1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Transforms/Scalar/SROA.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Analysis/AssumptionCache.h"
31#include "llvm/Analysis/GlobalsModRef.h"
32#include "llvm/Analysis/Loads.h"
33#include "llvm/Analysis/PtrUseVisitor.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DIBuilder.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/DebugInfo.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/IRBuilder.h"
41#include "llvm/IR/InstVisitor.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/Operator.h"
46#include "llvm/Pass.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/TimeValue.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57
58#if __cplusplus >= 201103L && !defined(NDEBUG)
59// We only use this for a debug check in C++11
60#include <random>
61#endif
62
63using namespace llvm;
64using namespace llvm::sroa;
65
66#define DEBUG_TYPE "sroa"
67
68STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
69STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
70STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
71STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
72STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
73STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
74STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
75STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
76STATISTIC(NumDeleted, "Number of instructions deleted");
77STATISTIC(NumVectorized, "Number of vectorized aggregates");
78
79/// Hidden option to enable randomly shuffling the slices to help uncover
80/// instability in their order.
81static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
82                                             cl::init(false), cl::Hidden);
83
84/// Hidden option to experiment with completely strict handling of inbounds
85/// GEPs.
86static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
87                                        cl::Hidden);
88
89namespace {
90/// \brief A custom IRBuilder inserter which prefixes all names if they are
91/// preserved.
92template <bool preserveNames = true>
93class IRBuilderPrefixedInserter
94    : public IRBuilderDefaultInserter<preserveNames> {
95  std::string Prefix;
96
97public:
98  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
99
100protected:
101  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
102                    BasicBlock::iterator InsertPt) const {
103    IRBuilderDefaultInserter<preserveNames>::InsertHelper(
104        I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
105  }
106};
107
108// Specialization for not preserving the name is trivial.
109template <>
110class IRBuilderPrefixedInserter<false>
111    : public IRBuilderDefaultInserter<false> {
112public:
113  void SetNamePrefix(const Twine &P) {}
114};
115
116/// \brief Provide a typedef for IRBuilder that drops names in release builds.
117#ifndef NDEBUG
118typedef llvm::IRBuilder<true, ConstantFolder, IRBuilderPrefixedInserter<true>>
119    IRBuilderTy;
120#else
121typedef llvm::IRBuilder<false, ConstantFolder, IRBuilderPrefixedInserter<false>>
122    IRBuilderTy;
123#endif
124}
125
126namespace {
127/// \brief A used slice of an alloca.
128///
129/// This structure represents a slice of an alloca used by some instruction. It
130/// stores both the begin and end offsets of this use, a pointer to the use
131/// itself, and a flag indicating whether we can classify the use as splittable
132/// or not when forming partitions of the alloca.
133class Slice {
134  /// \brief The beginning offset of the range.
135  uint64_t BeginOffset;
136
137  /// \brief The ending offset, not included in the range.
138  uint64_t EndOffset;
139
140  /// \brief Storage for both the use of this slice and whether it can be
141  /// split.
142  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
143
144public:
145  Slice() : BeginOffset(), EndOffset() {}
146  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
147      : BeginOffset(BeginOffset), EndOffset(EndOffset),
148        UseAndIsSplittable(U, IsSplittable) {}
149
150  uint64_t beginOffset() const { return BeginOffset; }
151  uint64_t endOffset() const { return EndOffset; }
152
153  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
154  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
155
156  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
157
158  bool isDead() const { return getUse() == nullptr; }
159  void kill() { UseAndIsSplittable.setPointer(nullptr); }
160
161  /// \brief Support for ordering ranges.
162  ///
163  /// This provides an ordering over ranges such that start offsets are
164  /// always increasing, and within equal start offsets, the end offsets are
165  /// decreasing. Thus the spanning range comes first in a cluster with the
166  /// same start position.
167  bool operator<(const Slice &RHS) const {
168    if (beginOffset() < RHS.beginOffset())
169      return true;
170    if (beginOffset() > RHS.beginOffset())
171      return false;
172    if (isSplittable() != RHS.isSplittable())
173      return !isSplittable();
174    if (endOffset() > RHS.endOffset())
175      return true;
176    return false;
177  }
178
179  /// \brief Support comparison with a single offset to allow binary searches.
180  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
181                                              uint64_t RHSOffset) {
182    return LHS.beginOffset() < RHSOffset;
183  }
184  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
185                                              const Slice &RHS) {
186    return LHSOffset < RHS.beginOffset();
187  }
188
189  bool operator==(const Slice &RHS) const {
190    return isSplittable() == RHS.isSplittable() &&
191           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
192  }
193  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
194};
195} // end anonymous namespace
196
197namespace llvm {
198template <typename T> struct isPodLike;
199template <> struct isPodLike<Slice> { static const bool value = true; };
200}
201
202/// \brief Representation of the alloca slices.
203///
204/// This class represents the slices of an alloca which are formed by its
205/// various uses. If a pointer escapes, we can't fully build a representation
206/// for the slices used and we reflect that in this structure. The uses are
207/// stored, sorted by increasing beginning offset and with unsplittable slices
208/// starting at a particular offset before splittable slices.
209class llvm::sroa::AllocaSlices {
210public:
211  /// \brief Construct the slices of a particular alloca.
212  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
213
214  /// \brief Test whether a pointer to the allocation escapes our analysis.
215  ///
216  /// If this is true, the slices are never fully built and should be
217  /// ignored.
218  bool isEscaped() const { return PointerEscapingInstr; }
219
220  /// \brief Support for iterating over the slices.
221  /// @{
222  typedef SmallVectorImpl<Slice>::iterator iterator;
223  typedef iterator_range<iterator> range;
224  iterator begin() { return Slices.begin(); }
225  iterator end() { return Slices.end(); }
226
227  typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
228  typedef iterator_range<const_iterator> const_range;
229  const_iterator begin() const { return Slices.begin(); }
230  const_iterator end() const { return Slices.end(); }
231  /// @}
232
233  /// \brief Erase a range of slices.
234  void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
235
236  /// \brief Insert new slices for this alloca.
237  ///
238  /// This moves the slices into the alloca's slices collection, and re-sorts
239  /// everything so that the usual ordering properties of the alloca's slices
240  /// hold.
241  void insert(ArrayRef<Slice> NewSlices) {
242    int OldSize = Slices.size();
243    Slices.append(NewSlices.begin(), NewSlices.end());
244    auto SliceI = Slices.begin() + OldSize;
245    std::sort(SliceI, Slices.end());
246    std::inplace_merge(Slices.begin(), SliceI, Slices.end());
247  }
248
249  // Forward declare the iterator and range accessor for walking the
250  // partitions.
251  class partition_iterator;
252  iterator_range<partition_iterator> partitions();
253
254  /// \brief Access the dead users for this alloca.
255  ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
256
257  /// \brief Access the dead operands referring to this alloca.
258  ///
259  /// These are operands which have cannot actually be used to refer to the
260  /// alloca as they are outside its range and the user doesn't correct for
261  /// that. These mostly consist of PHI node inputs and the like which we just
262  /// need to replace with undef.
263  ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
264
265#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
266  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
267  void printSlice(raw_ostream &OS, const_iterator I,
268                  StringRef Indent = "  ") const;
269  void printUse(raw_ostream &OS, const_iterator I,
270                StringRef Indent = "  ") const;
271  void print(raw_ostream &OS) const;
272  void dump(const_iterator I) const;
273  void dump() const;
274#endif
275
276private:
277  template <typename DerivedT, typename RetT = void> class BuilderBase;
278  class SliceBuilder;
279  friend class AllocaSlices::SliceBuilder;
280
281#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
282  /// \brief Handle to alloca instruction to simplify method interfaces.
283  AllocaInst &AI;
284#endif
285
286  /// \brief The instruction responsible for this alloca not having a known set
287  /// of slices.
288  ///
289  /// When an instruction (potentially) escapes the pointer to the alloca, we
290  /// store a pointer to that here and abort trying to form slices of the
291  /// alloca. This will be null if the alloca slices are analyzed successfully.
292  Instruction *PointerEscapingInstr;
293
294  /// \brief The slices of the alloca.
295  ///
296  /// We store a vector of the slices formed by uses of the alloca here. This
297  /// vector is sorted by increasing begin offset, and then the unsplittable
298  /// slices before the splittable ones. See the Slice inner class for more
299  /// details.
300  SmallVector<Slice, 8> Slices;
301
302  /// \brief Instructions which will become dead if we rewrite the alloca.
303  ///
304  /// Note that these are not separated by slice. This is because we expect an
305  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
306  /// all these instructions can simply be removed and replaced with undef as
307  /// they come from outside of the allocated space.
308  SmallVector<Instruction *, 8> DeadUsers;
309
310  /// \brief Operands which will become dead if we rewrite the alloca.
311  ///
312  /// These are operands that in their particular use can be replaced with
313  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
314  /// to PHI nodes and the like. They aren't entirely dead (there might be
315  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
316  /// want to swap this particular input for undef to simplify the use lists of
317  /// the alloca.
318  SmallVector<Use *, 8> DeadOperands;
319};
320
321/// \brief A partition of the slices.
322///
323/// An ephemeral representation for a range of slices which can be viewed as
324/// a partition of the alloca. This range represents a span of the alloca's
325/// memory which cannot be split, and provides access to all of the slices
326/// overlapping some part of the partition.
327///
328/// Objects of this type are produced by traversing the alloca's slices, but
329/// are only ephemeral and not persistent.
330class llvm::sroa::Partition {
331private:
332  friend class AllocaSlices;
333  friend class AllocaSlices::partition_iterator;
334
335  typedef AllocaSlices::iterator iterator;
336
337  /// \brief The beginning and ending offsets of the alloca for this
338  /// partition.
339  uint64_t BeginOffset, EndOffset;
340
341  /// \brief The start end end iterators of this partition.
342  iterator SI, SJ;
343
344  /// \brief A collection of split slice tails overlapping the partition.
345  SmallVector<Slice *, 4> SplitTails;
346
347  /// \brief Raw constructor builds an empty partition starting and ending at
348  /// the given iterator.
349  Partition(iterator SI) : SI(SI), SJ(SI) {}
350
351public:
352  /// \brief The start offset of this partition.
353  ///
354  /// All of the contained slices start at or after this offset.
355  uint64_t beginOffset() const { return BeginOffset; }
356
357  /// \brief The end offset of this partition.
358  ///
359  /// All of the contained slices end at or before this offset.
360  uint64_t endOffset() const { return EndOffset; }
361
362  /// \brief The size of the partition.
363  ///
364  /// Note that this can never be zero.
365  uint64_t size() const {
366    assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
367    return EndOffset - BeginOffset;
368  }
369
370  /// \brief Test whether this partition contains no slices, and merely spans
371  /// a region occupied by split slices.
372  bool empty() const { return SI == SJ; }
373
374  /// \name Iterate slices that start within the partition.
375  /// These may be splittable or unsplittable. They have a begin offset >= the
376  /// partition begin offset.
377  /// @{
378  // FIXME: We should probably define a "concat_iterator" helper and use that
379  // to stitch together pointee_iterators over the split tails and the
380  // contiguous iterators of the partition. That would give a much nicer
381  // interface here. We could then additionally expose filtered iterators for
382  // split, unsplit, and unsplittable splices based on the usage patterns.
383  iterator begin() const { return SI; }
384  iterator end() const { return SJ; }
385  /// @}
386
387  /// \brief Get the sequence of split slice tails.
388  ///
389  /// These tails are of slices which start before this partition but are
390  /// split and overlap into the partition. We accumulate these while forming
391  /// partitions.
392  ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
393};
394
395/// \brief An iterator over partitions of the alloca's slices.
396///
397/// This iterator implements the core algorithm for partitioning the alloca's
398/// slices. It is a forward iterator as we don't support backtracking for
399/// efficiency reasons, and re-use a single storage area to maintain the
400/// current set of split slices.
401///
402/// It is templated on the slice iterator type to use so that it can operate
403/// with either const or non-const slice iterators.
404class AllocaSlices::partition_iterator
405    : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
406                                  Partition> {
407  friend class AllocaSlices;
408
409  /// \brief Most of the state for walking the partitions is held in a class
410  /// with a nice interface for examining them.
411  Partition P;
412
413  /// \brief We need to keep the end of the slices to know when to stop.
414  AllocaSlices::iterator SE;
415
416  /// \brief We also need to keep track of the maximum split end offset seen.
417  /// FIXME: Do we really?
418  uint64_t MaxSplitSliceEndOffset;
419
420  /// \brief Sets the partition to be empty at given iterator, and sets the
421  /// end iterator.
422  partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
423      : P(SI), SE(SE), MaxSplitSliceEndOffset(0) {
424    // If not already at the end, advance our state to form the initial
425    // partition.
426    if (SI != SE)
427      advance();
428  }
429
430  /// \brief Advance the iterator to the next partition.
431  ///
432  /// Requires that the iterator not be at the end of the slices.
433  void advance() {
434    assert((P.SI != SE || !P.SplitTails.empty()) &&
435           "Cannot advance past the end of the slices!");
436
437    // Clear out any split uses which have ended.
438    if (!P.SplitTails.empty()) {
439      if (P.EndOffset >= MaxSplitSliceEndOffset) {
440        // If we've finished all splits, this is easy.
441        P.SplitTails.clear();
442        MaxSplitSliceEndOffset = 0;
443      } else {
444        // Remove the uses which have ended in the prior partition. This
445        // cannot change the max split slice end because we just checked that
446        // the prior partition ended prior to that max.
447        P.SplitTails.erase(
448            std::remove_if(
449                P.SplitTails.begin(), P.SplitTails.end(),
450                [&](Slice *S) { return S->endOffset() <= P.EndOffset; }),
451            P.SplitTails.end());
452        assert(std::any_of(P.SplitTails.begin(), P.SplitTails.end(),
453                           [&](Slice *S) {
454                             return S->endOffset() == MaxSplitSliceEndOffset;
455                           }) &&
456               "Could not find the current max split slice offset!");
457        assert(std::all_of(P.SplitTails.begin(), P.SplitTails.end(),
458                           [&](Slice *S) {
459                             return S->endOffset() <= MaxSplitSliceEndOffset;
460                           }) &&
461               "Max split slice end offset is not actually the max!");
462      }
463    }
464
465    // If P.SI is already at the end, then we've cleared the split tail and
466    // now have an end iterator.
467    if (P.SI == SE) {
468      assert(P.SplitTails.empty() && "Failed to clear the split slices!");
469      return;
470    }
471
472    // If we had a non-empty partition previously, set up the state for
473    // subsequent partitions.
474    if (P.SI != P.SJ) {
475      // Accumulate all the splittable slices which started in the old
476      // partition into the split list.
477      for (Slice &S : P)
478        if (S.isSplittable() && S.endOffset() > P.EndOffset) {
479          P.SplitTails.push_back(&S);
480          MaxSplitSliceEndOffset =
481              std::max(S.endOffset(), MaxSplitSliceEndOffset);
482        }
483
484      // Start from the end of the previous partition.
485      P.SI = P.SJ;
486
487      // If P.SI is now at the end, we at most have a tail of split slices.
488      if (P.SI == SE) {
489        P.BeginOffset = P.EndOffset;
490        P.EndOffset = MaxSplitSliceEndOffset;
491        return;
492      }
493
494      // If the we have split slices and the next slice is after a gap and is
495      // not splittable immediately form an empty partition for the split
496      // slices up until the next slice begins.
497      if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
498          !P.SI->isSplittable()) {
499        P.BeginOffset = P.EndOffset;
500        P.EndOffset = P.SI->beginOffset();
501        return;
502      }
503    }
504
505    // OK, we need to consume new slices. Set the end offset based on the
506    // current slice, and step SJ past it. The beginning offset of the
507    // partition is the beginning offset of the next slice unless we have
508    // pre-existing split slices that are continuing, in which case we begin
509    // at the prior end offset.
510    P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
511    P.EndOffset = P.SI->endOffset();
512    ++P.SJ;
513
514    // There are two strategies to form a partition based on whether the
515    // partition starts with an unsplittable slice or a splittable slice.
516    if (!P.SI->isSplittable()) {
517      // When we're forming an unsplittable region, it must always start at
518      // the first slice and will extend through its end.
519      assert(P.BeginOffset == P.SI->beginOffset());
520
521      // Form a partition including all of the overlapping slices with this
522      // unsplittable slice.
523      while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
524        if (!P.SJ->isSplittable())
525          P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
526        ++P.SJ;
527      }
528
529      // We have a partition across a set of overlapping unsplittable
530      // partitions.
531      return;
532    }
533
534    // If we're starting with a splittable slice, then we need to form
535    // a synthetic partition spanning it and any other overlapping splittable
536    // splices.
537    assert(P.SI->isSplittable() && "Forming a splittable partition!");
538
539    // Collect all of the overlapping splittable slices.
540    while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
541           P.SJ->isSplittable()) {
542      P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
543      ++P.SJ;
544    }
545
546    // Back upiP.EndOffset if we ended the span early when encountering an
547    // unsplittable slice. This synthesizes the early end offset of
548    // a partition spanning only splittable slices.
549    if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
550      assert(!P.SJ->isSplittable());
551      P.EndOffset = P.SJ->beginOffset();
552    }
553  }
554
555public:
556  bool operator==(const partition_iterator &RHS) const {
557    assert(SE == RHS.SE &&
558           "End iterators don't match between compared partition iterators!");
559
560    // The observed positions of partitions is marked by the P.SI iterator and
561    // the emptiness of the split slices. The latter is only relevant when
562    // P.SI == SE, as the end iterator will additionally have an empty split
563    // slices list, but the prior may have the same P.SI and a tail of split
564    // slices.
565    if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
566      assert(P.SJ == RHS.P.SJ &&
567             "Same set of slices formed two different sized partitions!");
568      assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
569             "Same slice position with differently sized non-empty split "
570             "slice tails!");
571      return true;
572    }
573    return false;
574  }
575
576  partition_iterator &operator++() {
577    advance();
578    return *this;
579  }
580
581  Partition &operator*() { return P; }
582};
583
584/// \brief A forward range over the partitions of the alloca's slices.
585///
586/// This accesses an iterator range over the partitions of the alloca's
587/// slices. It computes these partitions on the fly based on the overlapping
588/// offsets of the slices and the ability to split them. It will visit "empty"
589/// partitions to cover regions of the alloca only accessed via split
590/// slices.
591iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
592  return make_range(partition_iterator(begin(), end()),
593                    partition_iterator(end(), end()));
594}
595
596static Value *foldSelectInst(SelectInst &SI) {
597  // If the condition being selected on is a constant or the same value is
598  // being selected between, fold the select. Yes this does (rarely) happen
599  // early on.
600  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
601    return SI.getOperand(1 + CI->isZero());
602  if (SI.getOperand(1) == SI.getOperand(2))
603    return SI.getOperand(1);
604
605  return nullptr;
606}
607
608/// \brief A helper that folds a PHI node or a select.
609static Value *foldPHINodeOrSelectInst(Instruction &I) {
610  if (PHINode *PN = dyn_cast<PHINode>(&I)) {
611    // If PN merges together the same value, return that value.
612    return PN->hasConstantValue();
613  }
614  return foldSelectInst(cast<SelectInst>(I));
615}
616
617/// \brief Builder for the alloca slices.
618///
619/// This class builds a set of alloca slices by recursively visiting the uses
620/// of an alloca and making a slice for each load and store at each offset.
621class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
622  friend class PtrUseVisitor<SliceBuilder>;
623  friend class InstVisitor<SliceBuilder>;
624  typedef PtrUseVisitor<SliceBuilder> Base;
625
626  const uint64_t AllocSize;
627  AllocaSlices &AS;
628
629  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
630  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
631
632  /// \brief Set to de-duplicate dead instructions found in the use walk.
633  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
634
635public:
636  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
637      : PtrUseVisitor<SliceBuilder>(DL),
638        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
639
640private:
641  void markAsDead(Instruction &I) {
642    if (VisitedDeadInsts.insert(&I).second)
643      AS.DeadUsers.push_back(&I);
644  }
645
646  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
647                 bool IsSplittable = false) {
648    // Completely skip uses which have a zero size or start either before or
649    // past the end of the allocation.
650    if (Size == 0 || Offset.uge(AllocSize)) {
651      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
652                   << " which has zero size or starts outside of the "
653                   << AllocSize << " byte alloca:\n"
654                   << "    alloca: " << AS.AI << "\n"
655                   << "       use: " << I << "\n");
656      return markAsDead(I);
657    }
658
659    uint64_t BeginOffset = Offset.getZExtValue();
660    uint64_t EndOffset = BeginOffset + Size;
661
662    // Clamp the end offset to the end of the allocation. Note that this is
663    // formulated to handle even the case where "BeginOffset + Size" overflows.
664    // This may appear superficially to be something we could ignore entirely,
665    // but that is not so! There may be widened loads or PHI-node uses where
666    // some instructions are dead but not others. We can't completely ignore
667    // them, and so have to record at least the information here.
668    assert(AllocSize >= BeginOffset); // Established above.
669    if (Size > AllocSize - BeginOffset) {
670      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
671                   << " to remain within the " << AllocSize << " byte alloca:\n"
672                   << "    alloca: " << AS.AI << "\n"
673                   << "       use: " << I << "\n");
674      EndOffset = AllocSize;
675    }
676
677    AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
678  }
679
680  void visitBitCastInst(BitCastInst &BC) {
681    if (BC.use_empty())
682      return markAsDead(BC);
683
684    return Base::visitBitCastInst(BC);
685  }
686
687  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
688    if (GEPI.use_empty())
689      return markAsDead(GEPI);
690
691    if (SROAStrictInbounds && GEPI.isInBounds()) {
692      // FIXME: This is a manually un-factored variant of the basic code inside
693      // of GEPs with checking of the inbounds invariant specified in the
694      // langref in a very strict sense. If we ever want to enable
695      // SROAStrictInbounds, this code should be factored cleanly into
696      // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
697      // by writing out the code here where we have tho underlying allocation
698      // size readily available.
699      APInt GEPOffset = Offset;
700      const DataLayout &DL = GEPI.getModule()->getDataLayout();
701      for (gep_type_iterator GTI = gep_type_begin(GEPI),
702                             GTE = gep_type_end(GEPI);
703           GTI != GTE; ++GTI) {
704        ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
705        if (!OpC)
706          break;
707
708        // Handle a struct index, which adds its field offset to the pointer.
709        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
710          unsigned ElementIdx = OpC->getZExtValue();
711          const StructLayout *SL = DL.getStructLayout(STy);
712          GEPOffset +=
713              APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
714        } else {
715          // For array or vector indices, scale the index by the size of the
716          // type.
717          APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
718          GEPOffset += Index * APInt(Offset.getBitWidth(),
719                                     DL.getTypeAllocSize(GTI.getIndexedType()));
720        }
721
722        // If this index has computed an intermediate pointer which is not
723        // inbounds, then the result of the GEP is a poison value and we can
724        // delete it and all uses.
725        if (GEPOffset.ugt(AllocSize))
726          return markAsDead(GEPI);
727      }
728    }
729
730    return Base::visitGetElementPtrInst(GEPI);
731  }
732
733  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
734                         uint64_t Size, bool IsVolatile) {
735    // We allow splitting of non-volatile loads and stores where the type is an
736    // integer type. These may be used to implement 'memcpy' or other "transfer
737    // of bits" patterns.
738    bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
739
740    insertUse(I, Offset, Size, IsSplittable);
741  }
742
743  void visitLoadInst(LoadInst &LI) {
744    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
745           "All simple FCA loads should have been pre-split");
746
747    if (!IsOffsetKnown)
748      return PI.setAborted(&LI);
749
750    const DataLayout &DL = LI.getModule()->getDataLayout();
751    uint64_t Size = DL.getTypeStoreSize(LI.getType());
752    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
753  }
754
755  void visitStoreInst(StoreInst &SI) {
756    Value *ValOp = SI.getValueOperand();
757    if (ValOp == *U)
758      return PI.setEscapedAndAborted(&SI);
759    if (!IsOffsetKnown)
760      return PI.setAborted(&SI);
761
762    const DataLayout &DL = SI.getModule()->getDataLayout();
763    uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
764
765    // If this memory access can be shown to *statically* extend outside the
766    // bounds of of the allocation, it's behavior is undefined, so simply
767    // ignore it. Note that this is more strict than the generic clamping
768    // behavior of insertUse. We also try to handle cases which might run the
769    // risk of overflow.
770    // FIXME: We should instead consider the pointer to have escaped if this
771    // function is being instrumented for addressing bugs or race conditions.
772    if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
773      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
774                   << " which extends past the end of the " << AllocSize
775                   << " byte alloca:\n"
776                   << "    alloca: " << AS.AI << "\n"
777                   << "       use: " << SI << "\n");
778      return markAsDead(SI);
779    }
780
781    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
782           "All simple FCA stores should have been pre-split");
783    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
784  }
785
786  void visitMemSetInst(MemSetInst &II) {
787    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
788    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
789    if ((Length && Length->getValue() == 0) ||
790        (IsOffsetKnown && Offset.uge(AllocSize)))
791      // Zero-length mem transfer intrinsics can be ignored entirely.
792      return markAsDead(II);
793
794    if (!IsOffsetKnown)
795      return PI.setAborted(&II);
796
797    insertUse(II, Offset, Length ? Length->getLimitedValue()
798                                 : AllocSize - Offset.getLimitedValue(),
799              (bool)Length);
800  }
801
802  void visitMemTransferInst(MemTransferInst &II) {
803    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
804    if (Length && Length->getValue() == 0)
805      // Zero-length mem transfer intrinsics can be ignored entirely.
806      return markAsDead(II);
807
808    // Because we can visit these intrinsics twice, also check to see if the
809    // first time marked this instruction as dead. If so, skip it.
810    if (VisitedDeadInsts.count(&II))
811      return;
812
813    if (!IsOffsetKnown)
814      return PI.setAborted(&II);
815
816    // This side of the transfer is completely out-of-bounds, and so we can
817    // nuke the entire transfer. However, we also need to nuke the other side
818    // if already added to our partitions.
819    // FIXME: Yet another place we really should bypass this when
820    // instrumenting for ASan.
821    if (Offset.uge(AllocSize)) {
822      SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
823          MemTransferSliceMap.find(&II);
824      if (MTPI != MemTransferSliceMap.end())
825        AS.Slices[MTPI->second].kill();
826      return markAsDead(II);
827    }
828
829    uint64_t RawOffset = Offset.getLimitedValue();
830    uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
831
832    // Check for the special case where the same exact value is used for both
833    // source and dest.
834    if (*U == II.getRawDest() && *U == II.getRawSource()) {
835      // For non-volatile transfers this is a no-op.
836      if (!II.isVolatile())
837        return markAsDead(II);
838
839      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
840    }
841
842    // If we have seen both source and destination for a mem transfer, then
843    // they both point to the same alloca.
844    bool Inserted;
845    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
846    std::tie(MTPI, Inserted) =
847        MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
848    unsigned PrevIdx = MTPI->second;
849    if (!Inserted) {
850      Slice &PrevP = AS.Slices[PrevIdx];
851
852      // Check if the begin offsets match and this is a non-volatile transfer.
853      // In that case, we can completely elide the transfer.
854      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
855        PrevP.kill();
856        return markAsDead(II);
857      }
858
859      // Otherwise we have an offset transfer within the same alloca. We can't
860      // split those.
861      PrevP.makeUnsplittable();
862    }
863
864    // Insert the use now that we've fixed up the splittable nature.
865    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
866
867    // Check that we ended up with a valid index in the map.
868    assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
869           "Map index doesn't point back to a slice with this user.");
870  }
871
872  // Disable SRoA for any intrinsics except for lifetime invariants.
873  // FIXME: What about debug intrinsics? This matches old behavior, but
874  // doesn't make sense.
875  void visitIntrinsicInst(IntrinsicInst &II) {
876    if (!IsOffsetKnown)
877      return PI.setAborted(&II);
878
879    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
880        II.getIntrinsicID() == Intrinsic::lifetime_end) {
881      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
882      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
883                               Length->getLimitedValue());
884      insertUse(II, Offset, Size, true);
885      return;
886    }
887
888    Base::visitIntrinsicInst(II);
889  }
890
891  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
892    // We consider any PHI or select that results in a direct load or store of
893    // the same offset to be a viable use for slicing purposes. These uses
894    // are considered unsplittable and the size is the maximum loaded or stored
895    // size.
896    SmallPtrSet<Instruction *, 4> Visited;
897    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
898    Visited.insert(Root);
899    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
900    const DataLayout &DL = Root->getModule()->getDataLayout();
901    // If there are no loads or stores, the access is dead. We mark that as
902    // a size zero access.
903    Size = 0;
904    do {
905      Instruction *I, *UsedI;
906      std::tie(UsedI, I) = Uses.pop_back_val();
907
908      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
909        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
910        continue;
911      }
912      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
913        Value *Op = SI->getOperand(0);
914        if (Op == UsedI)
915          return SI;
916        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
917        continue;
918      }
919
920      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
921        if (!GEP->hasAllZeroIndices())
922          return GEP;
923      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
924                 !isa<SelectInst>(I)) {
925        return I;
926      }
927
928      for (User *U : I->users())
929        if (Visited.insert(cast<Instruction>(U)).second)
930          Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
931    } while (!Uses.empty());
932
933    return nullptr;
934  }
935
936  void visitPHINodeOrSelectInst(Instruction &I) {
937    assert(isa<PHINode>(I) || isa<SelectInst>(I));
938    if (I.use_empty())
939      return markAsDead(I);
940
941    // TODO: We could use SimplifyInstruction here to fold PHINodes and
942    // SelectInsts. However, doing so requires to change the current
943    // dead-operand-tracking mechanism. For instance, suppose neither loading
944    // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
945    // trap either.  However, if we simply replace %U with undef using the
946    // current dead-operand-tracking mechanism, "load (select undef, undef,
947    // %other)" may trap because the select may return the first operand
948    // "undef".
949    if (Value *Result = foldPHINodeOrSelectInst(I)) {
950      if (Result == *U)
951        // If the result of the constant fold will be the pointer, recurse
952        // through the PHI/select as if we had RAUW'ed it.
953        enqueueUsers(I);
954      else
955        // Otherwise the operand to the PHI/select is dead, and we can replace
956        // it with undef.
957        AS.DeadOperands.push_back(U);
958
959      return;
960    }
961
962    if (!IsOffsetKnown)
963      return PI.setAborted(&I);
964
965    // See if we already have computed info on this node.
966    uint64_t &Size = PHIOrSelectSizes[&I];
967    if (!Size) {
968      // This is a new PHI/Select, check for an unsafe use of it.
969      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
970        return PI.setAborted(UnsafeI);
971    }
972
973    // For PHI and select operands outside the alloca, we can't nuke the entire
974    // phi or select -- the other side might still be relevant, so we special
975    // case them here and use a separate structure to track the operands
976    // themselves which should be replaced with undef.
977    // FIXME: This should instead be escaped in the event we're instrumenting
978    // for address sanitization.
979    if (Offset.uge(AllocSize)) {
980      AS.DeadOperands.push_back(U);
981      return;
982    }
983
984    insertUse(I, Offset, Size);
985  }
986
987  void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
988
989  void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
990
991  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
992  void visitInstruction(Instruction &I) { PI.setAborted(&I); }
993};
994
995AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
996    :
997#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
998      AI(AI),
999#endif
1000      PointerEscapingInstr(nullptr) {
1001  SliceBuilder PB(DL, AI, *this);
1002  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1003  if (PtrI.isEscaped() || PtrI.isAborted()) {
1004    // FIXME: We should sink the escape vs. abort info into the caller nicely,
1005    // possibly by just storing the PtrInfo in the AllocaSlices.
1006    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1007                                                  : PtrI.getAbortingInst();
1008    assert(PointerEscapingInstr && "Did not track a bad instruction");
1009    return;
1010  }
1011
1012  Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
1013                              [](const Slice &S) {
1014                                return S.isDead();
1015                              }),
1016               Slices.end());
1017
1018#if __cplusplus >= 201103L && !defined(NDEBUG)
1019  if (SROARandomShuffleSlices) {
1020    std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec()));
1021    std::shuffle(Slices.begin(), Slices.end(), MT);
1022  }
1023#endif
1024
1025  // Sort the uses. This arranges for the offsets to be in ascending order,
1026  // and the sizes to be in descending order.
1027  std::sort(Slices.begin(), Slices.end());
1028}
1029
1030#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1031
1032void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1033                         StringRef Indent) const {
1034  printSlice(OS, I, Indent);
1035  OS << "\n";
1036  printUse(OS, I, Indent);
1037}
1038
1039void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1040                              StringRef Indent) const {
1041  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1042     << " slice #" << (I - begin())
1043     << (I->isSplittable() ? " (splittable)" : "");
1044}
1045
1046void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1047                            StringRef Indent) const {
1048  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1049}
1050
1051void AllocaSlices::print(raw_ostream &OS) const {
1052  if (PointerEscapingInstr) {
1053    OS << "Can't analyze slices for alloca: " << AI << "\n"
1054       << "  A pointer to this alloca escaped by:\n"
1055       << "  " << *PointerEscapingInstr << "\n";
1056    return;
1057  }
1058
1059  OS << "Slices of alloca: " << AI << "\n";
1060  for (const_iterator I = begin(), E = end(); I != E; ++I)
1061    print(OS, I);
1062}
1063
1064LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1065  print(dbgs(), I);
1066}
1067LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1068
1069#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1070
1071/// Walk the range of a partitioning looking for a common type to cover this
1072/// sequence of slices.
1073static Type *findCommonType(AllocaSlices::const_iterator B,
1074                            AllocaSlices::const_iterator E,
1075                            uint64_t EndOffset) {
1076  Type *Ty = nullptr;
1077  bool TyIsCommon = true;
1078  IntegerType *ITy = nullptr;
1079
1080  // Note that we need to look at *every* alloca slice's Use to ensure we
1081  // always get consistent results regardless of the order of slices.
1082  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1083    Use *U = I->getUse();
1084    if (isa<IntrinsicInst>(*U->getUser()))
1085      continue;
1086    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1087      continue;
1088
1089    Type *UserTy = nullptr;
1090    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1091      UserTy = LI->getType();
1092    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1093      UserTy = SI->getValueOperand()->getType();
1094    }
1095
1096    if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1097      // If the type is larger than the partition, skip it. We only encounter
1098      // this for split integer operations where we want to use the type of the
1099      // entity causing the split. Also skip if the type is not a byte width
1100      // multiple.
1101      if (UserITy->getBitWidth() % 8 != 0 ||
1102          UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1103        continue;
1104
1105      // Track the largest bitwidth integer type used in this way in case there
1106      // is no common type.
1107      if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1108        ITy = UserITy;
1109    }
1110
1111    // To avoid depending on the order of slices, Ty and TyIsCommon must not
1112    // depend on types skipped above.
1113    if (!UserTy || (Ty && Ty != UserTy))
1114      TyIsCommon = false; // Give up on anything but an iN type.
1115    else
1116      Ty = UserTy;
1117  }
1118
1119  return TyIsCommon ? Ty : ITy;
1120}
1121
1122/// PHI instructions that use an alloca and are subsequently loaded can be
1123/// rewritten to load both input pointers in the pred blocks and then PHI the
1124/// results, allowing the load of the alloca to be promoted.
1125/// From this:
1126///   %P2 = phi [i32* %Alloca, i32* %Other]
1127///   %V = load i32* %P2
1128/// to:
1129///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1130///   ...
1131///   %V2 = load i32* %Other
1132///   ...
1133///   %V = phi [i32 %V1, i32 %V2]
1134///
1135/// We can do this to a select if its only uses are loads and if the operands
1136/// to the select can be loaded unconditionally.
1137///
1138/// FIXME: This should be hoisted into a generic utility, likely in
1139/// Transforms/Util/Local.h
1140static bool isSafePHIToSpeculate(PHINode &PN) {
1141  // For now, we can only do this promotion if the load is in the same block
1142  // as the PHI, and if there are no stores between the phi and load.
1143  // TODO: Allow recursive phi users.
1144  // TODO: Allow stores.
1145  BasicBlock *BB = PN.getParent();
1146  unsigned MaxAlign = 0;
1147  bool HaveLoad = false;
1148  for (User *U : PN.users()) {
1149    LoadInst *LI = dyn_cast<LoadInst>(U);
1150    if (!LI || !LI->isSimple())
1151      return false;
1152
1153    // For now we only allow loads in the same block as the PHI.  This is
1154    // a common case that happens when instcombine merges two loads through
1155    // a PHI.
1156    if (LI->getParent() != BB)
1157      return false;
1158
1159    // Ensure that there are no instructions between the PHI and the load that
1160    // could store.
1161    for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1162      if (BBI->mayWriteToMemory())
1163        return false;
1164
1165    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1166    HaveLoad = true;
1167  }
1168
1169  if (!HaveLoad)
1170    return false;
1171
1172  const DataLayout &DL = PN.getModule()->getDataLayout();
1173
1174  // We can only transform this if it is safe to push the loads into the
1175  // predecessor blocks. The only thing to watch out for is that we can't put
1176  // a possibly trapping load in the predecessor if it is a critical edge.
1177  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1178    TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1179    Value *InVal = PN.getIncomingValue(Idx);
1180
1181    // If the value is produced by the terminator of the predecessor (an
1182    // invoke) or it has side-effects, there is no valid place to put a load
1183    // in the predecessor.
1184    if (TI == InVal || TI->mayHaveSideEffects())
1185      return false;
1186
1187    // If the predecessor has a single successor, then the edge isn't
1188    // critical.
1189    if (TI->getNumSuccessors() == 1)
1190      continue;
1191
1192    // If this pointer is always safe to load, or if we can prove that there
1193    // is already a load in the block, then we can move the load to the pred
1194    // block.
1195    if (isDereferenceablePointer(InVal, DL) ||
1196        isSafeToLoadUnconditionally(InVal, TI, MaxAlign))
1197      continue;
1198
1199    return false;
1200  }
1201
1202  return true;
1203}
1204
1205static void speculatePHINodeLoads(PHINode &PN) {
1206  DEBUG(dbgs() << "    original: " << PN << "\n");
1207
1208  Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1209  IRBuilderTy PHIBuilder(&PN);
1210  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1211                                        PN.getName() + ".sroa.speculated");
1212
1213  // Get the AA tags and alignment to use from one of the loads.  It doesn't
1214  // matter which one we get and if any differ.
1215  LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1216
1217  AAMDNodes AATags;
1218  SomeLoad->getAAMetadata(AATags);
1219  unsigned Align = SomeLoad->getAlignment();
1220
1221  // Rewrite all loads of the PN to use the new PHI.
1222  while (!PN.use_empty()) {
1223    LoadInst *LI = cast<LoadInst>(PN.user_back());
1224    LI->replaceAllUsesWith(NewPN);
1225    LI->eraseFromParent();
1226  }
1227
1228  // Inject loads into all of the pred blocks.
1229  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1230    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1231    TerminatorInst *TI = Pred->getTerminator();
1232    Value *InVal = PN.getIncomingValue(Idx);
1233    IRBuilderTy PredBuilder(TI);
1234
1235    LoadInst *Load = PredBuilder.CreateLoad(
1236        InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1237    ++NumLoadsSpeculated;
1238    Load->setAlignment(Align);
1239    if (AATags)
1240      Load->setAAMetadata(AATags);
1241    NewPN->addIncoming(Load, Pred);
1242  }
1243
1244  DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1245  PN.eraseFromParent();
1246}
1247
1248/// Select instructions that use an alloca and are subsequently loaded can be
1249/// rewritten to load both input pointers and then select between the result,
1250/// allowing the load of the alloca to be promoted.
1251/// From this:
1252///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1253///   %V = load i32* %P2
1254/// to:
1255///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1256///   %V2 = load i32* %Other
1257///   %V = select i1 %cond, i32 %V1, i32 %V2
1258///
1259/// We can do this to a select if its only uses are loads and if the operand
1260/// to the select can be loaded unconditionally.
1261static bool isSafeSelectToSpeculate(SelectInst &SI) {
1262  Value *TValue = SI.getTrueValue();
1263  Value *FValue = SI.getFalseValue();
1264  const DataLayout &DL = SI.getModule()->getDataLayout();
1265  bool TDerefable = isDereferenceablePointer(TValue, DL);
1266  bool FDerefable = isDereferenceablePointer(FValue, DL);
1267
1268  for (User *U : SI.users()) {
1269    LoadInst *LI = dyn_cast<LoadInst>(U);
1270    if (!LI || !LI->isSimple())
1271      return false;
1272
1273    // Both operands to the select need to be dereferencable, either
1274    // absolutely (e.g. allocas) or at this point because we can see other
1275    // accesses to it.
1276    if (!TDerefable &&
1277        !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment()))
1278      return false;
1279    if (!FDerefable &&
1280        !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment()))
1281      return false;
1282  }
1283
1284  return true;
1285}
1286
1287static void speculateSelectInstLoads(SelectInst &SI) {
1288  DEBUG(dbgs() << "    original: " << SI << "\n");
1289
1290  IRBuilderTy IRB(&SI);
1291  Value *TV = SI.getTrueValue();
1292  Value *FV = SI.getFalseValue();
1293  // Replace the loads of the select with a select of two loads.
1294  while (!SI.use_empty()) {
1295    LoadInst *LI = cast<LoadInst>(SI.user_back());
1296    assert(LI->isSimple() && "We only speculate simple loads");
1297
1298    IRB.SetInsertPoint(LI);
1299    LoadInst *TL =
1300        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1301    LoadInst *FL =
1302        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1303    NumLoadsSpeculated += 2;
1304
1305    // Transfer alignment and AA info if present.
1306    TL->setAlignment(LI->getAlignment());
1307    FL->setAlignment(LI->getAlignment());
1308
1309    AAMDNodes Tags;
1310    LI->getAAMetadata(Tags);
1311    if (Tags) {
1312      TL->setAAMetadata(Tags);
1313      FL->setAAMetadata(Tags);
1314    }
1315
1316    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1317                                LI->getName() + ".sroa.speculated");
1318
1319    DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1320    LI->replaceAllUsesWith(V);
1321    LI->eraseFromParent();
1322  }
1323  SI.eraseFromParent();
1324}
1325
1326/// \brief Build a GEP out of a base pointer and indices.
1327///
1328/// This will return the BasePtr if that is valid, or build a new GEP
1329/// instruction using the IRBuilder if GEP-ing is needed.
1330static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1331                       SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1332  if (Indices.empty())
1333    return BasePtr;
1334
1335  // A single zero index is a no-op, so check for this and avoid building a GEP
1336  // in that case.
1337  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1338    return BasePtr;
1339
1340  return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices,
1341                               NamePrefix + "sroa_idx");
1342}
1343
1344/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1345/// TargetTy without changing the offset of the pointer.
1346///
1347/// This routine assumes we've already established a properly offset GEP with
1348/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1349/// zero-indices down through type layers until we find one the same as
1350/// TargetTy. If we can't find one with the same type, we at least try to use
1351/// one with the same size. If none of that works, we just produce the GEP as
1352/// indicated by Indices to have the correct offset.
1353static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1354                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1355                                    SmallVectorImpl<Value *> &Indices,
1356                                    Twine NamePrefix) {
1357  if (Ty == TargetTy)
1358    return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1359
1360  // Pointer size to use for the indices.
1361  unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
1362
1363  // See if we can descend into a struct and locate a field with the correct
1364  // type.
1365  unsigned NumLayers = 0;
1366  Type *ElementTy = Ty;
1367  do {
1368    if (ElementTy->isPointerTy())
1369      break;
1370
1371    if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1372      ElementTy = ArrayTy->getElementType();
1373      Indices.push_back(IRB.getIntN(PtrSize, 0));
1374    } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1375      ElementTy = VectorTy->getElementType();
1376      Indices.push_back(IRB.getInt32(0));
1377    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1378      if (STy->element_begin() == STy->element_end())
1379        break; // Nothing left to descend into.
1380      ElementTy = *STy->element_begin();
1381      Indices.push_back(IRB.getInt32(0));
1382    } else {
1383      break;
1384    }
1385    ++NumLayers;
1386  } while (ElementTy != TargetTy);
1387  if (ElementTy != TargetTy)
1388    Indices.erase(Indices.end() - NumLayers, Indices.end());
1389
1390  return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1391}
1392
1393/// \brief Recursively compute indices for a natural GEP.
1394///
1395/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1396/// element types adding appropriate indices for the GEP.
1397static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1398                                       Value *Ptr, Type *Ty, APInt &Offset,
1399                                       Type *TargetTy,
1400                                       SmallVectorImpl<Value *> &Indices,
1401                                       Twine NamePrefix) {
1402  if (Offset == 0)
1403    return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1404                                 NamePrefix);
1405
1406  // We can't recurse through pointer types.
1407  if (Ty->isPointerTy())
1408    return nullptr;
1409
1410  // We try to analyze GEPs over vectors here, but note that these GEPs are
1411  // extremely poorly defined currently. The long-term goal is to remove GEPing
1412  // over a vector from the IR completely.
1413  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1414    unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1415    if (ElementSizeInBits % 8 != 0) {
1416      // GEPs over non-multiple of 8 size vector elements are invalid.
1417      return nullptr;
1418    }
1419    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1420    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1421    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1422      return nullptr;
1423    Offset -= NumSkippedElements * ElementSize;
1424    Indices.push_back(IRB.getInt(NumSkippedElements));
1425    return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1426                                    Offset, TargetTy, Indices, NamePrefix);
1427  }
1428
1429  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1430    Type *ElementTy = ArrTy->getElementType();
1431    APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1432    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1433    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1434      return nullptr;
1435
1436    Offset -= NumSkippedElements * ElementSize;
1437    Indices.push_back(IRB.getInt(NumSkippedElements));
1438    return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1439                                    Indices, NamePrefix);
1440  }
1441
1442  StructType *STy = dyn_cast<StructType>(Ty);
1443  if (!STy)
1444    return nullptr;
1445
1446  const StructLayout *SL = DL.getStructLayout(STy);
1447  uint64_t StructOffset = Offset.getZExtValue();
1448  if (StructOffset >= SL->getSizeInBytes())
1449    return nullptr;
1450  unsigned Index = SL->getElementContainingOffset(StructOffset);
1451  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1452  Type *ElementTy = STy->getElementType(Index);
1453  if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1454    return nullptr; // The offset points into alignment padding.
1455
1456  Indices.push_back(IRB.getInt32(Index));
1457  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1458                                  Indices, NamePrefix);
1459}
1460
1461/// \brief Get a natural GEP from a base pointer to a particular offset and
1462/// resulting in a particular type.
1463///
1464/// The goal is to produce a "natural" looking GEP that works with the existing
1465/// composite types to arrive at the appropriate offset and element type for
1466/// a pointer. TargetTy is the element type the returned GEP should point-to if
1467/// possible. We recurse by decreasing Offset, adding the appropriate index to
1468/// Indices, and setting Ty to the result subtype.
1469///
1470/// If no natural GEP can be constructed, this function returns null.
1471static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1472                                      Value *Ptr, APInt Offset, Type *TargetTy,
1473                                      SmallVectorImpl<Value *> &Indices,
1474                                      Twine NamePrefix) {
1475  PointerType *Ty = cast<PointerType>(Ptr->getType());
1476
1477  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1478  // an i8.
1479  if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1480    return nullptr;
1481
1482  Type *ElementTy = Ty->getElementType();
1483  if (!ElementTy->isSized())
1484    return nullptr; // We can't GEP through an unsized element.
1485  APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1486  if (ElementSize == 0)
1487    return nullptr; // Zero-length arrays can't help us build a natural GEP.
1488  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1489
1490  Offset -= NumSkippedElements * ElementSize;
1491  Indices.push_back(IRB.getInt(NumSkippedElements));
1492  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1493                                  Indices, NamePrefix);
1494}
1495
1496/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1497/// resulting pointer has PointerTy.
1498///
1499/// This tries very hard to compute a "natural" GEP which arrives at the offset
1500/// and produces the pointer type desired. Where it cannot, it will try to use
1501/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1502/// fails, it will try to use an existing i8* and GEP to the byte offset and
1503/// bitcast to the type.
1504///
1505/// The strategy for finding the more natural GEPs is to peel off layers of the
1506/// pointer, walking back through bit casts and GEPs, searching for a base
1507/// pointer from which we can compute a natural GEP with the desired
1508/// properties. The algorithm tries to fold as many constant indices into
1509/// a single GEP as possible, thus making each GEP more independent of the
1510/// surrounding code.
1511static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1512                             APInt Offset, Type *PointerTy, Twine NamePrefix) {
1513  // Even though we don't look through PHI nodes, we could be called on an
1514  // instruction in an unreachable block, which may be on a cycle.
1515  SmallPtrSet<Value *, 4> Visited;
1516  Visited.insert(Ptr);
1517  SmallVector<Value *, 4> Indices;
1518
1519  // We may end up computing an offset pointer that has the wrong type. If we
1520  // never are able to compute one directly that has the correct type, we'll
1521  // fall back to it, so keep it and the base it was computed from around here.
1522  Value *OffsetPtr = nullptr;
1523  Value *OffsetBasePtr;
1524
1525  // Remember any i8 pointer we come across to re-use if we need to do a raw
1526  // byte offset.
1527  Value *Int8Ptr = nullptr;
1528  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1529
1530  Type *TargetTy = PointerTy->getPointerElementType();
1531
1532  do {
1533    // First fold any existing GEPs into the offset.
1534    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1535      APInt GEPOffset(Offset.getBitWidth(), 0);
1536      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1537        break;
1538      Offset += GEPOffset;
1539      Ptr = GEP->getPointerOperand();
1540      if (!Visited.insert(Ptr).second)
1541        break;
1542    }
1543
1544    // See if we can perform a natural GEP here.
1545    Indices.clear();
1546    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1547                                           Indices, NamePrefix)) {
1548      // If we have a new natural pointer at the offset, clear out any old
1549      // offset pointer we computed. Unless it is the base pointer or
1550      // a non-instruction, we built a GEP we don't need. Zap it.
1551      if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1552        if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1553          assert(I->use_empty() && "Built a GEP with uses some how!");
1554          I->eraseFromParent();
1555        }
1556      OffsetPtr = P;
1557      OffsetBasePtr = Ptr;
1558      // If we also found a pointer of the right type, we're done.
1559      if (P->getType() == PointerTy)
1560        return P;
1561    }
1562
1563    // Stash this pointer if we've found an i8*.
1564    if (Ptr->getType()->isIntegerTy(8)) {
1565      Int8Ptr = Ptr;
1566      Int8PtrOffset = Offset;
1567    }
1568
1569    // Peel off a layer of the pointer and update the offset appropriately.
1570    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1571      Ptr = cast<Operator>(Ptr)->getOperand(0);
1572    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1573      if (GA->mayBeOverridden())
1574        break;
1575      Ptr = GA->getAliasee();
1576    } else {
1577      break;
1578    }
1579    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1580  } while (Visited.insert(Ptr).second);
1581
1582  if (!OffsetPtr) {
1583    if (!Int8Ptr) {
1584      Int8Ptr = IRB.CreateBitCast(
1585          Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1586          NamePrefix + "sroa_raw_cast");
1587      Int8PtrOffset = Offset;
1588    }
1589
1590    OffsetPtr = Int8PtrOffset == 0
1591                    ? Int8Ptr
1592                    : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1593                                            IRB.getInt(Int8PtrOffset),
1594                                            NamePrefix + "sroa_raw_idx");
1595  }
1596  Ptr = OffsetPtr;
1597
1598  // On the off chance we were targeting i8*, guard the bitcast here.
1599  if (Ptr->getType() != PointerTy)
1600    Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
1601
1602  return Ptr;
1603}
1604
1605/// \brief Compute the adjusted alignment for a load or store from an offset.
1606static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1607                                     const DataLayout &DL) {
1608  unsigned Alignment;
1609  Type *Ty;
1610  if (auto *LI = dyn_cast<LoadInst>(I)) {
1611    Alignment = LI->getAlignment();
1612    Ty = LI->getType();
1613  } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1614    Alignment = SI->getAlignment();
1615    Ty = SI->getValueOperand()->getType();
1616  } else {
1617    llvm_unreachable("Only loads and stores are allowed!");
1618  }
1619
1620  if (!Alignment)
1621    Alignment = DL.getABITypeAlignment(Ty);
1622
1623  return MinAlign(Alignment, Offset);
1624}
1625
1626/// \brief Test whether we can convert a value from the old to the new type.
1627///
1628/// This predicate should be used to guard calls to convertValue in order to
1629/// ensure that we only try to convert viable values. The strategy is that we
1630/// will peel off single element struct and array wrappings to get to an
1631/// underlying value, and convert that value.
1632static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1633  if (OldTy == NewTy)
1634    return true;
1635
1636  // For integer types, we can't handle any bit-width differences. This would
1637  // break both vector conversions with extension and introduce endianness
1638  // issues when in conjunction with loads and stores.
1639  if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1640    assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1641               cast<IntegerType>(NewTy)->getBitWidth() &&
1642           "We can't have the same bitwidth for different int types");
1643    return false;
1644  }
1645
1646  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1647    return false;
1648  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1649    return false;
1650
1651  // We can convert pointers to integers and vice-versa. Same for vectors
1652  // of pointers and integers.
1653  OldTy = OldTy->getScalarType();
1654  NewTy = NewTy->getScalarType();
1655  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1656    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1657      return true;
1658    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1659      return true;
1660    return false;
1661  }
1662
1663  return true;
1664}
1665
1666/// \brief Generic routine to convert an SSA value to a value of a different
1667/// type.
1668///
1669/// This will try various different casting techniques, such as bitcasts,
1670/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1671/// two types for viability with this routine.
1672static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1673                           Type *NewTy) {
1674  Type *OldTy = V->getType();
1675  assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1676
1677  if (OldTy == NewTy)
1678    return V;
1679
1680  assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1681         "Integer types must be the exact same to convert.");
1682
1683  // See if we need inttoptr for this type pair. A cast involving both scalars
1684  // and vectors requires and additional bitcast.
1685  if (OldTy->getScalarType()->isIntegerTy() &&
1686      NewTy->getScalarType()->isPointerTy()) {
1687    // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1688    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1689      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1690                                NewTy);
1691
1692    // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1693    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1694      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1695                                NewTy);
1696
1697    return IRB.CreateIntToPtr(V, NewTy);
1698  }
1699
1700  // See if we need ptrtoint for this type pair. A cast involving both scalars
1701  // and vectors requires and additional bitcast.
1702  if (OldTy->getScalarType()->isPointerTy() &&
1703      NewTy->getScalarType()->isIntegerTy()) {
1704    // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1705    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1706      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1707                               NewTy);
1708
1709    // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1710    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1711      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1712                               NewTy);
1713
1714    return IRB.CreatePtrToInt(V, NewTy);
1715  }
1716
1717  return IRB.CreateBitCast(V, NewTy);
1718}
1719
1720/// \brief Test whether the given slice use can be promoted to a vector.
1721///
1722/// This function is called to test each entry in a partition which is slated
1723/// for a single slice.
1724static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1725                                            VectorType *Ty,
1726                                            uint64_t ElementSize,
1727                                            const DataLayout &DL) {
1728  // First validate the slice offsets.
1729  uint64_t BeginOffset =
1730      std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1731  uint64_t BeginIndex = BeginOffset / ElementSize;
1732  if (BeginIndex * ElementSize != BeginOffset ||
1733      BeginIndex >= Ty->getNumElements())
1734    return false;
1735  uint64_t EndOffset =
1736      std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1737  uint64_t EndIndex = EndOffset / ElementSize;
1738  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1739    return false;
1740
1741  assert(EndIndex > BeginIndex && "Empty vector!");
1742  uint64_t NumElements = EndIndex - BeginIndex;
1743  Type *SliceTy = (NumElements == 1)
1744                      ? Ty->getElementType()
1745                      : VectorType::get(Ty->getElementType(), NumElements);
1746
1747  Type *SplitIntTy =
1748      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1749
1750  Use *U = S.getUse();
1751
1752  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1753    if (MI->isVolatile())
1754      return false;
1755    if (!S.isSplittable())
1756      return false; // Skip any unsplittable intrinsics.
1757  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1758    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1759        II->getIntrinsicID() != Intrinsic::lifetime_end)
1760      return false;
1761  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1762    // Disable vector promotion when there are loads or stores of an FCA.
1763    return false;
1764  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1765    if (LI->isVolatile())
1766      return false;
1767    Type *LTy = LI->getType();
1768    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1769      assert(LTy->isIntegerTy());
1770      LTy = SplitIntTy;
1771    }
1772    if (!canConvertValue(DL, SliceTy, LTy))
1773      return false;
1774  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1775    if (SI->isVolatile())
1776      return false;
1777    Type *STy = SI->getValueOperand()->getType();
1778    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1779      assert(STy->isIntegerTy());
1780      STy = SplitIntTy;
1781    }
1782    if (!canConvertValue(DL, STy, SliceTy))
1783      return false;
1784  } else {
1785    return false;
1786  }
1787
1788  return true;
1789}
1790
1791/// \brief Test whether the given alloca partitioning and range of slices can be
1792/// promoted to a vector.
1793///
1794/// This is a quick test to check whether we can rewrite a particular alloca
1795/// partition (and its newly formed alloca) into a vector alloca with only
1796/// whole-vector loads and stores such that it could be promoted to a vector
1797/// SSA value. We only can ensure this for a limited set of operations, and we
1798/// don't want to do the rewrites unless we are confident that the result will
1799/// be promotable, so we have an early test here.
1800static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1801  // Collect the candidate types for vector-based promotion. Also track whether
1802  // we have different element types.
1803  SmallVector<VectorType *, 4> CandidateTys;
1804  Type *CommonEltTy = nullptr;
1805  bool HaveCommonEltTy = true;
1806  auto CheckCandidateType = [&](Type *Ty) {
1807    if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1808      CandidateTys.push_back(VTy);
1809      if (!CommonEltTy)
1810        CommonEltTy = VTy->getElementType();
1811      else if (CommonEltTy != VTy->getElementType())
1812        HaveCommonEltTy = false;
1813    }
1814  };
1815  // Consider any loads or stores that are the exact size of the slice.
1816  for (const Slice &S : P)
1817    if (S.beginOffset() == P.beginOffset() &&
1818        S.endOffset() == P.endOffset()) {
1819      if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1820        CheckCandidateType(LI->getType());
1821      else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1822        CheckCandidateType(SI->getValueOperand()->getType());
1823    }
1824
1825  // If we didn't find a vector type, nothing to do here.
1826  if (CandidateTys.empty())
1827    return nullptr;
1828
1829  // Remove non-integer vector types if we had multiple common element types.
1830  // FIXME: It'd be nice to replace them with integer vector types, but we can't
1831  // do that until all the backends are known to produce good code for all
1832  // integer vector types.
1833  if (!HaveCommonEltTy) {
1834    CandidateTys.erase(std::remove_if(CandidateTys.begin(), CandidateTys.end(),
1835                                      [](VectorType *VTy) {
1836                         return !VTy->getElementType()->isIntegerTy();
1837                       }),
1838                       CandidateTys.end());
1839
1840    // If there were no integer vector types, give up.
1841    if (CandidateTys.empty())
1842      return nullptr;
1843
1844    // Rank the remaining candidate vector types. This is easy because we know
1845    // they're all integer vectors. We sort by ascending number of elements.
1846    auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1847      assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1848             "Cannot have vector types of different sizes!");
1849      assert(RHSTy->getElementType()->isIntegerTy() &&
1850             "All non-integer types eliminated!");
1851      assert(LHSTy->getElementType()->isIntegerTy() &&
1852             "All non-integer types eliminated!");
1853      return RHSTy->getNumElements() < LHSTy->getNumElements();
1854    };
1855    std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes);
1856    CandidateTys.erase(
1857        std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1858        CandidateTys.end());
1859  } else {
1860// The only way to have the same element type in every vector type is to
1861// have the same vector type. Check that and remove all but one.
1862#ifndef NDEBUG
1863    for (VectorType *VTy : CandidateTys) {
1864      assert(VTy->getElementType() == CommonEltTy &&
1865             "Unaccounted for element type!");
1866      assert(VTy == CandidateTys[0] &&
1867             "Different vector types with the same element type!");
1868    }
1869#endif
1870    CandidateTys.resize(1);
1871  }
1872
1873  // Try each vector type, and return the one which works.
1874  auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1875    uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1876
1877    // While the definition of LLVM vectors is bitpacked, we don't support sizes
1878    // that aren't byte sized.
1879    if (ElementSize % 8)
1880      return false;
1881    assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1882           "vector size not a multiple of element size?");
1883    ElementSize /= 8;
1884
1885    for (const Slice &S : P)
1886      if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1887        return false;
1888
1889    for (const Slice *S : P.splitSliceTails())
1890      if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1891        return false;
1892
1893    return true;
1894  };
1895  for (VectorType *VTy : CandidateTys)
1896    if (CheckVectorTypeForPromotion(VTy))
1897      return VTy;
1898
1899  return nullptr;
1900}
1901
1902/// \brief Test whether a slice of an alloca is valid for integer widening.
1903///
1904/// This implements the necessary checking for the \c isIntegerWideningViable
1905/// test below on a single slice of the alloca.
1906static bool isIntegerWideningViableForSlice(const Slice &S,
1907                                            uint64_t AllocBeginOffset,
1908                                            Type *AllocaTy,
1909                                            const DataLayout &DL,
1910                                            bool &WholeAllocaOp) {
1911  uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1912
1913  uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
1914  uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
1915
1916  // We can't reasonably handle cases where the load or store extends past
1917  // the end of the alloca's type and into its padding.
1918  if (RelEnd > Size)
1919    return false;
1920
1921  Use *U = S.getUse();
1922
1923  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1924    if (LI->isVolatile())
1925      return false;
1926    // We can't handle loads that extend past the allocated memory.
1927    if (DL.getTypeStoreSize(LI->getType()) > Size)
1928      return false;
1929    // Note that we don't count vector loads or stores as whole-alloca
1930    // operations which enable integer widening because we would prefer to use
1931    // vector widening instead.
1932    if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
1933      WholeAllocaOp = true;
1934    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1935      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1936        return false;
1937    } else if (RelBegin != 0 || RelEnd != Size ||
1938               !canConvertValue(DL, AllocaTy, LI->getType())) {
1939      // Non-integer loads need to be convertible from the alloca type so that
1940      // they are promotable.
1941      return false;
1942    }
1943  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1944    Type *ValueTy = SI->getValueOperand()->getType();
1945    if (SI->isVolatile())
1946      return false;
1947    // We can't handle stores that extend past the allocated memory.
1948    if (DL.getTypeStoreSize(ValueTy) > Size)
1949      return false;
1950    // Note that we don't count vector loads or stores as whole-alloca
1951    // operations which enable integer widening because we would prefer to use
1952    // vector widening instead.
1953    if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
1954      WholeAllocaOp = true;
1955    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
1956      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1957        return false;
1958    } else if (RelBegin != 0 || RelEnd != Size ||
1959               !canConvertValue(DL, ValueTy, AllocaTy)) {
1960      // Non-integer stores need to be convertible to the alloca type so that
1961      // they are promotable.
1962      return false;
1963    }
1964  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1965    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1966      return false;
1967    if (!S.isSplittable())
1968      return false; // Skip any unsplittable intrinsics.
1969  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1970    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1971        II->getIntrinsicID() != Intrinsic::lifetime_end)
1972      return false;
1973  } else {
1974    return false;
1975  }
1976
1977  return true;
1978}
1979
1980/// \brief Test whether the given alloca partition's integer operations can be
1981/// widened to promotable ones.
1982///
1983/// This is a quick test to check whether we can rewrite the integer loads and
1984/// stores to a particular alloca into wider loads and stores and be able to
1985/// promote the resulting alloca.
1986static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
1987                                    const DataLayout &DL) {
1988  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
1989  // Don't create integer types larger than the maximum bitwidth.
1990  if (SizeInBits > IntegerType::MAX_INT_BITS)
1991    return false;
1992
1993  // Don't try to handle allocas with bit-padding.
1994  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
1995    return false;
1996
1997  // We need to ensure that an integer type with the appropriate bitwidth can
1998  // be converted to the alloca type, whatever that is. We don't want to force
1999  // the alloca itself to have an integer type if there is a more suitable one.
2000  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2001  if (!canConvertValue(DL, AllocaTy, IntTy) ||
2002      !canConvertValue(DL, IntTy, AllocaTy))
2003    return false;
2004
2005  // While examining uses, we ensure that the alloca has a covering load or
2006  // store. We don't want to widen the integer operations only to fail to
2007  // promote due to some other unsplittable entry (which we may make splittable
2008  // later). However, if there are only splittable uses, go ahead and assume
2009  // that we cover the alloca.
2010  // FIXME: We shouldn't consider split slices that happen to start in the
2011  // partition here...
2012  bool WholeAllocaOp =
2013      P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2014
2015  for (const Slice &S : P)
2016    if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2017                                         WholeAllocaOp))
2018      return false;
2019
2020  for (const Slice *S : P.splitSliceTails())
2021    if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2022                                         WholeAllocaOp))
2023      return false;
2024
2025  return WholeAllocaOp;
2026}
2027
2028static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2029                             IntegerType *Ty, uint64_t Offset,
2030                             const Twine &Name) {
2031  DEBUG(dbgs() << "       start: " << *V << "\n");
2032  IntegerType *IntTy = cast<IntegerType>(V->getType());
2033  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2034         "Element extends past full value");
2035  uint64_t ShAmt = 8 * Offset;
2036  if (DL.isBigEndian())
2037    ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2038  if (ShAmt) {
2039    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2040    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2041  }
2042  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2043         "Cannot extract to a larger integer!");
2044  if (Ty != IntTy) {
2045    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2046    DEBUG(dbgs() << "     trunced: " << *V << "\n");
2047  }
2048  return V;
2049}
2050
2051static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2052                            Value *V, uint64_t Offset, const Twine &Name) {
2053  IntegerType *IntTy = cast<IntegerType>(Old->getType());
2054  IntegerType *Ty = cast<IntegerType>(V->getType());
2055  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2056         "Cannot insert a larger integer!");
2057  DEBUG(dbgs() << "       start: " << *V << "\n");
2058  if (Ty != IntTy) {
2059    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2060    DEBUG(dbgs() << "    extended: " << *V << "\n");
2061  }
2062  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2063         "Element store outside of alloca store");
2064  uint64_t ShAmt = 8 * Offset;
2065  if (DL.isBigEndian())
2066    ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2067  if (ShAmt) {
2068    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2069    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2070  }
2071
2072  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2073    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2074    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2075    DEBUG(dbgs() << "      masked: " << *Old << "\n");
2076    V = IRB.CreateOr(Old, V, Name + ".insert");
2077    DEBUG(dbgs() << "    inserted: " << *V << "\n");
2078  }
2079  return V;
2080}
2081
2082static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2083                            unsigned EndIndex, const Twine &Name) {
2084  VectorType *VecTy = cast<VectorType>(V->getType());
2085  unsigned NumElements = EndIndex - BeginIndex;
2086  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2087
2088  if (NumElements == VecTy->getNumElements())
2089    return V;
2090
2091  if (NumElements == 1) {
2092    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2093                                 Name + ".extract");
2094    DEBUG(dbgs() << "     extract: " << *V << "\n");
2095    return V;
2096  }
2097
2098  SmallVector<Constant *, 8> Mask;
2099  Mask.reserve(NumElements);
2100  for (unsigned i = BeginIndex; i != EndIndex; ++i)
2101    Mask.push_back(IRB.getInt32(i));
2102  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2103                              ConstantVector::get(Mask), Name + ".extract");
2104  DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2105  return V;
2106}
2107
2108static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2109                           unsigned BeginIndex, const Twine &Name) {
2110  VectorType *VecTy = cast<VectorType>(Old->getType());
2111  assert(VecTy && "Can only insert a vector into a vector");
2112
2113  VectorType *Ty = dyn_cast<VectorType>(V->getType());
2114  if (!Ty) {
2115    // Single element to insert.
2116    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2117                                Name + ".insert");
2118    DEBUG(dbgs() << "     insert: " << *V << "\n");
2119    return V;
2120  }
2121
2122  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2123         "Too many elements!");
2124  if (Ty->getNumElements() == VecTy->getNumElements()) {
2125    assert(V->getType() == VecTy && "Vector type mismatch");
2126    return V;
2127  }
2128  unsigned EndIndex = BeginIndex + Ty->getNumElements();
2129
2130  // When inserting a smaller vector into the larger to store, we first
2131  // use a shuffle vector to widen it with undef elements, and then
2132  // a second shuffle vector to select between the loaded vector and the
2133  // incoming vector.
2134  SmallVector<Constant *, 8> Mask;
2135  Mask.reserve(VecTy->getNumElements());
2136  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2137    if (i >= BeginIndex && i < EndIndex)
2138      Mask.push_back(IRB.getInt32(i - BeginIndex));
2139    else
2140      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2141  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2142                              ConstantVector::get(Mask), Name + ".expand");
2143  DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2144
2145  Mask.clear();
2146  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2147    Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2148
2149  V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2150
2151  DEBUG(dbgs() << "    blend: " << *V << "\n");
2152  return V;
2153}
2154
2155/// \brief Visitor to rewrite instructions using p particular slice of an alloca
2156/// to use a new alloca.
2157///
2158/// Also implements the rewriting to vector-based accesses when the partition
2159/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2160/// lives here.
2161class llvm::sroa::AllocaSliceRewriter
2162    : public InstVisitor<AllocaSliceRewriter, bool> {
2163  // Befriend the base class so it can delegate to private visit methods.
2164  friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
2165  typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
2166
2167  const DataLayout &DL;
2168  AllocaSlices &AS;
2169  SROA &Pass;
2170  AllocaInst &OldAI, &NewAI;
2171  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2172  Type *NewAllocaTy;
2173
2174  // This is a convenience and flag variable that will be null unless the new
2175  // alloca's integer operations should be widened to this integer type due to
2176  // passing isIntegerWideningViable above. If it is non-null, the desired
2177  // integer type will be stored here for easy access during rewriting.
2178  IntegerType *IntTy;
2179
2180  // If we are rewriting an alloca partition which can be written as pure
2181  // vector operations, we stash extra information here. When VecTy is
2182  // non-null, we have some strict guarantees about the rewritten alloca:
2183  //   - The new alloca is exactly the size of the vector type here.
2184  //   - The accesses all either map to the entire vector or to a single
2185  //     element.
2186  //   - The set of accessing instructions is only one of those handled above
2187  //     in isVectorPromotionViable. Generally these are the same access kinds
2188  //     which are promotable via mem2reg.
2189  VectorType *VecTy;
2190  Type *ElementTy;
2191  uint64_t ElementSize;
2192
2193  // The original offset of the slice currently being rewritten relative to
2194  // the original alloca.
2195  uint64_t BeginOffset, EndOffset;
2196  // The new offsets of the slice currently being rewritten relative to the
2197  // original alloca.
2198  uint64_t NewBeginOffset, NewEndOffset;
2199
2200  uint64_t SliceSize;
2201  bool IsSplittable;
2202  bool IsSplit;
2203  Use *OldUse;
2204  Instruction *OldPtr;
2205
2206  // Track post-rewrite users which are PHI nodes and Selects.
2207  SmallPtrSetImpl<PHINode *> &PHIUsers;
2208  SmallPtrSetImpl<SelectInst *> &SelectUsers;
2209
2210  // Utility IR builder, whose name prefix is setup for each visited use, and
2211  // the insertion point is set to point to the user.
2212  IRBuilderTy IRB;
2213
2214public:
2215  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2216                      AllocaInst &OldAI, AllocaInst &NewAI,
2217                      uint64_t NewAllocaBeginOffset,
2218                      uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2219                      VectorType *PromotableVecTy,
2220                      SmallPtrSetImpl<PHINode *> &PHIUsers,
2221                      SmallPtrSetImpl<SelectInst *> &SelectUsers)
2222      : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2223        NewAllocaBeginOffset(NewAllocaBeginOffset),
2224        NewAllocaEndOffset(NewAllocaEndOffset),
2225        NewAllocaTy(NewAI.getAllocatedType()),
2226        IntTy(IsIntegerPromotable
2227                  ? Type::getIntNTy(
2228                        NewAI.getContext(),
2229                        DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2230                  : nullptr),
2231        VecTy(PromotableVecTy),
2232        ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2233        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2234        BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
2235        OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2236        IRB(NewAI.getContext(), ConstantFolder()) {
2237    if (VecTy) {
2238      assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2239             "Only multiple-of-8 sized vector elements are viable");
2240      ++NumVectorized;
2241    }
2242    assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2243  }
2244
2245  bool visit(AllocaSlices::const_iterator I) {
2246    bool CanSROA = true;
2247    BeginOffset = I->beginOffset();
2248    EndOffset = I->endOffset();
2249    IsSplittable = I->isSplittable();
2250    IsSplit =
2251        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2252    DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2253    DEBUG(AS.printSlice(dbgs(), I, ""));
2254    DEBUG(dbgs() << "\n");
2255
2256    // Compute the intersecting offset range.
2257    assert(BeginOffset < NewAllocaEndOffset);
2258    assert(EndOffset > NewAllocaBeginOffset);
2259    NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2260    NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2261
2262    SliceSize = NewEndOffset - NewBeginOffset;
2263
2264    OldUse = I->getUse();
2265    OldPtr = cast<Instruction>(OldUse->get());
2266
2267    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2268    IRB.SetInsertPoint(OldUserI);
2269    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2270    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2271
2272    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2273    if (VecTy || IntTy)
2274      assert(CanSROA);
2275    return CanSROA;
2276  }
2277
2278private:
2279  // Make sure the other visit overloads are visible.
2280  using Base::visit;
2281
2282  // Every instruction which can end up as a user must have a rewrite rule.
2283  bool visitInstruction(Instruction &I) {
2284    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2285    llvm_unreachable("No rewrite rule for this instruction!");
2286  }
2287
2288  Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2289    // Note that the offset computation can use BeginOffset or NewBeginOffset
2290    // interchangeably for unsplit slices.
2291    assert(IsSplit || BeginOffset == NewBeginOffset);
2292    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2293
2294#ifndef NDEBUG
2295    StringRef OldName = OldPtr->getName();
2296    // Skip through the last '.sroa.' component of the name.
2297    size_t LastSROAPrefix = OldName.rfind(".sroa.");
2298    if (LastSROAPrefix != StringRef::npos) {
2299      OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2300      // Look for an SROA slice index.
2301      size_t IndexEnd = OldName.find_first_not_of("0123456789");
2302      if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2303        // Strip the index and look for the offset.
2304        OldName = OldName.substr(IndexEnd + 1);
2305        size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2306        if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2307          // Strip the offset.
2308          OldName = OldName.substr(OffsetEnd + 1);
2309      }
2310    }
2311    // Strip any SROA suffixes as well.
2312    OldName = OldName.substr(0, OldName.find(".sroa_"));
2313#endif
2314
2315    return getAdjustedPtr(IRB, DL, &NewAI,
2316                          APInt(DL.getPointerSizeInBits(), Offset), PointerTy,
2317#ifndef NDEBUG
2318                          Twine(OldName) + "."
2319#else
2320                          Twine()
2321#endif
2322                          );
2323  }
2324
2325  /// \brief Compute suitable alignment to access this slice of the *new*
2326  /// alloca.
2327  ///
2328  /// You can optionally pass a type to this routine and if that type's ABI
2329  /// alignment is itself suitable, this will return zero.
2330  unsigned getSliceAlign(Type *Ty = nullptr) {
2331    unsigned NewAIAlign = NewAI.getAlignment();
2332    if (!NewAIAlign)
2333      NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2334    unsigned Align =
2335        MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2336    return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2337  }
2338
2339  unsigned getIndex(uint64_t Offset) {
2340    assert(VecTy && "Can only call getIndex when rewriting a vector");
2341    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2342    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2343    uint32_t Index = RelOffset / ElementSize;
2344    assert(Index * ElementSize == RelOffset);
2345    return Index;
2346  }
2347
2348  void deleteIfTriviallyDead(Value *V) {
2349    Instruction *I = cast<Instruction>(V);
2350    if (isInstructionTriviallyDead(I))
2351      Pass.DeadInsts.insert(I);
2352  }
2353
2354  Value *rewriteVectorizedLoadInst() {
2355    unsigned BeginIndex = getIndex(NewBeginOffset);
2356    unsigned EndIndex = getIndex(NewEndOffset);
2357    assert(EndIndex > BeginIndex && "Empty vector!");
2358
2359    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2360    return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2361  }
2362
2363  Value *rewriteIntegerLoad(LoadInst &LI) {
2364    assert(IntTy && "We cannot insert an integer to the alloca");
2365    assert(!LI.isVolatile());
2366    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2367    V = convertValue(DL, IRB, V, IntTy);
2368    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2369    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2370    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2371      IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2372      V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2373    }
2374    // It is possible that the extracted type is not the load type. This
2375    // happens if there is a load past the end of the alloca, and as
2376    // a consequence the slice is narrower but still a candidate for integer
2377    // lowering. To handle this case, we just zero extend the extracted
2378    // integer.
2379    assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2380           "Can only handle an extract for an overly wide load");
2381    if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2382      V = IRB.CreateZExt(V, LI.getType());
2383    return V;
2384  }
2385
2386  bool visitLoadInst(LoadInst &LI) {
2387    DEBUG(dbgs() << "    original: " << LI << "\n");
2388    Value *OldOp = LI.getOperand(0);
2389    assert(OldOp == OldPtr);
2390
2391    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2392                             : LI.getType();
2393    const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2394    bool IsPtrAdjusted = false;
2395    Value *V;
2396    if (VecTy) {
2397      V = rewriteVectorizedLoadInst();
2398    } else if (IntTy && LI.getType()->isIntegerTy()) {
2399      V = rewriteIntegerLoad(LI);
2400    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2401               NewEndOffset == NewAllocaEndOffset &&
2402               (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2403                (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2404                 TargetTy->isIntegerTy()))) {
2405      LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2406                                              LI.isVolatile(), LI.getName());
2407      if (LI.isVolatile())
2408        NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope());
2409      V = NewLI;
2410
2411      // If this is an integer load past the end of the slice (which means the
2412      // bytes outside the slice are undef or this load is dead) just forcibly
2413      // fix the integer size with correct handling of endianness.
2414      if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2415        if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2416          if (AITy->getBitWidth() < TITy->getBitWidth()) {
2417            V = IRB.CreateZExt(V, TITy, "load.ext");
2418            if (DL.isBigEndian())
2419              V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2420                                "endian_shift");
2421          }
2422    } else {
2423      Type *LTy = TargetTy->getPointerTo();
2424      LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
2425                                              getSliceAlign(TargetTy),
2426                                              LI.isVolatile(), LI.getName());
2427      if (LI.isVolatile())
2428        NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope());
2429
2430      V = NewLI;
2431      IsPtrAdjusted = true;
2432    }
2433    V = convertValue(DL, IRB, V, TargetTy);
2434
2435    if (IsSplit) {
2436      assert(!LI.isVolatile());
2437      assert(LI.getType()->isIntegerTy() &&
2438             "Only integer type loads and stores are split");
2439      assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2440             "Split load isn't smaller than original load");
2441      assert(LI.getType()->getIntegerBitWidth() ==
2442                 DL.getTypeStoreSizeInBits(LI.getType()) &&
2443             "Non-byte-multiple bit width");
2444      // Move the insertion point just past the load so that we can refer to it.
2445      IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2446      // Create a placeholder value with the same type as LI to use as the
2447      // basis for the new value. This allows us to replace the uses of LI with
2448      // the computed value, and then replace the placeholder with LI, leaving
2449      // LI only used for this computation.
2450      Value *Placeholder =
2451          new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2452      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2453                        "insert");
2454      LI.replaceAllUsesWith(V);
2455      Placeholder->replaceAllUsesWith(&LI);
2456      delete Placeholder;
2457    } else {
2458      LI.replaceAllUsesWith(V);
2459    }
2460
2461    Pass.DeadInsts.insert(&LI);
2462    deleteIfTriviallyDead(OldOp);
2463    DEBUG(dbgs() << "          to: " << *V << "\n");
2464    return !LI.isVolatile() && !IsPtrAdjusted;
2465  }
2466
2467  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) {
2468    if (V->getType() != VecTy) {
2469      unsigned BeginIndex = getIndex(NewBeginOffset);
2470      unsigned EndIndex = getIndex(NewEndOffset);
2471      assert(EndIndex > BeginIndex && "Empty vector!");
2472      unsigned NumElements = EndIndex - BeginIndex;
2473      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2474      Type *SliceTy = (NumElements == 1)
2475                          ? ElementTy
2476                          : VectorType::get(ElementTy, NumElements);
2477      if (V->getType() != SliceTy)
2478        V = convertValue(DL, IRB, V, SliceTy);
2479
2480      // Mix in the existing elements.
2481      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2482      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2483    }
2484    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2485    Pass.DeadInsts.insert(&SI);
2486
2487    (void)Store;
2488    DEBUG(dbgs() << "          to: " << *Store << "\n");
2489    return true;
2490  }
2491
2492  bool rewriteIntegerStore(Value *V, StoreInst &SI) {
2493    assert(IntTy && "We cannot extract an integer from the alloca");
2494    assert(!SI.isVolatile());
2495    if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2496      Value *Old =
2497          IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2498      Old = convertValue(DL, IRB, Old, IntTy);
2499      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2500      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2501      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2502    }
2503    V = convertValue(DL, IRB, V, NewAllocaTy);
2504    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2505    Pass.DeadInsts.insert(&SI);
2506    (void)Store;
2507    DEBUG(dbgs() << "          to: " << *Store << "\n");
2508    return true;
2509  }
2510
2511  bool visitStoreInst(StoreInst &SI) {
2512    DEBUG(dbgs() << "    original: " << SI << "\n");
2513    Value *OldOp = SI.getOperand(1);
2514    assert(OldOp == OldPtr);
2515
2516    Value *V = SI.getValueOperand();
2517
2518    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2519    // alloca that should be re-examined after promoting this alloca.
2520    if (V->getType()->isPointerTy())
2521      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2522        Pass.PostPromotionWorklist.insert(AI);
2523
2524    if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2525      assert(!SI.isVolatile());
2526      assert(V->getType()->isIntegerTy() &&
2527             "Only integer type loads and stores are split");
2528      assert(V->getType()->getIntegerBitWidth() ==
2529                 DL.getTypeStoreSizeInBits(V->getType()) &&
2530             "Non-byte-multiple bit width");
2531      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2532      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2533                         "extract");
2534    }
2535
2536    if (VecTy)
2537      return rewriteVectorizedStoreInst(V, SI, OldOp);
2538    if (IntTy && V->getType()->isIntegerTy())
2539      return rewriteIntegerStore(V, SI);
2540
2541    const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2542    StoreInst *NewSI;
2543    if (NewBeginOffset == NewAllocaBeginOffset &&
2544        NewEndOffset == NewAllocaEndOffset &&
2545        (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2546         (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2547          V->getType()->isIntegerTy()))) {
2548      // If this is an integer store past the end of slice (and thus the bytes
2549      // past that point are irrelevant or this is unreachable), truncate the
2550      // value prior to storing.
2551      if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2552        if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2553          if (VITy->getBitWidth() > AITy->getBitWidth()) {
2554            if (DL.isBigEndian())
2555              V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2556                                 "endian_shift");
2557            V = IRB.CreateTrunc(V, AITy, "load.trunc");
2558          }
2559
2560      V = convertValue(DL, IRB, V, NewAllocaTy);
2561      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2562                                     SI.isVolatile());
2563    } else {
2564      Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo());
2565      NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2566                                     SI.isVolatile());
2567    }
2568    if (SI.isVolatile())
2569      NewSI->setAtomic(SI.getOrdering(), SI.getSynchScope());
2570    Pass.DeadInsts.insert(&SI);
2571    deleteIfTriviallyDead(OldOp);
2572
2573    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2574    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2575  }
2576
2577  /// \brief Compute an integer value from splatting an i8 across the given
2578  /// number of bytes.
2579  ///
2580  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2581  /// call this routine.
2582  /// FIXME: Heed the advice above.
2583  ///
2584  /// \param V The i8 value to splat.
2585  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2586  Value *getIntegerSplat(Value *V, unsigned Size) {
2587    assert(Size > 0 && "Expected a positive number of bytes.");
2588    IntegerType *VTy = cast<IntegerType>(V->getType());
2589    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2590    if (Size == 1)
2591      return V;
2592
2593    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2594    V = IRB.CreateMul(
2595        IRB.CreateZExt(V, SplatIntTy, "zext"),
2596        ConstantExpr::getUDiv(
2597            Constant::getAllOnesValue(SplatIntTy),
2598            ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2599                                  SplatIntTy)),
2600        "isplat");
2601    return V;
2602  }
2603
2604  /// \brief Compute a vector splat for a given element value.
2605  Value *getVectorSplat(Value *V, unsigned NumElements) {
2606    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2607    DEBUG(dbgs() << "       splat: " << *V << "\n");
2608    return V;
2609  }
2610
2611  bool visitMemSetInst(MemSetInst &II) {
2612    DEBUG(dbgs() << "    original: " << II << "\n");
2613    assert(II.getRawDest() == OldPtr);
2614
2615    // If the memset has a variable size, it cannot be split, just adjust the
2616    // pointer to the new alloca.
2617    if (!isa<Constant>(II.getLength())) {
2618      assert(!IsSplit);
2619      assert(NewBeginOffset == BeginOffset);
2620      II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2621      Type *CstTy = II.getAlignmentCst()->getType();
2622      II.setAlignment(ConstantInt::get(CstTy, getSliceAlign()));
2623
2624      deleteIfTriviallyDead(OldPtr);
2625      return false;
2626    }
2627
2628    // Record this instruction for deletion.
2629    Pass.DeadInsts.insert(&II);
2630
2631    Type *AllocaTy = NewAI.getAllocatedType();
2632    Type *ScalarTy = AllocaTy->getScalarType();
2633
2634    // If this doesn't map cleanly onto the alloca type, and that type isn't
2635    // a single value type, just emit a memset.
2636    if (!VecTy && !IntTy &&
2637        (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2638         SliceSize != DL.getTypeStoreSize(AllocaTy) ||
2639         !AllocaTy->isSingleValueType() ||
2640         !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2641         DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
2642      Type *SizeTy = II.getLength()->getType();
2643      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2644      CallInst *New = IRB.CreateMemSet(
2645          getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2646          getSliceAlign(), II.isVolatile());
2647      (void)New;
2648      DEBUG(dbgs() << "          to: " << *New << "\n");
2649      return false;
2650    }
2651
2652    // If we can represent this as a simple value, we have to build the actual
2653    // value to store, which requires expanding the byte present in memset to
2654    // a sensible representation for the alloca type. This is essentially
2655    // splatting the byte to a sufficiently wide integer, splatting it across
2656    // any desired vector width, and bitcasting to the final type.
2657    Value *V;
2658
2659    if (VecTy) {
2660      // If this is a memset of a vectorized alloca, insert it.
2661      assert(ElementTy == ScalarTy);
2662
2663      unsigned BeginIndex = getIndex(NewBeginOffset);
2664      unsigned EndIndex = getIndex(NewEndOffset);
2665      assert(EndIndex > BeginIndex && "Empty vector!");
2666      unsigned NumElements = EndIndex - BeginIndex;
2667      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2668
2669      Value *Splat =
2670          getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2671      Splat = convertValue(DL, IRB, Splat, ElementTy);
2672      if (NumElements > 1)
2673        Splat = getVectorSplat(Splat, NumElements);
2674
2675      Value *Old =
2676          IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2677      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2678    } else if (IntTy) {
2679      // If this is a memset on an alloca where we can widen stores, insert the
2680      // set integer.
2681      assert(!II.isVolatile());
2682
2683      uint64_t Size = NewEndOffset - NewBeginOffset;
2684      V = getIntegerSplat(II.getValue(), Size);
2685
2686      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2687                    EndOffset != NewAllocaBeginOffset)) {
2688        Value *Old =
2689            IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2690        Old = convertValue(DL, IRB, Old, IntTy);
2691        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2692        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2693      } else {
2694        assert(V->getType() == IntTy &&
2695               "Wrong type for an alloca wide integer!");
2696      }
2697      V = convertValue(DL, IRB, V, AllocaTy);
2698    } else {
2699      // Established these invariants above.
2700      assert(NewBeginOffset == NewAllocaBeginOffset);
2701      assert(NewEndOffset == NewAllocaEndOffset);
2702
2703      V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2704      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2705        V = getVectorSplat(V, AllocaVecTy->getNumElements());
2706
2707      V = convertValue(DL, IRB, V, AllocaTy);
2708    }
2709
2710    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2711                                        II.isVolatile());
2712    (void)New;
2713    DEBUG(dbgs() << "          to: " << *New << "\n");
2714    return !II.isVolatile();
2715  }
2716
2717  bool visitMemTransferInst(MemTransferInst &II) {
2718    // Rewriting of memory transfer instructions can be a bit tricky. We break
2719    // them into two categories: split intrinsics and unsplit intrinsics.
2720
2721    DEBUG(dbgs() << "    original: " << II << "\n");
2722
2723    bool IsDest = &II.getRawDestUse() == OldUse;
2724    assert((IsDest && II.getRawDest() == OldPtr) ||
2725           (!IsDest && II.getRawSource() == OldPtr));
2726
2727    unsigned SliceAlign = getSliceAlign();
2728
2729    // For unsplit intrinsics, we simply modify the source and destination
2730    // pointers in place. This isn't just an optimization, it is a matter of
2731    // correctness. With unsplit intrinsics we may be dealing with transfers
2732    // within a single alloca before SROA ran, or with transfers that have
2733    // a variable length. We may also be dealing with memmove instead of
2734    // memcpy, and so simply updating the pointers is the necessary for us to
2735    // update both source and dest of a single call.
2736    if (!IsSplittable) {
2737      Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2738      if (IsDest)
2739        II.setDest(AdjustedPtr);
2740      else
2741        II.setSource(AdjustedPtr);
2742
2743      if (II.getAlignment() > SliceAlign) {
2744        Type *CstTy = II.getAlignmentCst()->getType();
2745        II.setAlignment(
2746            ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign)));
2747      }
2748
2749      DEBUG(dbgs() << "          to: " << II << "\n");
2750      deleteIfTriviallyDead(OldPtr);
2751      return false;
2752    }
2753    // For split transfer intrinsics we have an incredibly useful assurance:
2754    // the source and destination do not reside within the same alloca, and at
2755    // least one of them does not escape. This means that we can replace
2756    // memmove with memcpy, and we don't need to worry about all manner of
2757    // downsides to splitting and transforming the operations.
2758
2759    // If this doesn't map cleanly onto the alloca type, and that type isn't
2760    // a single value type, just emit a memcpy.
2761    bool EmitMemCpy =
2762        !VecTy && !IntTy &&
2763        (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2764         SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2765         !NewAI.getAllocatedType()->isSingleValueType());
2766
2767    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2768    // size hasn't been shrunk based on analysis of the viable range, this is
2769    // a no-op.
2770    if (EmitMemCpy && &OldAI == &NewAI) {
2771      // Ensure the start lines up.
2772      assert(NewBeginOffset == BeginOffset);
2773
2774      // Rewrite the size as needed.
2775      if (NewEndOffset != EndOffset)
2776        II.setLength(ConstantInt::get(II.getLength()->getType(),
2777                                      NewEndOffset - NewBeginOffset));
2778      return false;
2779    }
2780    // Record this instruction for deletion.
2781    Pass.DeadInsts.insert(&II);
2782
2783    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2784    // alloca that should be re-examined after rewriting this instruction.
2785    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2786    if (AllocaInst *AI =
2787            dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2788      assert(AI != &OldAI && AI != &NewAI &&
2789             "Splittable transfers cannot reach the same alloca on both ends.");
2790      Pass.Worklist.insert(AI);
2791    }
2792
2793    Type *OtherPtrTy = OtherPtr->getType();
2794    unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2795
2796    // Compute the relative offset for the other pointer within the transfer.
2797    unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
2798    APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2799    unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1,
2800                                   OtherOffset.zextOrTrunc(64).getZExtValue());
2801
2802    if (EmitMemCpy) {
2803      // Compute the other pointer, folding as much as possible to produce
2804      // a single, simple GEP in most cases.
2805      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2806                                OtherPtr->getName() + ".");
2807
2808      Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2809      Type *SizeTy = II.getLength()->getType();
2810      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2811
2812      CallInst *New = IRB.CreateMemCpy(
2813          IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size,
2814          MinAlign(SliceAlign, OtherAlign), II.isVolatile());
2815      (void)New;
2816      DEBUG(dbgs() << "          to: " << *New << "\n");
2817      return false;
2818    }
2819
2820    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2821                         NewEndOffset == NewAllocaEndOffset;
2822    uint64_t Size = NewEndOffset - NewBeginOffset;
2823    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2824    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2825    unsigned NumElements = EndIndex - BeginIndex;
2826    IntegerType *SubIntTy =
2827        IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
2828
2829    // Reset the other pointer type to match the register type we're going to
2830    // use, but using the address space of the original other pointer.
2831    if (VecTy && !IsWholeAlloca) {
2832      if (NumElements == 1)
2833        OtherPtrTy = VecTy->getElementType();
2834      else
2835        OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2836
2837      OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
2838    } else if (IntTy && !IsWholeAlloca) {
2839      OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
2840    } else {
2841      OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
2842    }
2843
2844    Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2845                                   OtherPtr->getName() + ".");
2846    unsigned SrcAlign = OtherAlign;
2847    Value *DstPtr = &NewAI;
2848    unsigned DstAlign = SliceAlign;
2849    if (!IsDest) {
2850      std::swap(SrcPtr, DstPtr);
2851      std::swap(SrcAlign, DstAlign);
2852    }
2853
2854    Value *Src;
2855    if (VecTy && !IsWholeAlloca && !IsDest) {
2856      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2857      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2858    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2859      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2860      Src = convertValue(DL, IRB, Src, IntTy);
2861      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2862      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2863    } else {
2864      Src =
2865          IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload");
2866    }
2867
2868    if (VecTy && !IsWholeAlloca && IsDest) {
2869      Value *Old =
2870          IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2871      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2872    } else if (IntTy && !IsWholeAlloca && IsDest) {
2873      Value *Old =
2874          IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2875      Old = convertValue(DL, IRB, Old, IntTy);
2876      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2877      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2878      Src = convertValue(DL, IRB, Src, NewAllocaTy);
2879    }
2880
2881    StoreInst *Store = cast<StoreInst>(
2882        IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
2883    (void)Store;
2884    DEBUG(dbgs() << "          to: " << *Store << "\n");
2885    return !II.isVolatile();
2886  }
2887
2888  bool visitIntrinsicInst(IntrinsicInst &II) {
2889    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2890           II.getIntrinsicID() == Intrinsic::lifetime_end);
2891    DEBUG(dbgs() << "    original: " << II << "\n");
2892    assert(II.getArgOperand(1) == OldPtr);
2893
2894    // Record this instruction for deletion.
2895    Pass.DeadInsts.insert(&II);
2896
2897    ConstantInt *Size =
2898        ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2899                         NewEndOffset - NewBeginOffset);
2900    Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2901    Value *New;
2902    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2903      New = IRB.CreateLifetimeStart(Ptr, Size);
2904    else
2905      New = IRB.CreateLifetimeEnd(Ptr, Size);
2906
2907    (void)New;
2908    DEBUG(dbgs() << "          to: " << *New << "\n");
2909    return true;
2910  }
2911
2912  bool visitPHINode(PHINode &PN) {
2913    DEBUG(dbgs() << "    original: " << PN << "\n");
2914    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2915    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
2916
2917    // We would like to compute a new pointer in only one place, but have it be
2918    // as local as possible to the PHI. To do that, we re-use the location of
2919    // the old pointer, which necessarily must be in the right position to
2920    // dominate the PHI.
2921    IRBuilderTy PtrBuilder(IRB);
2922    if (isa<PHINode>(OldPtr))
2923      PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
2924    else
2925      PtrBuilder.SetInsertPoint(OldPtr);
2926    PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
2927
2928    Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
2929    // Replace the operands which were using the old pointer.
2930    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2931
2932    DEBUG(dbgs() << "          to: " << PN << "\n");
2933    deleteIfTriviallyDead(OldPtr);
2934
2935    // PHIs can't be promoted on their own, but often can be speculated. We
2936    // check the speculation outside of the rewriter so that we see the
2937    // fully-rewritten alloca.
2938    PHIUsers.insert(&PN);
2939    return true;
2940  }
2941
2942  bool visitSelectInst(SelectInst &SI) {
2943    DEBUG(dbgs() << "    original: " << SI << "\n");
2944    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2945           "Pointer isn't an operand!");
2946    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2947    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
2948
2949    Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2950    // Replace the operands which were using the old pointer.
2951    if (SI.getOperand(1) == OldPtr)
2952      SI.setOperand(1, NewPtr);
2953    if (SI.getOperand(2) == OldPtr)
2954      SI.setOperand(2, NewPtr);
2955
2956    DEBUG(dbgs() << "          to: " << SI << "\n");
2957    deleteIfTriviallyDead(OldPtr);
2958
2959    // Selects can't be promoted on their own, but often can be speculated. We
2960    // check the speculation outside of the rewriter so that we see the
2961    // fully-rewritten alloca.
2962    SelectUsers.insert(&SI);
2963    return true;
2964  }
2965};
2966
2967namespace {
2968/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2969///
2970/// This pass aggressively rewrites all aggregate loads and stores on
2971/// a particular pointer (or any pointer derived from it which we can identify)
2972/// with scalar loads and stores.
2973class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2974  // Befriend the base class so it can delegate to private visit methods.
2975  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2976
2977  /// Queue of pointer uses to analyze and potentially rewrite.
2978  SmallVector<Use *, 8> Queue;
2979
2980  /// Set to prevent us from cycling with phi nodes and loops.
2981  SmallPtrSet<User *, 8> Visited;
2982
2983  /// The current pointer use being rewritten. This is used to dig up the used
2984  /// value (as opposed to the user).
2985  Use *U;
2986
2987public:
2988  /// Rewrite loads and stores through a pointer and all pointers derived from
2989  /// it.
2990  bool rewrite(Instruction &I) {
2991    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2992    enqueueUsers(I);
2993    bool Changed = false;
2994    while (!Queue.empty()) {
2995      U = Queue.pop_back_val();
2996      Changed |= visit(cast<Instruction>(U->getUser()));
2997    }
2998    return Changed;
2999  }
3000
3001private:
3002  /// Enqueue all the users of the given instruction for further processing.
3003  /// This uses a set to de-duplicate users.
3004  void enqueueUsers(Instruction &I) {
3005    for (Use &U : I.uses())
3006      if (Visited.insert(U.getUser()).second)
3007        Queue.push_back(&U);
3008  }
3009
3010  // Conservative default is to not rewrite anything.
3011  bool visitInstruction(Instruction &I) { return false; }
3012
3013  /// \brief Generic recursive split emission class.
3014  template <typename Derived> class OpSplitter {
3015  protected:
3016    /// The builder used to form new instructions.
3017    IRBuilderTy IRB;
3018    /// The indices which to be used with insert- or extractvalue to select the
3019    /// appropriate value within the aggregate.
3020    SmallVector<unsigned, 4> Indices;
3021    /// The indices to a GEP instruction which will move Ptr to the correct slot
3022    /// within the aggregate.
3023    SmallVector<Value *, 4> GEPIndices;
3024    /// The base pointer of the original op, used as a base for GEPing the
3025    /// split operations.
3026    Value *Ptr;
3027
3028    /// Initialize the splitter with an insertion point, Ptr and start with a
3029    /// single zero GEP index.
3030    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3031        : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3032
3033  public:
3034    /// \brief Generic recursive split emission routine.
3035    ///
3036    /// This method recursively splits an aggregate op (load or store) into
3037    /// scalar or vector ops. It splits recursively until it hits a single value
3038    /// and emits that single value operation via the template argument.
3039    ///
3040    /// The logic of this routine relies on GEPs and insertvalue and
3041    /// extractvalue all operating with the same fundamental index list, merely
3042    /// formatted differently (GEPs need actual values).
3043    ///
3044    /// \param Ty  The type being split recursively into smaller ops.
3045    /// \param Agg The aggregate value being built up or stored, depending on
3046    /// whether this is splitting a load or a store respectively.
3047    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3048      if (Ty->isSingleValueType())
3049        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3050
3051      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3052        unsigned OldSize = Indices.size();
3053        (void)OldSize;
3054        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3055             ++Idx) {
3056          assert(Indices.size() == OldSize && "Did not return to the old size");
3057          Indices.push_back(Idx);
3058          GEPIndices.push_back(IRB.getInt32(Idx));
3059          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3060          GEPIndices.pop_back();
3061          Indices.pop_back();
3062        }
3063        return;
3064      }
3065
3066      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3067        unsigned OldSize = Indices.size();
3068        (void)OldSize;
3069        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3070             ++Idx) {
3071          assert(Indices.size() == OldSize && "Did not return to the old size");
3072          Indices.push_back(Idx);
3073          GEPIndices.push_back(IRB.getInt32(Idx));
3074          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3075          GEPIndices.pop_back();
3076          Indices.pop_back();
3077        }
3078        return;
3079      }
3080
3081      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3082    }
3083  };
3084
3085  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3086    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3087        : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
3088
3089    /// Emit a leaf load of a single value. This is called at the leaves of the
3090    /// recursive emission to actually load values.
3091    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3092      assert(Ty->isSingleValueType());
3093      // Load the single value and insert it using the indices.
3094      Value *GEP =
3095          IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
3096      Value *Load = IRB.CreateLoad(GEP, Name + ".load");
3097      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3098      DEBUG(dbgs() << "          to: " << *Load << "\n");
3099    }
3100  };
3101
3102  bool visitLoadInst(LoadInst &LI) {
3103    assert(LI.getPointerOperand() == *U);
3104    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3105      return false;
3106
3107    // We have an aggregate being loaded, split it apart.
3108    DEBUG(dbgs() << "    original: " << LI << "\n");
3109    LoadOpSplitter Splitter(&LI, *U);
3110    Value *V = UndefValue::get(LI.getType());
3111    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3112    LI.replaceAllUsesWith(V);
3113    LI.eraseFromParent();
3114    return true;
3115  }
3116
3117  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3118    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3119        : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
3120
3121    /// Emit a leaf store of a single value. This is called at the leaves of the
3122    /// recursive emission to actually produce stores.
3123    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3124      assert(Ty->isSingleValueType());
3125      // Extract the single value and store it using the indices.
3126      Value *Store = IRB.CreateStore(
3127          IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3128          IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep"));
3129      (void)Store;
3130      DEBUG(dbgs() << "          to: " << *Store << "\n");
3131    }
3132  };
3133
3134  bool visitStoreInst(StoreInst &SI) {
3135    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3136      return false;
3137    Value *V = SI.getValueOperand();
3138    if (V->getType()->isSingleValueType())
3139      return false;
3140
3141    // We have an aggregate being stored, split it apart.
3142    DEBUG(dbgs() << "    original: " << SI << "\n");
3143    StoreOpSplitter Splitter(&SI, *U);
3144    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3145    SI.eraseFromParent();
3146    return true;
3147  }
3148
3149  bool visitBitCastInst(BitCastInst &BC) {
3150    enqueueUsers(BC);
3151    return false;
3152  }
3153
3154  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3155    enqueueUsers(GEPI);
3156    return false;
3157  }
3158
3159  bool visitPHINode(PHINode &PN) {
3160    enqueueUsers(PN);
3161    return false;
3162  }
3163
3164  bool visitSelectInst(SelectInst &SI) {
3165    enqueueUsers(SI);
3166    return false;
3167  }
3168};
3169}
3170
3171/// \brief Strip aggregate type wrapping.
3172///
3173/// This removes no-op aggregate types wrapping an underlying type. It will
3174/// strip as many layers of types as it can without changing either the type
3175/// size or the allocated size.
3176static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3177  if (Ty->isSingleValueType())
3178    return Ty;
3179
3180  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3181  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3182
3183  Type *InnerTy;
3184  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3185    InnerTy = ArrTy->getElementType();
3186  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3187    const StructLayout *SL = DL.getStructLayout(STy);
3188    unsigned Index = SL->getElementContainingOffset(0);
3189    InnerTy = STy->getElementType(Index);
3190  } else {
3191    return Ty;
3192  }
3193
3194  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3195      TypeSize > DL.getTypeSizeInBits(InnerTy))
3196    return Ty;
3197
3198  return stripAggregateTypeWrapping(DL, InnerTy);
3199}
3200
3201/// \brief Try to find a partition of the aggregate type passed in for a given
3202/// offset and size.
3203///
3204/// This recurses through the aggregate type and tries to compute a subtype
3205/// based on the offset and size. When the offset and size span a sub-section
3206/// of an array, it will even compute a new array type for that sub-section,
3207/// and the same for structs.
3208///
3209/// Note that this routine is very strict and tries to find a partition of the
3210/// type which produces the *exact* right offset and size. It is not forgiving
3211/// when the size or offset cause either end of type-based partition to be off.
3212/// Also, this is a best-effort routine. It is reasonable to give up and not
3213/// return a type if necessary.
3214static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3215                              uint64_t Size) {
3216  if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3217    return stripAggregateTypeWrapping(DL, Ty);
3218  if (Offset > DL.getTypeAllocSize(Ty) ||
3219      (DL.getTypeAllocSize(Ty) - Offset) < Size)
3220    return nullptr;
3221
3222  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3223    // We can't partition pointers...
3224    if (SeqTy->isPointerTy())
3225      return nullptr;
3226
3227    Type *ElementTy = SeqTy->getElementType();
3228    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3229    uint64_t NumSkippedElements = Offset / ElementSize;
3230    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
3231      if (NumSkippedElements >= ArrTy->getNumElements())
3232        return nullptr;
3233    } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
3234      if (NumSkippedElements >= VecTy->getNumElements())
3235        return nullptr;
3236    }
3237    Offset -= NumSkippedElements * ElementSize;
3238
3239    // First check if we need to recurse.
3240    if (Offset > 0 || Size < ElementSize) {
3241      // Bail if the partition ends in a different array element.
3242      if ((Offset + Size) > ElementSize)
3243        return nullptr;
3244      // Recurse through the element type trying to peel off offset bytes.
3245      return getTypePartition(DL, ElementTy, Offset, Size);
3246    }
3247    assert(Offset == 0);
3248
3249    if (Size == ElementSize)
3250      return stripAggregateTypeWrapping(DL, ElementTy);
3251    assert(Size > ElementSize);
3252    uint64_t NumElements = Size / ElementSize;
3253    if (NumElements * ElementSize != Size)
3254      return nullptr;
3255    return ArrayType::get(ElementTy, NumElements);
3256  }
3257
3258  StructType *STy = dyn_cast<StructType>(Ty);
3259  if (!STy)
3260    return nullptr;
3261
3262  const StructLayout *SL = DL.getStructLayout(STy);
3263  if (Offset >= SL->getSizeInBytes())
3264    return nullptr;
3265  uint64_t EndOffset = Offset + Size;
3266  if (EndOffset > SL->getSizeInBytes())
3267    return nullptr;
3268
3269  unsigned Index = SL->getElementContainingOffset(Offset);
3270  Offset -= SL->getElementOffset(Index);
3271
3272  Type *ElementTy = STy->getElementType(Index);
3273  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3274  if (Offset >= ElementSize)
3275    return nullptr; // The offset points into alignment padding.
3276
3277  // See if any partition must be contained by the element.
3278  if (Offset > 0 || Size < ElementSize) {
3279    if ((Offset + Size) > ElementSize)
3280      return nullptr;
3281    return getTypePartition(DL, ElementTy, Offset, Size);
3282  }
3283  assert(Offset == 0);
3284
3285  if (Size == ElementSize)
3286    return stripAggregateTypeWrapping(DL, ElementTy);
3287
3288  StructType::element_iterator EI = STy->element_begin() + Index,
3289                               EE = STy->element_end();
3290  if (EndOffset < SL->getSizeInBytes()) {
3291    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3292    if (Index == EndIndex)
3293      return nullptr; // Within a single element and its padding.
3294
3295    // Don't try to form "natural" types if the elements don't line up with the
3296    // expected size.
3297    // FIXME: We could potentially recurse down through the last element in the
3298    // sub-struct to find a natural end point.
3299    if (SL->getElementOffset(EndIndex) != EndOffset)
3300      return nullptr;
3301
3302    assert(Index < EndIndex);
3303    EE = STy->element_begin() + EndIndex;
3304  }
3305
3306  // Try to build up a sub-structure.
3307  StructType *SubTy =
3308      StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3309  const StructLayout *SubSL = DL.getStructLayout(SubTy);
3310  if (Size != SubSL->getSizeInBytes())
3311    return nullptr; // The sub-struct doesn't have quite the size needed.
3312
3313  return SubTy;
3314}
3315
3316/// \brief Pre-split loads and stores to simplify rewriting.
3317///
3318/// We want to break up the splittable load+store pairs as much as
3319/// possible. This is important to do as a preprocessing step, as once we
3320/// start rewriting the accesses to partitions of the alloca we lose the
3321/// necessary information to correctly split apart paired loads and stores
3322/// which both point into this alloca. The case to consider is something like
3323/// the following:
3324///
3325///   %a = alloca [12 x i8]
3326///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3327///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3328///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3329///   %iptr1 = bitcast i8* %gep1 to i64*
3330///   %iptr2 = bitcast i8* %gep2 to i64*
3331///   %fptr1 = bitcast i8* %gep1 to float*
3332///   %fptr2 = bitcast i8* %gep2 to float*
3333///   %fptr3 = bitcast i8* %gep3 to float*
3334///   store float 0.0, float* %fptr1
3335///   store float 1.0, float* %fptr2
3336///   %v = load i64* %iptr1
3337///   store i64 %v, i64* %iptr2
3338///   %f1 = load float* %fptr2
3339///   %f2 = load float* %fptr3
3340///
3341/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3342/// promote everything so we recover the 2 SSA values that should have been
3343/// there all along.
3344///
3345/// \returns true if any changes are made.
3346bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3347  DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3348
3349  // Track the loads and stores which are candidates for pre-splitting here, in
3350  // the order they first appear during the partition scan. These give stable
3351  // iteration order and a basis for tracking which loads and stores we
3352  // actually split.
3353  SmallVector<LoadInst *, 4> Loads;
3354  SmallVector<StoreInst *, 4> Stores;
3355
3356  // We need to accumulate the splits required of each load or store where we
3357  // can find them via a direct lookup. This is important to cross-check loads
3358  // and stores against each other. We also track the slice so that we can kill
3359  // all the slices that end up split.
3360  struct SplitOffsets {
3361    Slice *S;
3362    std::vector<uint64_t> Splits;
3363  };
3364  SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3365
3366  // Track loads out of this alloca which cannot, for any reason, be pre-split.
3367  // This is important as we also cannot pre-split stores of those loads!
3368  // FIXME: This is all pretty gross. It means that we can be more aggressive
3369  // in pre-splitting when the load feeding the store happens to come from
3370  // a separate alloca. Put another way, the effectiveness of SROA would be
3371  // decreased by a frontend which just concatenated all of its local allocas
3372  // into one big flat alloca. But defeating such patterns is exactly the job
3373  // SROA is tasked with! Sadly, to not have this discrepancy we would have
3374  // change store pre-splitting to actually force pre-splitting of the load
3375  // that feeds it *and all stores*. That makes pre-splitting much harder, but
3376  // maybe it would make it more principled?
3377  SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3378
3379  DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3380  for (auto &P : AS.partitions()) {
3381    for (Slice &S : P) {
3382      Instruction *I = cast<Instruction>(S.getUse()->getUser());
3383      if (!S.isSplittable() ||S.endOffset() <= P.endOffset()) {
3384        // If this was a load we have to track that it can't participate in any
3385        // pre-splitting!
3386        if (auto *LI = dyn_cast<LoadInst>(I))
3387          UnsplittableLoads.insert(LI);
3388        continue;
3389      }
3390      assert(P.endOffset() > S.beginOffset() &&
3391             "Empty or backwards partition!");
3392
3393      // Determine if this is a pre-splittable slice.
3394      if (auto *LI = dyn_cast<LoadInst>(I)) {
3395        assert(!LI->isVolatile() && "Cannot split volatile loads!");
3396
3397        // The load must be used exclusively to store into other pointers for
3398        // us to be able to arbitrarily pre-split it. The stores must also be
3399        // simple to avoid changing semantics.
3400        auto IsLoadSimplyStored = [](LoadInst *LI) {
3401          for (User *LU : LI->users()) {
3402            auto *SI = dyn_cast<StoreInst>(LU);
3403            if (!SI || !SI->isSimple())
3404              return false;
3405          }
3406          return true;
3407        };
3408        if (!IsLoadSimplyStored(LI)) {
3409          UnsplittableLoads.insert(LI);
3410          continue;
3411        }
3412
3413        Loads.push_back(LI);
3414      } else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) {
3415        if (!SI ||
3416            S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3417          continue;
3418        auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3419        if (!StoredLoad || !StoredLoad->isSimple())
3420          continue;
3421        assert(!SI->isVolatile() && "Cannot split volatile stores!");
3422
3423        Stores.push_back(SI);
3424      } else {
3425        // Other uses cannot be pre-split.
3426        continue;
3427      }
3428
3429      // Record the initial split.
3430      DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3431      auto &Offsets = SplitOffsetsMap[I];
3432      assert(Offsets.Splits.empty() &&
3433             "Should not have splits the first time we see an instruction!");
3434      Offsets.S = &S;
3435      Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3436    }
3437
3438    // Now scan the already split slices, and add a split for any of them which
3439    // we're going to pre-split.
3440    for (Slice *S : P.splitSliceTails()) {
3441      auto SplitOffsetsMapI =
3442          SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3443      if (SplitOffsetsMapI == SplitOffsetsMap.end())
3444        continue;
3445      auto &Offsets = SplitOffsetsMapI->second;
3446
3447      assert(Offsets.S == S && "Found a mismatched slice!");
3448      assert(!Offsets.Splits.empty() &&
3449             "Cannot have an empty set of splits on the second partition!");
3450      assert(Offsets.Splits.back() ==
3451                 P.beginOffset() - Offsets.S->beginOffset() &&
3452             "Previous split does not end where this one begins!");
3453
3454      // Record each split. The last partition's end isn't needed as the size
3455      // of the slice dictates that.
3456      if (S->endOffset() > P.endOffset())
3457        Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3458    }
3459  }
3460
3461  // We may have split loads where some of their stores are split stores. For
3462  // such loads and stores, we can only pre-split them if their splits exactly
3463  // match relative to their starting offset. We have to verify this prior to
3464  // any rewriting.
3465  Stores.erase(
3466      std::remove_if(Stores.begin(), Stores.end(),
3467                     [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3468                       // Lookup the load we are storing in our map of split
3469                       // offsets.
3470                       auto *LI = cast<LoadInst>(SI->getValueOperand());
3471                       // If it was completely unsplittable, then we're done,
3472                       // and this store can't be pre-split.
3473                       if (UnsplittableLoads.count(LI))
3474                         return true;
3475
3476                       auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3477                       if (LoadOffsetsI == SplitOffsetsMap.end())
3478                         return false; // Unrelated loads are definitely safe.
3479                       auto &LoadOffsets = LoadOffsetsI->second;
3480
3481                       // Now lookup the store's offsets.
3482                       auto &StoreOffsets = SplitOffsetsMap[SI];
3483
3484                       // If the relative offsets of each split in the load and
3485                       // store match exactly, then we can split them and we
3486                       // don't need to remove them here.
3487                       if (LoadOffsets.Splits == StoreOffsets.Splits)
3488                         return false;
3489
3490                       DEBUG(dbgs()
3491                             << "    Mismatched splits for load and store:\n"
3492                             << "      " << *LI << "\n"
3493                             << "      " << *SI << "\n");
3494
3495                       // We've found a store and load that we need to split
3496                       // with mismatched relative splits. Just give up on them
3497                       // and remove both instructions from our list of
3498                       // candidates.
3499                       UnsplittableLoads.insert(LI);
3500                       return true;
3501                     }),
3502      Stores.end());
3503  // Now we have to go *back* through all the stores, because a later store may
3504  // have caused an earlier store's load to become unsplittable and if it is
3505  // unsplittable for the later store, then we can't rely on it being split in
3506  // the earlier store either.
3507  Stores.erase(std::remove_if(Stores.begin(), Stores.end(),
3508                              [&UnsplittableLoads](StoreInst *SI) {
3509                                auto *LI =
3510                                    cast<LoadInst>(SI->getValueOperand());
3511                                return UnsplittableLoads.count(LI);
3512                              }),
3513               Stores.end());
3514  // Once we've established all the loads that can't be split for some reason,
3515  // filter any that made it into our list out.
3516  Loads.erase(std::remove_if(Loads.begin(), Loads.end(),
3517                             [&UnsplittableLoads](LoadInst *LI) {
3518                               return UnsplittableLoads.count(LI);
3519                             }),
3520              Loads.end());
3521
3522
3523  // If no loads or stores are left, there is no pre-splitting to be done for
3524  // this alloca.
3525  if (Loads.empty() && Stores.empty())
3526    return false;
3527
3528  // From here on, we can't fail and will be building new accesses, so rig up
3529  // an IR builder.
3530  IRBuilderTy IRB(&AI);
3531
3532  // Collect the new slices which we will merge into the alloca slices.
3533  SmallVector<Slice, 4> NewSlices;
3534
3535  // Track any allocas we end up splitting loads and stores for so we iterate
3536  // on them.
3537  SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3538
3539  // At this point, we have collected all of the loads and stores we can
3540  // pre-split, and the specific splits needed for them. We actually do the
3541  // splitting in a specific order in order to handle when one of the loads in
3542  // the value operand to one of the stores.
3543  //
3544  // First, we rewrite all of the split loads, and just accumulate each split
3545  // load in a parallel structure. We also build the slices for them and append
3546  // them to the alloca slices.
3547  SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3548  std::vector<LoadInst *> SplitLoads;
3549  const DataLayout &DL = AI.getModule()->getDataLayout();
3550  for (LoadInst *LI : Loads) {
3551    SplitLoads.clear();
3552
3553    IntegerType *Ty = cast<IntegerType>(LI->getType());
3554    uint64_t LoadSize = Ty->getBitWidth() / 8;
3555    assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3556
3557    auto &Offsets = SplitOffsetsMap[LI];
3558    assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3559           "Slice size should always match load size exactly!");
3560    uint64_t BaseOffset = Offsets.S->beginOffset();
3561    assert(BaseOffset + LoadSize > BaseOffset &&
3562           "Cannot represent alloca access size using 64-bit integers!");
3563
3564    Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3565    IRB.SetInsertPoint(LI);
3566
3567    DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3568
3569    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3570    int Idx = 0, Size = Offsets.Splits.size();
3571    for (;;) {
3572      auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3573      auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3574      LoadInst *PLoad = IRB.CreateAlignedLoad(
3575          getAdjustedPtr(IRB, DL, BasePtr,
3576                         APInt(DL.getPointerSizeInBits(), PartOffset),
3577                         PartPtrTy, BasePtr->getName() + "."),
3578          getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3579          LI->getName());
3580
3581      // Append this load onto the list of split loads so we can find it later
3582      // to rewrite the stores.
3583      SplitLoads.push_back(PLoad);
3584
3585      // Now build a new slice for the alloca.
3586      NewSlices.push_back(
3587          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3588                &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3589                /*IsSplittable*/ false));
3590      DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3591                   << ", " << NewSlices.back().endOffset() << "): " << *PLoad
3592                   << "\n");
3593
3594      // See if we've handled all the splits.
3595      if (Idx >= Size)
3596        break;
3597
3598      // Setup the next partition.
3599      PartOffset = Offsets.Splits[Idx];
3600      ++Idx;
3601      PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3602    }
3603
3604    // Now that we have the split loads, do the slow walk over all uses of the
3605    // load and rewrite them as split stores, or save the split loads to use
3606    // below if the store is going to be split there anyways.
3607    bool DeferredStores = false;
3608    for (User *LU : LI->users()) {
3609      StoreInst *SI = cast<StoreInst>(LU);
3610      if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3611        DeferredStores = true;
3612        DEBUG(dbgs() << "    Deferred splitting of store: " << *SI << "\n");
3613        continue;
3614      }
3615
3616      Value *StoreBasePtr = SI->getPointerOperand();
3617      IRB.SetInsertPoint(SI);
3618
3619      DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
3620
3621      for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3622        LoadInst *PLoad = SplitLoads[Idx];
3623        uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3624        auto *PartPtrTy =
3625            PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3626
3627        StoreInst *PStore = IRB.CreateAlignedStore(
3628            PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
3629                                  APInt(DL.getPointerSizeInBits(), PartOffset),
3630                                  PartPtrTy, StoreBasePtr->getName() + "."),
3631            getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3632        (void)PStore;
3633        DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
3634      }
3635
3636      // We want to immediately iterate on any allocas impacted by splitting
3637      // this store, and we have to track any promotable alloca (indicated by
3638      // a direct store) as needing to be resplit because it is no longer
3639      // promotable.
3640      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3641        ResplitPromotableAllocas.insert(OtherAI);
3642        Worklist.insert(OtherAI);
3643      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3644                     StoreBasePtr->stripInBoundsOffsets())) {
3645        Worklist.insert(OtherAI);
3646      }
3647
3648      // Mark the original store as dead.
3649      DeadInsts.insert(SI);
3650    }
3651
3652    // Save the split loads if there are deferred stores among the users.
3653    if (DeferredStores)
3654      SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3655
3656    // Mark the original load as dead and kill the original slice.
3657    DeadInsts.insert(LI);
3658    Offsets.S->kill();
3659  }
3660
3661  // Second, we rewrite all of the split stores. At this point, we know that
3662  // all loads from this alloca have been split already. For stores of such
3663  // loads, we can simply look up the pre-existing split loads. For stores of
3664  // other loads, we split those loads first and then write split stores of
3665  // them.
3666  for (StoreInst *SI : Stores) {
3667    auto *LI = cast<LoadInst>(SI->getValueOperand());
3668    IntegerType *Ty = cast<IntegerType>(LI->getType());
3669    uint64_t StoreSize = Ty->getBitWidth() / 8;
3670    assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3671
3672    auto &Offsets = SplitOffsetsMap[SI];
3673    assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3674           "Slice size should always match load size exactly!");
3675    uint64_t BaseOffset = Offsets.S->beginOffset();
3676    assert(BaseOffset + StoreSize > BaseOffset &&
3677           "Cannot represent alloca access size using 64-bit integers!");
3678
3679    Value *LoadBasePtr = LI->getPointerOperand();
3680    Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3681
3682    DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
3683
3684    // Check whether we have an already split load.
3685    auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3686    std::vector<LoadInst *> *SplitLoads = nullptr;
3687    if (SplitLoadsMapI != SplitLoadsMap.end()) {
3688      SplitLoads = &SplitLoadsMapI->second;
3689      assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3690             "Too few split loads for the number of splits in the store!");
3691    } else {
3692      DEBUG(dbgs() << "          of load: " << *LI << "\n");
3693    }
3694
3695    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3696    int Idx = 0, Size = Offsets.Splits.size();
3697    for (;;) {
3698      auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3699      auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3700
3701      // Either lookup a split load or create one.
3702      LoadInst *PLoad;
3703      if (SplitLoads) {
3704        PLoad = (*SplitLoads)[Idx];
3705      } else {
3706        IRB.SetInsertPoint(LI);
3707        PLoad = IRB.CreateAlignedLoad(
3708            getAdjustedPtr(IRB, DL, LoadBasePtr,
3709                           APInt(DL.getPointerSizeInBits(), PartOffset),
3710                           PartPtrTy, LoadBasePtr->getName() + "."),
3711            getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3712            LI->getName());
3713      }
3714
3715      // And store this partition.
3716      IRB.SetInsertPoint(SI);
3717      StoreInst *PStore = IRB.CreateAlignedStore(
3718          PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
3719                                APInt(DL.getPointerSizeInBits(), PartOffset),
3720                                PartPtrTy, StoreBasePtr->getName() + "."),
3721          getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3722
3723      // Now build a new slice for the alloca.
3724      NewSlices.push_back(
3725          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3726                &PStore->getOperandUse(PStore->getPointerOperandIndex()),
3727                /*IsSplittable*/ false));
3728      DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3729                   << ", " << NewSlices.back().endOffset() << "): " << *PStore
3730                   << "\n");
3731      if (!SplitLoads) {
3732        DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
3733      }
3734
3735      // See if we've finished all the splits.
3736      if (Idx >= Size)
3737        break;
3738
3739      // Setup the next partition.
3740      PartOffset = Offsets.Splits[Idx];
3741      ++Idx;
3742      PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
3743    }
3744
3745    // We want to immediately iterate on any allocas impacted by splitting
3746    // this load, which is only relevant if it isn't a load of this alloca and
3747    // thus we didn't already split the loads above. We also have to keep track
3748    // of any promotable allocas we split loads on as they can no longer be
3749    // promoted.
3750    if (!SplitLoads) {
3751      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
3752        assert(OtherAI != &AI && "We can't re-split our own alloca!");
3753        ResplitPromotableAllocas.insert(OtherAI);
3754        Worklist.insert(OtherAI);
3755      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3756                     LoadBasePtr->stripInBoundsOffsets())) {
3757        assert(OtherAI != &AI && "We can't re-split our own alloca!");
3758        Worklist.insert(OtherAI);
3759      }
3760    }
3761
3762    // Mark the original store as dead now that we've split it up and kill its
3763    // slice. Note that we leave the original load in place unless this store
3764    // was its only use. It may in turn be split up if it is an alloca load
3765    // for some other alloca, but it may be a normal load. This may introduce
3766    // redundant loads, but where those can be merged the rest of the optimizer
3767    // should handle the merging, and this uncovers SSA splits which is more
3768    // important. In practice, the original loads will almost always be fully
3769    // split and removed eventually, and the splits will be merged by any
3770    // trivial CSE, including instcombine.
3771    if (LI->hasOneUse()) {
3772      assert(*LI->user_begin() == SI && "Single use isn't this store!");
3773      DeadInsts.insert(LI);
3774    }
3775    DeadInsts.insert(SI);
3776    Offsets.S->kill();
3777  }
3778
3779  // Remove the killed slices that have ben pre-split.
3780  AS.erase(std::remove_if(AS.begin(), AS.end(), [](const Slice &S) {
3781    return S.isDead();
3782  }), AS.end());
3783
3784  // Insert our new slices. This will sort and merge them into the sorted
3785  // sequence.
3786  AS.insert(NewSlices);
3787
3788  DEBUG(dbgs() << "  Pre-split slices:\n");
3789#ifndef NDEBUG
3790  for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
3791    DEBUG(AS.print(dbgs(), I, "    "));
3792#endif
3793
3794  // Finally, don't try to promote any allocas that new require re-splitting.
3795  // They have already been added to the worklist above.
3796  PromotableAllocas.erase(
3797      std::remove_if(
3798          PromotableAllocas.begin(), PromotableAllocas.end(),
3799          [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
3800      PromotableAllocas.end());
3801
3802  return true;
3803}
3804
3805/// \brief Rewrite an alloca partition's users.
3806///
3807/// This routine drives both of the rewriting goals of the SROA pass. It tries
3808/// to rewrite uses of an alloca partition to be conducive for SSA value
3809/// promotion. If the partition needs a new, more refined alloca, this will
3810/// build that new alloca, preserving as much type information as possible, and
3811/// rewrite the uses of the old alloca to point at the new one and have the
3812/// appropriate new offsets. It also evaluates how successful the rewrite was
3813/// at enabling promotion and if it was successful queues the alloca to be
3814/// promoted.
3815AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
3816                                   Partition &P) {
3817  // Try to compute a friendly type for this partition of the alloca. This
3818  // won't always succeed, in which case we fall back to a legal integer type
3819  // or an i8 array of an appropriate size.
3820  Type *SliceTy = nullptr;
3821  const DataLayout &DL = AI.getModule()->getDataLayout();
3822  if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
3823    if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
3824      SliceTy = CommonUseTy;
3825  if (!SliceTy)
3826    if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
3827                                                 P.beginOffset(), P.size()))
3828      SliceTy = TypePartitionTy;
3829  if ((!SliceTy || (SliceTy->isArrayTy() &&
3830                    SliceTy->getArrayElementType()->isIntegerTy())) &&
3831      DL.isLegalInteger(P.size() * 8))
3832    SliceTy = Type::getIntNTy(*C, P.size() * 8);
3833  if (!SliceTy)
3834    SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
3835  assert(DL.getTypeAllocSize(SliceTy) >= P.size());
3836
3837  bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
3838
3839  VectorType *VecTy =
3840      IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
3841  if (VecTy)
3842    SliceTy = VecTy;
3843
3844  // Check for the case where we're going to rewrite to a new alloca of the
3845  // exact same type as the original, and with the same access offsets. In that
3846  // case, re-use the existing alloca, but still run through the rewriter to
3847  // perform phi and select speculation.
3848  AllocaInst *NewAI;
3849  if (SliceTy == AI.getAllocatedType()) {
3850    assert(P.beginOffset() == 0 &&
3851           "Non-zero begin offset but same alloca type");
3852    NewAI = &AI;
3853    // FIXME: We should be able to bail at this point with "nothing changed".
3854    // FIXME: We might want to defer PHI speculation until after here.
3855    // FIXME: return nullptr;
3856  } else {
3857    unsigned Alignment = AI.getAlignment();
3858    if (!Alignment) {
3859      // The minimum alignment which users can rely on when the explicit
3860      // alignment is omitted or zero is that required by the ABI for this
3861      // type.
3862      Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
3863    }
3864    Alignment = MinAlign(Alignment, P.beginOffset());
3865    // If we will get at least this much alignment from the type alone, leave
3866    // the alloca's alignment unconstrained.
3867    if (Alignment <= DL.getABITypeAlignment(SliceTy))
3868      Alignment = 0;
3869    NewAI = new AllocaInst(
3870        SliceTy, nullptr, Alignment,
3871        AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
3872    ++NumNewAllocas;
3873  }
3874
3875  DEBUG(dbgs() << "Rewriting alloca partition "
3876               << "[" << P.beginOffset() << "," << P.endOffset()
3877               << ") to: " << *NewAI << "\n");
3878
3879  // Track the high watermark on the worklist as it is only relevant for
3880  // promoted allocas. We will reset it to this point if the alloca is not in
3881  // fact scheduled for promotion.
3882  unsigned PPWOldSize = PostPromotionWorklist.size();
3883  unsigned NumUses = 0;
3884  SmallPtrSet<PHINode *, 8> PHIUsers;
3885  SmallPtrSet<SelectInst *, 8> SelectUsers;
3886
3887  AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
3888                               P.endOffset(), IsIntegerPromotable, VecTy,
3889                               PHIUsers, SelectUsers);
3890  bool Promotable = true;
3891  for (Slice *S : P.splitSliceTails()) {
3892    Promotable &= Rewriter.visit(S);
3893    ++NumUses;
3894  }
3895  for (Slice &S : P) {
3896    Promotable &= Rewriter.visit(&S);
3897    ++NumUses;
3898  }
3899
3900  NumAllocaPartitionUses += NumUses;
3901  MaxUsesPerAllocaPartition =
3902      std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
3903
3904  // Now that we've processed all the slices in the new partition, check if any
3905  // PHIs or Selects would block promotion.
3906  for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
3907                                            E = PHIUsers.end();
3908       I != E; ++I)
3909    if (!isSafePHIToSpeculate(**I)) {
3910      Promotable = false;
3911      PHIUsers.clear();
3912      SelectUsers.clear();
3913      break;
3914    }
3915  for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
3916                                               E = SelectUsers.end();
3917       I != E; ++I)
3918    if (!isSafeSelectToSpeculate(**I)) {
3919      Promotable = false;
3920      PHIUsers.clear();
3921      SelectUsers.clear();
3922      break;
3923    }
3924
3925  if (Promotable) {
3926    if (PHIUsers.empty() && SelectUsers.empty()) {
3927      // Promote the alloca.
3928      PromotableAllocas.push_back(NewAI);
3929    } else {
3930      // If we have either PHIs or Selects to speculate, add them to those
3931      // worklists and re-queue the new alloca so that we promote in on the
3932      // next iteration.
3933      for (PHINode *PHIUser : PHIUsers)
3934        SpeculatablePHIs.insert(PHIUser);
3935      for (SelectInst *SelectUser : SelectUsers)
3936        SpeculatableSelects.insert(SelectUser);
3937      Worklist.insert(NewAI);
3938    }
3939  } else {
3940    // If we can't promote the alloca, iterate on it to check for new
3941    // refinements exposed by splitting the current alloca. Don't iterate on an
3942    // alloca which didn't actually change and didn't get promoted.
3943    if (NewAI != &AI)
3944      Worklist.insert(NewAI);
3945
3946    // Drop any post-promotion work items if promotion didn't happen.
3947    while (PostPromotionWorklist.size() > PPWOldSize)
3948      PostPromotionWorklist.pop_back();
3949  }
3950
3951  return NewAI;
3952}
3953
3954/// \brief Walks the slices of an alloca and form partitions based on them,
3955/// rewriting each of their uses.
3956bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
3957  if (AS.begin() == AS.end())
3958    return false;
3959
3960  unsigned NumPartitions = 0;
3961  bool Changed = false;
3962  const DataLayout &DL = AI.getModule()->getDataLayout();
3963
3964  // First try to pre-split loads and stores.
3965  Changed |= presplitLoadsAndStores(AI, AS);
3966
3967  // Now that we have identified any pre-splitting opportunities, mark any
3968  // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail
3969  // to split these during pre-splitting, we want to force them to be
3970  // rewritten into a partition.
3971  bool IsSorted = true;
3972  for (Slice &S : AS) {
3973    if (!S.isSplittable())
3974      continue;
3975    // FIXME: We currently leave whole-alloca splittable loads and stores. This
3976    // used to be the only splittable loads and stores and we need to be
3977    // confident that the above handling of splittable loads and stores is
3978    // completely sufficient before we forcibly disable the remaining handling.
3979    if (S.beginOffset() == 0 &&
3980        S.endOffset() >= DL.getTypeAllocSize(AI.getAllocatedType()))
3981      continue;
3982    if (isa<LoadInst>(S.getUse()->getUser()) ||
3983        isa<StoreInst>(S.getUse()->getUser())) {
3984      S.makeUnsplittable();
3985      IsSorted = false;
3986    }
3987  }
3988  if (!IsSorted)
3989    std::sort(AS.begin(), AS.end());
3990
3991  /// \brief Describes the allocas introduced by rewritePartition
3992  /// in order to migrate the debug info.
3993  struct Piece {
3994    AllocaInst *Alloca;
3995    uint64_t Offset;
3996    uint64_t Size;
3997    Piece(AllocaInst *AI, uint64_t O, uint64_t S)
3998      : Alloca(AI), Offset(O), Size(S) {}
3999  };
4000  SmallVector<Piece, 4> Pieces;
4001
4002  // Rewrite each partition.
4003  for (auto &P : AS.partitions()) {
4004    if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4005      Changed = true;
4006      if (NewAI != &AI) {
4007        uint64_t SizeOfByte = 8;
4008        uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4009        // Don't include any padding.
4010        uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4011        Pieces.push_back(Piece(NewAI, P.beginOffset() * SizeOfByte, Size));
4012      }
4013    }
4014    ++NumPartitions;
4015  }
4016
4017  NumAllocaPartitions += NumPartitions;
4018  MaxPartitionsPerAlloca =
4019      std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
4020
4021  // Migrate debug information from the old alloca to the new alloca(s)
4022  // and the individual partitions.
4023  if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(&AI)) {
4024    auto *Var = DbgDecl->getVariable();
4025    auto *Expr = DbgDecl->getExpression();
4026    DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4027    bool IsSplit = Pieces.size() > 1;
4028    for (auto Piece : Pieces) {
4029      // Create a piece expression describing the new partition or reuse AI's
4030      // expression if there is only one partition.
4031      auto *PieceExpr = Expr;
4032      if (IsSplit || Expr->isBitPiece()) {
4033        // If this alloca is already a scalar replacement of a larger aggregate,
4034        // Piece.Offset describes the offset inside the scalar.
4035        uint64_t Offset = Expr->isBitPiece() ? Expr->getBitPieceOffset() : 0;
4036        uint64_t Start = Offset + Piece.Offset;
4037        uint64_t Size = Piece.Size;
4038        if (Expr->isBitPiece()) {
4039          uint64_t AbsEnd = Expr->getBitPieceOffset() + Expr->getBitPieceSize();
4040          if (Start >= AbsEnd)
4041            // No need to describe a SROAed padding.
4042            continue;
4043          Size = std::min(Size, AbsEnd - Start);
4044        }
4045        PieceExpr = DIB.createBitPieceExpression(Start, Size);
4046      }
4047
4048      // Remove any existing dbg.declare intrinsic describing the same alloca.
4049      if (DbgDeclareInst *OldDDI = FindAllocaDbgDeclare(Piece.Alloca))
4050        OldDDI->eraseFromParent();
4051
4052      DIB.insertDeclare(Piece.Alloca, Var, PieceExpr, DbgDecl->getDebugLoc(),
4053                        &AI);
4054    }
4055  }
4056  return Changed;
4057}
4058
4059/// \brief Clobber a use with undef, deleting the used value if it becomes dead.
4060void SROA::clobberUse(Use &U) {
4061  Value *OldV = U;
4062  // Replace the use with an undef value.
4063  U = UndefValue::get(OldV->getType());
4064
4065  // Check for this making an instruction dead. We have to garbage collect
4066  // all the dead instructions to ensure the uses of any alloca end up being
4067  // minimal.
4068  if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4069    if (isInstructionTriviallyDead(OldI)) {
4070      DeadInsts.insert(OldI);
4071    }
4072}
4073
4074/// \brief Analyze an alloca for SROA.
4075///
4076/// This analyzes the alloca to ensure we can reason about it, builds
4077/// the slices of the alloca, and then hands it off to be split and
4078/// rewritten as needed.
4079bool SROA::runOnAlloca(AllocaInst &AI) {
4080  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4081  ++NumAllocasAnalyzed;
4082
4083  // Special case dead allocas, as they're trivial.
4084  if (AI.use_empty()) {
4085    AI.eraseFromParent();
4086    return true;
4087  }
4088  const DataLayout &DL = AI.getModule()->getDataLayout();
4089
4090  // Skip alloca forms that this analysis can't handle.
4091  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4092      DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4093    return false;
4094
4095  bool Changed = false;
4096
4097  // First, split any FCA loads and stores touching this alloca to promote
4098  // better splitting and promotion opportunities.
4099  AggLoadStoreRewriter AggRewriter;
4100  Changed |= AggRewriter.rewrite(AI);
4101
4102  // Build the slices using a recursive instruction-visiting builder.
4103  AllocaSlices AS(DL, AI);
4104  DEBUG(AS.print(dbgs()));
4105  if (AS.isEscaped())
4106    return Changed;
4107
4108  // Delete all the dead users of this alloca before splitting and rewriting it.
4109  for (Instruction *DeadUser : AS.getDeadUsers()) {
4110    // Free up everything used by this instruction.
4111    for (Use &DeadOp : DeadUser->operands())
4112      clobberUse(DeadOp);
4113
4114    // Now replace the uses of this instruction.
4115    DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4116
4117    // And mark it for deletion.
4118    DeadInsts.insert(DeadUser);
4119    Changed = true;
4120  }
4121  for (Use *DeadOp : AS.getDeadOperands()) {
4122    clobberUse(*DeadOp);
4123    Changed = true;
4124  }
4125
4126  // No slices to split. Leave the dead alloca for a later pass to clean up.
4127  if (AS.begin() == AS.end())
4128    return Changed;
4129
4130  Changed |= splitAlloca(AI, AS);
4131
4132  DEBUG(dbgs() << "  Speculating PHIs\n");
4133  while (!SpeculatablePHIs.empty())
4134    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4135
4136  DEBUG(dbgs() << "  Speculating Selects\n");
4137  while (!SpeculatableSelects.empty())
4138    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4139
4140  return Changed;
4141}
4142
4143/// \brief Delete the dead instructions accumulated in this run.
4144///
4145/// Recursively deletes the dead instructions we've accumulated. This is done
4146/// at the very end to maximize locality of the recursive delete and to
4147/// minimize the problems of invalidated instruction pointers as such pointers
4148/// are used heavily in the intermediate stages of the algorithm.
4149///
4150/// We also record the alloca instructions deleted here so that they aren't
4151/// subsequently handed to mem2reg to promote.
4152void SROA::deleteDeadInstructions(
4153    SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4154  while (!DeadInsts.empty()) {
4155    Instruction *I = DeadInsts.pop_back_val();
4156    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4157
4158    I->replaceAllUsesWith(UndefValue::get(I->getType()));
4159
4160    for (Use &Operand : I->operands())
4161      if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4162        // Zero out the operand and see if it becomes trivially dead.
4163        Operand = nullptr;
4164        if (isInstructionTriviallyDead(U))
4165          DeadInsts.insert(U);
4166      }
4167
4168    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4169      DeletedAllocas.insert(AI);
4170      if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(AI))
4171        DbgDecl->eraseFromParent();
4172    }
4173
4174    ++NumDeleted;
4175    I->eraseFromParent();
4176  }
4177}
4178
4179/// \brief Promote the allocas, using the best available technique.
4180///
4181/// This attempts to promote whatever allocas have been identified as viable in
4182/// the PromotableAllocas list. If that list is empty, there is nothing to do.
4183/// This function returns whether any promotion occurred.
4184bool SROA::promoteAllocas(Function &F) {
4185  if (PromotableAllocas.empty())
4186    return false;
4187
4188  NumPromoted += PromotableAllocas.size();
4189
4190  DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4191  PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC);
4192  PromotableAllocas.clear();
4193  return true;
4194}
4195
4196PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4197                                AssumptionCache &RunAC) {
4198  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4199  C = &F.getContext();
4200  DT = &RunDT;
4201  AC = &RunAC;
4202
4203  BasicBlock &EntryBB = F.getEntryBlock();
4204  for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4205       I != E; ++I) {
4206    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4207      Worklist.insert(AI);
4208  }
4209
4210  bool Changed = false;
4211  // A set of deleted alloca instruction pointers which should be removed from
4212  // the list of promotable allocas.
4213  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4214
4215  do {
4216    while (!Worklist.empty()) {
4217      Changed |= runOnAlloca(*Worklist.pop_back_val());
4218      deleteDeadInstructions(DeletedAllocas);
4219
4220      // Remove the deleted allocas from various lists so that we don't try to
4221      // continue processing them.
4222      if (!DeletedAllocas.empty()) {
4223        auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4224        Worklist.remove_if(IsInSet);
4225        PostPromotionWorklist.remove_if(IsInSet);
4226        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
4227                                               PromotableAllocas.end(),
4228                                               IsInSet),
4229                                PromotableAllocas.end());
4230        DeletedAllocas.clear();
4231      }
4232    }
4233
4234    Changed |= promoteAllocas(F);
4235
4236    Worklist = PostPromotionWorklist;
4237    PostPromotionWorklist.clear();
4238  } while (!Worklist.empty());
4239
4240  // FIXME: Even when promoting allocas we should preserve some abstract set of
4241  // CFG-specific analyses.
4242  return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
4243}
4244
4245PreservedAnalyses SROA::run(Function &F, AnalysisManager<Function> *AM) {
4246  return runImpl(F, AM->getResult<DominatorTreeAnalysis>(F),
4247                 AM->getResult<AssumptionAnalysis>(F));
4248}
4249
4250/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4251///
4252/// This is in the llvm namespace purely to allow it to be a friend of the \c
4253/// SROA pass.
4254class llvm::sroa::SROALegacyPass : public FunctionPass {
4255  /// The SROA implementation.
4256  SROA Impl;
4257
4258public:
4259  SROALegacyPass() : FunctionPass(ID) {
4260    initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4261  }
4262  bool runOnFunction(Function &F) override {
4263    if (skipOptnoneFunction(F))
4264      return false;
4265
4266    auto PA = Impl.runImpl(
4267        F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4268        getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4269    return !PA.areAllPreserved();
4270  }
4271  void getAnalysisUsage(AnalysisUsage &AU) const override {
4272    AU.addRequired<AssumptionCacheTracker>();
4273    AU.addRequired<DominatorTreeWrapperPass>();
4274    AU.addPreserved<GlobalsAAWrapperPass>();
4275    AU.setPreservesCFG();
4276  }
4277
4278  const char *getPassName() const override { return "SROA"; }
4279  static char ID;
4280};
4281
4282char SROALegacyPass::ID = 0;
4283
4284FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4285
4286INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4287                      "Scalar Replacement Of Aggregates", false, false)
4288INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4289INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4290INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4291                    false, false)
4292