nv50_program.c revision 152b3bd6ef70b74e2df50ff555cfacb5423ebf17
1/*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23#include "pipe/p_context.h"
24#include "pipe/p_defines.h"
25#include "pipe/p_state.h"
26#include "pipe/p_inlines.h"
27
28#include "pipe/p_shader_tokens.h"
29#include "tgsi/tgsi_parse.h"
30#include "tgsi/tgsi_util.h"
31
32#include "nv50_context.h"
33
34#define NV50_SU_MAX_TEMP 127
35#define NV50_SU_MAX_ADDR 4
36//#define NV50_PROGRAM_DUMP
37
38/* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40/* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * 	- Fuck it off, introduce a way to negate args for ops that
44 * 	  support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * 	- Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * 	  but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * 	ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * 	FP attr/result assignment - how?
61 * 		attrib
62 * 			- 0x16bc maps vp output onto fp hpos
63 * 			- 0x16c0 maps vp output onto fp col0
64 * 		result
65 * 			- colr always 0-3
66 * 			- depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * 	      "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * 	- 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * 	- XX == FP high something
78 */
79struct nv50_reg {
80	enum {
81		P_TEMP,
82		P_ATTR,
83		P_RESULT,
84		P_CONST,
85		P_IMMD,
86		P_ADDR
87	} type;
88	int index;
89
90	int hw;
91	int mod;
92
93	int rhw; /* result hw for FP outputs, or interpolant index */
94	int acc; /* instruction where this reg is last read (first insn == 1) */
95};
96
97#define NV50_MOD_NEG 1
98#define NV50_MOD_ABS 2
99#define NV50_MOD_NEG_ABS (NV50_MOD_NEG | NV50_MOD_ABS)
100#define NV50_MOD_SAT 4
101#define NV50_MOD_I32 8
102
103/* NV50_MOD_I32 is used to indicate integer mode for neg/abs */
104
105/* STACK: Conditionals and loops have to use the (per warp) stack.
106 * Stack entries consist of an entry type (divergent path, join at),
107 * a mask indicating the active threads of the warp, and an address.
108 * MPs can store 12 stack entries internally, if we need more (and
109 * we probably do), we have to create a stack buffer in VRAM.
110 */
111/* impose low limits for now */
112#define NV50_MAX_COND_NESTING 4
113#define NV50_MAX_LOOP_NESTING 3
114
115#define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2
116
117struct nv50_pc {
118	struct nv50_program *p;
119
120	/* hw resources */
121	struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
122	struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
123
124	/* tgsi resources */
125	struct nv50_reg *temp;
126	int temp_nr;
127	struct nv50_reg *attr;
128	int attr_nr;
129	struct nv50_reg *result;
130	int result_nr;
131	struct nv50_reg *param;
132	int param_nr;
133	struct nv50_reg *immd;
134	uint32_t *immd_buf;
135	int immd_nr;
136	struct nv50_reg **addr;
137	int addr_nr;
138	uint8_t addr_alloc; /* set bit indicates used for TGSI_FILE_ADDRESS */
139
140	struct nv50_reg *temp_temp[16];
141	unsigned temp_temp_nr;
142
143	/* broadcast and destination replacement regs */
144	struct nv50_reg *r_brdc;
145	struct nv50_reg *r_dst[4];
146
147	struct nv50_reg reg_instances[16];
148	unsigned reg_instance_nr;
149
150	unsigned interp_mode[32];
151	/* perspective interpolation registers */
152	struct nv50_reg *iv_p;
153	struct nv50_reg *iv_c;
154
155	struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING];
156	struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING];
157	struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING];
158	int if_lvl, loop_lvl;
159	unsigned loop_pos[NV50_MAX_LOOP_NESTING];
160
161	unsigned *insn_pos; /* actual program offset of each TGSI insn */
162	boolean in_subroutine;
163
164	/* current instruction and total number of insns */
165	unsigned insn_cur;
166	unsigned insn_nr;
167
168	boolean allow32;
169
170	uint8_t edgeflag_out;
171};
172
173static INLINE void
174ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
175{
176	reg->type = type;
177	reg->index = index;
178	reg->hw = hw;
179	reg->mod = 0;
180	reg->rhw = -1;
181	reg->acc = 0;
182}
183
184static INLINE unsigned
185popcnt4(uint32_t val)
186{
187	static const unsigned cnt[16]
188	= { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
189	return cnt[val & 0xf];
190}
191
192static void
193terminate_mbb(struct nv50_pc *pc)
194{
195	int i;
196
197	/* remove records of temporary address register values */
198	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
199		pc->r_addr[i].rhw = -1;
200}
201
202static void
203alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
204{
205	int i = 0;
206
207	if (reg->type == P_RESULT) {
208		if (pc->p->cfg.high_result < (reg->hw + 1))
209			pc->p->cfg.high_result = reg->hw + 1;
210	}
211
212	if (reg->type != P_TEMP)
213		return;
214
215	if (reg->hw >= 0) {
216		/*XXX: do this here too to catch FP temp-as-attr usage..
217		 *     not clean, but works */
218		if (pc->p->cfg.high_temp < (reg->hw + 1))
219			pc->p->cfg.high_temp = reg->hw + 1;
220		return;
221	}
222
223	if (reg->rhw != -1) {
224		/* try to allocate temporary with index rhw first */
225		if (!(pc->r_temp[reg->rhw])) {
226			pc->r_temp[reg->rhw] = reg;
227			reg->hw = reg->rhw;
228			if (pc->p->cfg.high_temp < (reg->rhw + 1))
229				pc->p->cfg.high_temp = reg->rhw + 1;
230			return;
231		}
232		/* make sure we don't get things like $r0 needs to go
233		 * in $r1 and $r1 in $r0
234		 */
235		i = pc->result_nr * 4;
236	}
237
238	for (; i < NV50_SU_MAX_TEMP; i++) {
239		if (!(pc->r_temp[i])) {
240			pc->r_temp[i] = reg;
241			reg->hw = i;
242			if (pc->p->cfg.high_temp < (i + 1))
243				pc->p->cfg.high_temp = i + 1;
244			return;
245		}
246	}
247
248	assert(0);
249}
250
251static INLINE struct nv50_reg *
252reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
253{
254	struct nv50_reg *ri;
255
256	assert(pc->reg_instance_nr < 16);
257	ri = &pc->reg_instances[pc->reg_instance_nr++];
258	if (reg) {
259		alloc_reg(pc, reg);
260		*ri = *reg;
261		reg->mod = 0;
262	}
263	return ri;
264}
265
266/* XXX: For shaders that aren't executed linearly (e.g. shaders that
267 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
268 * lest we risk temp_temps overwriting regs alloc'd "later".
269 */
270static struct nv50_reg *
271alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
272{
273	struct nv50_reg *r;
274	int i;
275
276	if (dst && dst->type == P_TEMP && dst->hw == -1)
277		return dst;
278
279	for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
280		if (!pc->r_temp[i]) {
281			r = MALLOC_STRUCT(nv50_reg);
282			ctor_reg(r, P_TEMP, -1, i);
283			pc->r_temp[i] = r;
284			return r;
285		}
286	}
287
288	assert(0);
289	return NULL;
290}
291
292/* release the hardware resource held by r */
293static void
294release_hw(struct nv50_pc *pc, struct nv50_reg *r)
295{
296	assert(r->type == P_TEMP);
297	if (r->hw == -1)
298		return;
299
300	assert(pc->r_temp[r->hw] == r);
301	pc->r_temp[r->hw] = NULL;
302
303	r->acc = 0;
304	if (r->index == -1)
305		FREE(r);
306}
307
308static void
309free_temp(struct nv50_pc *pc, struct nv50_reg *r)
310{
311	if (r->index == -1) {
312		unsigned hw = r->hw;
313
314		FREE(pc->r_temp[hw]);
315		pc->r_temp[hw] = NULL;
316	}
317}
318
319static int
320alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
321{
322	int i;
323
324	if ((idx + 4) >= NV50_SU_MAX_TEMP)
325		return 1;
326
327	if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
328	    pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
329		return alloc_temp4(pc, dst, idx + 4);
330
331	for (i = 0; i < 4; i++) {
332		dst[i] = MALLOC_STRUCT(nv50_reg);
333		ctor_reg(dst[i], P_TEMP, -1, idx + i);
334		pc->r_temp[idx + i] = dst[i];
335	}
336
337	return 0;
338}
339
340static void
341free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
342{
343	int i;
344
345	for (i = 0; i < 4; i++)
346		free_temp(pc, reg[i]);
347}
348
349static struct nv50_reg *
350temp_temp(struct nv50_pc *pc)
351{
352	if (pc->temp_temp_nr >= 16)
353		assert(0);
354
355	pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
356	return pc->temp_temp[pc->temp_temp_nr++];
357}
358
359static void
360kill_temp_temp(struct nv50_pc *pc)
361{
362	int i;
363
364	for (i = 0; i < pc->temp_temp_nr; i++)
365		free_temp(pc, pc->temp_temp[i]);
366	pc->temp_temp_nr = 0;
367}
368
369static int
370ctor_immd_4u32(struct nv50_pc *pc,
371	       uint32_t x, uint32_t y, uint32_t z, uint32_t w)
372{
373	unsigned size = pc->immd_nr * 4 * sizeof(uint32_t);
374
375	pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t));
376
377	pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
378	pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
379	pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
380	pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
381
382	return pc->immd_nr++;
383}
384
385static INLINE int
386ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w)
387{
388	return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w));
389}
390
391static struct nv50_reg *
392alloc_immd(struct nv50_pc *pc, float f)
393{
394	struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
395	unsigned hw;
396
397	for (hw = 0; hw < pc->immd_nr * 4; hw++)
398		if (pc->immd_buf[hw] == fui(f))
399			break;
400
401	if (hw == pc->immd_nr * 4)
402		hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4;
403
404	ctor_reg(r, P_IMMD, -1, hw);
405	return r;
406}
407
408static struct nv50_program_exec *
409exec(struct nv50_pc *pc)
410{
411	struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
412
413	e->param.index = -1;
414	return e;
415}
416
417static void
418emit(struct nv50_pc *pc, struct nv50_program_exec *e)
419{
420	struct nv50_program *p = pc->p;
421
422	if (p->exec_tail)
423		p->exec_tail->next = e;
424	if (!p->exec_head)
425		p->exec_head = e;
426	p->exec_tail = e;
427	p->exec_size += (e->inst[0] & 1) ? 2 : 1;
428}
429
430static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
431
432static boolean
433is_long(struct nv50_program_exec *e)
434{
435	if (e->inst[0] & 1)
436		return TRUE;
437	return FALSE;
438}
439
440static boolean
441is_immd(struct nv50_program_exec *e)
442{
443	if (is_long(e) && (e->inst[1] & 3) == 3)
444		return TRUE;
445	return FALSE;
446}
447
448static boolean
449is_join(struct nv50_program_exec *e)
450{
451	if (is_long(e) && (e->inst[1] & 3) == 2)
452		return TRUE;
453	return FALSE;
454}
455
456static INLINE void
457set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
458	 struct nv50_program_exec *e)
459{
460	assert(!is_immd(e));
461	set_long(pc, e);
462	e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
463	e->inst[1] |= (pred << 7) | (idx << 12);
464}
465
466static INLINE void
467set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
468	    struct nv50_program_exec *e)
469{
470	set_long(pc, e);
471	e->inst[1] &= ~((0x3 << 4) | (1 << 6));
472	e->inst[1] |= (idx << 4) | (on << 6);
473}
474
475static INLINE void
476set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
477{
478	if (is_long(e))
479		return;
480
481	e->inst[0] |= 1;
482	set_pred(pc, 0xf, 0, e);
483	set_pred_wr(pc, 0, 0, e);
484}
485
486static INLINE void
487set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
488{
489	if (dst->type == P_RESULT) {
490		set_long(pc, e);
491		e->inst[1] |= 0x00000008;
492	}
493
494	alloc_reg(pc, dst);
495	if (dst->hw > 63)
496		set_long(pc, e);
497	e->inst[0] |= (dst->hw << 2);
498}
499
500static INLINE void
501set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
502{
503	set_long(pc, e);
504	/* XXX: can't be predicated - bits overlap; cases where both
505	 * are required should be avoided by using pc->allow32 */
506	set_pred(pc, 0, 0, e);
507	set_pred_wr(pc, 0, 0, e);
508
509	e->inst[1] |= 0x00000002 | 0x00000001;
510	e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16;
511	e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2;
512}
513
514static INLINE void
515set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
516{
517	assert(!(e->inst[0] & 0x0c000000));
518	assert(!(e->inst[1] & 0x00000004));
519
520	e->inst[0] |= (a->hw & 3) << 26;
521	e->inst[1] |= (a->hw >> 2) << 2;
522}
523
524static void
525emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
526		  struct nv50_reg *src0, uint16_t src1_val)
527{
528	struct nv50_program_exec *e = exec(pc);
529
530	e->inst[0] = 0xd0000000 | (src1_val << 9);
531	e->inst[1] = 0x20000000;
532	set_long(pc, e);
533	e->inst[0] |= dst->hw << 2;
534	if (src0) /* otherwise will add to $a0, which is always 0 */
535		set_addr(e, src0);
536
537	emit(pc, e);
538}
539
540static struct nv50_reg *
541alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
542{
543	struct nv50_reg *a_tgsi = NULL, *a = NULL;
544	int i;
545	uint8_t avail = ~pc->addr_alloc;
546
547	if (!ref) {
548		/* allocate for TGSI_FILE_ADDRESS */
549		while (avail) {
550			i = ffs(avail) - 1;
551
552			if (pc->r_addr[i].rhw < 0 ||
553			    pc->r_addr[i].acc != pc->insn_cur) {
554				pc->addr_alloc |= (1 << i);
555
556				pc->r_addr[i].rhw = -1;
557				pc->r_addr[i].index = i;
558				return &pc->r_addr[i];
559			}
560			avail &= ~(1 << i);
561		}
562		assert(0);
563		return NULL;
564	}
565
566	/* Allocate and set an address reg so we can access 'ref'.
567	 *
568	 * If and r_addr->index will be -1 or the hw index the value
569	 * value in rhw is relative to. If rhw < 0, the reg has not
570	 * been initialized or is in use for TGSI_FILE_ADDRESS.
571	 */
572	while (avail) { /* only consider regs that are not TGSI */
573		i = ffs(avail) - 1;
574		avail &= ~(1 << i);
575
576		if ((!a || a->rhw >= 0) && pc->r_addr[i].rhw < 0) {
577			/* prefer an usused reg with low hw index */
578			a = &pc->r_addr[i];
579			continue;
580		}
581		if (!a && pc->r_addr[i].acc != pc->insn_cur)
582			a = &pc->r_addr[i];
583
584		if (ref->hw - pc->r_addr[i].rhw >= 128)
585			continue;
586
587		if ((ref->acc >= 0 && pc->r_addr[i].index < 0) ||
588		    (ref->acc < 0 && pc->r_addr[i].index == ref->index)) {
589			pc->r_addr[i].acc = pc->insn_cur;
590			return &pc->r_addr[i];
591		}
592	}
593	assert(a);
594
595	if (ref->acc < 0)
596		a_tgsi = pc->addr[ref->index];
597
598	emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
599
600	a->rhw = ref->hw & ~0x7f;
601	a->acc = pc->insn_cur;
602	a->index = a_tgsi ? ref->index : -1;
603	return a;
604}
605
606#define INTERP_LINEAR		0
607#define INTERP_FLAT		1
608#define INTERP_PERSPECTIVE	2
609#define INTERP_CENTROID		4
610
611/* interpolant index has been stored in dst->rhw */
612static void
613emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
614		unsigned mode)
615{
616	assert(dst->rhw != -1);
617	struct nv50_program_exec *e = exec(pc);
618
619	e->inst[0] |= 0x80000000;
620	set_dst(pc, dst, e);
621	e->inst[0] |= (dst->rhw << 16);
622
623	if (mode & INTERP_FLAT) {
624		e->inst[0] |= (1 << 8);
625	} else {
626		if (mode & INTERP_PERSPECTIVE) {
627			e->inst[0] |= (1 << 25);
628			alloc_reg(pc, iv);
629			e->inst[0] |= (iv->hw << 9);
630		}
631
632		if (mode & INTERP_CENTROID)
633			e->inst[0] |= (1 << 24);
634	}
635
636	emit(pc, e);
637}
638
639static void
640set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
641	 struct nv50_program_exec *e)
642{
643	set_long(pc, e);
644
645	e->param.index = src->hw & 127;
646	e->param.shift = s;
647	e->param.mask = m << (s % 32);
648
649	if (src->hw > 127)
650		set_addr(e, alloc_addr(pc, src));
651	else
652	if (src->acc < 0) {
653		assert(src->type == P_CONST);
654		set_addr(e, pc->addr[src->index]);
655	}
656
657	e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
658}
659
660/* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */
661static void
662emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
663{
664	struct nv50_program_exec *e = exec(pc);
665
666	e->inst[0] = 0x10000000;
667	if (!pc->allow32)
668		set_long(pc, e);
669
670	set_dst(pc, dst, e);
671
672	if (!is_long(e) && src->type == P_IMMD) {
673		set_immd(pc, src, e);
674		/*XXX: 32-bit, but steals part of "half" reg space - need to
675		 *     catch and handle this case if/when we do half-regs
676		 */
677	} else
678	if (src->type == P_IMMD || src->type == P_CONST) {
679		set_long(pc, e);
680		set_data(pc, src, 0x7f, 9, e);
681		e->inst[1] |= 0x20000000; /* mov from c[] */
682	} else {
683		if (src->type == P_ATTR) {
684			set_long(pc, e);
685			e->inst[1] |= 0x00200000;
686		}
687
688		alloc_reg(pc, src);
689		if (src->hw > 63)
690			set_long(pc, e);
691		e->inst[0] |= (src->hw << 9);
692	}
693
694	if (is_long(e) && !is_immd(e)) {
695		e->inst[1] |= 0x04000000; /* 32-bit */
696		e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
697		if (!(e->inst[1] & 0x20000000))
698			e->inst[1] |= 0x00030000; /* lane mask 2:3 */
699	} else
700		e->inst[0] |= 0x00008000;
701
702	emit(pc, e);
703}
704
705static INLINE void
706emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
707{
708	struct nv50_reg *imm = alloc_immd(pc, f);
709	emit_mov(pc, dst, imm);
710	FREE(imm);
711}
712
713/* Assign the hw of the discarded temporary register src
714 * to the tgsi register dst and free src.
715 */
716static void
717assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
718{
719	assert(src->index == -1 && src->hw != -1);
720
721	if (pc->if_lvl || pc->loop_lvl ||
722	    (dst->type != P_TEMP) ||
723	    (src->hw < pc->result_nr * 4 &&
724	     pc->p->type == PIPE_SHADER_FRAGMENT) ||
725	    pc->p->info.opcode_count[TGSI_OPCODE_CAL] ||
726	    pc->p->info.opcode_count[TGSI_OPCODE_BRA]) {
727
728		emit_mov(pc, dst, src);
729		free_temp(pc, src);
730		return;
731	}
732
733	if (dst->hw != -1)
734		pc->r_temp[dst->hw] = NULL;
735	pc->r_temp[src->hw] = dst;
736	dst->hw = src->hw;
737
738	FREE(src);
739}
740
741static void
742emit_nop(struct nv50_pc *pc)
743{
744	struct nv50_program_exec *e = exec(pc);
745
746	e->inst[0] = 0xf0000000;
747	set_long(pc, e);
748	e->inst[1] = 0xe0000000;
749	emit(pc, e);
750}
751
752static boolean
753check_swap_src_0_1(struct nv50_pc *pc,
754		   struct nv50_reg **s0, struct nv50_reg **s1)
755{
756	struct nv50_reg *src0 = *s0, *src1 = *s1;
757
758	if (src0->type == P_CONST) {
759		if (src1->type != P_CONST) {
760			*s0 = src1;
761			*s1 = src0;
762			return TRUE;
763		}
764	} else
765	if (src1->type == P_ATTR) {
766		if (src0->type != P_ATTR) {
767			*s0 = src1;
768			*s1 = src0;
769			return TRUE;
770		}
771	}
772
773	return FALSE;
774}
775
776static void
777set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
778		     struct nv50_program_exec *e)
779{
780	struct nv50_reg *temp;
781
782	if (src->type != P_TEMP) {
783		temp = temp_temp(pc);
784		emit_mov(pc, temp, src);
785		src = temp;
786	}
787
788	alloc_reg(pc, src);
789	if (src->hw > 63)
790		set_long(pc, e);
791	e->inst[0] |= (src->hw << 9);
792}
793
794static void
795set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
796{
797	if (src->type == P_ATTR) {
798		set_long(pc, e);
799		e->inst[1] |= 0x00200000;
800	} else
801	if (src->type == P_CONST || src->type == P_IMMD) {
802		struct nv50_reg *temp = temp_temp(pc);
803
804		emit_mov(pc, temp, src);
805		src = temp;
806	}
807
808	alloc_reg(pc, src);
809	if (src->hw > 63)
810		set_long(pc, e);
811	e->inst[0] |= (src->hw << 9);
812}
813
814static void
815set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
816{
817	if (src->type == P_ATTR) {
818		struct nv50_reg *temp = temp_temp(pc);
819
820		emit_mov(pc, temp, src);
821		src = temp;
822	} else
823	if (src->type == P_CONST || src->type == P_IMMD) {
824		assert(!(e->inst[0] & 0x00800000));
825		if (e->inst[0] & 0x01000000) {
826			struct nv50_reg *temp = temp_temp(pc);
827
828			emit_mov(pc, temp, src);
829			src = temp;
830		} else {
831			set_data(pc, src, 0x7f, 16, e);
832			e->inst[0] |= 0x00800000;
833		}
834	}
835
836	alloc_reg(pc, src);
837	if (src->hw > 63)
838		set_long(pc, e);
839	e->inst[0] |= ((src->hw & 127) << 16);
840}
841
842static void
843set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
844{
845	set_long(pc, e);
846
847	if (src->type == P_ATTR) {
848		struct nv50_reg *temp = temp_temp(pc);
849
850		emit_mov(pc, temp, src);
851		src = temp;
852	} else
853	if (src->type == P_CONST || src->type == P_IMMD) {
854		assert(!(e->inst[0] & 0x01000000));
855		if (e->inst[0] & 0x00800000) {
856			struct nv50_reg *temp = temp_temp(pc);
857
858			emit_mov(pc, temp, src);
859			src = temp;
860		} else {
861			set_data(pc, src, 0x7f, 32+14, e);
862			e->inst[0] |= 0x01000000;
863		}
864	}
865
866	alloc_reg(pc, src);
867	e->inst[1] |= ((src->hw & 127) << 14);
868}
869
870static void
871emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
872{
873	struct nv50_program_exec *e = exec(pc);
874
875	assert(dst->type == P_TEMP);
876	e->inst[1] = 0x20000000 | (pred << 12);
877	set_long(pc, e);
878	set_dst(pc, dst, e);
879
880	emit(pc, e);
881}
882
883static void
884emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
885{
886	struct nv50_program_exec *e = exec(pc);
887
888	e->inst[0] = 0x000001fc;
889	e->inst[1] = 0xa0000008;
890	set_long(pc, e);
891	set_pred_wr(pc, 1, pred, e);
892	set_src_0_restricted(pc, src, e);
893
894	emit(pc, e);
895}
896
897static void
898emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
899	 struct nv50_reg *src1)
900{
901	struct nv50_program_exec *e = exec(pc);
902
903	e->inst[0] |= 0xc0000000;
904
905	if (!pc->allow32)
906		set_long(pc, e);
907
908	check_swap_src_0_1(pc, &src0, &src1);
909	set_dst(pc, dst, e);
910	set_src_0(pc, src0, e);
911	if (src1->type == P_IMMD && !is_long(e)) {
912		if (src0->mod ^ src1->mod)
913			e->inst[0] |= 0x00008000;
914		set_immd(pc, src1, e);
915	} else {
916		set_src_1(pc, src1, e);
917		if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
918			if (is_long(e))
919				e->inst[1] |= 0x08000000;
920			else
921				e->inst[0] |= 0x00008000;
922		}
923	}
924
925	emit(pc, e);
926}
927
928static void
929emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
930	 struct nv50_reg *src0, struct nv50_reg *src1)
931{
932	struct nv50_program_exec *e = exec(pc);
933
934	e->inst[0] = 0xb0000000;
935
936	alloc_reg(pc, src1);
937	check_swap_src_0_1(pc, &src0, &src1);
938
939	if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
940		set_long(pc, e);
941		e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
942			      ((src1->mod & NV50_MOD_NEG) << 27);
943	}
944
945	set_dst(pc, dst, e);
946	set_src_0(pc, src0, e);
947	if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
948		set_src_2(pc, src1, e);
949	else
950	if (src1->type == P_IMMD)
951		set_immd(pc, src1, e);
952	else
953		set_src_1(pc, src1, e);
954
955	emit(pc, e);
956}
957
958static void
959emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
960	 uint8_t s)
961{
962	struct nv50_program_exec *e = exec(pc);
963
964	set_long(pc, e);
965	e->inst[1] |= 0xc0000000;
966
967	e->inst[0] |= dst->hw << 2;
968	e->inst[0] |= s << 16; /* shift left */
969	set_src_0_restricted(pc, src, e);
970
971	emit(pc, e);
972}
973
974static void
975emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
976	    struct nv50_reg *src0, struct nv50_reg *src1)
977{
978	struct nv50_program_exec *e = exec(pc);
979
980	set_long(pc, e);
981	e->inst[0] |= 0xb0000000;
982	e->inst[1] |= (sub << 29);
983
984	check_swap_src_0_1(pc, &src0, &src1);
985	set_dst(pc, dst, e);
986	set_src_0(pc, src0, e);
987	set_src_1(pc, src1, e);
988
989	if (src0->mod & NV50_MOD_ABS)
990		e->inst[1] |= 0x00100000;
991	if (src1->mod & NV50_MOD_ABS)
992		e->inst[1] |= 0x00080000;
993
994	emit(pc, e);
995}
996
997static INLINE void
998emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
999	 struct nv50_reg *src1)
1000{
1001	src1->mod ^= NV50_MOD_NEG;
1002	emit_add(pc, dst, src0, src1);
1003	src1->mod ^= NV50_MOD_NEG;
1004}
1005
1006static void
1007emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1008	    struct nv50_reg *src1, unsigned op)
1009{
1010	struct nv50_program_exec *e = exec(pc);
1011
1012	e->inst[0] = 0xd0000000;
1013	set_long(pc, e);
1014
1015	check_swap_src_0_1(pc, &src0, &src1);
1016	set_dst(pc, dst, e);
1017	set_src_0(pc, src0, e);
1018
1019	if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
1020	    op != TGSI_OPCODE_XOR)
1021		assert(!"invalid bit op");
1022
1023	assert(!(src0->mod | src1->mod));
1024
1025	if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
1026		set_immd(pc, src1, e);
1027		if (op == TGSI_OPCODE_OR)
1028			e->inst[0] |= 0x0100;
1029		else
1030		if (op == TGSI_OPCODE_XOR)
1031			e->inst[0] |= 0x8000;
1032	} else {
1033		set_src_1(pc, src1, e);
1034		e->inst[1] |= 0x04000000; /* 32 bit */
1035		if (op == TGSI_OPCODE_OR)
1036			e->inst[1] |= 0x4000;
1037		else
1038		if (op == TGSI_OPCODE_XOR)
1039			e->inst[1] |= 0x8000;
1040	}
1041
1042	emit(pc, e);
1043}
1044
1045static void
1046emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1047	 struct nv50_reg *src1, struct nv50_reg *src2)
1048{
1049	struct nv50_program_exec *e = exec(pc);
1050
1051	e->inst[0] |= 0xe0000000;
1052
1053	check_swap_src_0_1(pc, &src0, &src1);
1054	set_dst(pc, dst, e);
1055	set_src_0(pc, src0, e);
1056	set_src_1(pc, src1, e);
1057	set_src_2(pc, src2, e);
1058
1059	if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
1060		e->inst[1] |= 0x04000000;
1061	if (src2->mod & NV50_MOD_NEG)
1062		e->inst[1] |= 0x08000000;
1063
1064	emit(pc, e);
1065}
1066
1067static INLINE void
1068emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1069	 struct nv50_reg *src1, struct nv50_reg *src2)
1070{
1071	src2->mod ^= NV50_MOD_NEG;
1072	emit_mad(pc, dst, src0, src1, src2);
1073	src2->mod ^= NV50_MOD_NEG;
1074}
1075
1076#define NV50_FLOP_RCP 0
1077#define NV50_FLOP_RSQ 2
1078#define NV50_FLOP_LG2 3
1079#define NV50_FLOP_SIN 4
1080#define NV50_FLOP_COS 5
1081#define NV50_FLOP_EX2 6
1082
1083/* rcp, rsqrt, lg2 support neg and abs */
1084static void
1085emit_flop(struct nv50_pc *pc, unsigned sub,
1086	  struct nv50_reg *dst, struct nv50_reg *src)
1087{
1088	struct nv50_program_exec *e = exec(pc);
1089
1090	e->inst[0] |= 0x90000000;
1091	if (sub || src->mod) {
1092		set_long(pc, e);
1093		e->inst[1] |= (sub << 29);
1094	}
1095
1096	set_dst(pc, dst, e);
1097	set_src_0_restricted(pc, src, e);
1098
1099	assert(!src->mod || sub < 4);
1100
1101	if (src->mod & NV50_MOD_NEG)
1102		e->inst[1] |= 0x04000000;
1103	if (src->mod & NV50_MOD_ABS)
1104		e->inst[1] |= 0x00100000;
1105
1106	emit(pc, e);
1107}
1108
1109static void
1110emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1111{
1112	struct nv50_program_exec *e = exec(pc);
1113
1114	e->inst[0] |= 0xb0000000;
1115
1116	set_dst(pc, dst, e);
1117	set_src_0(pc, src, e);
1118	set_long(pc, e);
1119	e->inst[1] |= (6 << 29) | 0x00004000;
1120
1121	if (src->mod & NV50_MOD_NEG)
1122		e->inst[1] |= 0x04000000;
1123	if (src->mod & NV50_MOD_ABS)
1124		e->inst[1] |= 0x00100000;
1125
1126	emit(pc, e);
1127}
1128
1129static void
1130emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1131{
1132	struct nv50_program_exec *e = exec(pc);
1133
1134	e->inst[0] |= 0xb0000000;
1135
1136	set_dst(pc, dst, e);
1137	set_src_0(pc, src, e);
1138	set_long(pc, e);
1139	e->inst[1] |= (6 << 29);
1140
1141	if (src->mod & NV50_MOD_NEG)
1142		e->inst[1] |= 0x04000000;
1143	if (src->mod & NV50_MOD_ABS)
1144		e->inst[1] |= 0x00100000;
1145
1146	emit(pc, e);
1147}
1148
1149#define CVT_RN    (0x00 << 16)
1150#define CVT_FLOOR (0x02 << 16)
1151#define CVT_CEIL  (0x04 << 16)
1152#define CVT_TRUNC (0x06 << 16)
1153#define CVT_SAT   (0x08 << 16)
1154#define CVT_ABS   (0x10 << 16)
1155
1156#define CVT_X32_X32 0x04004000
1157#define CVT_X32_S32 0x04014000
1158#define CVT_F32_F32 ((0xc0 << 24) | CVT_X32_X32)
1159#define CVT_S32_F32 ((0x88 << 24) | CVT_X32_X32)
1160#define CVT_U32_F32 ((0x80 << 24) | CVT_X32_X32)
1161#define CVT_F32_S32 ((0x40 << 24) | CVT_X32_S32)
1162#define CVT_F32_U32 ((0x40 << 24) | CVT_X32_X32)
1163#define CVT_S32_S32 ((0x08 << 24) | CVT_X32_S32)
1164#define CVT_S32_U32 ((0x08 << 24) | CVT_X32_X32)
1165#define CVT_U32_S32 ((0x00 << 24) | CVT_X32_S32)
1166
1167#define CVT_NEG 0x20000000
1168#define CVT_RI  0x08000000
1169
1170static void
1171emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
1172	 int wp, uint32_t cvn)
1173{
1174	struct nv50_program_exec *e;
1175
1176	e = exec(pc);
1177
1178	if (src->mod & NV50_MOD_NEG) cvn |= CVT_NEG;
1179	if (src->mod & NV50_MOD_ABS) cvn |= CVT_ABS;
1180
1181	e->inst[0] = 0xa0000000;
1182	e->inst[1] = cvn;
1183	set_long(pc, e);
1184	set_src_0(pc, src, e);
1185
1186	if (wp >= 0)
1187		set_pred_wr(pc, 1, wp, e);
1188
1189	if (dst)
1190		set_dst(pc, dst, e);
1191	else {
1192		e->inst[0] |= 0x000001fc;
1193		e->inst[1] |= 0x00000008;
1194	}
1195
1196	emit(pc, e);
1197}
1198
1199/* nv50 Condition codes:
1200 *  0x1 = LT
1201 *  0x2 = EQ
1202 *  0x3 = LE
1203 *  0x4 = GT
1204 *  0x5 = NE
1205 *  0x6 = GE
1206 *  0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1207 *  0x8 = unordered bit (allows NaN)
1208 */
1209static void
1210emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1211	 struct nv50_reg *src0, struct nv50_reg *src1)
1212{
1213	static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1214
1215	struct nv50_program_exec *e = exec(pc);
1216	struct nv50_reg *rdst;
1217
1218	assert(ccode < 16);
1219	if (check_swap_src_0_1(pc, &src0, &src1))
1220		ccode = cc_swapped[ccode & 7] | (ccode & 8);
1221
1222	rdst = dst;
1223	if (dst && dst->type != P_TEMP)
1224		dst = alloc_temp(pc, NULL);
1225
1226	/* set.u32 */
1227	set_long(pc, e);
1228	e->inst[0] |= 0xb0000000;
1229	e->inst[1] |= 0x60000000 | (ccode << 14);
1230
1231	/* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
1232	 * that doesn't seem to match what the hw actually does
1233	e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
1234	 */
1235
1236	if (wp >= 0)
1237		set_pred_wr(pc, 1, wp, e);
1238	if (dst)
1239		set_dst(pc, dst, e);
1240	else {
1241		e->inst[0] |= 0x000001fc;
1242		e->inst[1] |= 0x00000008;
1243	}
1244
1245	set_src_0(pc, src0, e);
1246	set_src_1(pc, src1, e);
1247
1248	emit(pc, e);
1249
1250	/* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
1251	if (rdst)
1252		emit_cvt(pc, rdst, dst, -1, CVT_ABS | CVT_F32_S32);
1253	if (rdst && rdst != dst)
1254		free_temp(pc, dst);
1255}
1256
1257static INLINE unsigned
1258map_tgsi_setop_cc(unsigned op)
1259{
1260	switch (op) {
1261	case TGSI_OPCODE_SLT: return 0x1;
1262	case TGSI_OPCODE_SGE: return 0x6;
1263	case TGSI_OPCODE_SEQ: return 0x2;
1264	case TGSI_OPCODE_SGT: return 0x4;
1265	case TGSI_OPCODE_SLE: return 0x3;
1266	case TGSI_OPCODE_SNE: return 0xd;
1267	default:
1268		assert(0);
1269		return 0;
1270	}
1271}
1272
1273static INLINE void
1274emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1275{
1276	emit_cvt(pc, dst, src, -1, CVT_FLOOR | CVT_F32_F32 | CVT_RI);
1277}
1278
1279static void
1280emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1281	 struct nv50_reg *v, struct nv50_reg *e)
1282{
1283	struct nv50_reg *temp = alloc_temp(pc, NULL);
1284
1285	emit_flop(pc, NV50_FLOP_LG2, temp, v);
1286	emit_mul(pc, temp, temp, e);
1287	emit_preex2(pc, temp, temp);
1288	emit_flop(pc, NV50_FLOP_EX2, dst, temp);
1289
1290	free_temp(pc, temp);
1291}
1292
1293static INLINE void
1294emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1295{
1296	emit_cvt(pc, dst, src, -1, CVT_SAT | CVT_F32_F32);
1297}
1298
1299static void
1300emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1301	 struct nv50_reg **src)
1302{
1303	struct nv50_reg *one = alloc_immd(pc, 1.0);
1304	struct nv50_reg *zero = alloc_immd(pc, 0.0);
1305	struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1306	struct nv50_reg *pos128 = alloc_immd(pc,  127.999999);
1307	struct nv50_reg *tmp[4];
1308	boolean allow32 = pc->allow32;
1309
1310	pc->allow32 = FALSE;
1311
1312	if (mask & (3 << 1)) {
1313		tmp[0] = alloc_temp(pc, NULL);
1314		emit_minmax(pc, 4, tmp[0], src[0], zero);
1315	}
1316
1317	if (mask & (1 << 2)) {
1318		set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1319
1320		tmp[1] = temp_temp(pc);
1321		emit_minmax(pc, 4, tmp[1], src[1], zero);
1322
1323		tmp[3] = temp_temp(pc);
1324		emit_minmax(pc, 4, tmp[3], src[3], neg128);
1325		emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1326
1327		emit_pow(pc, dst[2], tmp[1], tmp[3]);
1328		emit_mov(pc, dst[2], zero);
1329		set_pred(pc, 3, 0, pc->p->exec_tail);
1330	}
1331
1332	if (mask & (1 << 1))
1333		assimilate_temp(pc, dst[1], tmp[0]);
1334	else
1335	if (mask & (1 << 2))
1336		free_temp(pc, tmp[0]);
1337
1338	pc->allow32 = allow32;
1339
1340	/* do this last, in case src[i,j] == dst[0,3] */
1341	if (mask & (1 << 0))
1342		emit_mov(pc, dst[0], one);
1343
1344	if (mask & (1 << 3))
1345		emit_mov(pc, dst[3], one);
1346
1347	FREE(pos128);
1348	FREE(neg128);
1349	FREE(zero);
1350	FREE(one);
1351}
1352
1353static void
1354emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1355{
1356	struct nv50_program_exec *e;
1357	const int r_pred = 1;
1358
1359	e = exec(pc);
1360	e->inst[0] = 0x00000002; /* discard */
1361	set_long(pc, e); /* sets cond code to ALWAYS */
1362
1363	if (src) {
1364		set_pred(pc, 0x1 /* cc = LT */, r_pred, e);
1365		/* write to predicate reg */
1366		emit_cvt(pc, NULL, src, r_pred, CVT_F32_F32);
1367	}
1368
1369	emit(pc, e);
1370}
1371
1372static struct nv50_program_exec *
1373emit_control_flow(struct nv50_pc *pc, unsigned op, int pred, unsigned cc)
1374{
1375	struct nv50_program_exec *e = exec(pc);
1376
1377	e->inst[0] = (op << 28) | 2;
1378	set_long(pc, e);
1379	if (pred >= 0)
1380		set_pred(pc, cc, pred, e);
1381
1382	emit(pc, e);
1383	return e;
1384}
1385
1386static INLINE struct nv50_program_exec *
1387emit_breakaddr(struct nv50_pc *pc)
1388{
1389	return emit_control_flow(pc, 0x4, -1, 0);
1390}
1391
1392static INLINE void
1393emit_break(struct nv50_pc *pc, int pred, unsigned cc)
1394{
1395	emit_control_flow(pc, 0x5, pred, cc);
1396}
1397
1398static INLINE struct nv50_program_exec *
1399emit_joinat(struct nv50_pc *pc)
1400{
1401	return emit_control_flow(pc, 0xa, -1, 0);
1402}
1403
1404static INLINE struct nv50_program_exec *
1405emit_branch(struct nv50_pc *pc, int pred, unsigned cc)
1406{
1407	return emit_control_flow(pc, 0x1, pred, cc);
1408}
1409
1410static INLINE struct nv50_program_exec *
1411emit_call(struct nv50_pc *pc, int pred, unsigned cc)
1412{
1413	return emit_control_flow(pc, 0x2, pred, cc);
1414}
1415
1416static INLINE void
1417emit_ret(struct nv50_pc *pc, int pred, unsigned cc)
1418{
1419	emit_control_flow(pc, 0x3, pred, cc);
1420}
1421
1422#define QOP_ADD 0
1423#define QOP_SUBR 1
1424#define QOP_SUB 2
1425#define QOP_MOV_SRC1 3
1426
1427/* For a quad of threads / top left, top right, bottom left, bottom right
1428 * pixels, do a different operation, and take src0 from a specific thread.
1429 */
1430static void
1431emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
1432	    struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
1433{
1434       struct nv50_program_exec *e = exec(pc);
1435
1436       e->inst[0] = 0xc0000000;
1437       e->inst[1] = 0x80000000;
1438       set_long(pc, e);
1439       e->inst[0] |= lane_src0 << 16;
1440       set_src_0(pc, src0, e);
1441       set_src_2(pc, src1, e);
1442
1443       if (wp >= 0)
1444	       set_pred_wr(pc, 1, wp, e);
1445
1446       if (dst)
1447	       set_dst(pc, dst, e);
1448       else {
1449	       e->inst[0] |= 0x000001fc;
1450	       e->inst[1] |= 0x00000008;
1451       }
1452
1453       e->inst[0] |= (qop & 3) << 20;
1454       e->inst[1] |= (qop >> 2) << 22;
1455
1456       emit(pc, e);
1457}
1458
1459static void
1460load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1461		     struct nv50_reg **src, unsigned arg, boolean proj)
1462{
1463	int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
1464
1465	src[0]->mod |= NV50_MOD_ABS;
1466	src[1]->mod |= NV50_MOD_ABS;
1467	src[2]->mod |= NV50_MOD_ABS;
1468
1469	emit_minmax(pc, 4, t[2], src[0], src[1]);
1470	emit_minmax(pc, 4, t[2], src[2], t[2]);
1471
1472	src[0]->mod = mod[0];
1473	src[1]->mod = mod[1];
1474	src[2]->mod = mod[2];
1475
1476	if (proj && 0 /* looks more correct without this */)
1477		emit_mul(pc, t[2], t[2], src[3]);
1478	else
1479	if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
1480		emit_mov(pc, t[3], src[3]);
1481
1482	emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]);
1483
1484	emit_mul(pc, t[0], src[0], t[2]);
1485	emit_mul(pc, t[1], src[1], t[2]);
1486	emit_mul(pc, t[2], src[2], t[2]);
1487}
1488
1489static void
1490load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1491		     struct nv50_reg **src, unsigned dim, unsigned arg)
1492{
1493	unsigned c, mode;
1494
1495	if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1496		mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
1497
1498		t[3]->rhw = src[3]->rhw;
1499		emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1500		emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]);
1501
1502		for (c = 0; c < dim; ++c) {
1503			t[c]->rhw = src[c]->rhw;
1504			emit_interp(pc, t[c], t[3], mode);
1505		}
1506		if (arg != dim) { /* depth reference value */
1507			t[dim]->rhw = src[2]->rhw;
1508			emit_interp(pc, t[dim], t[3], mode);
1509		}
1510	} else {
1511		/* XXX: for some reason the blob sometimes uses MAD
1512		 * (mad f32 $rX $rY $rZ neg $r63)
1513		 */
1514		emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]);
1515		for (c = 0; c < dim; ++c)
1516			emit_mul(pc, t[c], src[c], t[3]);
1517		if (arg != dim) /* depth reference value */
1518			emit_mul(pc, t[dim], src[2], t[3]);
1519	}
1520}
1521
1522static INLINE void
1523get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
1524{
1525	switch (type) {
1526	case TGSI_TEXTURE_1D:
1527		*arg = *dim = 1;
1528		break;
1529	case TGSI_TEXTURE_SHADOW1D:
1530		*dim = 1;
1531		*arg = 2;
1532		break;
1533	case TGSI_TEXTURE_UNKNOWN:
1534	case TGSI_TEXTURE_2D:
1535	case TGSI_TEXTURE_RECT:
1536		*arg = *dim = 2;
1537		break;
1538	case TGSI_TEXTURE_SHADOW2D:
1539	case TGSI_TEXTURE_SHADOWRECT:
1540		*dim = 2;
1541		*arg = 3;
1542		break;
1543	case TGSI_TEXTURE_3D:
1544	case TGSI_TEXTURE_CUBE:
1545		*dim = *arg = 3;
1546		break;
1547	default:
1548		assert(0);
1549		break;
1550	}
1551}
1552
1553/* We shouldn't execute TEXLOD if any of the pixels in a quad have
1554 * different LOD values, so branch off groups of equal LOD.
1555 */
1556static void
1557emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
1558		     struct nv50_reg *src, struct nv50_program_exec *tex)
1559{
1560	struct nv50_program_exec *join_at;
1561	unsigned i, target = pc->p->exec_size + 9 * 2;
1562
1563	if (pc->p->type != PIPE_SHADER_FRAGMENT) {
1564		emit(pc, tex);
1565		return;
1566	}
1567	pc->allow32 = FALSE;
1568
1569	/* Subtract lod of each pixel from lod of top left pixel, jump
1570	 * texlod insn if result is 0, then repeat for 2 other pixels.
1571	 */
1572	join_at = emit_joinat(pc);
1573	emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
1574	emit_branch(pc, 0, 2)->param.index = target;
1575
1576	for (i = 1; i < 4; ++i) {
1577		emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
1578		emit_branch(pc, 0, 2)->param.index = target;
1579	}
1580
1581	emit_mov(pc, tlod, src); /* target */
1582	emit(pc, tex); /* texlod */
1583
1584	join_at->param.index = target + 2 * 2;
1585	JOIN_ON(emit_nop(pc)); /* join _after_ tex */
1586}
1587
1588static void
1589emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
1590		      struct nv50_program_exec *tex)
1591{
1592	struct nv50_program_exec *e;
1593	struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
1594	int r_pred = 0;
1595	unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
1596
1597	pc->allow32 = FALSE;
1598	ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
1599
1600	/* Subtract bias value of thread i from bias values of each thread,
1601	 * store result in r_pred, and set bit i in r_bits if result was 0.
1602	 */
1603	assert(arg < 4);
1604	for (i = 0; i < 4; ++i, ++imm_1248.hw) {
1605		emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
1606		emit_mov(pc, r_bits, &imm_1248);
1607		set_pred(pc, 2, r_pred, pc->p->exec_tail);
1608	}
1609	emit_mov_to_pred(pc, r_pred, r_bits);
1610
1611	/* The lanes of a quad are now grouped by the bit in r_pred they have
1612	 * set. Put the input values for TEX into a new register set for each
1613	 * group and execute TEX only for a specific group.
1614	 * We cannot use the same register set for each group because we need
1615	 * the derivatives, which are implicitly calculated, to be correct.
1616	 */
1617	for (i = 1; i < 4; ++i) {
1618		alloc_temp4(pc, t123[i], 0);
1619
1620		for (c = 0; c <= arg; ++c)
1621			emit_mov(pc, t123[i][c], t[c]);
1622
1623		*(e = exec(pc)) = *(tex);
1624		e->inst[0] &= ~0x01fc;
1625		set_dst(pc, t123[i][0], e);
1626		set_pred(pc, cc[i], r_pred, e);
1627		emit(pc, e);
1628	}
1629	/* finally TEX on the original regs (where we kept the input) */
1630	set_pred(pc, cc[0], r_pred, tex);
1631	emit(pc, tex);
1632
1633	/* put the 3 * n other results into regs for lane 0 */
1634	n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
1635	for (i = 1; i < 4; ++i) {
1636		for (c = 0; c < n; ++c) {
1637			emit_mov(pc, t[c], t123[i][c]);
1638			set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
1639		}
1640		free_temp4(pc, t123[i]);
1641	}
1642
1643	emit_nop(pc);
1644	free_temp(pc, r_bits);
1645}
1646
1647static void
1648emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1649	 struct nv50_reg **src, unsigned unit, unsigned type,
1650	 boolean proj, int bias_lod)
1651{
1652	struct nv50_reg *t[4];
1653	struct nv50_program_exec *e;
1654	unsigned c, dim, arg;
1655
1656	/* t[i] must be within a single 128 bit super-reg */
1657	alloc_temp4(pc, t, 0);
1658
1659	e = exec(pc);
1660	e->inst[0] = 0xf0000000;
1661	set_long(pc, e);
1662	set_dst(pc, t[0], e);
1663
1664	/* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
1665	e->inst[0] |= (unit << 9) /* | (unit << 17) */;
1666
1667	/* live flag (don't set if TEX results affect input to another TEX): */
1668	/* e->inst[0] |= 0x00000004; */
1669
1670	get_tex_dim(type, &dim, &arg);
1671
1672	if (type == TGSI_TEXTURE_CUBE) {
1673		e->inst[0] |= 0x08000000;
1674		load_cube_tex_coords(pc, t, src, arg, proj);
1675	} else
1676	if (proj)
1677		load_proj_tex_coords(pc, t, src, dim, arg);
1678	else {
1679		for (c = 0; c < dim; c++)
1680			emit_mov(pc, t[c], src[c]);
1681		if (arg != dim) /* depth reference value (always src.z here) */
1682			emit_mov(pc, t[dim], src[2]);
1683	}
1684
1685	e->inst[0] |= (mask & 0x3) << 25;
1686	e->inst[1] |= (mask & 0xc) << 12;
1687
1688	if (!bias_lod) {
1689		e->inst[0] |= (arg - 1) << 22;
1690		emit(pc, e);
1691	} else
1692	if (bias_lod < 0) {
1693		assert(pc->p->type == PIPE_SHADER_FRAGMENT);
1694		e->inst[0] |= arg << 22;
1695		e->inst[1] |= 0x20000000; /* texbias */
1696		emit_mov(pc, t[arg], src[3]);
1697		emit_texbias_sequence(pc, t, arg, e);
1698	} else {
1699		e->inst[0] |= arg << 22;
1700		e->inst[1] |= 0x40000000; /* texlod */
1701		emit_mov(pc, t[arg], src[3]);
1702		emit_texlod_sequence(pc, t[arg], src[3], e);
1703	}
1704
1705#if 1
1706	c = 0;
1707	if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1708	if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1709	if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1710	if (mask & 8) emit_mov(pc, dst[3], t[c]);
1711
1712	free_temp4(pc, t);
1713#else
1714	/* XXX: if p.e. MUL is used directly after TEX, it would still use
1715	 * the texture coordinates, not the fetched values: latency ? */
1716
1717	for (c = 0; c < 4; c++) {
1718		if (mask & (1 << c))
1719			assimilate_temp(pc, dst[c], t[c]);
1720		else
1721			free_temp(pc, t[c]);
1722	}
1723#endif
1724}
1725
1726static void
1727emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1728{
1729	struct nv50_program_exec *e = exec(pc);
1730
1731	assert(src->type == P_TEMP);
1732
1733	e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000;
1734	e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000;
1735	set_long(pc, e);
1736	set_dst(pc, dst, e);
1737	set_src_0(pc, src, e);
1738	set_src_2(pc, src, e);
1739
1740	emit(pc, e);
1741}
1742
1743static void
1744emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1745{
1746	struct nv50_program_exec *e = exec(pc);
1747
1748	assert(src->type == P_TEMP);
1749
1750	e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000;
1751	e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000;
1752	set_long(pc, e);
1753	set_dst(pc, dst, e);
1754	set_src_0(pc, src, e);
1755	set_src_2(pc, src, e);
1756
1757	emit(pc, e);
1758}
1759
1760static void
1761convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1762{
1763	unsigned q = 0, m = ~0;
1764
1765	assert(!is_long(e));
1766
1767	switch (e->inst[0] >> 28) {
1768	case 0x1:
1769		/* MOV */
1770		q = 0x0403c000;
1771		m = 0xffff7fff;
1772		break;
1773	case 0x8:
1774		/* INTERP (move centroid, perspective and flat bits) */
1775		m = ~0x03000100;
1776		q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1777		q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1778		break;
1779	case 0x9:
1780		/* RCP */
1781		break;
1782	case 0xB:
1783		/* ADD */
1784		m = ~(127 << 16);
1785		q = ((e->inst[0] & (~m)) >> 2);
1786		break;
1787	case 0xC:
1788		/* MUL */
1789		m = ~0x00008000;
1790		q = ((e->inst[0] & (~m)) << 12);
1791		break;
1792	case 0xE:
1793		/* MAD (if src2 == dst) */
1794		q = ((e->inst[0] & 0x1fc) << 12);
1795		break;
1796	default:
1797		assert(0);
1798		break;
1799	}
1800
1801	set_long(pc, e);
1802	pc->p->exec_size++;
1803
1804	e->inst[0] &= m;
1805	e->inst[1] |= q;
1806}
1807
1808/* Some operations support an optional negation flag. */
1809static int
1810get_supported_mods(const struct tgsi_full_instruction *insn, int i)
1811{
1812	switch (insn->Instruction.Opcode) {
1813	case TGSI_OPCODE_ADD:
1814	case TGSI_OPCODE_COS:
1815	case TGSI_OPCODE_DDX:
1816	case TGSI_OPCODE_DDY:
1817	case TGSI_OPCODE_DP3:
1818	case TGSI_OPCODE_DP4:
1819	case TGSI_OPCODE_EX2:
1820	case TGSI_OPCODE_KIL:
1821	case TGSI_OPCODE_LG2:
1822	case TGSI_OPCODE_MAD:
1823	case TGSI_OPCODE_MUL:
1824	case TGSI_OPCODE_POW:
1825	case TGSI_OPCODE_RCP:
1826	case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */
1827	case TGSI_OPCODE_SCS:
1828	case TGSI_OPCODE_SIN:
1829	case TGSI_OPCODE_SUB:
1830		return NV50_MOD_NEG;
1831	case TGSI_OPCODE_MAX:
1832	case TGSI_OPCODE_MIN:
1833	case TGSI_OPCODE_INEG: /* tgsi src sign toggle/set would be stupid */
1834		return NV50_MOD_ABS;
1835	case TGSI_OPCODE_CEIL:
1836	case TGSI_OPCODE_FLR:
1837	case TGSI_OPCODE_TRUNC:
1838		return NV50_MOD_NEG | NV50_MOD_ABS;
1839	case TGSI_OPCODE_F2I:
1840	case TGSI_OPCODE_F2U:
1841	case TGSI_OPCODE_I2F:
1842	case TGSI_OPCODE_U2F:
1843		return NV50_MOD_NEG | NV50_MOD_ABS | NV50_MOD_I32;
1844	default:
1845		return 0;
1846	}
1847}
1848
1849/* Return a read mask for source registers deduced from opcode & write mask. */
1850static unsigned
1851nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1852{
1853	unsigned x, mask = insn->Dst[0].Register.WriteMask;
1854
1855	switch (insn->Instruction.Opcode) {
1856	case TGSI_OPCODE_COS:
1857	case TGSI_OPCODE_SIN:
1858		return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1859	case TGSI_OPCODE_DP3:
1860		return 0x7;
1861	case TGSI_OPCODE_DP4:
1862	case TGSI_OPCODE_DPH:
1863	case TGSI_OPCODE_KIL: /* WriteMask ignored */
1864		return 0xf;
1865	case TGSI_OPCODE_DST:
1866		return mask & (c ? 0xa : 0x6);
1867	case TGSI_OPCODE_EX2:
1868	case TGSI_OPCODE_EXP:
1869	case TGSI_OPCODE_LG2:
1870	case TGSI_OPCODE_LOG:
1871	case TGSI_OPCODE_POW:
1872	case TGSI_OPCODE_RCP:
1873	case TGSI_OPCODE_RSQ:
1874	case TGSI_OPCODE_SCS:
1875		return 0x1;
1876	case TGSI_OPCODE_IF:
1877		return 0x1;
1878	case TGSI_OPCODE_LIT:
1879		return 0xb;
1880	case TGSI_OPCODE_TEX:
1881	case TGSI_OPCODE_TXB:
1882	case TGSI_OPCODE_TXL:
1883	case TGSI_OPCODE_TXP:
1884	{
1885		const struct tgsi_instruction_texture *tex;
1886
1887		assert(insn->Instruction.Texture);
1888		tex = &insn->Texture;
1889
1890		mask = 0x7;
1891		if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
1892		    insn->Instruction.Opcode != TGSI_OPCODE_TXD)
1893			mask |= 0x8; /* bias, lod or proj */
1894
1895		switch (tex->Texture) {
1896		case TGSI_TEXTURE_1D:
1897			mask &= 0x9;
1898			break;
1899		case TGSI_TEXTURE_SHADOW1D:
1900			mask &= 0x5;
1901			break;
1902		case TGSI_TEXTURE_2D:
1903			mask &= 0xb;
1904			break;
1905		default:
1906			break;
1907		}
1908	}
1909		return mask;
1910	case TGSI_OPCODE_XPD:
1911		x = 0;
1912		if (mask & 1) x |= 0x6;
1913		if (mask & 2) x |= 0x5;
1914		if (mask & 4) x |= 0x3;
1915		return x;
1916	default:
1917		break;
1918	}
1919
1920	return mask;
1921}
1922
1923static struct nv50_reg *
1924tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1925{
1926	switch (dst->Register.File) {
1927	case TGSI_FILE_TEMPORARY:
1928		return &pc->temp[dst->Register.Index * 4 + c];
1929	case TGSI_FILE_OUTPUT:
1930		return &pc->result[dst->Register.Index * 4 + c];
1931	case TGSI_FILE_ADDRESS:
1932	{
1933		struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
1934		if (!r) {
1935			r = alloc_addr(pc, NULL);
1936			pc->addr[dst->Register.Index * 4 + c] = r;
1937		}
1938		assert(r);
1939		return r;
1940	}
1941	case TGSI_FILE_NULL:
1942		return NULL;
1943	default:
1944		break;
1945	}
1946
1947	return NULL;
1948}
1949
1950static struct nv50_reg *
1951tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1952	 int mod)
1953{
1954	struct nv50_reg *r = NULL;
1955	struct nv50_reg *temp = NULL;
1956	unsigned sgn, c, swz, cvn;
1957
1958	if (src->Register.File != TGSI_FILE_CONSTANT)
1959		assert(!src->Register.Indirect);
1960
1961	sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1962
1963	c = tgsi_util_get_full_src_register_swizzle(src, chan);
1964	switch (c) {
1965	case TGSI_SWIZZLE_X:
1966	case TGSI_SWIZZLE_Y:
1967	case TGSI_SWIZZLE_Z:
1968	case TGSI_SWIZZLE_W:
1969		switch (src->Register.File) {
1970		case TGSI_FILE_INPUT:
1971			r = &pc->attr[src->Register.Index * 4 + c];
1972			break;
1973		case TGSI_FILE_TEMPORARY:
1974			r = &pc->temp[src->Register.Index * 4 + c];
1975			break;
1976		case TGSI_FILE_CONSTANT:
1977			if (!src->Register.Indirect) {
1978				r = &pc->param[src->Register.Index * 4 + c];
1979				break;
1980			}
1981			/* Indicate indirection by setting r->acc < 0 and
1982			 * use the index field to select the address reg.
1983			 */
1984			r = reg_instance(pc, NULL);
1985			swz = tgsi_util_get_src_register_swizzle(
1986						 &src->Indirect, 0);
1987			ctor_reg(r, P_CONST,
1988				 src->Indirect.Index * 4 + swz,
1989				 src->Register.Index * 4 + c);
1990			r->acc = -1;
1991			break;
1992		case TGSI_FILE_IMMEDIATE:
1993			r = &pc->immd[src->Register.Index * 4 + c];
1994			break;
1995		case TGSI_FILE_SAMPLER:
1996			return NULL;
1997		case TGSI_FILE_ADDRESS:
1998			r = pc->addr[src->Register.Index * 4 + c];
1999			assert(r);
2000			break;
2001		default:
2002			assert(0);
2003			break;
2004		}
2005		break;
2006	default:
2007		assert(0);
2008		break;
2009	}
2010
2011	cvn = (mod & NV50_MOD_I32) ? CVT_S32_S32 : CVT_F32_F32;
2012
2013	switch (sgn) {
2014	case TGSI_UTIL_SIGN_CLEAR:
2015		r->mod = NV50_MOD_ABS;
2016		break;
2017	case TGSI_UTIL_SIGN_SET:
2018		r->mod = NV50_MOD_NEG_ABS;
2019		break;
2020	case TGSI_UTIL_SIGN_TOGGLE:
2021		r->mod = NV50_MOD_NEG;
2022		break;
2023	default:
2024		assert(!r->mod && sgn == TGSI_UTIL_SIGN_KEEP);
2025		break;
2026	}
2027
2028	if ((r->mod & mod) != r->mod) {
2029		temp = temp_temp(pc);
2030		emit_cvt(pc, temp, r, -1, cvn);
2031		r->mod = 0;
2032		r = temp;
2033	} else
2034		r->mod |= mod & NV50_MOD_I32;
2035
2036	assert(r);
2037	if (r->acc >= 0 && r != temp)
2038		return reg_instance(pc, r); /* will clear r->mod */
2039	return r;
2040}
2041
2042/* return TRUE for ops that produce only a single result */
2043static boolean
2044is_scalar_op(unsigned op)
2045{
2046	switch (op) {
2047	case TGSI_OPCODE_COS:
2048	case TGSI_OPCODE_DP2:
2049	case TGSI_OPCODE_DP3:
2050	case TGSI_OPCODE_DP4:
2051	case TGSI_OPCODE_DPH:
2052	case TGSI_OPCODE_EX2:
2053	case TGSI_OPCODE_LG2:
2054	case TGSI_OPCODE_POW:
2055	case TGSI_OPCODE_RCP:
2056	case TGSI_OPCODE_RSQ:
2057	case TGSI_OPCODE_SIN:
2058		/*
2059	case TGSI_OPCODE_KIL:
2060	case TGSI_OPCODE_LIT:
2061	case TGSI_OPCODE_SCS:
2062		*/
2063		return TRUE;
2064	default:
2065		return FALSE;
2066	}
2067}
2068
2069/* Returns a bitmask indicating which dst components depend
2070 * on source s, component c (reverse of nv50_tgsi_src_mask).
2071 */
2072static unsigned
2073nv50_tgsi_dst_revdep(unsigned op, int s, int c)
2074{
2075	if (is_scalar_op(op))
2076		return 0x1;
2077
2078	switch (op) {
2079	case TGSI_OPCODE_DST:
2080		return (1 << c) & (s ? 0xa : 0x6);
2081	case TGSI_OPCODE_XPD:
2082		switch (c) {
2083		case 0: return 0x6;
2084		case 1: return 0x5;
2085		case 2: return 0x3;
2086		case 3: return 0x0;
2087		default:
2088			assert(0);
2089			return 0x0;
2090		}
2091	case TGSI_OPCODE_EXP:
2092	case TGSI_OPCODE_LOG:
2093	case TGSI_OPCODE_LIT:
2094	case TGSI_OPCODE_SCS:
2095	case TGSI_OPCODE_TEX:
2096	case TGSI_OPCODE_TXB:
2097	case TGSI_OPCODE_TXL:
2098	case TGSI_OPCODE_TXP:
2099		/* these take care of dangerous swizzles themselves */
2100		return 0x0;
2101	case TGSI_OPCODE_IF:
2102	case TGSI_OPCODE_KIL:
2103		/* don't call this function for these ops */
2104		assert(0);
2105		return 0;
2106	default:
2107		/* linear vector instruction */
2108		return (1 << c);
2109	}
2110}
2111
2112static INLINE boolean
2113has_pred(struct nv50_program_exec *e, unsigned cc)
2114{
2115	if (!is_long(e) || is_immd(e))
2116		return FALSE;
2117	return ((e->inst[1] & 0x780) == (cc << 7));
2118}
2119
2120/* on ENDIF see if we can do "@p0.neu single_op" instead of:
2121 *        join_at ENDIF
2122 *        @p0.eq bra ENDIF
2123 *        single_op
2124 * ENDIF: nop.join
2125 */
2126static boolean
2127nv50_kill_branch(struct nv50_pc *pc)
2128{
2129	int lvl = pc->if_lvl;
2130
2131	if (pc->if_insn[lvl]->next != pc->p->exec_tail)
2132		return FALSE;
2133	if (is_immd(pc->p->exec_tail))
2134		return FALSE;
2135
2136	/* if ccode == 'true', the BRA is from an ELSE and the predicate
2137	 * reg may no longer be valid, since we currently always use $p0
2138	 */
2139	if (has_pred(pc->if_insn[lvl], 0xf))
2140		return FALSE;
2141	assert(pc->if_insn[lvl] && pc->if_join[lvl]);
2142
2143	/* We'll use the exec allocated for JOIN_AT (we can't easily
2144	 * access nv50_program_exec's prev).
2145	 */
2146	pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
2147
2148	*pc->if_join[lvl] = *pc->p->exec_tail;
2149
2150	FREE(pc->if_insn[lvl]);
2151	FREE(pc->p->exec_tail);
2152
2153	pc->p->exec_tail = pc->if_join[lvl];
2154	pc->p->exec_tail->next = NULL;
2155	set_pred(pc, 0xd, 0, pc->p->exec_tail);
2156
2157	return TRUE;
2158}
2159
2160static void
2161nv50_fp_move_results(struct nv50_pc *pc)
2162{
2163	struct nv50_reg reg;
2164	unsigned i;
2165
2166	ctor_reg(&reg, P_TEMP, -1, -1);
2167
2168	for (i = 0; i < pc->result_nr * 4; ++i) {
2169		if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2170			continue;
2171		if (pc->result[i].rhw != pc->result[i].hw) {
2172			reg.hw = pc->result[i].rhw;
2173			emit_mov(pc, &reg, &pc->result[i]);
2174		}
2175	}
2176}
2177
2178static boolean
2179nv50_program_tx_insn(struct nv50_pc *pc,
2180		     const struct tgsi_full_instruction *inst)
2181{
2182	struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
2183	unsigned mask, sat, unit;
2184	int i, c;
2185
2186	mask = inst->Dst[0].Register.WriteMask;
2187	sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
2188
2189	memset(src, 0, sizeof(src));
2190
2191	for (c = 0; c < 4; c++) {
2192		if ((mask & (1 << c)) && !pc->r_dst[c])
2193			dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
2194		else
2195			dst[c] = pc->r_dst[c];
2196		rdst[c] = dst[c];
2197	}
2198
2199	for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2200		const struct tgsi_full_src_register *fs = &inst->Src[i];
2201		unsigned src_mask;
2202		int mod_supp;
2203
2204		src_mask = nv50_tgsi_src_mask(inst, i);
2205		mod_supp = get_supported_mods(inst, i);
2206
2207		if (fs->Register.File == TGSI_FILE_SAMPLER)
2208			unit = fs->Register.Index;
2209
2210		for (c = 0; c < 4; c++)
2211			if (src_mask & (1 << c))
2212				src[i][c] = tgsi_src(pc, c, fs, mod_supp);
2213	}
2214
2215	brdc = temp = pc->r_brdc;
2216	if (brdc && brdc->type != P_TEMP) {
2217		temp = temp_temp(pc);
2218		if (sat)
2219			brdc = temp;
2220	} else
2221	if (sat) {
2222		for (c = 0; c < 4; c++) {
2223			if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
2224				continue;
2225			/* rdst[c] = dst[c]; */ /* done above */
2226			dst[c] = temp_temp(pc);
2227		}
2228	}
2229
2230	assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
2231
2232	switch (inst->Instruction.Opcode) {
2233	case TGSI_OPCODE_ABS:
2234		for (c = 0; c < 4; c++) {
2235			if (!(mask & (1 << c)))
2236				continue;
2237			emit_cvt(pc, dst[c], src[0][c], -1,
2238				 CVT_ABS | CVT_F32_F32);
2239		}
2240		break;
2241	case TGSI_OPCODE_ADD:
2242		for (c = 0; c < 4; c++) {
2243			if (!(mask & (1 << c)))
2244				continue;
2245			emit_add(pc, dst[c], src[0][c], src[1][c]);
2246		}
2247		break;
2248	case TGSI_OPCODE_AND:
2249	case TGSI_OPCODE_XOR:
2250	case TGSI_OPCODE_OR:
2251		for (c = 0; c < 4; c++) {
2252			if (!(mask & (1 << c)))
2253				continue;
2254			emit_bitop2(pc, dst[c], src[0][c], src[1][c],
2255				    inst->Instruction.Opcode);
2256		}
2257		break;
2258	case TGSI_OPCODE_ARL:
2259		assert(src[0][0]);
2260		temp = temp_temp(pc);
2261		emit_cvt(pc, temp, src[0][0], -1, CVT_FLOOR | CVT_S32_F32);
2262		emit_arl(pc, dst[0], temp, 4);
2263		break;
2264	case TGSI_OPCODE_BGNLOOP:
2265		pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc);
2266		pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
2267		terminate_mbb(pc);
2268		break;
2269	case TGSI_OPCODE_BGNSUB:
2270		assert(!pc->in_subroutine);
2271		pc->in_subroutine = TRUE;
2272		/* probably not necessary, but align to 8 byte boundary */
2273		if (!is_long(pc->p->exec_tail))
2274			convert_to_long(pc, pc->p->exec_tail);
2275		break;
2276	case TGSI_OPCODE_BRK:
2277		assert(pc->loop_lvl > 0);
2278		emit_break(pc, -1, 0);
2279		break;
2280	case TGSI_OPCODE_CAL:
2281		assert(inst->Label.Label < pc->insn_nr);
2282		emit_call(pc, -1, 0)->param.index = inst->Label.Label;
2283		/* replaced by actual offset in nv50_program_fixup_insns */
2284		break;
2285	case TGSI_OPCODE_CEIL:
2286		for (c = 0; c < 4; c++) {
2287			if (!(mask & (1 << c)))
2288				continue;
2289			emit_cvt(pc, dst[c], src[0][c], -1,
2290				 CVT_CEIL | CVT_F32_F32 | CVT_RI);
2291		}
2292		break;
2293	case TGSI_OPCODE_CMP:
2294		pc->allow32 = FALSE;
2295		for (c = 0; c < 4; c++) {
2296			if (!(mask & (1 << c)))
2297				continue;
2298			emit_cvt(pc, NULL, src[0][c], 1, CVT_F32_F32);
2299			emit_mov(pc, dst[c], src[1][c]);
2300			set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
2301			emit_mov(pc, dst[c], src[2][c]);
2302			set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
2303		}
2304		break;
2305	case TGSI_OPCODE_CONT:
2306		assert(pc->loop_lvl > 0);
2307		emit_branch(pc, -1, 0)->param.index =
2308			pc->loop_pos[pc->loop_lvl - 1];
2309		break;
2310	case TGSI_OPCODE_COS:
2311		if (mask & 8) {
2312			emit_precossin(pc, temp, src[0][3]);
2313			emit_flop(pc, NV50_FLOP_COS, dst[3], temp);
2314			if (!(mask &= 7))
2315				break;
2316			if (temp == dst[3])
2317				temp = brdc = temp_temp(pc);
2318		}
2319		emit_precossin(pc, temp, src[0][0]);
2320		emit_flop(pc, NV50_FLOP_COS, brdc, temp);
2321		break;
2322	case TGSI_OPCODE_DDX:
2323		for (c = 0; c < 4; c++) {
2324			if (!(mask & (1 << c)))
2325				continue;
2326			emit_ddx(pc, dst[c], src[0][c]);
2327		}
2328		break;
2329	case TGSI_OPCODE_DDY:
2330		for (c = 0; c < 4; c++) {
2331			if (!(mask & (1 << c)))
2332				continue;
2333			emit_ddy(pc, dst[c], src[0][c]);
2334		}
2335		break;
2336	case TGSI_OPCODE_DP3:
2337		emit_mul(pc, temp, src[0][0], src[1][0]);
2338		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2339		emit_mad(pc, brdc, src[0][2], src[1][2], temp);
2340		break;
2341	case TGSI_OPCODE_DP4:
2342		emit_mul(pc, temp, src[0][0], src[1][0]);
2343		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2344		emit_mad(pc, temp, src[0][2], src[1][2], temp);
2345		emit_mad(pc, brdc, src[0][3], src[1][3], temp);
2346		break;
2347	case TGSI_OPCODE_DPH:
2348		emit_mul(pc, temp, src[0][0], src[1][0]);
2349		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2350		emit_mad(pc, temp, src[0][2], src[1][2], temp);
2351		emit_add(pc, brdc, src[1][3], temp);
2352		break;
2353	case TGSI_OPCODE_DST:
2354		if (mask & (1 << 1))
2355			emit_mul(pc, dst[1], src[0][1], src[1][1]);
2356		if (mask & (1 << 2))
2357			emit_mov(pc, dst[2], src[0][2]);
2358		if (mask & (1 << 3))
2359			emit_mov(pc, dst[3], src[1][3]);
2360		if (mask & (1 << 0))
2361			emit_mov_immdval(pc, dst[0], 1.0f);
2362		break;
2363	case TGSI_OPCODE_ELSE:
2364		emit_branch(pc, -1, 0);
2365		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2366		pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2367		terminate_mbb(pc);
2368		break;
2369	case TGSI_OPCODE_ENDIF:
2370		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2371
2372		/* try to replace branch over 1 insn with a predicated insn */
2373		if (nv50_kill_branch(pc) == TRUE)
2374			break;
2375
2376		if (pc->if_join[pc->if_lvl]) {
2377			pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size;
2378			pc->if_join[pc->if_lvl] = NULL;
2379		}
2380		terminate_mbb(pc);
2381		/* emit a NOP as join point, we could set it on the next
2382		 * one, but would have to make sure it is long and !immd
2383		 */
2384		JOIN_ON(emit_nop(pc));
2385		break;
2386	case TGSI_OPCODE_ENDLOOP:
2387		emit_branch(pc, -1, 0)->param.index =
2388			pc->loop_pos[--pc->loop_lvl];
2389		pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size;
2390		terminate_mbb(pc);
2391		break;
2392	case TGSI_OPCODE_ENDSUB:
2393		assert(pc->in_subroutine);
2394		pc->in_subroutine = FALSE;
2395		break;
2396	case TGSI_OPCODE_EX2:
2397		emit_preex2(pc, temp, src[0][0]);
2398		emit_flop(pc, NV50_FLOP_EX2, brdc, temp);
2399		break;
2400	case TGSI_OPCODE_EXP:
2401	{
2402		struct nv50_reg *t[2];
2403
2404		assert(!temp);
2405		t[0] = temp_temp(pc);
2406		t[1] = temp_temp(pc);
2407
2408		if (mask & 0x6)
2409			emit_mov(pc, t[0], src[0][0]);
2410		if (mask & 0x3)
2411			emit_flr(pc, t[1], src[0][0]);
2412
2413		if (mask & (1 << 1))
2414			emit_sub(pc, dst[1], t[0], t[1]);
2415		if (mask & (1 << 0)) {
2416			emit_preex2(pc, t[1], t[1]);
2417			emit_flop(pc, NV50_FLOP_EX2, dst[0], t[1]);
2418		}
2419		if (mask & (1 << 2)) {
2420			emit_preex2(pc, t[0], t[0]);
2421			emit_flop(pc, NV50_FLOP_EX2, dst[2], t[0]);
2422		}
2423		if (mask & (1 << 3))
2424			emit_mov_immdval(pc, dst[3], 1.0f);
2425	}
2426		break;
2427	case TGSI_OPCODE_F2I:
2428		for (c = 0; c < 4; c++) {
2429			if (!(mask & (1 << c)))
2430				continue;
2431			emit_cvt(pc, dst[c], src[0][c], -1,
2432				 CVT_TRUNC | CVT_S32_F32);
2433		}
2434		break;
2435	case TGSI_OPCODE_F2U:
2436		for (c = 0; c < 4; c++) {
2437			if (!(mask & (1 << c)))
2438				continue;
2439			emit_cvt(pc, dst[c], src[0][c], -1,
2440				 CVT_TRUNC | CVT_U32_F32);
2441		}
2442		break;
2443	case TGSI_OPCODE_FLR:
2444		for (c = 0; c < 4; c++) {
2445			if (!(mask & (1 << c)))
2446				continue;
2447			emit_flr(pc, dst[c], src[0][c]);
2448		}
2449		break;
2450	case TGSI_OPCODE_FRC:
2451		temp = temp_temp(pc);
2452		for (c = 0; c < 4; c++) {
2453			if (!(mask & (1 << c)))
2454				continue;
2455			emit_flr(pc, temp, src[0][c]);
2456			emit_sub(pc, dst[c], src[0][c], temp);
2457		}
2458		break;
2459	case TGSI_OPCODE_I2F:
2460		for (c = 0; c < 4; c++) {
2461			if (!(mask & (1 << c)))
2462				continue;
2463			emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_S32);
2464		}
2465		break;
2466	case TGSI_OPCODE_IF:
2467		assert(pc->if_lvl < NV50_MAX_COND_NESTING);
2468		emit_cvt(pc, NULL, src[0][0], 0, CVT_ABS | CVT_F32_F32);
2469		pc->if_join[pc->if_lvl] = emit_joinat(pc);
2470		pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);;
2471		terminate_mbb(pc);
2472		break;
2473	case TGSI_OPCODE_INEG:
2474		for (c = 0; c < 4; c++) {
2475			if (!(mask & (1 << c)))
2476				continue;
2477			emit_cvt(pc, dst[c], src[0][c], -1,
2478				 CVT_S32_S32 | CVT_NEG);
2479		}
2480		break;
2481	case TGSI_OPCODE_KIL:
2482		assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]);
2483		emit_kil(pc, src[0][0]);
2484		emit_kil(pc, src[0][1]);
2485		emit_kil(pc, src[0][2]);
2486		emit_kil(pc, src[0][3]);
2487		break;
2488	case TGSI_OPCODE_KILP:
2489		emit_kil(pc, NULL);
2490		break;
2491	case TGSI_OPCODE_LIT:
2492		emit_lit(pc, &dst[0], mask, &src[0][0]);
2493		break;
2494	case TGSI_OPCODE_LG2:
2495		emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]);
2496		break;
2497	case TGSI_OPCODE_LOG:
2498	{
2499		struct nv50_reg *t[2];
2500
2501		t[0] = temp_temp(pc);
2502		if (mask & (1 << 1))
2503			t[1] = temp_temp(pc);
2504		else
2505			t[1] = t[0];
2506
2507		emit_cvt(pc, t[0], src[0][0], -1, CVT_ABS | CVT_F32_F32);
2508		emit_flop(pc, NV50_FLOP_LG2, t[1], t[0]);
2509		if (mask & (1 << 2))
2510			emit_mov(pc, dst[2], t[1]);
2511		emit_flr(pc, t[1], t[1]);
2512		if (mask & (1 << 0))
2513			emit_mov(pc, dst[0], t[1]);
2514		if (mask & (1 << 1)) {
2515			t[1]->mod = NV50_MOD_NEG;
2516			emit_preex2(pc, t[1], t[1]);
2517			t[1]->mod = 0;
2518			emit_flop(pc, NV50_FLOP_EX2, t[1], t[1]);
2519			emit_mul(pc, dst[1], t[0], t[1]);
2520		}
2521		if (mask & (1 << 3))
2522			emit_mov_immdval(pc, dst[3], 1.0f);
2523	}
2524		break;
2525	case TGSI_OPCODE_LRP:
2526		temp = temp_temp(pc);
2527		for (c = 0; c < 4; c++) {
2528			if (!(mask & (1 << c)))
2529				continue;
2530			emit_sub(pc, temp, src[1][c], src[2][c]);
2531			emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2532		}
2533		break;
2534	case TGSI_OPCODE_MAD:
2535		for (c = 0; c < 4; c++) {
2536			if (!(mask & (1 << c)))
2537				continue;
2538			emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2539		}
2540		break;
2541	case TGSI_OPCODE_MAX:
2542		for (c = 0; c < 4; c++) {
2543			if (!(mask & (1 << c)))
2544				continue;
2545			emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
2546		}
2547		break;
2548	case TGSI_OPCODE_MIN:
2549		for (c = 0; c < 4; c++) {
2550			if (!(mask & (1 << c)))
2551				continue;
2552			emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
2553		}
2554		break;
2555	case TGSI_OPCODE_MOV:
2556		for (c = 0; c < 4; c++) {
2557			if (!(mask & (1 << c)))
2558				continue;
2559			emit_mov(pc, dst[c], src[0][c]);
2560		}
2561		break;
2562	case TGSI_OPCODE_MUL:
2563		for (c = 0; c < 4; c++) {
2564			if (!(mask & (1 << c)))
2565				continue;
2566			emit_mul(pc, dst[c], src[0][c], src[1][c]);
2567		}
2568		break;
2569	case TGSI_OPCODE_POW:
2570		emit_pow(pc, brdc, src[0][0], src[1][0]);
2571		break;
2572	case TGSI_OPCODE_RCP:
2573		emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]);
2574		break;
2575	case TGSI_OPCODE_RET:
2576		if (pc->p->type == PIPE_SHADER_FRAGMENT && !pc->in_subroutine)
2577			nv50_fp_move_results(pc);
2578		emit_ret(pc, -1, 0);
2579		break;
2580	case TGSI_OPCODE_RSQ:
2581		src[0][0]->mod |= NV50_MOD_ABS;
2582		emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]);
2583		break;
2584	case TGSI_OPCODE_SCS:
2585		temp = temp_temp(pc);
2586		if (mask & 3)
2587			emit_precossin(pc, temp, src[0][0]);
2588		if (mask & (1 << 0))
2589			emit_flop(pc, NV50_FLOP_COS, dst[0], temp);
2590		if (mask & (1 << 1))
2591			emit_flop(pc, NV50_FLOP_SIN, dst[1], temp);
2592		if (mask & (1 << 2))
2593			emit_mov_immdval(pc, dst[2], 0.0);
2594		if (mask & (1 << 3))
2595			emit_mov_immdval(pc, dst[3], 1.0);
2596		break;
2597	case TGSI_OPCODE_SIN:
2598		if (mask & 8) {
2599			emit_precossin(pc, temp, src[0][3]);
2600			emit_flop(pc, NV50_FLOP_SIN, dst[3], temp);
2601			if (!(mask &= 7))
2602				break;
2603			if (temp == dst[3])
2604				temp = brdc = temp_temp(pc);
2605		}
2606		emit_precossin(pc, temp, src[0][0]);
2607		emit_flop(pc, NV50_FLOP_SIN, brdc, temp);
2608		break;
2609	case TGSI_OPCODE_SLT:
2610	case TGSI_OPCODE_SGE:
2611	case TGSI_OPCODE_SEQ:
2612	case TGSI_OPCODE_SGT:
2613	case TGSI_OPCODE_SLE:
2614	case TGSI_OPCODE_SNE:
2615		i = map_tgsi_setop_cc(inst->Instruction.Opcode);
2616		for (c = 0; c < 4; c++) {
2617			if (!(mask & (1 << c)))
2618				continue;
2619			emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
2620		}
2621		break;
2622	case TGSI_OPCODE_SUB:
2623		for (c = 0; c < 4; c++) {
2624			if (!(mask & (1 << c)))
2625				continue;
2626			emit_sub(pc, dst[c], src[0][c], src[1][c]);
2627		}
2628		break;
2629	case TGSI_OPCODE_TEX:
2630		emit_tex(pc, dst, mask, src[0], unit,
2631			 inst->Texture.Texture, FALSE, 0);
2632		break;
2633	case TGSI_OPCODE_TXB:
2634		emit_tex(pc, dst, mask, src[0], unit,
2635			 inst->Texture.Texture, FALSE, -1);
2636		break;
2637	case TGSI_OPCODE_TXL:
2638		emit_tex(pc, dst, mask, src[0], unit,
2639			 inst->Texture.Texture, FALSE, 1);
2640		break;
2641	case TGSI_OPCODE_TXP:
2642		emit_tex(pc, dst, mask, src[0], unit,
2643			 inst->Texture.Texture, TRUE, 0);
2644		break;
2645	case TGSI_OPCODE_TRUNC:
2646		for (c = 0; c < 4; c++) {
2647			if (!(mask & (1 << c)))
2648				continue;
2649			emit_cvt(pc, dst[c], src[0][c], -1,
2650				 CVT_TRUNC | CVT_F32_F32 | CVT_RI);
2651		}
2652		break;
2653	case TGSI_OPCODE_U2F:
2654		for (c = 0; c < 4; c++) {
2655			if (!(mask & (1 << c)))
2656				continue;
2657			emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_U32);
2658		}
2659		break;
2660	case TGSI_OPCODE_XPD:
2661		temp = temp_temp(pc);
2662		if (mask & (1 << 0)) {
2663			emit_mul(pc, temp, src[0][2], src[1][1]);
2664			emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2665		}
2666		if (mask & (1 << 1)) {
2667			emit_mul(pc, temp, src[0][0], src[1][2]);
2668			emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2669		}
2670		if (mask & (1 << 2)) {
2671			emit_mul(pc, temp, src[0][1], src[1][0]);
2672			emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2673		}
2674		if (mask & (1 << 3))
2675			emit_mov_immdval(pc, dst[3], 1.0);
2676		break;
2677	case TGSI_OPCODE_END:
2678		if (pc->p->type == PIPE_SHADER_FRAGMENT)
2679			nv50_fp_move_results(pc);
2680
2681		/* last insn must be long so it can have the exit bit set */
2682		if (!is_long(pc->p->exec_tail))
2683			convert_to_long(pc, pc->p->exec_tail);
2684		else
2685		if (is_immd(pc->p->exec_tail) || is_join(pc->p->exec_tail))
2686			emit_nop(pc);
2687
2688		pc->p->exec_tail->inst[1] |= 1; /* set exit bit */
2689		break;
2690	default:
2691		NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2692		return FALSE;
2693	}
2694
2695	if (brdc) {
2696		if (sat)
2697			emit_sat(pc, brdc, brdc);
2698		for (c = 0; c < 4; c++)
2699			if ((mask & (1 << c)) && dst[c] != brdc)
2700				emit_mov(pc, dst[c], brdc);
2701	} else
2702	if (sat) {
2703		for (c = 0; c < 4; c++) {
2704			if (!(mask & (1 << c)))
2705				continue;
2706			/* In this case we saturate later, and dst[c] won't
2707			 * be another temp_temp (and thus lost), since rdst
2708			 * already is TEMP (see above). */
2709			if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2710				continue;
2711			emit_sat(pc, rdst[c], dst[c]);
2712		}
2713	}
2714
2715	kill_temp_temp(pc);
2716	pc->reg_instance_nr = 0;
2717
2718	return TRUE;
2719}
2720
2721static void
2722prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2723{
2724	struct nv50_reg *reg = NULL;
2725	const struct tgsi_full_src_register *src;
2726	const struct tgsi_dst_register *dst;
2727	unsigned i, c, k, mask;
2728
2729	dst = &insn->Dst[0].Register;
2730	mask = dst->WriteMask;
2731
2732        if (dst->File == TGSI_FILE_TEMPORARY)
2733		reg = pc->temp;
2734        else
2735	if (dst->File == TGSI_FILE_OUTPUT) {
2736		reg = pc->result;
2737
2738		if (insn->Instruction.Opcode == TGSI_OPCODE_MOV &&
2739		    dst->Index == pc->edgeflag_out &&
2740		    insn->Src[0].Register.File == TGSI_FILE_INPUT)
2741			pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index;
2742	}
2743
2744	if (reg) {
2745		for (c = 0; c < 4; c++) {
2746			if (!(mask & (1 << c)))
2747				continue;
2748			reg[dst->Index * 4 + c].acc = pc->insn_nr;
2749		}
2750	}
2751
2752	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2753		src = &insn->Src[i];
2754
2755		if (src->Register.File == TGSI_FILE_TEMPORARY)
2756			reg = pc->temp;
2757		else
2758		if (src->Register.File == TGSI_FILE_INPUT)
2759			reg = pc->attr;
2760		else
2761			continue;
2762
2763		mask = nv50_tgsi_src_mask(insn, i);
2764
2765		for (c = 0; c < 4; c++) {
2766			if (!(mask & (1 << c)))
2767				continue;
2768			k = tgsi_util_get_full_src_register_swizzle(src, c);
2769
2770			reg[src->Register.Index * 4 + k].acc = pc->insn_nr;
2771		}
2772	}
2773}
2774
2775/* Returns a bitmask indicating which dst components need to be
2776 * written to temporaries first to avoid 'corrupting' sources.
2777 *
2778 * m[i]   (out) indicate component to write in the i-th position
2779 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2780 */
2781static unsigned
2782nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2783{
2784	unsigned i, c, x, unsafe;
2785
2786	for (c = 0; c < 4; c++)
2787		m[c] = c;
2788
2789	/* Swap as long as a dst component written earlier is depended on
2790	 * by one written later, but the next one isn't depended on by it.
2791	 */
2792	for (c = 0; c < 3; c++) {
2793		if (rdep[m[c + 1]] & (1 << m[c]))
2794			continue; /* if next one is depended on by us */
2795		for (i = c + 1; i < 4; i++)
2796			/* if we are depended on by a later one */
2797			if (rdep[m[c]] & (1 << m[i]))
2798				break;
2799		if (i == 4)
2800			continue;
2801		/* now, swap */
2802		x = m[c];
2803		m[c] = m[c + 1];
2804		m[c + 1] = x;
2805
2806		/* restart */
2807		c = 0;
2808	}
2809
2810	/* mark dependencies that could not be resolved by reordering */
2811	for (i = 0; i < 3; ++i)
2812		for (c = i + 1; c < 4; ++c)
2813			if (rdep[m[i]] & (1 << m[c]))
2814				unsafe |= (1 << i);
2815
2816	/* NOTE: $unsafe is with respect to order, not component */
2817	return unsafe;
2818}
2819
2820/* Select a suitable dst register for broadcasting scalar results,
2821 * or return NULL if we have to allocate an extra TEMP.
2822 *
2823 * If e.g. only 1 component is written, we may also emit the final
2824 * result to a write-only register.
2825 */
2826static struct nv50_reg *
2827tgsi_broadcast_dst(struct nv50_pc *pc,
2828		   const struct tgsi_full_dst_register *fd, unsigned mask)
2829{
2830	if (fd->Register.File == TGSI_FILE_TEMPORARY) {
2831		int c = ffs(~mask & fd->Register.WriteMask);
2832		if (c)
2833			return tgsi_dst(pc, c - 1, fd);
2834	} else {
2835		int c = ffs(fd->Register.WriteMask) - 1;
2836		if ((1 << c) == fd->Register.WriteMask)
2837			return tgsi_dst(pc, c, fd);
2838	}
2839
2840	return NULL;
2841}
2842
2843/* Scan source swizzles and return a bitmask indicating dst regs that
2844 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2845 */
2846static unsigned
2847nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2848		       unsigned rdep[4])
2849{
2850	const struct tgsi_full_dst_register *fd = &insn->Dst[0];
2851	const struct tgsi_full_src_register *fs;
2852	unsigned i, deqs = 0;
2853
2854	for (i = 0; i < 4; ++i)
2855		rdep[i] = 0;
2856
2857	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2858		unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2859		int ms = get_supported_mods(insn, i);
2860
2861		fs = &insn->Src[i];
2862		if (fs->Register.File != fd->Register.File ||
2863		    fs->Register.Index != fd->Register.Index)
2864			continue;
2865
2866		for (chn = 0; chn < 4; ++chn) {
2867			unsigned s, c;
2868
2869			if (!(mask & (1 << chn))) /* src is not read */
2870				continue;
2871			c = tgsi_util_get_full_src_register_swizzle(fs, chn);
2872			s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2873
2874			if (!(fd->Register.WriteMask & (1 << c)))
2875				continue;
2876
2877			if (s == TGSI_UTIL_SIGN_TOGGLE && !(ms & NV50_MOD_NEG))
2878					continue;
2879			if (s == TGSI_UTIL_SIGN_CLEAR && !(ms & NV50_MOD_ABS))
2880					continue;
2881			if ((s == TGSI_UTIL_SIGN_SET) && ((ms & 3) != 3))
2882					continue;
2883
2884			rdep[c] |= nv50_tgsi_dst_revdep(
2885				insn->Instruction.Opcode, i, chn);
2886			deqs |= (1 << c);
2887		}
2888	}
2889
2890	return deqs;
2891}
2892
2893static boolean
2894nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2895{
2896	struct tgsi_full_instruction insn = tok->FullInstruction;
2897	const struct tgsi_full_dst_register *fd;
2898	unsigned i, deqs, rdep[4], m[4];
2899
2900	fd = &tok->FullInstruction.Dst[0];
2901	deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2902
2903	if (is_scalar_op(insn.Instruction.Opcode)) {
2904		pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2905		if (!pc->r_brdc)
2906			pc->r_brdc = temp_temp(pc);
2907		return nv50_program_tx_insn(pc, &insn);
2908	}
2909	pc->r_brdc = NULL;
2910
2911	if (!deqs || (!rdep[0] && !rdep[1] && !rdep[2] && !rdep[3]))
2912		return nv50_program_tx_insn(pc, &insn);
2913
2914	deqs = nv50_revdep_reorder(m, rdep);
2915
2916	for (i = 0; i < 4; ++i) {
2917		assert(pc->r_dst[m[i]] == NULL);
2918
2919		insn.Dst[0].Register.WriteMask =
2920			fd->Register.WriteMask & (1 << m[i]);
2921
2922		if (!insn.Dst[0].Register.WriteMask)
2923			continue;
2924
2925		if (deqs & (1 << i))
2926			pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2927
2928		if (!nv50_program_tx_insn(pc, &insn))
2929			return FALSE;
2930	}
2931
2932	for (i = 0; i < 4; i++) {
2933		struct nv50_reg *reg = pc->r_dst[i];
2934		if (!reg)
2935			continue;
2936		pc->r_dst[i] = NULL;
2937
2938		if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2939			emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2940		else
2941			emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2942		free_temp(pc, reg);
2943	}
2944
2945	return TRUE;
2946}
2947
2948static void
2949load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2950{
2951	struct nv50_reg *iv, **ppiv;
2952	unsigned mode = pc->interp_mode[reg->index];
2953
2954	ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2955	iv = *ppiv;
2956
2957	if ((mode & INTERP_PERSPECTIVE) && !iv) {
2958		iv = *ppiv = alloc_temp(pc, NULL);
2959		iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
2960
2961		emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
2962		emit_flop(pc, NV50_FLOP_RCP, iv, iv);
2963
2964		/* XXX: when loading interpolants dynamically, move these
2965		 * to the program head, or make sure it can't be skipped.
2966		 */
2967	}
2968
2969	emit_interp(pc, reg, iv, mode);
2970}
2971
2972/* The face input is always at v[255] (varying space), with a
2973 * value of 0 for back-facing, and 0xffffffff for front-facing.
2974 */
2975static void
2976load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
2977{
2978	struct nv50_reg *one = alloc_immd(pc, 1.0f);
2979
2980	assert(a->rhw == -1);
2981	alloc_reg(pc, a); /* do this before rhw is set */
2982	a->rhw = 255;
2983	load_interpolant(pc, a);
2984	emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
2985
2986	FREE(one);
2987}
2988
2989static boolean
2990nv50_program_tx_prep(struct nv50_pc *pc)
2991{
2992	struct tgsi_parse_context tp;
2993	struct nv50_program *p = pc->p;
2994	boolean ret = FALSE;
2995	unsigned i, c, flat_nr = 0;
2996
2997	tgsi_parse_init(&tp, pc->p->pipe.tokens);
2998	while (!tgsi_parse_end_of_tokens(&tp)) {
2999		const union tgsi_full_token *tok = &tp.FullToken;
3000
3001		tgsi_parse_token(&tp);
3002		switch (tok->Token.Type) {
3003		case TGSI_TOKEN_TYPE_IMMEDIATE:
3004		{
3005			const struct tgsi_full_immediate *imm =
3006				&tp.FullToken.FullImmediate;
3007
3008			ctor_immd_4f32(pc, imm->u[0].Float,
3009				       imm->u[1].Float,
3010				       imm->u[2].Float,
3011				       imm->u[3].Float);
3012		}
3013			break;
3014		case TGSI_TOKEN_TYPE_DECLARATION:
3015		{
3016			const struct tgsi_full_declaration *d;
3017			unsigned si, last, first, mode;
3018
3019			d = &tp.FullToken.FullDeclaration;
3020			first = d->Range.First;
3021			last = d->Range.Last;
3022
3023			switch (d->Declaration.File) {
3024			case TGSI_FILE_TEMPORARY:
3025				break;
3026			case TGSI_FILE_OUTPUT:
3027				if (!d->Declaration.Semantic ||
3028				    p->type == PIPE_SHADER_FRAGMENT)
3029					break;
3030
3031				si = d->Semantic.Index;
3032				switch (d->Semantic.Name) {
3033				case TGSI_SEMANTIC_BCOLOR:
3034					p->cfg.two_side[si].hw = first;
3035					if (p->cfg.io_nr > first)
3036						p->cfg.io_nr = first;
3037					break;
3038				case TGSI_SEMANTIC_PSIZE:
3039					p->cfg.psiz = first;
3040					if (p->cfg.io_nr > first)
3041						p->cfg.io_nr = first;
3042					break;
3043				case TGSI_SEMANTIC_EDGEFLAG:
3044					pc->edgeflag_out = first;
3045					break;
3046					/*
3047				case TGSI_SEMANTIC_CLIP_DISTANCE:
3048					p->cfg.clpd = MIN2(p->cfg.clpd, first);
3049					break;
3050					*/
3051				default:
3052					break;
3053				}
3054				break;
3055			case TGSI_FILE_INPUT:
3056			{
3057				if (p->type != PIPE_SHADER_FRAGMENT)
3058					break;
3059
3060				switch (d->Declaration.Interpolate) {
3061				case TGSI_INTERPOLATE_CONSTANT:
3062					mode = INTERP_FLAT;
3063					flat_nr++;
3064					break;
3065				case TGSI_INTERPOLATE_PERSPECTIVE:
3066					mode = INTERP_PERSPECTIVE;
3067					p->cfg.regs[1] |= 0x08 << 24;
3068					break;
3069				default:
3070					mode = INTERP_LINEAR;
3071					break;
3072				}
3073				if (d->Declaration.Centroid)
3074					mode |= INTERP_CENTROID;
3075
3076				assert(last < 32);
3077				for (i = first; i <= last; i++)
3078					pc->interp_mode[i] = mode;
3079			}
3080				break;
3081			case TGSI_FILE_ADDRESS:
3082			case TGSI_FILE_CONSTANT:
3083			case TGSI_FILE_SAMPLER:
3084				break;
3085			default:
3086				NOUVEAU_ERR("bad decl file %d\n",
3087					    d->Declaration.File);
3088				goto out_err;
3089			}
3090		}
3091			break;
3092		case TGSI_TOKEN_TYPE_INSTRUCTION:
3093			pc->insn_nr++;
3094			prep_inspect_insn(pc, &tok->FullInstruction);
3095			break;
3096		default:
3097			break;
3098		}
3099	}
3100
3101	if (p->type == PIPE_SHADER_VERTEX) {
3102		int rid = 0;
3103
3104		for (i = 0; i < pc->attr_nr * 4; ++i) {
3105			if (pc->attr[i].acc) {
3106				pc->attr[i].hw = rid++;
3107				p->cfg.attr[i / 32] |= 1 << (i % 32);
3108			}
3109		}
3110
3111		for (i = 0, rid = 0; i < pc->result_nr; ++i) {
3112			p->cfg.io[i].hw = rid;
3113			p->cfg.io[i].id = i;
3114
3115			for (c = 0; c < 4; ++c) {
3116				int n = i * 4 + c;
3117				if (!pc->result[n].acc)
3118					continue;
3119				pc->result[n].hw = rid++;
3120				p->cfg.io[i].mask |= 1 << c;
3121			}
3122		}
3123
3124		for (c = 0; c < 2; ++c)
3125			if (p->cfg.two_side[c].hw < 0x40)
3126				p->cfg.two_side[c] = p->cfg.io[
3127					p->cfg.two_side[c].hw];
3128
3129		if (p->cfg.psiz < 0x40)
3130			p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
3131	} else
3132	if (p->type == PIPE_SHADER_FRAGMENT) {
3133		int rid, aid;
3134		unsigned n = 0, m = pc->attr_nr - flat_nr;
3135
3136		pc->allow32 = TRUE;
3137
3138		int base = (TGSI_SEMANTIC_POSITION ==
3139			    p->info.input_semantic_name[0]) ? 0 : 1;
3140
3141		/* non-flat interpolants have to be mapped to
3142		 * the lower hardware IDs, so sort them:
3143		 */
3144		for (i = 0; i < pc->attr_nr; i++) {
3145			if (pc->interp_mode[i] == INTERP_FLAT)
3146				p->cfg.io[m++].id = i;
3147			else {
3148				if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
3149					p->cfg.io[n].linear = TRUE;
3150				p->cfg.io[n++].id = i;
3151			}
3152		}
3153
3154		if (!base) /* set w-coordinate mask from perspective interp */
3155			p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
3156
3157		aid = popcnt4( /* if fcrd isn't contained in cfg.io */
3158			base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
3159
3160		for (n = 0; n < pc->attr_nr; ++n) {
3161			p->cfg.io[n].hw = rid = aid;
3162			i = p->cfg.io[n].id;
3163
3164			if (p->info.input_semantic_name[n] ==
3165			    TGSI_SEMANTIC_FACE) {
3166				load_frontfacing(pc, &pc->attr[i * 4]);
3167				continue;
3168			}
3169
3170			for (c = 0; c < 4; ++c) {
3171				if (!pc->attr[i * 4 + c].acc)
3172					continue;
3173				pc->attr[i * 4 + c].rhw = rid++;
3174				p->cfg.io[n].mask |= 1 << c;
3175
3176				load_interpolant(pc, &pc->attr[i * 4 + c]);
3177			}
3178			aid += popcnt4(p->cfg.io[n].mask);
3179		}
3180
3181		if (!base)
3182			p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
3183
3184		m = popcnt4(p->cfg.regs[1] >> 24);
3185
3186		/* set count of non-position inputs and of non-flat
3187		 * non-position inputs for FP_INTERPOLANT_CTRL
3188		 */
3189		p->cfg.regs[1] |= aid - m;
3190
3191		if (flat_nr) {
3192			i = p->cfg.io[pc->attr_nr - flat_nr].hw;
3193			p->cfg.regs[1] |= (i - m) << 16;
3194		} else
3195			p->cfg.regs[1] |= p->cfg.regs[1] << 16;
3196
3197		/* mark color semantic for light-twoside */
3198		n = 0x40;
3199		for (i = 0; i < pc->attr_nr; i++) {
3200			ubyte si, sn;
3201
3202			sn = p->info.input_semantic_name[p->cfg.io[i].id];
3203			si = p->info.input_semantic_index[p->cfg.io[i].id];
3204
3205			if (sn == TGSI_SEMANTIC_COLOR) {
3206				p->cfg.two_side[si] = p->cfg.io[i];
3207
3208				/* increase colour count */
3209				p->cfg.regs[0] += popcnt4(
3210					p->cfg.two_side[si].mask) << 16;
3211
3212				n = MIN2(n, p->cfg.io[i].hw - m);
3213			}
3214		}
3215		if (n < 0x40)
3216			p->cfg.regs[0] += n;
3217
3218		/* Initialize FP results:
3219		 * FragDepth is always first TGSI and last hw output
3220		 */
3221		i = p->info.writes_z ? 4 : 0;
3222		for (rid = 0; i < pc->result_nr * 4; i++)
3223			pc->result[i].rhw = rid++;
3224		if (p->info.writes_z)
3225			pc->result[2].rhw = rid;
3226
3227		p->cfg.high_result = rid;
3228
3229		/* separate/different colour results for MRTs ? */
3230		if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
3231			p->cfg.regs[2] |= 1;
3232	}
3233
3234	if (pc->immd_nr) {
3235		int rid = 0;
3236
3237		pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
3238		if (!pc->immd)
3239			goto out_err;
3240
3241		for (i = 0; i < pc->immd_nr; i++) {
3242			for (c = 0; c < 4; c++, rid++)
3243				ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
3244		}
3245	}
3246
3247	ret = TRUE;
3248out_err:
3249	if (pc->iv_p)
3250		free_temp(pc, pc->iv_p);
3251	if (pc->iv_c)
3252		free_temp(pc, pc->iv_c);
3253
3254	tgsi_parse_free(&tp);
3255	return ret;
3256}
3257
3258static void
3259free_nv50_pc(struct nv50_pc *pc)
3260{
3261	if (pc->immd)
3262		FREE(pc->immd);
3263	if (pc->param)
3264		FREE(pc->param);
3265	if (pc->result)
3266		FREE(pc->result);
3267	if (pc->attr)
3268		FREE(pc->attr);
3269	if (pc->temp)
3270		FREE(pc->temp);
3271
3272	FREE(pc);
3273}
3274
3275static boolean
3276ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
3277{
3278	int i, c;
3279	unsigned rtype[2] = { P_ATTR, P_RESULT };
3280
3281	pc->p = p;
3282	pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
3283	pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
3284	pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
3285	pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
3286	pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
3287	assert(pc->addr_nr <= 2);
3288
3289	p->cfg.high_temp = 4;
3290
3291	p->cfg.two_side[0].hw = 0x40;
3292	p->cfg.two_side[1].hw = 0x40;
3293
3294	p->cfg.edgeflag_in = pc->edgeflag_out = 0xff;
3295
3296	switch (p->type) {
3297	case PIPE_SHADER_VERTEX:
3298		p->cfg.psiz = 0x40;
3299		p->cfg.clpd = 0x40;
3300		p->cfg.io_nr = pc->result_nr;
3301		break;
3302	case PIPE_SHADER_FRAGMENT:
3303		rtype[0] = rtype[1] = P_TEMP;
3304
3305		p->cfg.regs[0] = 0x01000004;
3306		p->cfg.io_nr = pc->attr_nr;
3307
3308		if (p->info.writes_z) {
3309			p->cfg.regs[2] |= 0x00000100;
3310			p->cfg.regs[3] |= 0x00000011;
3311		}
3312		if (p->info.uses_kill)
3313			p->cfg.regs[2] |= 0x00100000;
3314		break;
3315	}
3316
3317	if (pc->temp_nr) {
3318		pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
3319		if (!pc->temp)
3320			return FALSE;
3321
3322		for (i = 0; i < pc->temp_nr * 4; ++i)
3323			ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
3324	}
3325
3326	if (pc->attr_nr) {
3327		pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
3328		if (!pc->attr)
3329			return FALSE;
3330
3331		for (i = 0; i < pc->attr_nr * 4; ++i)
3332			ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
3333	}
3334
3335	if (pc->result_nr) {
3336		unsigned nr = pc->result_nr * 4;
3337
3338		pc->result = MALLOC(nr * sizeof(struct nv50_reg));
3339		if (!pc->result)
3340			return FALSE;
3341
3342		for (i = 0; i < nr; ++i)
3343			ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
3344	}
3345
3346	if (pc->param_nr) {
3347		int rid = 0;
3348
3349		pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
3350		if (!pc->param)
3351			return FALSE;
3352
3353		for (i = 0; i < pc->param_nr; ++i)
3354			for (c = 0; c < 4; ++c, ++rid)
3355				ctor_reg(&pc->param[rid], P_CONST, i, rid);
3356	}
3357
3358	if (pc->addr_nr) {
3359		pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
3360		if (!pc->addr)
3361			return FALSE;
3362	}
3363	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
3364		ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
3365
3366	return TRUE;
3367}
3368
3369static void
3370nv50_program_fixup_insns(struct nv50_pc *pc)
3371{
3372	struct nv50_program_exec *e, **bra_list;
3373	unsigned i, n, pos;
3374
3375	bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
3376
3377	/* Collect branch instructions, we need to adjust their offsets
3378	 * when converting 32 bit instructions to 64 bit ones
3379	 */
3380	for (n = 0, e = pc->p->exec_head; e; e = e->next)
3381		if (e->param.index >= 0 && !e->param.mask)
3382			bra_list[n++] = e;
3383
3384	/* Make sure we don't have any single 32 bit instructions. */
3385	for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
3386		pos += is_long(e) ? 2 : 1;
3387
3388		if ((pos & 1) && (!e->next || is_long(e->next))) {
3389			for (i = 0; i < n; ++i)
3390				if (bra_list[i]->param.index >= pos)
3391					bra_list[i]->param.index += 1;
3392			for (i = 0; i < pc->insn_nr; ++i)
3393				if (pc->insn_pos[i] >= pos)
3394					pc->insn_pos[i] += 1;
3395			convert_to_long(pc, e);
3396			++pos;
3397		}
3398	}
3399
3400	FREE(bra_list);
3401
3402	if (!pc->p->info.opcode_count[TGSI_OPCODE_CAL])
3403		return;
3404
3405	/* fill in CALL offsets */
3406	for (e = pc->p->exec_head; e; e = e->next) {
3407		if ((e->inst[0] & 2) && (e->inst[0] >> 28) == 0x2)
3408			e->param.index = pc->insn_pos[e->param.index];
3409	}
3410}
3411
3412static boolean
3413nv50_program_tx(struct nv50_program *p)
3414{
3415	struct tgsi_parse_context parse;
3416	struct nv50_pc *pc;
3417	boolean ret;
3418
3419	pc = CALLOC_STRUCT(nv50_pc);
3420	if (!pc)
3421		return FALSE;
3422
3423	ret = ctor_nv50_pc(pc, p);
3424	if (ret == FALSE)
3425		goto out_cleanup;
3426
3427	ret = nv50_program_tx_prep(pc);
3428	if (ret == FALSE)
3429		goto out_cleanup;
3430
3431	pc->insn_pos = MALLOC(pc->insn_nr * sizeof(unsigned));
3432
3433	tgsi_parse_init(&parse, pc->p->pipe.tokens);
3434	while (!tgsi_parse_end_of_tokens(&parse)) {
3435		const union tgsi_full_token *tok = &parse.FullToken;
3436
3437		/* previously allow32 was FALSE for first & last instruction */
3438		pc->allow32 = TRUE;
3439
3440		tgsi_parse_token(&parse);
3441
3442		switch (tok->Token.Type) {
3443		case TGSI_TOKEN_TYPE_INSTRUCTION:
3444			pc->insn_pos[pc->insn_cur] = pc->p->exec_size;
3445			++pc->insn_cur;
3446			ret = nv50_tgsi_insn(pc, tok);
3447			if (ret == FALSE)
3448				goto out_err;
3449			break;
3450		default:
3451			break;
3452		}
3453	}
3454
3455	nv50_program_fixup_insns(pc);
3456
3457	p->param_nr = pc->param_nr * 4;
3458	p->immd_nr = pc->immd_nr * 4;
3459	p->immd = pc->immd_buf;
3460
3461out_err:
3462	tgsi_parse_free(&parse);
3463
3464out_cleanup:
3465	free_nv50_pc(pc);
3466	return ret;
3467}
3468
3469static void
3470nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
3471{
3472	if (nv50_program_tx(p) == FALSE)
3473		assert(0);
3474	p->translated = TRUE;
3475}
3476
3477static void
3478nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map,
3479			unsigned start, unsigned count, unsigned cbuf)
3480{
3481	struct nouveau_channel *chan = nv50->screen->base.channel;
3482	struct nouveau_grobj *tesla = nv50->screen->tesla;
3483
3484	while (count) {
3485		unsigned nr = count > 2047 ? 2047 : count;
3486
3487		BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3488		OUT_RING  (chan, (cbuf << 0) | (start << 8));
3489		BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3490		OUT_RINGp (chan, map, nr);
3491
3492		map += nr;
3493		start += nr;
3494		count -= nr;
3495	}
3496}
3497
3498static void
3499nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
3500{
3501	struct pipe_screen *pscreen = nv50->pipe.screen;
3502
3503	if (!p->data[0] && p->immd_nr) {
3504		struct nouveau_resource *heap = nv50->screen->immd_heap[0];
3505
3506		if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
3507			while (heap->next && heap->size < p->immd_nr) {
3508				struct nv50_program *evict = heap->next->priv;
3509				nouveau_resource_free(&evict->data[0]);
3510			}
3511
3512			if (nouveau_resource_alloc(heap, p->immd_nr, p,
3513						   &p->data[0]))
3514				assert(0);
3515		}
3516
3517		/* immediates only need to be uploaded again when freed */
3518		nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
3519					 p->immd_nr, NV50_CB_PMISC);
3520	}
3521
3522	assert(p->param_nr <= 512);
3523
3524	if (p->param_nr) {
3525		unsigned cb;
3526		uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
3527						PIPE_BUFFER_USAGE_CPU_READ);
3528
3529		if (p->type == PIPE_SHADER_VERTEX)
3530			cb = NV50_CB_PVP;
3531		else
3532			cb = NV50_CB_PFP;
3533
3534		nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
3535		pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
3536	}
3537}
3538
3539static void
3540nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
3541{
3542	struct nouveau_channel *chan = nv50->screen->base.channel;
3543	struct nv50_program_exec *e;
3544	uint32_t *up, i;
3545	boolean upload = FALSE;
3546
3547	if (!p->bo) {
3548		nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
3549			       p->exec_size * 4, &p->bo);
3550		upload = TRUE;
3551	}
3552
3553	if (p->data[0] && p->data[0]->start != p->data_start[0])
3554		upload = TRUE;
3555
3556	if (!upload)
3557		return;
3558
3559	up = MALLOC(p->exec_size * 4);
3560
3561	for (i = 0, e = p->exec_head; e; e = e->next) {
3562		unsigned ei, ci, bs;
3563
3564		if (e->param.index >= 0 && e->param.mask) {
3565			bs = (e->inst[1] >> 22) & 0x07;
3566			assert(bs < 2);
3567			ei = e->param.shift >> 5;
3568			ci = e->param.index;
3569			if (bs == 0)
3570				ci += p->data[bs]->start;
3571
3572			e->inst[ei] &= ~e->param.mask;
3573			e->inst[ei] |= (ci << e->param.shift);
3574		} else
3575		if (e->param.index >= 0) {
3576			/* zero mask means param is a jump/branch offset */
3577			assert(!(e->param.index & 1));
3578			/* seem to be 8 byte steps */
3579			ei = (e->param.index >> 1) + 0 /* START_ID */;
3580
3581			e->inst[0] &= 0xf0000fff;
3582			e->inst[0] |= ei << 12;
3583		}
3584
3585		up[i++] = e->inst[0];
3586		if (is_long(e))
3587			up[i++] = e->inst[1];
3588	}
3589	assert(i == p->exec_size);
3590
3591	if (p->data[0])
3592		p->data_start[0] = p->data[0]->start;
3593
3594#ifdef NV50_PROGRAM_DUMP
3595	NOUVEAU_ERR("-------\n");
3596	for (e = p->exec_head; e; e = e->next) {
3597		NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3598		if (is_long(e))
3599			NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3600	}
3601#endif
3602	nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
3603			 NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
3604			 up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
3605			 0, 0, p->exec_size * 4, 1, 1);
3606
3607	FREE(up);
3608}
3609
3610void
3611nv50_vertprog_validate(struct nv50_context *nv50)
3612{
3613	struct nouveau_grobj *tesla = nv50->screen->tesla;
3614	struct nv50_program *p = nv50->vertprog;
3615	struct nouveau_stateobj *so;
3616
3617	if (!p->translated) {
3618		nv50_program_validate(nv50, p);
3619		if (!p->translated)
3620			assert(0);
3621	}
3622
3623	nv50_program_validate_data(nv50, p);
3624	nv50_program_validate_code(nv50, p);
3625
3626	so = so_new(5, 8, 2);
3627	so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3628	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3629		      NOUVEAU_BO_HIGH, 0, 0);
3630	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3631		      NOUVEAU_BO_LOW, 0, 0);
3632	so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3633	so_data  (so, p->cfg.attr[0]);
3634	so_data  (so, p->cfg.attr[1]);
3635	so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3636	so_data  (so, p->cfg.high_result);
3637	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3638	so_data  (so, p->cfg.high_result); //8);
3639	so_data  (so, p->cfg.high_temp);
3640	so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3641	so_data  (so, 0); /* program start offset */
3642	so_ref(so, &nv50->state.vertprog);
3643	so_ref(NULL, &so);
3644}
3645
3646void
3647nv50_fragprog_validate(struct nv50_context *nv50)
3648{
3649	struct nouveau_grobj *tesla = nv50->screen->tesla;
3650	struct nv50_program *p = nv50->fragprog;
3651	struct nouveau_stateobj *so;
3652
3653	if (!p->translated) {
3654		nv50_program_validate(nv50, p);
3655		if (!p->translated)
3656			assert(0);
3657	}
3658
3659	nv50_program_validate_data(nv50, p);
3660	nv50_program_validate_code(nv50, p);
3661
3662	so = so_new(6, 7, 2);
3663	so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3664	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3665		      NOUVEAU_BO_HIGH, 0, 0);
3666	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3667		      NOUVEAU_BO_LOW, 0, 0);
3668	so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3669	so_data  (so, p->cfg.high_temp);
3670	so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3671	so_data  (so, p->cfg.high_result);
3672	so_method(so, tesla, NV50TCL_FP_CONTROL, 1);
3673	so_data  (so, p->cfg.regs[2]);
3674	so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3675	so_data  (so, p->cfg.regs[3]);
3676	so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3677	so_data  (so, 0); /* program start offset */
3678	so_ref(so, &nv50->state.fragprog);
3679	so_ref(NULL, &so);
3680}
3681
3682static void
3683nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3684{
3685	struct nv50_program *fp = nv50->fragprog;
3686	struct nv50_program *vp = nv50->vertprog;
3687	unsigned i, c, m = base;
3688
3689	/* XXX: this might not work correctly in all cases yet - we'll
3690	 * just assume that an FP generic input that is not written in
3691	 * the VP is PointCoord.
3692	 */
3693	memset(pntc, 0, 8 * sizeof(uint32_t));
3694
3695	for (i = 0; i < fp->cfg.io_nr; i++) {
3696		uint8_t sn, si;
3697		uint8_t j, k = fp->cfg.io[i].id;
3698		unsigned n = popcnt4(fp->cfg.io[i].mask);
3699
3700		if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3701			m += n;
3702			continue;
3703		}
3704
3705		for (j = 0; j < vp->info.num_outputs; ++j) {
3706			sn = vp->info.output_semantic_name[j];
3707			si = vp->info.output_semantic_index[j];
3708
3709			if (sn == fp->info.input_semantic_name[k] &&
3710			    si == fp->info.input_semantic_index[k])
3711				break;
3712		}
3713
3714		if (j < vp->info.num_outputs) {
3715			ubyte mode =
3716				nv50->rasterizer->pipe.sprite_coord_mode[si];
3717
3718			if (mode == PIPE_SPRITE_COORD_NONE) {
3719				m += n;
3720				continue;
3721			}
3722		}
3723
3724		/* this is either PointCoord or replaced by sprite coords */
3725		for (c = 0; c < 4; c++) {
3726			if (!(fp->cfg.io[i].mask & (1 << c)))
3727				continue;
3728			pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3729			++m;
3730		}
3731	}
3732}
3733
3734static int
3735nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3736	       struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3737{
3738	int c;
3739	uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3740	uint8_t *map = (uint8_t *)p_map;
3741
3742	for (c = 0; c < 4; ++c) {
3743		if (mf & 1) {
3744			if (fpi->linear == TRUE)
3745				lin[mid / 32] |= 1 << (mid % 32);
3746			map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3747		}
3748
3749		oid += mv & 1;
3750		mf >>= 1;
3751		mv >>= 1;
3752	}
3753
3754	return mid;
3755}
3756
3757void
3758nv50_linkage_validate(struct nv50_context *nv50)
3759{
3760	struct nouveau_grobj *tesla = nv50->screen->tesla;
3761	struct nv50_program *vp = nv50->vertprog;
3762	struct nv50_program *fp = nv50->fragprog;
3763	struct nouveau_stateobj *so;
3764	struct nv50_sreg4 dummy, *vpo;
3765	int i, n, c, m = 0;
3766	uint32_t map[16], lin[4], reg[5], pcrd[8];
3767
3768	memset(map, 0, sizeof(map));
3769	memset(lin, 0, sizeof(lin));
3770
3771	reg[1] = 0x00000004; /* low and high clip distance map ids */
3772	reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3773	reg[3] = 0x00000000; /* point size map id & enable */
3774	reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3775	reg[4] = fp->cfg.regs[1]; /* interpolant info */
3776
3777	dummy.linear = FALSE;
3778	dummy.mask = 0xf; /* map all components of HPOS */
3779	m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3780
3781	dummy.mask = 0x0;
3782
3783	if (vp->cfg.clpd < 0x40) {
3784		for (c = 0; c < vp->cfg.clpd_nr; ++c)
3785			map[m++] = vp->cfg.clpd + c;
3786		reg[1] = (m << 8);
3787	}
3788
3789	reg[0] |= m << 8; /* adjust BFC0 id */
3790
3791	/* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3792	if (nv50->rasterizer->pipe.light_twoside) {
3793		vpo = &vp->cfg.two_side[0];
3794
3795		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3796		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3797	}
3798
3799	reg[0] += m - 4; /* adjust FFC0 id */
3800	reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3801
3802	for (i = 0; i < fp->cfg.io_nr; i++) {
3803		ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
3804		ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
3805
3806		/* position must be mapped first */
3807		assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
3808
3809		/* maybe even remove these from cfg.io */
3810		if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
3811			continue;
3812
3813		/* VP outputs and vp->cfg.io are in the same order */
3814		for (n = 0; n < vp->info.num_outputs; ++n) {
3815			if (vp->info.output_semantic_name[n] == sn &&
3816			    vp->info.output_semantic_index[n] == si)
3817				break;
3818		}
3819		vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
3820
3821		m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3822	}
3823
3824	if (nv50->rasterizer->pipe.point_size_per_vertex) {
3825		map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3826		reg[3] = (m++ << 4) | 1;
3827	}
3828
3829	/* now fill the stateobj */
3830	so = so_new(6, 58, 0);
3831
3832	n = (m + 3) / 4;
3833	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3834	so_data  (so, m);
3835	so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3836	so_datap (so, map, n);
3837
3838	so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3839	so_datap (so, reg, 4);
3840
3841	so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3842	so_data  (so, reg[4]);
3843
3844	so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4);
3845	so_datap (so, lin, 4);
3846
3847	if (nv50->rasterizer->pipe.point_sprite) {
3848		nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3849
3850		so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3851		so_datap (so, pcrd, 8);
3852	}
3853
3854        so_ref(so, &nv50->state.programs);
3855        so_ref(NULL, &so);
3856}
3857
3858void
3859nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3860{
3861	while (p->exec_head) {
3862		struct nv50_program_exec *e = p->exec_head;
3863
3864		p->exec_head = e->next;
3865		FREE(e);
3866	}
3867	p->exec_tail = NULL;
3868	p->exec_size = 0;
3869
3870	nouveau_bo_ref(NULL, &p->bo);
3871
3872	nouveau_resource_free(&p->data[0]);
3873
3874	p->translated = 0;
3875}
3876