1//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implement a loop-aware load elimination pass.
11//
12// It uses LoopAccessAnalysis to identify loop-carried dependences with a
13// distance of one between stores and loads.  These form the candidates for the
14// transformation.  The source value of each store then propagated to the user
15// of the corresponding load.  This makes the load dead.
16//
17// The pass can also version the loop and add memchecks in order to prove that
18// may-aliasing stores can't change the value in memory before it's read by the
19// load.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/LoopAccessAnalysis.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/ScalarEvolutionExpander.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Transforms/Utils/LoopVersioning.h"
32#include <forward_list>
33
34#define LLE_OPTION "loop-load-elim"
35#define DEBUG_TYPE LLE_OPTION
36
37using namespace llvm;
38
39static cl::opt<unsigned> CheckPerElim(
40    "runtime-check-per-loop-load-elim", cl::Hidden,
41    cl::desc("Max number of memchecks allowed per eliminated load on average"),
42    cl::init(1));
43
44static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
45    "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
46    cl::desc("The maximum number of SCEV checks allowed for Loop "
47             "Load Elimination"));
48
49
50STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
51
52namespace {
53
54/// \brief Represent a store-to-forwarding candidate.
55struct StoreToLoadForwardingCandidate {
56  LoadInst *Load;
57  StoreInst *Store;
58
59  StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
60      : Load(Load), Store(Store) {}
61
62  /// \brief Return true if the dependence from the store to the load has a
63  /// distance of one.  E.g. A[i+1] = A[i]
64  bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE) const {
65    Value *LoadPtr = Load->getPointerOperand();
66    Value *StorePtr = Store->getPointerOperand();
67    Type *LoadPtrType = LoadPtr->getType();
68    Type *LoadType = LoadPtrType->getPointerElementType();
69
70    assert(LoadPtrType->getPointerAddressSpace() ==
71               StorePtr->getType()->getPointerAddressSpace() &&
72           LoadType == StorePtr->getType()->getPointerElementType() &&
73           "Should be a known dependence");
74
75    auto &DL = Load->getParent()->getModule()->getDataLayout();
76    unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
77
78    auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
79    auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
80
81    // We don't need to check non-wrapping here because forward/backward
82    // dependence wouldn't be valid if these weren't monotonic accesses.
83    auto *Dist = cast<SCEVConstant>(
84        PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
85    const APInt &Val = Dist->getAPInt();
86    return Val.abs() == TypeByteSize;
87  }
88
89  Value *getLoadPtr() const { return Load->getPointerOperand(); }
90
91#ifndef NDEBUG
92  friend raw_ostream &operator<<(raw_ostream &OS,
93                                 const StoreToLoadForwardingCandidate &Cand) {
94    OS << *Cand.Store << " -->\n";
95    OS.indent(2) << *Cand.Load << "\n";
96    return OS;
97  }
98#endif
99};
100
101/// \brief Check if the store dominates all latches, so as long as there is no
102/// intervening store this value will be loaded in the next iteration.
103bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
104                                  DominatorTree *DT) {
105  SmallVector<BasicBlock *, 8> Latches;
106  L->getLoopLatches(Latches);
107  return std::all_of(Latches.begin(), Latches.end(),
108                     [&](const BasicBlock *Latch) {
109                       return DT->dominates(StoreBlock, Latch);
110                     });
111}
112
113/// \brief The per-loop class that does most of the work.
114class LoadEliminationForLoop {
115public:
116  LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
117                         DominatorTree *DT)
118      : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {}
119
120  /// \brief Look through the loop-carried and loop-independent dependences in
121  /// this loop and find store->load dependences.
122  ///
123  /// Note that no candidate is returned if LAA has failed to analyze the loop
124  /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
125  std::forward_list<StoreToLoadForwardingCandidate>
126  findStoreToLoadDependences(const LoopAccessInfo &LAI) {
127    std::forward_list<StoreToLoadForwardingCandidate> Candidates;
128
129    const auto *Deps = LAI.getDepChecker().getDependences();
130    if (!Deps)
131      return Candidates;
132
133    // Find store->load dependences (consequently true dep).  Both lexically
134    // forward and backward dependences qualify.  Disqualify loads that have
135    // other unknown dependences.
136
137    SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
138
139    for (const auto &Dep : *Deps) {
140      Instruction *Source = Dep.getSource(LAI);
141      Instruction *Destination = Dep.getDestination(LAI);
142
143      if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
144        if (isa<LoadInst>(Source))
145          LoadsWithUnknownDepedence.insert(Source);
146        if (isa<LoadInst>(Destination))
147          LoadsWithUnknownDepedence.insert(Destination);
148        continue;
149      }
150
151      if (Dep.isBackward())
152        // Note that the designations source and destination follow the program
153        // order, i.e. source is always first.  (The direction is given by the
154        // DepType.)
155        std::swap(Source, Destination);
156      else
157        assert(Dep.isForward() && "Needs to be a forward dependence");
158
159      auto *Store = dyn_cast<StoreInst>(Source);
160      if (!Store)
161        continue;
162      auto *Load = dyn_cast<LoadInst>(Destination);
163      if (!Load)
164        continue;
165      Candidates.emplace_front(Load, Store);
166    }
167
168    if (!LoadsWithUnknownDepedence.empty())
169      Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
170        return LoadsWithUnknownDepedence.count(C.Load);
171      });
172
173    return Candidates;
174  }
175
176  /// \brief Return the index of the instruction according to program order.
177  unsigned getInstrIndex(Instruction *Inst) {
178    auto I = InstOrder.find(Inst);
179    assert(I != InstOrder.end() && "No index for instruction");
180    return I->second;
181  }
182
183  /// \brief If a load has multiple candidates associated (i.e. different
184  /// stores), it means that it could be forwarding from multiple stores
185  /// depending on control flow.  Remove these candidates.
186  ///
187  /// Here, we rely on LAA to include the relevant loop-independent dependences.
188  /// LAA is known to omit these in the very simple case when the read and the
189  /// write within an alias set always takes place using the *same* pointer.
190  ///
191  /// However, we know that this is not the case here, i.e. we can rely on LAA
192  /// to provide us with loop-independent dependences for the cases we're
193  /// interested.  Consider the case for example where a loop-independent
194  /// dependece S1->S2 invalidates the forwarding S3->S2.
195  ///
196  ///         A[i]   = ...   (S1)
197  ///         ...    = A[i]  (S2)
198  ///         A[i+1] = ...   (S3)
199  ///
200  /// LAA will perform dependence analysis here because there are two
201  /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
202  void removeDependencesFromMultipleStores(
203      std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
204    // If Store is nullptr it means that we have multiple stores forwarding to
205    // this store.
206    typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
207        LoadToSingleCandT;
208    LoadToSingleCandT LoadToSingleCand;
209
210    for (const auto &Cand : Candidates) {
211      bool NewElt;
212      LoadToSingleCandT::iterator Iter;
213
214      std::tie(Iter, NewElt) =
215          LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
216      if (!NewElt) {
217        const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
218        // Already multiple stores forward to this load.
219        if (OtherCand == nullptr)
220          continue;
221
222        // Handle the very basic of case when the two stores are in the same
223        // block so deciding which one forwards is easy.  The later one forwards
224        // as long as they both have a dependence distance of one to the load.
225        if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
226            Cand.isDependenceDistanceOfOne(PSE) &&
227            OtherCand->isDependenceDistanceOfOne(PSE)) {
228          // They are in the same block, the later one will forward to the load.
229          if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
230            OtherCand = &Cand;
231        } else
232          OtherCand = nullptr;
233      }
234    }
235
236    Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
237      if (LoadToSingleCand[Cand.Load] != &Cand) {
238        DEBUG(dbgs() << "Removing from candidates: \n" << Cand
239                     << "  The load may have multiple stores forwarding to "
240                     << "it\n");
241        return true;
242      }
243      return false;
244    });
245  }
246
247  /// \brief Given two pointers operations by their RuntimePointerChecking
248  /// indices, return true if they require an alias check.
249  ///
250  /// We need a check if one is a pointer for a candidate load and the other is
251  /// a pointer for a possibly intervening store.
252  bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
253                     const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
254                     const std::set<Value *> &CandLoadPtrs) {
255    Value *Ptr1 =
256        LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
257    Value *Ptr2 =
258        LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
259    return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
260            (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
261  }
262
263  /// \brief Return pointers that are possibly written to on the path from a
264  /// forwarding store to a load.
265  ///
266  /// These pointers need to be alias-checked against the forwarding candidates.
267  SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
268      const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
269    // From FirstStore to LastLoad neither of the elimination candidate loads
270    // should overlap with any of the stores.
271    //
272    // E.g.:
273    //
274    // st1 C[i]
275    // ld1 B[i] <-------,
276    // ld0 A[i] <----,  |              * LastLoad
277    // ...           |  |
278    // st2 E[i]      |  |
279    // st3 B[i+1] -- | -'              * FirstStore
280    // st0 A[i+1] ---'
281    // st4 D[i]
282    //
283    // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
284    // ld0.
285
286    LoadInst *LastLoad =
287        std::max_element(Candidates.begin(), Candidates.end(),
288                         [&](const StoreToLoadForwardingCandidate &A,
289                             const StoreToLoadForwardingCandidate &B) {
290                           return getInstrIndex(A.Load) < getInstrIndex(B.Load);
291                         })
292            ->Load;
293    StoreInst *FirstStore =
294        std::min_element(Candidates.begin(), Candidates.end(),
295                         [&](const StoreToLoadForwardingCandidate &A,
296                             const StoreToLoadForwardingCandidate &B) {
297                           return getInstrIndex(A.Store) <
298                                  getInstrIndex(B.Store);
299                         })
300            ->Store;
301
302    // We're looking for stores after the first forwarding store until the end
303    // of the loop, then from the beginning of the loop until the last
304    // forwarded-to load.  Collect the pointer for the stores.
305    SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
306
307    auto InsertStorePtr = [&](Instruction *I) {
308      if (auto *S = dyn_cast<StoreInst>(I))
309        PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
310    };
311    const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
312    std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
313                  MemInstrs.end(), InsertStorePtr);
314    std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
315                  InsertStorePtr);
316
317    return PtrsWrittenOnFwdingPath;
318  }
319
320  /// \brief Determine the pointer alias checks to prove that there are no
321  /// intervening stores.
322  SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
323      const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
324
325    SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
326        findPointersWrittenOnForwardingPath(Candidates);
327
328    // Collect the pointers of the candidate loads.
329    // FIXME: SmallSet does not work with std::inserter.
330    std::set<Value *> CandLoadPtrs;
331    std::transform(Candidates.begin(), Candidates.end(),
332                   std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
333                   std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
334
335    const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
336    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
337
338    std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
339                 [&](const RuntimePointerChecking::PointerCheck &Check) {
340                   for (auto PtrIdx1 : Check.first->Members)
341                     for (auto PtrIdx2 : Check.second->Members)
342                       if (needsChecking(PtrIdx1, PtrIdx2,
343                                         PtrsWrittenOnFwdingPath, CandLoadPtrs))
344                         return true;
345                   return false;
346                 });
347
348    DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
349    DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
350
351    return Checks;
352  }
353
354  /// \brief Perform the transformation for a candidate.
355  void
356  propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
357                                  SCEVExpander &SEE) {
358    //
359    // loop:
360    //      %x = load %gep_i
361    //         = ... %x
362    //      store %y, %gep_i_plus_1
363    //
364    // =>
365    //
366    // ph:
367    //      %x.initial = load %gep_0
368    // loop:
369    //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
370    //      %x = load %gep_i            <---- now dead
371    //         = ... %x.storeforward
372    //      store %y, %gep_i_plus_1
373
374    Value *Ptr = Cand.Load->getPointerOperand();
375    auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
376    auto *PH = L->getLoopPreheader();
377    Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
378                                          PH->getTerminator());
379    Value *Initial =
380        new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
381    PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
382                                   &L->getHeader()->front());
383    PHI->addIncoming(Initial, PH);
384    PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
385
386    Cand.Load->replaceAllUsesWith(PHI);
387  }
388
389  /// \brief Top-level driver for each loop: find store->load forwarding
390  /// candidates, add run-time checks and perform transformation.
391  bool processLoop() {
392    DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
393                 << "\" checking " << *L << "\n");
394    // Look for store-to-load forwarding cases across the
395    // backedge. E.g.:
396    //
397    // loop:
398    //      %x = load %gep_i
399    //         = ... %x
400    //      store %y, %gep_i_plus_1
401    //
402    // =>
403    //
404    // ph:
405    //      %x.initial = load %gep_0
406    // loop:
407    //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
408    //      %x = load %gep_i            <---- now dead
409    //         = ... %x.storeforward
410    //      store %y, %gep_i_plus_1
411
412    // First start with store->load dependences.
413    auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
414    if (StoreToLoadDependences.empty())
415      return false;
416
417    // Generate an index for each load and store according to the original
418    // program order.  This will be used later.
419    InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
420
421    // To keep things simple for now, remove those where the load is potentially
422    // fed by multiple stores.
423    removeDependencesFromMultipleStores(StoreToLoadDependences);
424    if (StoreToLoadDependences.empty())
425      return false;
426
427    // Filter the candidates further.
428    SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
429    unsigned NumForwarding = 0;
430    for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
431      DEBUG(dbgs() << "Candidate " << Cand);
432      // Make sure that the stored values is available everywhere in the loop in
433      // the next iteration.
434      if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
435        continue;
436
437      // Check whether the SCEV difference is the same as the induction step,
438      // thus we load the value in the next iteration.
439      if (!Cand.isDependenceDistanceOfOne(PSE))
440        continue;
441
442      ++NumForwarding;
443      DEBUG(dbgs()
444            << NumForwarding
445            << ". Valid store-to-load forwarding across the loop backedge\n");
446      Candidates.push_back(Cand);
447    }
448    if (Candidates.empty())
449      return false;
450
451    // Check intervening may-alias stores.  These need runtime checks for alias
452    // disambiguation.
453    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
454        collectMemchecks(Candidates);
455
456    // Too many checks are likely to outweigh the benefits of forwarding.
457    if (Checks.size() > Candidates.size() * CheckPerElim) {
458      DEBUG(dbgs() << "Too many run-time checks needed.\n");
459      return false;
460    }
461
462    if (LAI.PSE.getUnionPredicate().getComplexity() >
463        LoadElimSCEVCheckThreshold) {
464      DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
465      return false;
466    }
467
468    // Point of no-return, start the transformation.  First, version the loop if
469    // necessary.
470    if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) {
471      LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
472      LV.setAliasChecks(std::move(Checks));
473      LV.setSCEVChecks(LAI.PSE.getUnionPredicate());
474      LV.versionLoop();
475    }
476
477    // Next, propagate the value stored by the store to the users of the load.
478    // Also for the first iteration, generate the initial value of the load.
479    SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
480                     "storeforward");
481    for (const auto &Cand : Candidates)
482      propagateStoredValueToLoadUsers(Cand, SEE);
483    NumLoopLoadEliminted += NumForwarding;
484
485    return true;
486  }
487
488private:
489  Loop *L;
490
491  /// \brief Maps the load/store instructions to their index according to
492  /// program order.
493  DenseMap<Instruction *, unsigned> InstOrder;
494
495  // Analyses used.
496  LoopInfo *LI;
497  const LoopAccessInfo &LAI;
498  DominatorTree *DT;
499  PredicatedScalarEvolution PSE;
500};
501
502/// \brief The pass.  Most of the work is delegated to the per-loop
503/// LoadEliminationForLoop class.
504class LoopLoadElimination : public FunctionPass {
505public:
506  LoopLoadElimination() : FunctionPass(ID) {
507    initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
508  }
509
510  bool runOnFunction(Function &F) override {
511    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
512    auto *LAA = &getAnalysis<LoopAccessAnalysis>();
513    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
514
515    // Build up a worklist of inner-loops to vectorize. This is necessary as the
516    // act of distributing a loop creates new loops and can invalidate iterators
517    // across the loops.
518    SmallVector<Loop *, 8> Worklist;
519
520    for (Loop *TopLevelLoop : *LI)
521      for (Loop *L : depth_first(TopLevelLoop))
522        // We only handle inner-most loops.
523        if (L->empty())
524          Worklist.push_back(L);
525
526    // Now walk the identified inner loops.
527    bool Changed = false;
528    for (Loop *L : Worklist) {
529      const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
530      // The actual work is performed by LoadEliminationForLoop.
531      LoadEliminationForLoop LEL(L, LI, LAI, DT);
532      Changed |= LEL.processLoop();
533    }
534
535    // Process each loop nest in the function.
536    return Changed;
537  }
538
539  void getAnalysisUsage(AnalysisUsage &AU) const override {
540    AU.addRequired<LoopInfoWrapperPass>();
541    AU.addPreserved<LoopInfoWrapperPass>();
542    AU.addRequired<LoopAccessAnalysis>();
543    AU.addRequired<ScalarEvolutionWrapperPass>();
544    AU.addRequired<DominatorTreeWrapperPass>();
545    AU.addPreserved<DominatorTreeWrapperPass>();
546  }
547
548  static char ID;
549};
550}
551
552char LoopLoadElimination::ID;
553static const char LLE_name[] = "Loop Load Elimination";
554
555INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
556INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
557INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
558INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
559INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
560INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
561
562namespace llvm {
563FunctionPass *createLoopLoadEliminationPass() {
564  return new LoopLoadElimination();
565}
566}
567