This means that the range of regis-
788    // ters in AVs that match a prefix of length L+1 will be contained in
789    // the range that matches a prefix of length L. This means that we can
790    // keep narrowing the search space as the prefix length goes up. This
791    // helps reduce the overall complexity of the search.
792    uint16_t L;
793    for (L = 0; L < W-S; ++L) {
794      // Compare against VR's bits starting at S, which emulates rotation
795      // of VR by S.
796      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
797      iterator NewB = std::lower_bound(B, E, VR, RCB);
798      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
799      // For the registers that are eliminated from the next range, L is
800      // the longest prefix matching VR at position S (their prefixes
801      // differ from VR at S+L). If L>0, record this information for later
802      // use.
803      if (L > 0) {
804        for (iterator I = B; I != NewB; ++I)
805          LM[L].push_back(std::make_pair(*I, S));
806        for (iterator I = NewE; I != E; ++I)
807          LM[L].push_back(std::make_pair(*I, S));
808      }
809      B = NewB, E = NewE;
810      if (B == E)
811        break;
812    }
813    // Record the final register range. If this range is non-empty, then
814    // L=W-S.
815    assert(B == E || L == W-S);
816    if (B != E) {
817      for (iterator I = B; I != E; ++I)
818        LM[L].push_back(std::make_pair(*I, S));
819      // If B!=E, then we found a range of registers whose prefixes cover the
820      // rest of VR from position S. There is no need to further advance S.
821      break;
822    }
823  }
824
825  if (isDebug()) {
826    dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
827    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
828      dbgs() << "  L=" << I->first << ':';
829      const RSListType &LL = I->second;
830      for (unsigned i = 0, n = LL.size(); i < n; ++i)
831        dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
832               << LL[i].second << ')';
833      dbgs() << '\n';
834    }
835  }
836
837
838  bool Recorded = false;
839
840  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
841    unsigned SrcR = *I;
842    int FDi = -1, LDi = -1;   // First/last different bit.
843    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
844    uint16_t AW = AC.width();
845    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
846      if (RC[i] == AC[i])
847        continue;
848      if (FDi == -1)
849        FDi = i;
850      LDi = i;
851    }
852    if (FDi == -1)
853      continue;  // TODO (future): Record identical registers.
854    // Look for a register whose prefix could patch the range [FD..LD]
855    // where VR and SrcR differ.
856    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
857    uint16_t MinL = LD-FD+1;
858    for (uint16_t L = MinL; L < W; ++L) {
859      LRSMapType::iterator F = LM.find(L);
860      if (F == LM.end())
861        continue;
862      RSListType &LL = F->second;
863      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
864        uint16_t S = LL[i].second;
865        // MinL is the minimum length of the prefix. Any length above MinL
866        // allows some flexibility as to where the prefix can start:
867        // given the extra length EL=L-MinL, the prefix must start between
868        // max(0,FD-EL) and FD.
869        if (S > FD)   // Starts too late.
870          continue;
871        uint16_t EL = L-MinL;
872        uint16_t LowS = (EL < FD) ? FD-EL : 0;
873        if (S < LowS) // Starts too early.
874          continue;
875        unsigned InsR = LL[i].first;
876        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
877          continue;
878        if (isDebug()) {
879          dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
880                 << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
881                 << S << ")\n";
882        }
883        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
884        IFMap[VR].push_back(RR);
885        Recorded = true;
886      }
887    }
888  }
889
890  return Recorded;
891}
892
893
894void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
895      OrderedRegisterList &AVs) {
896  if (isDebug())
897    dbgs() << "visiting block BB#" << B->getNumber() << "\n";
898
899  // First, check if this block is reachable at all. If not, the bit tracker
900  // will not have any information about registers in it.
901  if (!CMS->BT.reached(B))
902    return;
903
904  bool DoConst = OptConst;
905  // Keep a separate set of registers defined in this block, so that we
906  // can remove them from the list of available registers once all DT
907  // successors have been processed.
908  RegisterSet BlockDefs, InsDefs;
909  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
910    MachineInstr *MI = &*I;
911    InsDefs.clear();
912    getInstrDefs(MI, InsDefs);
913    // Leave those alone. They are more transparent than "insert".
914    bool Skip = MI->isCopy() || MI->isRegSequence();
915
916    if (!Skip) {
917      // Visit all defined registers, and attempt to find the corresponding
918      // "insert" representations.
919      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
920        // Do not collect registers that are known to be compile-time cons-
921        // tants, unless requested.
922        if (!DoConst && isConstant(VR))
923          continue;
924        // If VR's cell contains a reference to VR, then VR cannot be defined
925        // via "insert". If VR is a constant that can be generated in a single
926        // instruction (without constant extenders), generating it via insert
927        // makes no sense.
928        if (findSelfReference(VR) || isSmallConstant(VR))
929          continue;
930
931        findRecordInsertForms(VR, AVs);
932      }
933    }
934
935    // Insert the defined registers into the list of available registers
936    // after they have been processed.
937    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
938      AVs.insert(VR);
939    BlockDefs.insert(InsDefs);
940  }
941
942  MachineDomTreeNode *N = MDT->getNode(B);
943  typedef GraphTraits<MachineDomTreeNode*> GTN;
944  typedef GTN::ChildIteratorType ChildIter;
945  for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
946    MachineBasicBlock *SB = (*I)->getBlock();
947    collectInBlock(SB, AVs);
948  }
949
950  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
951    AVs.remove(VR);
952}
953
954
955void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
956      RegisterSet &RMs) const {
957  // For a given register VR and a insert form, find the registers that are
958  // used by the current definition of VR, and which would no longer be
959  // needed for it after the definition of VR is replaced with the insert
960  // form. These are the registers that could potentially become dead.
961  RegisterSet Regs[2];
962
963  unsigned S = 0;  // Register set selector.
964  Regs[S].insert(VR);
965
966  while (!Regs[S].empty()) {
967    // Breadth-first search.
968    unsigned OtherS = 1-S;
969    Regs[OtherS].clear();
970    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
971      Regs[S].remove(R);
972      if (R == IF.SrcR || R == IF.InsR)
973        continue;
974      // Check if a given register has bits that are references to any other
975      // registers. This is to detect situations where the instruction that
976      // defines register R takes register Q as an operand, but R itself does
977      // not contain any bits from Q. Loads are examples of how this could
978      // happen:
979      //   R = load Q
980      // In this case (assuming we do not have any knowledge about the loaded
981      // value), we must not treat R as a "conveyance" of the bits from Q.
982      // (The information in BT about R's bits would have them as constants,
983      // in case of zero-extending loads, or refs to R.)
984      if (!findNonSelfReference(R))
985        continue;
986      RMs.insert(R);
987      const MachineInstr *DefI = MRI->getVRegDef(R);
988      assert(DefI);
989      // Do not iterate past PHI nodes to avoid infinite loops. This can
990      // make the final set a bit less accurate, but the removable register
991      // sets are an approximation anyway.
992      if (DefI->isPHI())
993        continue;
994      getInstrUses(DefI, Regs[OtherS]);
995    }
996    S = OtherS;
997  }
998  // The register VR is added to the list as a side-effect of the algorithm,
999  // but it is not "potentially removable". A potentially removable register
1000  // is one that may become unused (dead) after conversion to the insert form
1001  // IF, and obviously VR (or its replacement) will not become dead by apply-
1002  // ing IF.
1003  RMs.remove(VR);
1004}
1005
1006
1007void HexagonGenInsert::computeRemovableRegisters() {
1008  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1009    IFListType &LL = I->second;
1010    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1011      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1012  }
1013}
1014
1015
1016void HexagonGenInsert::pruneEmptyLists() {
1017  // Remove all entries from the map, where the register has no insert forms
1018  // associated with it.
1019  typedef SmallVector<IFMapType::iterator,16> IterListType;
1020  IterListType Prune;
1021  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1022    if (I->second.size() == 0)
1023      Prune.push_back(I);
1024  }
1025  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1026    IFMap.erase(Prune[i]);
1027}
1028
1029
1030void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1031  IFMapType::iterator F = IFMap.find(VR);
1032  assert(F != IFMap.end());
1033  IFListType &LL = F->second;
1034
1035  // First, examine the IF candidates for register VR whose removable-regis-
1036  // ter sets are empty. This means that a given candidate will not help eli-
1037  // minate any registers, but since "insert" is not a constant-extendable
1038  // instruction, using such a candidate may reduce code size if the defini-
1039  // tion of VR is constant-extended.
1040  // If there exists a candidate with a non-empty set, the ones with empty
1041  // sets will not be used and can be removed.
1042  MachineInstr *DefVR = MRI->getVRegDef(VR);
1043  bool DefEx = HII->isConstExtended(DefVR);
1044  bool HasNE = false;
1045  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1046    if (LL[i].second.empty())
1047      continue;
1048    HasNE = true;
1049    break;
1050  }
1051  if (!DefEx || HasNE) {
1052    // The definition of VR is not constant-extended, or there is a candidate
1053    // with a non-empty set. Remove all candidates with empty sets.
1054    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1055      return IR.second.empty();
1056    };
1057    auto End = std::remove_if(LL.begin(), LL.end(), IsEmpty);
1058    if (End != LL.end())
1059      LL.erase(End, LL.end());
1060  } else {
1061    // The definition of VR is constant-extended, and all candidates have
1062    // empty removable-register sets. Pick the maximum candidate, and remove
1063    // all others. The "maximum" does not have any special meaning here, it
1064    // is only so that the candidate that will remain on the list is selec-
1065    // ted deterministically.
1066    IFRecord MaxIF = LL[0].first;
1067    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1068      // If LL[MaxI] < LL[i], then MaxI = i.
1069      const IFRecord &IF = LL[i].first;
1070      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1071      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1072      if (M0 > R0)
1073        continue;
1074      if (M0 == R0) {
1075        if (M1 > R1)
1076          continue;
1077        if (M1 == R1) {
1078          if (MaxIF.Wdh > IF.Wdh)
1079            continue;
1080          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1081            continue;
1082        }
1083      }
1084      // MaxIF < IF.
1085      MaxIF = IF;
1086    }
1087    // Remove everything except the maximum candidate. All register sets
1088    // are empty, so no need to preserve anything.
1089    LL.clear();
1090    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1091  }
1092
1093  // Now, remove those whose sets of potentially removable registers are
1094  // contained in another IF candidate for VR. For example, given these
1095  // candidates for vreg45,
1096  //   %vreg45:
1097  //     (%vreg44,%vreg41,#9,#8), { %vreg42 }
1098  //     (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
1099  // remove the first one, since it is contained in the second one.
1100  for (unsigned i = 0, n = LL.size(); i < n; ) {
1101    const RegisterSet &RMi = LL[i].second;
1102    unsigned j = 0;
1103    while (j < n) {
1104      if (j != i && LL[j].second.includes(RMi))
1105        break;
1106      j++;
1107    }
1108    if (j == n) {   // RMi not contained in anything else.
1109      i++;
1110      continue;
1111    }
1112    LL.erase(LL.begin()+i);
1113    n = LL.size();
1114  }
1115}
1116
1117
1118void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1119      PairMapType &M) {
1120  IFMapType::iterator F = IFMap.find(VR);
1121  assert(F != IFMap.end());
1122  IFListType &LL = F->second;
1123  unsigned Cutoff = VRegDistCutoff;
1124  const MachineInstr *DefV = MRI->getVRegDef(VR);
1125
1126  for (unsigned i = LL.size(); i > 0; --i) {
1127    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1128    const MachineInstr *DefS = MRI->getVRegDef(SR);
1129    const MachineInstr *DefI = MRI->getVRegDef(IR);
1130    unsigned DSV = distance(DefS, DefV, RPO, M);
1131    if (DSV < Cutoff) {
1132      unsigned DIV = distance(DefI, DefV, RPO, M);
1133      if (DIV < Cutoff)
1134        continue;
1135    }
1136    LL.erase(LL.begin()+(i-1));
1137  }
1138}
1139
1140
1141void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1142  IFMapType::iterator F = IFMap.find(VR);
1143  assert(F != IFMap.end());
1144  IFListType &LL = F->second;
1145
1146  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1147    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1148  };
1149  auto End = std::remove_if(LL.begin(), LL.end(), IsCopy);
1150  if (End != LL.end())
1151    LL.erase(End, LL.end());
1152}
1153
1154
1155void HexagonGenInsert::pruneCandidates() {
1156  // Remove candidates that are not beneficial, regardless of the final
1157  // selection method.
1158  // First, remove candidates whose potentially removable set is a subset
1159  // of another candidate's set.
1160  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1161    pruneCoveredSets(I->first);
1162
1163  UnsignedMap RPO;
1164  typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
1165  RPOTType RPOT(MFN);
1166  unsigned RPON = 0;
1167  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1168    RPO[(*I)->getNumber()] = RPON++;
1169
1170  PairMapType Memo; // Memoization map for distance calculation.
1171  // Remove candidates that would use registers defined too far away.
1172  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1173    pruneUsesTooFar(I->first, RPO, Memo);
1174
1175  pruneEmptyLists();
1176
1177  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1178    pruneRegCopies(I->first);
1179}
1180
1181
1182namespace {
1183  // Class for comparing IF candidates for registers that have multiple of
1184  // them. The smaller the candidate, according to this ordering, the better.
1185  // First, compare the number of zeros in the associated potentially remova-
1186  // ble register sets. "Zero" indicates that the register is very likely to
1187  // become dead after this transformation.
1188  // Second, compare "averages", i.e. use-count per size. The lower wins.
1189  // After that, it does not really matter which one is smaller. Resolve
1190  // the tie in some deterministic way.
1191  struct IFOrdering {
1192    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1193      : UseC(UC), BaseOrd(BO) {}
1194    bool operator() (const IFRecordWithRegSet &A,
1195          const IFRecordWithRegSet &B) const;
1196  private:
1197    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1198          unsigned &Sum) const;
1199    const UnsignedMap &UseC;
1200    const RegisterOrdering &BaseOrd;
1201  };
1202}
1203
1204
1205bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1206      const IFRecordWithRegSet &B) const {
1207  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1208  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1209  stats(A.second, SizeA, ZeroA, SumA);
1210  stats(B.second, SizeB, ZeroB, SumB);
1211
1212  // We will pick the minimum element. The more zeros, the better.
1213  if (ZeroA != ZeroB)
1214    return ZeroA > ZeroB;
1215  // Compare SumA/SizeA with SumB/SizeB, lower is better.
1216  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1217  if (AvgA != AvgB)
1218    return AvgA < AvgB;
1219
1220  // The sets compare identical so far. Resort to comparing the IF records.
1221  // The actual values don't matter, this is only for determinism.
1222  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1223  if (OSA != OSB)
1224    return OSA < OSB;
1225  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1226  if (OIA != OIB)
1227    return OIA < OIB;
1228  if (A.first.Wdh != B.first.Wdh)
1229    return A.first.Wdh < B.first.Wdh;
1230  return A.first.Off < B.first.Off;
1231}
1232
1233
1234void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1235      unsigned &Sum) const {
1236  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1237    UnsignedMap::const_iterator F = UseC.find(R);
1238    assert(F != UseC.end());
1239    unsigned UC = F->second;
1240    if (UC == 0)
1241      Zero++;
1242    Sum += UC;
1243    Size++;
1244  }
1245}
1246
1247
1248void HexagonGenInsert::selectCandidates() {
1249  // Some registers may have multiple valid candidates. Pick the best one
1250  // (or decide not to use any).
1251
1252  // Compute the "removability" measure of R:
1253  // For each potentially removable register R, record the number of regis-
1254  // ters with IF candidates, where R appears in at least one set.
1255  RegisterSet AllRMs;
1256  UnsignedMap UseC, RemC;
1257  IFMapType::iterator End = IFMap.end();
1258
1259  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1260    const IFListType &LL = I->second;
1261    RegisterSet TT;
1262    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1263      TT.insert(LL[i].second);
1264    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1265      RemC[R]++;
1266    AllRMs.insert(TT);
1267  }
1268
1269  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1270    typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
1271    typedef SmallSet<const MachineInstr*,16> InstrSet;
1272    InstrSet UIs;
1273    // Count as the number of instructions in which R is used, not the
1274    // number of operands.
1275    use_iterator E = MRI->use_nodbg_end();
1276    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1277      UIs.insert(I->getParent());
1278    unsigned C = UIs.size();
1279    // Calculate a measure, which is the number of instructions using R,
1280    // minus the "removability" count computed earlier.
1281    unsigned D = RemC[R];
1282    UseC[R] = (C > D) ? C-D : 0;  // doz
1283  }
1284
1285
1286  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1287  if (!SelectAll0 && !SelectHas0)
1288    SelectAll0 = true;
1289
1290  // The smaller the number UseC for a given register R, the "less used"
1291  // R is aside from the opportunities for removal offered by generating
1292  // "insert" instructions.
1293  // Iterate over the IF map, and for those registers that have multiple
1294  // candidates, pick the minimum one according to IFOrdering.
1295  IFOrdering IFO(UseC, BaseOrd);
1296  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1297    IFListType &LL = I->second;
1298    if (LL.empty())
1299      continue;
1300    // Get the minimum element, remember it and clear the list. If the
1301    // element found is adequate, we will put it back on the list, other-
1302    // wise the list will remain empty, and the entry for this register
1303    // will be removed (i.e. this register will not be replaced by insert).
1304    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1305    assert(MinI != LL.end());
1306    IFRecordWithRegSet M = *MinI;
1307    LL.clear();
1308
1309    // We want to make sure that this replacement will have a chance to be
1310    // beneficial, and that means that we want to have indication that some
1311    // register will be removed. The most likely registers to be eliminated
1312    // are the use operands in the definition of I->first. Accept/reject a
1313    // candidate based on how many of its uses it can potentially eliminate.
1314
1315    RegisterSet Us;
1316    const MachineInstr *DefI = MRI->getVRegDef(I->first);
1317    getInstrUses(DefI, Us);
1318    bool Accept = false;
1319
1320    if (SelectAll0) {
1321      bool All0 = true;
1322      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1323        if (UseC[R] == 0)
1324          continue;
1325        All0 = false;
1326        break;
1327      }
1328      Accept = All0;
1329    } else if (SelectHas0) {
1330      bool Has0 = false;
1331      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1332        if (UseC[R] != 0)
1333          continue;
1334        Has0 = true;
1335        break;
1336      }
1337      Accept = Has0;
1338    }
1339    if (Accept)
1340      LL.push_back(M);
1341  }
1342
1343  // Remove candidates that add uses of removable registers, unless the
1344  // removable registers are among replacement candidates.
1345  // Recompute the removable registers, since some candidates may have
1346  // been eliminated.
1347  AllRMs.clear();
1348  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1349    const IFListType &LL = I->second;
1350    if (LL.size() > 0)
1351      AllRMs.insert(LL[0].second);
1352  }
1353  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1354    IFListType &LL = I->second;
1355    if (LL.size() == 0)
1356      continue;
1357    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1358    if (AllRMs[SR] || AllRMs[IR])
1359      LL.clear();
1360  }
1361
1362  pruneEmptyLists();
1363}
1364
1365
1366bool HexagonGenInsert::generateInserts() {
1367  // Create a new register for each one from IFMap, and store them in the
1368  // map.
1369  UnsignedMap RegMap;
1370  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1371    unsigned VR = I->first;
1372    const TargetRegisterClass *RC = MRI->getRegClass(VR);
1373    unsigned NewVR = MRI->createVirtualRegister(RC);
1374    RegMap[VR] = NewVR;
1375  }
1376
1377  // We can generate the "insert" instructions using potentially stale re-
1378  // gisters: SrcR and InsR for a given VR may be among other registers that
1379  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1380  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1381    MachineInstr *MI = MRI->getVRegDef(I->first);
1382    MachineBasicBlock &B = *MI->getParent();
1383    DebugLoc DL = MI->getDebugLoc();
1384    unsigned NewR = RegMap[I->first];
1385    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1386    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1387                               : HII->get(Hexagon::S2_insertp);
1388    IFRecord IF = I->second[0].first;
1389    unsigned Wdh = IF.Wdh, Off = IF.Off;
1390    unsigned InsS = 0;
1391    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1392      InsS = Hexagon::subreg_loreg;
1393      if (Off >= 32) {
1394        InsS = Hexagon::subreg_hireg;
1395        Off -= 32;
1396      }
1397    }
1398    // Advance to the proper location for inserting instructions. This could
1399    // be B.end().
1400    MachineBasicBlock::iterator At = MI;
1401    if (MI->isPHI())
1402      At = B.getFirstNonPHI();
1403
1404    BuildMI(B, At, DL, D, NewR)
1405      .addReg(IF.SrcR)
1406      .addReg(IF.InsR, 0, InsS)
1407      .addImm(Wdh)
1408      .addImm(Off);
1409
1410    MRI->clearKillFlags(IF.SrcR);
1411    MRI->clearKillFlags(IF.InsR);
1412  }
1413
1414  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1415    MachineInstr *DefI = MRI->getVRegDef(I->first);
1416    MRI->replaceRegWith(I->first, RegMap[I->first]);
1417    DefI->eraseFromParent();
1418  }
1419
1420  return true;
1421}
1422
1423
1424bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1425  bool Changed = false;
1426  typedef GraphTraits<MachineDomTreeNode*> GTN;
1427  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1428    Changed |= removeDeadCode(*I);
1429
1430  MachineBasicBlock *B = N->getBlock();
1431  std::vector<MachineInstr*> Instrs;
1432  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1433    Instrs.push_back(&*I);
1434
1435  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1436    MachineInstr *MI = *I;
1437    unsigned Opc = MI->getOpcode();
1438    // Do not touch lifetime markers. This is why the target-independent DCE
1439    // cannot be used.
1440    if (Opc == TargetOpcode::LIFETIME_START ||
1441        Opc == TargetOpcode::LIFETIME_END)
1442      continue;
1443    bool Store = false;
1444    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1445      continue;
1446
1447    bool AllDead = true;
1448    SmallVector<unsigned,2> Regs;
1449    for (ConstMIOperands Op(MI); Op.isValid(); ++Op) {
1450      if (!Op->isReg() || !Op->isDef())
1451        continue;
1452      unsigned R = Op->getReg();
1453      if (!TargetRegisterInfo::isVirtualRegister(R) ||
1454          !MRI->use_nodbg_empty(R)) {
1455        AllDead = false;
1456        break;
1457      }
1458      Regs.push_back(R);
1459    }
1460    if (!AllDead)
1461      continue;
1462
1463    B->erase(MI);
1464    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1465      MRI->markUsesInDebugValueAsUndef(Regs[I]);
1466    Changed = true;
1467  }
1468
1469  return Changed;
1470}
1471
1472
1473bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1474  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1475  bool Changed = false;
1476  TimerGroup __G("hexinsert");
1477  NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
1478
1479  // Sanity check: one, but not both.
1480  assert(!OptSelectAll0 || !OptSelectHas0);
1481
1482  IFMap.clear();
1483  BaseOrd.clear();
1484  CellOrd.clear();
1485
1486  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1487  HII = ST.getInstrInfo();
1488  HRI = ST.getRegisterInfo();
1489  MFN = &MF;
1490  MRI = &MF.getRegInfo();
1491  MDT = &getAnalysis<MachineDominatorTree>();
1492
1493  // Clean up before any further processing, so that dead code does not
1494  // get used in a newly generated "insert" instruction. Have a custom
1495  // version of DCE that preserves lifetime markers. Without it, merging
1496  // of stack objects can fail to recognize and merge disjoint objects
1497  // leading to unnecessary stack growth.
1498  Changed = removeDeadCode(MDT->getRootNode());
1499
1500  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1501  BitTracker BTLoc(HE, MF);
1502  BTLoc.trace(isDebug());
1503  BTLoc.run();
1504  CellMapShadow MS(BTLoc);
1505  CMS = &MS;
1506
1507  buildOrderingMF(BaseOrd);
1508  buildOrderingBT(BaseOrd, CellOrd);
1509
1510  if (isDebug()) {
1511    dbgs() << "Cell ordering:\n";
1512    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1513        I != E; ++I) {
1514      unsigned VR = I->first, Pos = I->second;
1515      dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
1516    }
1517  }
1518
1519  // Collect candidates for conversion into the insert forms.
1520  MachineBasicBlock *RootB = MDT->getRoot();
1521  OrderedRegisterList AvailR(CellOrd);
1522
1523  {
1524    NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
1525    collectInBlock(RootB, AvailR);
1526    // Complete the information gathered in IFMap.
1527    computeRemovableRegisters();
1528  }
1529
1530  if (isDebug()) {
1531    dbgs() << "Candidates after collection:\n";
1532    dump_map();
1533  }
1534
1535  if (IFMap.empty())
1536    return Changed;
1537
1538  {
1539    NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
1540    pruneCandidates();
1541  }
1542
1543  if (isDebug()) {
1544    dbgs() << "Candidates after pruning:\n";
1545    dump_map();
1546  }
1547
1548  if (IFMap.empty())
1549    return Changed;
1550
1551  {
1552    NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
1553    selectCandidates();
1554  }
1555
1556  if (isDebug()) {
1557    dbgs() << "Candidates after selection:\n";
1558    dump_map();
1559  }
1560
1561  // Filter out vregs beyond the cutoff.
1562  if (VRegIndexCutoff.getPosition()) {
1563    unsigned Cutoff = VRegIndexCutoff;
1564    typedef SmallVector<IFMapType::iterator,16> IterListType;
1565    IterListType Out;
1566    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1567      unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1568      if (Idx >= Cutoff)
1569        Out.push_back(I);
1570    }
1571    for (unsigned i = 0, n = Out.size(); i < n; ++i)
1572      IFMap.erase(Out[i]);
1573  }
1574  if (IFMap.empty())
1575    return Changed;
1576
1577  {
1578    NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
1579    generateInserts();
1580  }
1581
1582  return true;
1583}
1584
1585
1586FunctionPass *llvm::createHexagonGenInsert() {
1587  return new HexagonGenInsert();
1588}
1589
1590
1591//===----------------------------------------------------------------------===//
1592//                         Public Constructor Functions
1593//===----------------------------------------------------------------------===//
1594
1595INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1596  "Hexagon generate \"insert\" instructions", false, false)
1597INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1598INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1599  "Hexagon generate \"insert\" instructions", false, false)
1600