nv50_program.c revision 5f4f7ad965c40327f16297606ed4f425598bfc2c
1/*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23#include "pipe/p_context.h"
24#include "pipe/p_defines.h"
25#include "pipe/p_state.h"
26#include "pipe/p_inlines.h"
27
28#include "pipe/p_shader_tokens.h"
29#include "tgsi/tgsi_parse.h"
30#include "tgsi/tgsi_util.h"
31
32#include "nv50_context.h"
33
34#define NV50_SU_MAX_TEMP 64
35//#define NV50_PROGRAM_DUMP
36
37/* ARL - gallium craps itself on progs/vp/arl.txt
38 *
39 * MSB - Like MAD, but MUL+SUB
40 * 	- Fuck it off, introduce a way to negate args for ops that
41 * 	  support it.
42 *
43 * Look into inlining IMMD for ops other than MOV (make it general?)
44 * 	- Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
45 * 	  but can emit to P_TEMP first - then MOV later. NVIDIA does this
46 *
47 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
48 * case, if the emit_src() causes the inst to suddenly become long.
49 *
50 * Verify half-insns work where expected - and force disable them where they
51 * don't work - MUL has it forcibly disabled atm as it fixes POW..
52 *
53 * FUCK! watch dst==src vectors, can overwrite components that are needed.
54 * 	ie. SUB R0, R0.yzxw, R0
55 *
56 * Things to check with renouveau:
57 * 	FP attr/result assignment - how?
58 * 		attrib
59 * 			- 0x16bc maps vp output onto fp hpos
60 * 			- 0x16c0 maps vp output onto fp col0
61 * 		result
62 * 			- colr always 0-3
63 * 			- depr always 4
64 * 0x16bc->0x16e8 --> some binding between vp/fp regs
65 * 0x16b8 --> VP output count
66 *
67 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
68 * 	      "MOV rcol.x, fcol.y" = 0x00000004
69 * 0x19a8 --> as above but 0x00000100 and 0x00000000
70 * 	- 0x00100000 used when KIL used
71 * 0x196c --> as above but 0x00000011 and 0x00000000
72 *
73 * 0x1988 --> 0xXXNNNNNN
74 * 	- XX == FP high something
75 */
76struct nv50_reg {
77	enum {
78		P_TEMP,
79		P_ATTR,
80		P_RESULT,
81		P_CONST,
82		P_IMMD
83	} type;
84	int index;
85
86	int hw;
87	int neg;
88
89	int rhw; /* result hw for FP outputs, or interpolant index */
90	int acc; /* instruction where this reg is last read (first insn == 1) */
91};
92
93/* arbitrary limits */
94#define MAX_IF_DEPTH 4
95#define MAX_LOOP_DEPTH 4
96
97struct nv50_pc {
98	struct nv50_program *p;
99
100	/* hw resources */
101	struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
102
103	/* tgsi resources */
104	struct nv50_reg *temp;
105	int temp_nr;
106	struct nv50_reg *attr;
107	int attr_nr;
108	struct nv50_reg *result;
109	int result_nr;
110	struct nv50_reg *param;
111	int param_nr;
112	struct nv50_reg *immd;
113	float *immd_buf;
114	int immd_nr;
115
116	struct nv50_reg *temp_temp[16];
117	unsigned temp_temp_nr;
118
119	/* broadcast and destination replacement regs */
120	struct nv50_reg *r_brdc;
121	struct nv50_reg *r_dst[4];
122
123	unsigned interp_mode[32];
124	/* perspective interpolation registers */
125	struct nv50_reg *iv_p;
126	struct nv50_reg *iv_c;
127
128	struct nv50_program_exec *if_cond;
129	struct nv50_program_exec *if_insn[MAX_IF_DEPTH];
130	struct nv50_program_exec *br_join[MAX_IF_DEPTH];
131	struct nv50_program_exec *br_loop[MAX_LOOP_DEPTH]; /* for BRK branch */
132	int if_lvl, loop_lvl;
133	unsigned loop_pos[MAX_LOOP_DEPTH];
134
135	/* current instruction and total number of insns */
136	unsigned insn_cur;
137	unsigned insn_nr;
138
139	boolean allow32;
140};
141
142static INLINE void
143ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
144{
145	reg->type = type;
146	reg->index = index;
147	reg->hw = hw;
148	reg->neg = 0;
149	reg->rhw = -1;
150	reg->acc = 0;
151}
152
153static INLINE unsigned
154popcnt4(uint32_t val)
155{
156	static const unsigned cnt[16]
157	= { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
158	return cnt[val & 0xf];
159}
160
161static void
162alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
163{
164	int i = 0;
165
166	if (reg->type == P_RESULT) {
167		if (pc->p->cfg.high_result < (reg->hw + 1))
168			pc->p->cfg.high_result = reg->hw + 1;
169	}
170
171	if (reg->type != P_TEMP)
172		return;
173
174	if (reg->hw >= 0) {
175		/*XXX: do this here too to catch FP temp-as-attr usage..
176		 *     not clean, but works */
177		if (pc->p->cfg.high_temp < (reg->hw + 1))
178			pc->p->cfg.high_temp = reg->hw + 1;
179		return;
180	}
181
182	if (reg->rhw != -1) {
183		/* try to allocate temporary with index rhw first */
184		if (!(pc->r_temp[reg->rhw])) {
185			pc->r_temp[reg->rhw] = reg;
186			reg->hw = reg->rhw;
187			if (pc->p->cfg.high_temp < (reg->rhw + 1))
188				pc->p->cfg.high_temp = reg->rhw + 1;
189			return;
190		}
191		/* make sure we don't get things like $r0 needs to go
192		 * in $r1 and $r1 in $r0
193		 */
194		i = pc->result_nr * 4;
195	}
196
197	for (; i < NV50_SU_MAX_TEMP; i++) {
198		if (!(pc->r_temp[i])) {
199			pc->r_temp[i] = reg;
200			reg->hw = i;
201			if (pc->p->cfg.high_temp < (i + 1))
202				pc->p->cfg.high_temp = i + 1;
203			return;
204		}
205	}
206
207	assert(0);
208}
209
210/* XXX: For shaders that aren't executed linearly (e.g. shaders that
211 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
212 * lest we risk temp_temps overwriting regs alloc'd "later".
213 */
214static struct nv50_reg *
215alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
216{
217	struct nv50_reg *r;
218	int i;
219
220	if (dst && dst->type == P_TEMP && dst->hw == -1)
221		return dst;
222
223	for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
224		if (!pc->r_temp[i]) {
225			r = MALLOC_STRUCT(nv50_reg);
226			ctor_reg(r, P_TEMP, -1, i);
227			pc->r_temp[i] = r;
228			return r;
229		}
230	}
231
232	assert(0);
233	return NULL;
234}
235
236/* Assign the hw of the discarded temporary register src
237 * to the tgsi register dst and free src.
238 */
239static void
240assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
241{
242	assert(src->index == -1 && src->hw != -1);
243
244	if (dst->hw != -1)
245		pc->r_temp[dst->hw] = NULL;
246	pc->r_temp[src->hw] = dst;
247	dst->hw = src->hw;
248
249	FREE(src);
250}
251
252/* release the hardware resource held by r */
253static void
254release_hw(struct nv50_pc *pc, struct nv50_reg *r)
255{
256	assert(r->type == P_TEMP);
257	if (r->hw == -1)
258		return;
259
260	assert(pc->r_temp[r->hw] == r);
261	pc->r_temp[r->hw] = NULL;
262
263	r->acc = 0;
264	if (r->index == -1)
265		FREE(r);
266}
267
268static void
269free_temp(struct nv50_pc *pc, struct nv50_reg *r)
270{
271	if (r->index == -1) {
272		unsigned hw = r->hw;
273
274		FREE(pc->r_temp[hw]);
275		pc->r_temp[hw] = NULL;
276	}
277}
278
279static int
280alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
281{
282	int i;
283
284	if ((idx + 4) >= NV50_SU_MAX_TEMP)
285		return 1;
286
287	if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
288	    pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
289		return alloc_temp4(pc, dst, idx + 4);
290
291	for (i = 0; i < 4; i++) {
292		dst[i] = MALLOC_STRUCT(nv50_reg);
293		ctor_reg(dst[i], P_TEMP, -1, idx + i);
294		pc->r_temp[idx + i] = dst[i];
295	}
296
297	return 0;
298}
299
300static void
301free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
302{
303	int i;
304
305	for (i = 0; i < 4; i++)
306		free_temp(pc, reg[i]);
307}
308
309static struct nv50_reg *
310temp_temp(struct nv50_pc *pc)
311{
312	if (pc->temp_temp_nr >= 16)
313		assert(0);
314
315	pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
316	return pc->temp_temp[pc->temp_temp_nr++];
317}
318
319static void
320kill_temp_temp(struct nv50_pc *pc)
321{
322	int i;
323
324	for (i = 0; i < pc->temp_temp_nr; i++)
325		free_temp(pc, pc->temp_temp[i]);
326	pc->temp_temp_nr = 0;
327}
328
329static int
330ctor_immd(struct nv50_pc *pc, float x, float y, float z, float w)
331{
332	pc->immd_buf = REALLOC(pc->immd_buf, (pc->immd_nr * 4 * sizeof(float)),
333			       (pc->immd_nr + 1) * 4 * sizeof(float));
334	pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
335	pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
336	pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
337	pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
338
339	return pc->immd_nr++;
340}
341
342static struct nv50_reg *
343alloc_immd(struct nv50_pc *pc, float f)
344{
345	struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
346	unsigned hw;
347
348	for (hw = 0; hw < pc->immd_nr * 4; hw++)
349		if (pc->immd_buf[hw] == f)
350			break;
351
352	if (hw == pc->immd_nr * 4)
353		hw = ctor_immd(pc, f, -f, 0.5 * f, 0) * 4;
354
355	ctor_reg(r, P_IMMD, -1, hw);
356	return r;
357}
358
359static struct nv50_program_exec *
360exec(struct nv50_pc *pc)
361{
362	struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
363
364	e->param.index = -1;
365	return e;
366}
367
368static void
369emit(struct nv50_pc *pc, struct nv50_program_exec *e)
370{
371	struct nv50_program *p = pc->p;
372
373	if (p->exec_tail)
374		p->exec_tail->next = e;
375	if (!p->exec_head)
376		p->exec_head = e;
377	p->exec_tail = e;
378	p->exec_size += (e->inst[0] & 1) ? 2 : 1;
379}
380
381static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
382
383static boolean
384is_long(struct nv50_program_exec *e)
385{
386	if (e->inst[0] & 1)
387		return TRUE;
388	return FALSE;
389}
390
391static boolean
392is_immd(struct nv50_program_exec *e)
393{
394	if (is_long(e) && (e->inst[1] & 3) == 3)
395		return TRUE;
396	return FALSE;
397}
398
399static INLINE void
400set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
401	 struct nv50_program_exec *e)
402{
403	set_long(pc, e);
404	e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
405	e->inst[1] |= (pred << 7) | (idx << 12);
406}
407
408static INLINE void
409set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
410	    struct nv50_program_exec *e)
411{
412	set_long(pc, e);
413	e->inst[1] &= ~((0x3 << 4) | (1 << 6));
414	e->inst[1] |= (idx << 4) | (on << 6);
415}
416
417static INLINE void
418set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
419{
420	if (is_long(e))
421		return;
422
423	e->inst[0] |= 1;
424	set_pred(pc, 0xf, 0, e);
425	set_pred_wr(pc, 0, 0, e);
426}
427
428static INLINE void
429set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
430{
431	if (dst->type == P_RESULT) {
432		set_long(pc, e);
433		e->inst[1] |= 0x00000008;
434	}
435
436	alloc_reg(pc, dst);
437	e->inst[0] |= (dst->hw << 2);
438}
439
440static INLINE void
441set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
442{
443	float f = pc->immd_buf[imm->hw];
444	unsigned val = fui(imm->neg ? -f : f);
445
446	set_long(pc, e);
447	/*XXX: can't be predicated - bits overlap.. catch cases where both
448	 *     are required and avoid them. */
449	set_pred(pc, 0, 0, e);
450	set_pred_wr(pc, 0, 0, e);
451
452	e->inst[1] |= 0x00000002 | 0x00000001;
453	e->inst[0] |= (val & 0x3f) << 16;
454	e->inst[1] |= (val >> 6) << 2;
455}
456
457
458#define INTERP_LINEAR		0
459#define INTERP_FLAT			1
460#define INTERP_PERSPECTIVE	2
461#define INTERP_CENTROID		4
462
463/* interpolant index has been stored in dst->rhw */
464static void
465emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
466		unsigned mode)
467{
468	assert(dst->rhw != -1);
469	struct nv50_program_exec *e = exec(pc);
470
471	e->inst[0] |= 0x80000000;
472	set_dst(pc, dst, e);
473	e->inst[0] |= (dst->rhw << 16);
474
475	if (mode & INTERP_FLAT) {
476		e->inst[0] |= (1 << 8);
477	} else {
478		if (mode & INTERP_PERSPECTIVE) {
479			e->inst[0] |= (1 << 25);
480			alloc_reg(pc, iv);
481			e->inst[0] |= (iv->hw << 9);
482		}
483
484		if (mode & INTERP_CENTROID)
485			e->inst[0] |= (1 << 24);
486	}
487
488	emit(pc, e);
489}
490
491static void
492set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
493	 struct nv50_program_exec *e)
494{
495	set_long(pc, e);
496
497	e->param.index = src->hw;
498	e->param.shift = s;
499	e->param.mask = m << (s % 32);
500
501	e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
502}
503
504static void
505emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
506{
507	struct nv50_program_exec *e = exec(pc);
508
509	e->inst[0] |= 0x10000000;
510
511	set_dst(pc, dst, e);
512
513	if (pc->allow32 && dst->type != P_RESULT && src->type == P_IMMD) {
514		set_immd(pc, src, e);
515		/*XXX: 32-bit, but steals part of "half" reg space - need to
516		 *     catch and handle this case if/when we do half-regs
517		 */
518	} else
519	if (src->type == P_IMMD || src->type == P_CONST) {
520		set_long(pc, e);
521		set_data(pc, src, 0x7f, 9, e);
522		e->inst[1] |= 0x20000000; /* src0 const? */
523	} else {
524		if (src->type == P_ATTR) {
525			set_long(pc, e);
526			e->inst[1] |= 0x00200000;
527		}
528
529		alloc_reg(pc, src);
530		e->inst[0] |= (src->hw << 9);
531	}
532
533	if (is_long(e) && !is_immd(e)) {
534		e->inst[1] |= 0x04000000; /* 32-bit */
535		e->inst[1] |= 0x0000c000; /* "subsubop" 0x3 */
536		if (!(e->inst[1] & 0x20000000))
537			e->inst[1] |= 0x00030000; /* "subsubop" 0xf */
538	} else
539		e->inst[0] |= 0x00008000;
540
541	emit(pc, e);
542}
543
544static INLINE void
545emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
546{
547	struct nv50_reg *imm = alloc_immd(pc, f);
548	emit_mov(pc, dst, imm);
549	FREE(imm);
550}
551
552static boolean
553check_swap_src_0_1(struct nv50_pc *pc,
554		   struct nv50_reg **s0, struct nv50_reg **s1)
555{
556	struct nv50_reg *src0 = *s0, *src1 = *s1;
557
558	if (src0->type == P_CONST) {
559		if (src1->type != P_CONST) {
560			*s0 = src1;
561			*s1 = src0;
562			return TRUE;
563		}
564	} else
565	if (src1->type == P_ATTR) {
566		if (src0->type != P_ATTR) {
567			*s0 = src1;
568			*s1 = src0;
569			return TRUE;
570		}
571	}
572
573	return FALSE;
574}
575
576static void
577set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
578		     struct nv50_program_exec *e)
579{
580	struct nv50_reg *temp;
581
582	if (src->type != P_TEMP) {
583		temp = temp_temp(pc);
584		emit_mov(pc, temp, src);
585		src = temp;
586	}
587
588	alloc_reg(pc, src);
589	e->inst[0] |= (src->hw << 9);
590}
591
592static void
593set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
594{
595	if (src->type == P_ATTR) {
596		set_long(pc, e);
597		e->inst[1] |= 0x00200000;
598	} else
599	if (src->type == P_CONST || src->type == P_IMMD) {
600		struct nv50_reg *temp = temp_temp(pc);
601
602		emit_mov(pc, temp, src);
603		src = temp;
604	}
605
606	alloc_reg(pc, src);
607	e->inst[0] |= (src->hw << 9);
608}
609
610static void
611set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
612{
613	if (src->type == P_ATTR) {
614		struct nv50_reg *temp = temp_temp(pc);
615
616		emit_mov(pc, temp, src);
617		src = temp;
618	} else
619	if (src->type == P_CONST || src->type == P_IMMD) {
620		assert(!(e->inst[0] & 0x00800000));
621		if (e->inst[0] & 0x01000000) {
622			struct nv50_reg *temp = temp_temp(pc);
623
624			emit_mov(pc, temp, src);
625			src = temp;
626		} else {
627			set_data(pc, src, 0x7f, 16, e);
628			e->inst[0] |= 0x00800000;
629		}
630	}
631
632	alloc_reg(pc, src);
633	e->inst[0] |= (src->hw << 16);
634}
635
636static void
637set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
638{
639	set_long(pc, e);
640
641	if (src->type == P_ATTR) {
642		struct nv50_reg *temp = temp_temp(pc);
643
644		emit_mov(pc, temp, src);
645		src = temp;
646	} else
647	if (src->type == P_CONST || src->type == P_IMMD) {
648		assert(!(e->inst[0] & 0x01000000));
649		if (e->inst[0] & 0x00800000) {
650			struct nv50_reg *temp = temp_temp(pc);
651
652			emit_mov(pc, temp, src);
653			src = temp;
654		} else {
655			set_data(pc, src, 0x7f, 32+14, e);
656			e->inst[0] |= 0x01000000;
657		}
658	}
659
660	alloc_reg(pc, src);
661	e->inst[1] |= (src->hw << 14);
662}
663
664static void
665emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
666	 struct nv50_reg *src1)
667{
668	struct nv50_program_exec *e = exec(pc);
669
670	e->inst[0] |= 0xc0000000;
671
672	if (!pc->allow32)
673		set_long(pc, e);
674
675	check_swap_src_0_1(pc, &src0, &src1);
676	set_dst(pc, dst, e);
677	set_src_0(pc, src0, e);
678	if (src1->type == P_IMMD && !is_long(e)) {
679		if (src0->neg)
680			e->inst[0] |= 0x00008000;
681		set_immd(pc, src1, e);
682	} else {
683		set_src_1(pc, src1, e);
684		if (src0->neg ^ src1->neg) {
685			if (is_long(e))
686				e->inst[1] |= 0x08000000;
687			else
688				e->inst[0] |= 0x00008000;
689		}
690	}
691
692	emit(pc, e);
693}
694
695static void
696emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
697	 struct nv50_reg *src0, struct nv50_reg *src1)
698{
699	struct nv50_program_exec *e = exec(pc);
700
701	e->inst[0] |= 0xb0000000;
702
703	check_swap_src_0_1(pc, &src0, &src1);
704
705	if (!pc->allow32 || src0->neg || src1->neg) {
706		set_long(pc, e);
707		e->inst[1] |= (src0->neg << 26) | (src1->neg << 27);
708	}
709
710	set_dst(pc, dst, e);
711	set_src_0(pc, src0, e);
712	if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
713		set_src_2(pc, src1, e);
714	else
715	if (src1->type == P_IMMD)
716		set_immd(pc, src1, e);
717	else
718		set_src_1(pc, src1, e);
719
720	emit(pc, e);
721}
722
723static void
724emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
725	    struct nv50_reg *src0, struct nv50_reg *src1)
726{
727	struct nv50_program_exec *e = exec(pc);
728
729	set_long(pc, e);
730	e->inst[0] |= 0xb0000000;
731	e->inst[1] |= (sub << 29);
732
733	check_swap_src_0_1(pc, &src0, &src1);
734	set_dst(pc, dst, e);
735	set_src_0(pc, src0, e);
736	set_src_1(pc, src1, e);
737
738	emit(pc, e);
739}
740
741static INLINE void
742emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
743	 struct nv50_reg *src1)
744{
745	src1->neg ^= 1;
746	emit_add(pc, dst, src0, src1);
747	src1->neg ^= 1;
748}
749
750static void
751emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
752	 struct nv50_reg *src1, struct nv50_reg *src2)
753{
754	struct nv50_program_exec *e = exec(pc);
755
756	e->inst[0] |= 0xe0000000;
757
758	check_swap_src_0_1(pc, &src0, &src1);
759	set_dst(pc, dst, e);
760	set_src_0(pc, src0, e);
761	set_src_1(pc, src1, e);
762	set_src_2(pc, src2, e);
763
764	if (src0->neg ^ src1->neg)
765		e->inst[1] |= 0x04000000;
766	if (src2->neg)
767		e->inst[1] |= 0x08000000;
768
769	emit(pc, e);
770}
771
772static INLINE void
773emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
774	 struct nv50_reg *src1, struct nv50_reg *src2)
775{
776	src2->neg ^= 1;
777	emit_mad(pc, dst, src0, src1, src2);
778	src2->neg ^= 1;
779}
780
781static void
782emit_flop(struct nv50_pc *pc, unsigned sub,
783	  struct nv50_reg *dst, struct nv50_reg *src)
784{
785	struct nv50_program_exec *e = exec(pc);
786
787	e->inst[0] |= 0x90000000;
788	if (sub) {
789		set_long(pc, e);
790		e->inst[1] |= (sub << 29);
791	}
792
793	set_dst(pc, dst, e);
794
795	if (sub == 0 || sub == 2)
796		set_src_0_restricted(pc, src, e);
797	else
798		set_src_0(pc, src, e);
799
800	emit(pc, e);
801}
802
803static void
804emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
805{
806	struct nv50_program_exec *e = exec(pc);
807
808	e->inst[0] |= 0xb0000000;
809
810	set_dst(pc, dst, e);
811	set_src_0(pc, src, e);
812	set_long(pc, e);
813	e->inst[1] |= (6 << 29) | 0x00004000;
814
815	emit(pc, e);
816}
817
818static void
819emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
820{
821	struct nv50_program_exec *e = exec(pc);
822
823	e->inst[0] |= 0xb0000000;
824
825	set_dst(pc, dst, e);
826	set_src_0(pc, src, e);
827	set_long(pc, e);
828	e->inst[1] |= (6 << 29);
829
830	emit(pc, e);
831}
832
833#define CVTOP_RN	0x01
834#define CVTOP_FLOOR	0x03
835#define CVTOP_CEIL	0x05
836#define CVTOP_TRUNC	0x07
837#define CVTOP_SAT	0x08
838#define CVTOP_ABS	0x10
839
840/* 0x04 == 32 bit */
841/* 0x40 == dst is float */
842/* 0x80 == src is float */
843#define CVT_F32_F32 0xc4
844#define CVT_F32_S32 0x44
845#define CVT_F32_U32 0x64
846#define CVT_S32_F32 0x8c
847#define CVT_S32_S32 0x0c
848#define CVT_NEG     0x20
849#define CVT_RI      0x08
850
851static void
852emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
853	 int wp, unsigned cvn, unsigned fmt)
854{
855	struct nv50_program_exec *e;
856
857	e = exec(pc);
858	set_long(pc, e);
859
860	e->inst[0] |= 0xa0000000;
861	e->inst[1] |= 0x00004000;
862	e->inst[1] |= (cvn << 16);
863	e->inst[1] |= (fmt << 24);
864	set_src_0(pc, src, e);
865
866	if (wp >= 0)
867		set_pred_wr(pc, 1, wp, e);
868
869	if (dst)
870		set_dst(pc, dst, e);
871	else {
872		e->inst[0] |= 0x000001fc;
873		e->inst[1] |= 0x00000008;
874	}
875
876	emit(pc, e);
877}
878
879/* nv50 Condition codes:
880 *  0x1 = LT
881 *  0x2 = EQ
882 *  0x3 = LE
883 *  0x4 = GT
884 *  0x5 = NE
885 *  0x6 = GE
886 *  0x7 = set condition code ? (used before bra.lt/le/gt/ge)
887 *  0x8 = unordered bit (allows NaN)
888 */
889static void
890emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
891	 struct nv50_reg *src0, struct nv50_reg *src1)
892{
893	static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
894
895	struct nv50_program_exec *e = exec(pc);
896	struct nv50_reg *rdst;
897
898	assert(ccode < 16);
899	if (check_swap_src_0_1(pc, &src0, &src1))
900		ccode = cc_swapped[ccode & 7] | (ccode & 8);
901
902	rdst = dst;
903	if (dst && dst->type != P_TEMP)
904		dst = alloc_temp(pc, NULL);
905
906	/* set.u32 */
907	set_long(pc, e);
908	e->inst[0] |= 0xb0000000;
909	e->inst[1] |= 0x60000000 | (ccode << 14);
910
911	/* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
912	 * that doesn't seem to match what the hw actually does
913	e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
914	 */
915
916	if (wp >= 0)
917		set_pred_wr(pc, 1, wp, e);
918	if (dst)
919		set_dst(pc, dst, e);
920	else {
921		e->inst[0] |= 0x000001fc;
922		e->inst[1] |= 0x00000008;
923	}
924
925	set_src_0(pc, src0, e);
926	set_src_1(pc, src1, e);
927
928	emit(pc, e);
929	pc->if_cond = pc->p->exec_tail; /* record for OPCODE_IF */
930
931	/* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
932	if (rdst)
933		emit_cvt(pc, rdst, dst, -1, CVTOP_ABS | CVTOP_RN, CVT_F32_S32);
934	if (rdst && rdst != dst)
935		free_temp(pc, dst);
936}
937
938static INLINE unsigned
939map_tgsi_setop_cc(unsigned op)
940{
941	switch (op) {
942	case TGSI_OPCODE_SLT: return 0x1;
943	case TGSI_OPCODE_SGE: return 0x6;
944	case TGSI_OPCODE_SEQ: return 0x2;
945	case TGSI_OPCODE_SGT: return 0x4;
946	case TGSI_OPCODE_SLE: return 0x3;
947	case TGSI_OPCODE_SNE: return 0xd;
948	default:
949		assert(0);
950		return 0;
951	}
952}
953
954static INLINE void
955emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
956{
957	emit_cvt(pc, dst, src, -1, CVTOP_FLOOR, CVT_F32_F32 | CVT_RI);
958}
959
960static void
961emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
962	 struct nv50_reg *v, struct nv50_reg *e)
963{
964	struct nv50_reg *temp = alloc_temp(pc, NULL);
965
966	emit_flop(pc, 3, temp, v);
967	emit_mul(pc, temp, temp, e);
968	emit_preex2(pc, temp, temp);
969	emit_flop(pc, 6, dst, temp);
970
971	free_temp(pc, temp);
972}
973
974static INLINE void
975emit_abs(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
976{
977	emit_cvt(pc, dst, src, -1, CVTOP_ABS, CVT_F32_F32);
978}
979
980static INLINE void
981emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
982{
983	emit_cvt(pc, dst, src, -1, CVTOP_SAT, CVT_F32_F32);
984}
985
986static void
987emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
988	 struct nv50_reg **src)
989{
990	struct nv50_reg *one = alloc_immd(pc, 1.0);
991	struct nv50_reg *zero = alloc_immd(pc, 0.0);
992	struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
993	struct nv50_reg *pos128 = alloc_immd(pc,  127.999999);
994	struct nv50_reg *tmp[4];
995	boolean allow32 = pc->allow32;
996
997	pc->allow32 = FALSE;
998
999	if (mask & (3 << 1)) {
1000		tmp[0] = alloc_temp(pc, NULL);
1001		emit_minmax(pc, 4, tmp[0], src[0], zero);
1002	}
1003
1004	if (mask & (1 << 2)) {
1005		set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1006
1007		tmp[1] = temp_temp(pc);
1008		emit_minmax(pc, 4, tmp[1], src[1], zero);
1009
1010		tmp[3] = temp_temp(pc);
1011		emit_minmax(pc, 4, tmp[3], src[3], neg128);
1012		emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1013
1014		emit_pow(pc, dst[2], tmp[1], tmp[3]);
1015		emit_mov(pc, dst[2], zero);
1016		set_pred(pc, 3, 0, pc->p->exec_tail);
1017	}
1018
1019	if (mask & (1 << 1))
1020		assimilate_temp(pc, dst[1], tmp[0]);
1021	else
1022	if (mask & (1 << 2))
1023		free_temp(pc, tmp[0]);
1024
1025	pc->allow32 = allow32;
1026
1027	/* do this last, in case src[i,j] == dst[0,3] */
1028	if (mask & (1 << 0))
1029		emit_mov(pc, dst[0], one);
1030
1031	if (mask & (1 << 3))
1032		emit_mov(pc, dst[3], one);
1033
1034	FREE(pos128);
1035	FREE(neg128);
1036	FREE(zero);
1037	FREE(one);
1038}
1039
1040static void
1041emit_neg(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1042{
1043	struct nv50_program_exec *e = exec(pc);
1044
1045	set_long(pc, e);
1046	e->inst[0] |= 0xa0000000; /* delta */
1047	e->inst[1] |= (7 << 29); /* delta */
1048	e->inst[1] |= 0x04000000; /* negate arg0? probably not */
1049	e->inst[1] |= (1 << 14); /* src .f32 */
1050	set_dst(pc, dst, e);
1051	set_src_0(pc, src, e);
1052
1053	emit(pc, e);
1054}
1055
1056static void
1057emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1058{
1059	struct nv50_program_exec *e;
1060	const int r_pred = 1;
1061
1062	/* Sets predicate reg ? */
1063	e = exec(pc);
1064	e->inst[0] = 0xa00001fd;
1065	e->inst[1] = 0xc4014788;
1066	set_src_0(pc, src, e);
1067	set_pred_wr(pc, 1, r_pred, e);
1068	if (src->neg)
1069		e->inst[1] |= 0x20000000;
1070	emit(pc, e);
1071
1072	/* This is probably KILP */
1073	e = exec(pc);
1074	e->inst[0] = 0x000001fe;
1075	set_long(pc, e);
1076	set_pred(pc, 1 /* LT? */, r_pred, e);
1077	emit(pc, e);
1078}
1079
1080static void
1081emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1082	 struct nv50_reg **src, unsigned unit, unsigned type, boolean proj)
1083{
1084	struct nv50_reg *temp, *t[4];
1085	struct nv50_program_exec *e;
1086
1087	unsigned c, mode, dim;
1088
1089	switch (type) {
1090	case TGSI_TEXTURE_1D:
1091		dim = 1;
1092		break;
1093	case TGSI_TEXTURE_UNKNOWN:
1094	case TGSI_TEXTURE_2D:
1095	case TGSI_TEXTURE_SHADOW1D: /* XXX: x, z */
1096	case TGSI_TEXTURE_RECT:
1097		dim = 2;
1098		break;
1099	case TGSI_TEXTURE_3D:
1100	case TGSI_TEXTURE_CUBE:
1101	case TGSI_TEXTURE_SHADOW2D:
1102	case TGSI_TEXTURE_SHADOWRECT: /* XXX */
1103		dim = 3;
1104		break;
1105	default:
1106		assert(0);
1107		break;
1108	}
1109
1110	/* some cards need t[0]'s hw index to be a multiple of 4 */
1111	alloc_temp4(pc, t, 0);
1112
1113	if (proj) {
1114		if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1115			mode = pc->interp_mode[src[0]->index];
1116
1117			t[3]->rhw = src[3]->rhw;
1118			emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1119			emit_flop(pc, 0, t[3], t[3]);
1120
1121			for (c = 0; c < dim; c++) {
1122				t[c]->rhw = src[c]->rhw;
1123				emit_interp(pc, t[c], t[3],
1124					    (mode | INTERP_PERSPECTIVE));
1125			}
1126		} else {
1127			emit_flop(pc, 0, t[3], src[3]);
1128			for (c = 0; c < dim; c++)
1129				emit_mul(pc, t[c], src[c], t[3]);
1130
1131			/* XXX: for some reason the blob sometimes uses MAD:
1132			 * emit_mad(pc, t[c], src[0][c], t[3], t[3])
1133			 * pc->p->exec_tail->inst[1] |= 0x080fc000;
1134			 */
1135		}
1136	} else {
1137		if (type == TGSI_TEXTURE_CUBE) {
1138			temp = temp_temp(pc);
1139			emit_minmax(pc, 4, temp, src[0], src[1]);
1140			emit_minmax(pc, 4, temp, temp, src[2]);
1141			emit_flop(pc, 0, temp, temp);
1142			for (c = 0; c < 3; c++)
1143				emit_mul(pc, t[c], src[c], temp);
1144		} else {
1145			for (c = 0; c < dim; c++)
1146				emit_mov(pc, t[c], src[c]);
1147		}
1148	}
1149
1150	e = exec(pc);
1151	set_long(pc, e);
1152	e->inst[0] |= 0xf0000000;
1153	e->inst[1] |= 0x00000004;
1154	set_dst(pc, t[0], e);
1155	e->inst[0] |= (unit << 9);
1156
1157	if (dim == 2)
1158		e->inst[0] |= 0x00400000;
1159	else
1160	if (dim == 3)
1161		e->inst[0] |= 0x00800000;
1162
1163	e->inst[0] |= (mask & 0x3) << 25;
1164	e->inst[1] |= (mask & 0xc) << 12;
1165
1166	emit(pc, e);
1167
1168#if 1
1169	c = 0;
1170	if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1171	if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1172	if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1173	if (mask & 8) emit_mov(pc, dst[3], t[c]);
1174
1175	free_temp4(pc, t);
1176#else
1177	/* XXX: if p.e. MUL is used directly after TEX, it would still use
1178	 * the texture coordinates, not the fetched values: latency ? */
1179
1180	for (c = 0; c < 4; c++) {
1181		if (mask & (1 << c))
1182			assimilate_temp(pc, dst[c], t[c]);
1183		else
1184			free_temp(pc, t[c]);
1185	}
1186#endif
1187}
1188
1189static void
1190emit_branch(struct nv50_pc *pc, int pred, unsigned cc,
1191	    struct nv50_program_exec **join)
1192{
1193	struct nv50_program_exec *e = exec(pc);
1194
1195	if (join) {
1196		set_long(pc, e);
1197		e->inst[0] |= 0xa0000002;
1198		emit(pc, e);
1199		*join = e;
1200		e = exec(pc);
1201	}
1202
1203	set_long(pc, e);
1204	e->inst[0] |= 0x10000002;
1205	if (pred >= 0)
1206		set_pred(pc, cc, pred, e);
1207	emit(pc, e);
1208}
1209
1210static void
1211emit_nop(struct nv50_pc *pc)
1212{
1213	struct nv50_program_exec *e = exec(pc);
1214
1215	e->inst[0] = 0xf0000000;
1216	set_long(pc, e);
1217	e->inst[1] = 0xe0000000;
1218	emit(pc, e);
1219}
1220
1221static void
1222convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1223{
1224	unsigned q = 0, m = ~0;
1225
1226	assert(!is_long(e));
1227
1228	switch (e->inst[0] >> 28) {
1229	case 0x1:
1230		/* MOV */
1231		q = 0x0403c000;
1232		m = 0xffff7fff;
1233		break;
1234	case 0x8:
1235		/* INTERP (move centroid, perspective and flat bits) */
1236		m = ~0x03000100;
1237		q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1238		q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1239		break;
1240	case 0x9:
1241		/* RCP */
1242		break;
1243	case 0xB:
1244		/* ADD */
1245		m = ~(127 << 16);
1246		q = ((e->inst[0] & (~m)) >> 2);
1247		break;
1248	case 0xC:
1249		/* MUL */
1250		m = ~0x00008000;
1251		q = ((e->inst[0] & (~m)) << 12);
1252		break;
1253	case 0xE:
1254		/* MAD (if src2 == dst) */
1255		q = ((e->inst[0] & 0x1fc) << 12);
1256		break;
1257	default:
1258		assert(0);
1259		break;
1260	}
1261
1262	set_long(pc, e);
1263	pc->p->exec_size++;
1264
1265	e->inst[0] &= m;
1266	e->inst[1] |= q;
1267}
1268
1269static boolean
1270negate_supported(const struct tgsi_full_instruction *insn, int i)
1271{
1272	switch (insn->Instruction.Opcode) {
1273	case TGSI_OPCODE_DP3:
1274	case TGSI_OPCODE_DP4:
1275	case TGSI_OPCODE_MUL:
1276	case TGSI_OPCODE_KIL:
1277	case TGSI_OPCODE_ADD:
1278	case TGSI_OPCODE_SUB:
1279	case TGSI_OPCODE_MAD:
1280		return TRUE;
1281	case TGSI_OPCODE_POW:
1282		return (i == 1) ? TRUE : FALSE;
1283	default:
1284		return FALSE;
1285	}
1286}
1287
1288/* Return a read mask for source registers deduced from opcode & write mask. */
1289static unsigned
1290nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1291{
1292	unsigned x, mask = insn->FullDstRegisters[0].DstRegister.WriteMask;
1293
1294	switch (insn->Instruction.Opcode) {
1295	case TGSI_OPCODE_COS:
1296	case TGSI_OPCODE_SIN:
1297		return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1298	case TGSI_OPCODE_DP3:
1299		return 0x7;
1300	case TGSI_OPCODE_DP4:
1301	case TGSI_OPCODE_DPH:
1302	case TGSI_OPCODE_KIL: /* WriteMask ignored */
1303		return 0xf;
1304	case TGSI_OPCODE_DST:
1305		return mask & (c ? 0xa : 0x6);
1306	case TGSI_OPCODE_EX2:
1307	case TGSI_OPCODE_LG2:
1308	case TGSI_OPCODE_POW:
1309	case TGSI_OPCODE_RCP:
1310	case TGSI_OPCODE_RSQ:
1311	case TGSI_OPCODE_SCS:
1312		return 0x1;
1313	case TGSI_OPCODE_LIT:
1314		return 0xb;
1315	case TGSI_OPCODE_TEX:
1316	case TGSI_OPCODE_TXP:
1317	{
1318		const struct tgsi_instruction_ext_texture *tex;
1319
1320		assert(insn->Instruction.Extended);
1321		tex = &insn->InstructionExtTexture;
1322
1323		mask = 0x7;
1324		if (insn->Instruction.Opcode == TGSI_OPCODE_TXP)
1325			mask |= 0x8;
1326
1327		switch (tex->Texture) {
1328		case TGSI_TEXTURE_1D:
1329			mask &= 0x9;
1330			break;
1331		case TGSI_TEXTURE_2D:
1332			mask &= 0xb;
1333			break;
1334		default:
1335			break;
1336		}
1337	}
1338		return mask;
1339	case TGSI_OPCODE_XPD:
1340		x = 0;
1341		if (mask & 1) x |= 0x6;
1342		if (mask & 2) x |= 0x5;
1343		if (mask & 4) x |= 0x3;
1344		return x;
1345	default:
1346		break;
1347	}
1348
1349	return mask;
1350}
1351
1352static struct nv50_reg *
1353tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1354{
1355	switch (dst->DstRegister.File) {
1356	case TGSI_FILE_TEMPORARY:
1357		return &pc->temp[dst->DstRegister.Index * 4 + c];
1358	case TGSI_FILE_OUTPUT:
1359		return &pc->result[dst->DstRegister.Index * 4 + c];
1360	case TGSI_FILE_NULL:
1361		return NULL;
1362	default:
1363		break;
1364	}
1365
1366	return NULL;
1367}
1368
1369static struct nv50_reg *
1370tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1371	 boolean neg)
1372{
1373	struct nv50_reg *r = NULL;
1374	struct nv50_reg *temp;
1375	unsigned sgn, c;
1376
1377	sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1378
1379	c = tgsi_util_get_full_src_register_extswizzle(src, chan);
1380	switch (c) {
1381	case TGSI_EXTSWIZZLE_X:
1382	case TGSI_EXTSWIZZLE_Y:
1383	case TGSI_EXTSWIZZLE_Z:
1384	case TGSI_EXTSWIZZLE_W:
1385		switch (src->SrcRegister.File) {
1386		case TGSI_FILE_INPUT:
1387			r = &pc->attr[src->SrcRegister.Index * 4 + c];
1388			break;
1389		case TGSI_FILE_TEMPORARY:
1390			r = &pc->temp[src->SrcRegister.Index * 4 + c];
1391			break;
1392		case TGSI_FILE_CONSTANT:
1393			r = &pc->param[src->SrcRegister.Index * 4 + c];
1394			break;
1395		case TGSI_FILE_IMMEDIATE:
1396			r = &pc->immd[src->SrcRegister.Index * 4 + c];
1397			break;
1398		case TGSI_FILE_SAMPLER:
1399			break;
1400		default:
1401			assert(0);
1402			break;
1403		}
1404		break;
1405	case TGSI_EXTSWIZZLE_ZERO:
1406		r = alloc_immd(pc, 0.0);
1407		return r;
1408	case TGSI_EXTSWIZZLE_ONE:
1409		if (sgn == TGSI_UTIL_SIGN_TOGGLE || sgn == TGSI_UTIL_SIGN_SET)
1410			return alloc_immd(pc, -1.0);
1411		return alloc_immd(pc, 1.0);
1412	default:
1413		assert(0);
1414		break;
1415	}
1416
1417	switch (sgn) {
1418	case TGSI_UTIL_SIGN_KEEP:
1419		break;
1420	case TGSI_UTIL_SIGN_CLEAR:
1421		temp = temp_temp(pc);
1422		emit_abs(pc, temp, r);
1423		r = temp;
1424		break;
1425	case TGSI_UTIL_SIGN_TOGGLE:
1426		if (neg)
1427			r->neg = 1;
1428		else {
1429			temp = temp_temp(pc);
1430			emit_neg(pc, temp, r);
1431			r = temp;
1432		}
1433		break;
1434	case TGSI_UTIL_SIGN_SET:
1435		temp = temp_temp(pc);
1436		emit_abs(pc, temp, r);
1437		if (neg)
1438			temp->neg = 1;
1439		else
1440			emit_neg(pc, temp, temp);
1441		r = temp;
1442		break;
1443	default:
1444		assert(0);
1445		break;
1446	}
1447
1448	return r;
1449}
1450
1451/* return TRUE for ops that produce only a single result */
1452static boolean
1453is_scalar_op(unsigned op)
1454{
1455	switch (op) {
1456	case TGSI_OPCODE_COS:
1457	case TGSI_OPCODE_DP2:
1458	case TGSI_OPCODE_DP3:
1459	case TGSI_OPCODE_DP4:
1460	case TGSI_OPCODE_DPH:
1461	case TGSI_OPCODE_EX2:
1462	case TGSI_OPCODE_LG2:
1463	case TGSI_OPCODE_POW:
1464	case TGSI_OPCODE_RCP:
1465	case TGSI_OPCODE_RSQ:
1466	case TGSI_OPCODE_SIN:
1467		/*
1468	case TGSI_OPCODE_KIL:
1469	case TGSI_OPCODE_LIT:
1470	case TGSI_OPCODE_SCS:
1471		*/
1472		return TRUE;
1473	default:
1474		return FALSE;
1475	}
1476}
1477
1478/* Returns a bitmask indicating which dst components depend
1479 * on source s, component c (reverse of nv50_tgsi_src_mask).
1480 */
1481static unsigned
1482nv50_tgsi_dst_revdep(unsigned op, int s, int c)
1483{
1484	if (is_scalar_op(op))
1485		return 0x1;
1486
1487	switch (op) {
1488	case TGSI_OPCODE_DST:
1489		return (1 << c) & (s ? 0xa : 0x6);
1490	case TGSI_OPCODE_XPD:
1491		switch (c) {
1492		case 0: return 0x6;
1493		case 1: return 0x5;
1494		case 2: return 0x3;
1495		case 3: return 0x0;
1496		default:
1497			assert(0);
1498			return 0x0;
1499		}
1500	case TGSI_OPCODE_LIT:
1501	case TGSI_OPCODE_SCS:
1502	case TGSI_OPCODE_TEX:
1503	case TGSI_OPCODE_TXP:
1504		/* these take care of dangerous swizzles themselves */
1505		return 0x0;
1506	case TGSI_OPCODE_IF:
1507	case TGSI_OPCODE_KIL:
1508		/* don't call this function for these ops */
1509		assert(0);
1510		return 0;
1511	default:
1512		/* linear vector instruction */
1513		return (1 << c);
1514	}
1515}
1516
1517static INLINE boolean
1518has_pred(struct nv50_program_exec *e, unsigned cc)
1519{
1520	if (!is_long(e) || is_immd(e))
1521		return FALSE;
1522	return ((e->inst[1] & 0x780) == (cc << 7));
1523}
1524
1525/* on ENDIF see if we can do "@p0.neu single_op" instead of:
1526 *        join_at ENDIF
1527 *        @p0.eq bra ENDIF
1528 *        single_op
1529 * ENDIF: nop.join
1530 */
1531static boolean
1532nv50_kill_branch(struct nv50_pc *pc)
1533{
1534	int lvl = pc->if_lvl;
1535
1536	if (pc->if_insn[lvl]->next != pc->p->exec_tail)
1537		return FALSE;
1538
1539	/* if ccode == 'true', the BRA is from an ELSE and the predicate
1540	 * reg may no longer be valid, since we currently always use $p0
1541	 */
1542	if (has_pred(pc->if_insn[lvl], 0xf))
1543		return FALSE;
1544	assert(pc->if_insn[lvl] && pc->br_join[lvl]);
1545
1546	/* We'll use the exec allocated for JOIN_AT (as we can't easily
1547	 * update prev's next); if exec_tail is BRK, update the pointer.
1548	 */
1549	if (pc->loop_lvl && pc->br_loop[pc->loop_lvl - 1] == pc->p->exec_tail)
1550		pc->br_loop[pc->loop_lvl - 1] = pc->br_join[lvl];
1551
1552	pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
1553
1554	*pc->br_join[lvl] = *pc->p->exec_tail;
1555
1556	FREE(pc->if_insn[lvl]);
1557	FREE(pc->p->exec_tail);
1558
1559	pc->p->exec_tail = pc->br_join[lvl];
1560	pc->p->exec_tail->next = NULL;
1561	set_pred(pc, 0xd, 0, pc->p->exec_tail);
1562
1563	return TRUE;
1564}
1565
1566static boolean
1567nv50_program_tx_insn(struct nv50_pc *pc,
1568		     const struct tgsi_full_instruction *inst)
1569{
1570	struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
1571	unsigned mask, sat, unit;
1572	int i, c;
1573
1574	mask = inst->FullDstRegisters[0].DstRegister.WriteMask;
1575	sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
1576
1577	memset(src, 0, sizeof(src));
1578
1579	for (c = 0; c < 4; c++) {
1580		if ((mask & (1 << c)) && !pc->r_dst[c])
1581			dst[c] = tgsi_dst(pc, c, &inst->FullDstRegisters[0]);
1582		else
1583			dst[c] = pc->r_dst[c];
1584		rdst[c] = dst[c];
1585	}
1586
1587	for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1588		const struct tgsi_full_src_register *fs = &inst->FullSrcRegisters[i];
1589		unsigned src_mask;
1590		boolean neg_supp;
1591
1592		src_mask = nv50_tgsi_src_mask(inst, i);
1593		neg_supp = negate_supported(inst, i);
1594
1595		if (fs->SrcRegister.File == TGSI_FILE_SAMPLER)
1596			unit = fs->SrcRegister.Index;
1597
1598		for (c = 0; c < 4; c++)
1599			if (src_mask & (1 << c))
1600				src[i][c] = tgsi_src(pc, c, fs, neg_supp);
1601	}
1602
1603	brdc = temp = pc->r_brdc;
1604	if (brdc && brdc->type != P_TEMP) {
1605		temp = temp_temp(pc);
1606		if (sat)
1607			brdc = temp;
1608	} else
1609	if (sat) {
1610		for (c = 0; c < 4; c++) {
1611			if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
1612				continue;
1613			rdst[c] = dst[c];
1614			dst[c] = temp_temp(pc);
1615		}
1616	}
1617
1618	assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
1619
1620	switch (inst->Instruction.Opcode) {
1621	case TGSI_OPCODE_ABS:
1622		for (c = 0; c < 4; c++) {
1623			if (!(mask & (1 << c)))
1624				continue;
1625			emit_abs(pc, dst[c], src[0][c]);
1626		}
1627		break;
1628	case TGSI_OPCODE_ADD:
1629		for (c = 0; c < 4; c++) {
1630			if (!(mask & (1 << c)))
1631				continue;
1632			emit_add(pc, dst[c], src[0][c], src[1][c]);
1633		}
1634		break;
1635	case TGSI_OPCODE_BGNLOOP:
1636		pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
1637		break;
1638	case TGSI_OPCODE_BRK:
1639		emit_branch(pc, -1, 0, NULL);
1640		assert(pc->loop_lvl > 0);
1641		pc->br_loop[pc->loop_lvl - 1] = pc->p->exec_tail;
1642		break;
1643	case TGSI_OPCODE_CEIL:
1644		for (c = 0; c < 4; c++) {
1645			if (!(mask & (1 << c)))
1646				continue;
1647			emit_cvt(pc, dst[c], src[0][c], -1,
1648				 CVTOP_CEIL, CVT_F32_F32 | CVT_RI);
1649		}
1650		break;
1651	case TGSI_OPCODE_COS:
1652		if (mask & 8) {
1653			emit_precossin(pc, temp, src[0][3]);
1654			emit_flop(pc, 5, dst[3], temp);
1655			if (!(mask &= 7))
1656				break;
1657			if (temp == dst[3])
1658				temp = brdc = temp_temp(pc);
1659		}
1660		emit_precossin(pc, temp, src[0][0]);
1661		emit_flop(pc, 5, brdc, temp);
1662		break;
1663	case TGSI_OPCODE_DP3:
1664		emit_mul(pc, temp, src[0][0], src[1][0]);
1665		emit_mad(pc, temp, src[0][1], src[1][1], temp);
1666		emit_mad(pc, brdc, src[0][2], src[1][2], temp);
1667		break;
1668	case TGSI_OPCODE_DP4:
1669		emit_mul(pc, temp, src[0][0], src[1][0]);
1670		emit_mad(pc, temp, src[0][1], src[1][1], temp);
1671		emit_mad(pc, temp, src[0][2], src[1][2], temp);
1672		emit_mad(pc, brdc, src[0][3], src[1][3], temp);
1673		break;
1674	case TGSI_OPCODE_DPH:
1675		emit_mul(pc, temp, src[0][0], src[1][0]);
1676		emit_mad(pc, temp, src[0][1], src[1][1], temp);
1677		emit_mad(pc, temp, src[0][2], src[1][2], temp);
1678		emit_add(pc, brdc, src[1][3], temp);
1679		break;
1680	case TGSI_OPCODE_DST:
1681		if (mask & (1 << 1))
1682			emit_mul(pc, dst[1], src[0][1], src[1][1]);
1683		if (mask & (1 << 2))
1684			emit_mov(pc, dst[2], src[0][2]);
1685		if (mask & (1 << 3))
1686			emit_mov(pc, dst[3], src[1][3]);
1687		if (mask & (1 << 0))
1688			emit_mov_immdval(pc, dst[0], 1.0f);
1689		break;
1690	case TGSI_OPCODE_ELSE:
1691		emit_branch(pc, -1, 0, NULL);
1692		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
1693		pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
1694		break;
1695	case TGSI_OPCODE_ENDIF:
1696		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
1697
1698		/* try to replace branch over 1 insn with a predicated insn */
1699		if (nv50_kill_branch(pc) == TRUE)
1700			break;
1701
1702		if (pc->br_join[pc->if_lvl]) {
1703			pc->br_join[pc->if_lvl]->param.index = pc->p->exec_size;
1704			pc->br_join[pc->if_lvl] = NULL;
1705		}
1706		/* emit a NOP as join point, we could set it on the next
1707		 * one, but would have to make sure it is long and !immd
1708		 */
1709		emit_nop(pc);
1710		pc->p->exec_tail->inst[1] |= 2;
1711		break;
1712	case TGSI_OPCODE_ENDLOOP:
1713		emit_branch(pc, -1, 0, NULL);
1714		pc->p->exec_tail->param.index = pc->loop_pos[--pc->loop_lvl];
1715		pc->br_loop[pc->loop_lvl]->param.index = pc->p->exec_size;
1716		break;
1717	case TGSI_OPCODE_EX2:
1718		emit_preex2(pc, temp, src[0][0]);
1719		emit_flop(pc, 6, brdc, temp);
1720		break;
1721	case TGSI_OPCODE_FLR:
1722		for (c = 0; c < 4; c++) {
1723			if (!(mask & (1 << c)))
1724				continue;
1725			emit_flr(pc, dst[c], src[0][c]);
1726		}
1727		break;
1728	case TGSI_OPCODE_FRC:
1729		temp = temp_temp(pc);
1730		for (c = 0; c < 4; c++) {
1731			if (!(mask & (1 << c)))
1732				continue;
1733			emit_flr(pc, temp, src[0][c]);
1734			emit_sub(pc, dst[c], src[0][c], temp);
1735		}
1736		break;
1737	case TGSI_OPCODE_IF:
1738		/* emitting a join_at may not be necessary */
1739		assert(pc->if_lvl < MAX_IF_DEPTH);
1740		set_pred_wr(pc, 1, 0, pc->if_cond);
1741		emit_branch(pc, 0, 2, &pc->br_join[pc->if_lvl]);
1742		pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
1743		break;
1744	case TGSI_OPCODE_KIL:
1745		emit_kil(pc, src[0][0]);
1746		emit_kil(pc, src[0][1]);
1747		emit_kil(pc, src[0][2]);
1748		emit_kil(pc, src[0][3]);
1749		break;
1750	case TGSI_OPCODE_LIT:
1751		emit_lit(pc, &dst[0], mask, &src[0][0]);
1752		break;
1753	case TGSI_OPCODE_LG2:
1754		emit_flop(pc, 3, brdc, src[0][0]);
1755		break;
1756	case TGSI_OPCODE_LRP:
1757		temp = temp_temp(pc);
1758		for (c = 0; c < 4; c++) {
1759			if (!(mask & (1 << c)))
1760				continue;
1761			emit_sub(pc, temp, src[1][c], src[2][c]);
1762			emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
1763		}
1764		break;
1765	case TGSI_OPCODE_MAD:
1766		for (c = 0; c < 4; c++) {
1767			if (!(mask & (1 << c)))
1768				continue;
1769			emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
1770		}
1771		break;
1772	case TGSI_OPCODE_MAX:
1773		for (c = 0; c < 4; c++) {
1774			if (!(mask & (1 << c)))
1775				continue;
1776			emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
1777		}
1778		break;
1779	case TGSI_OPCODE_MIN:
1780		for (c = 0; c < 4; c++) {
1781			if (!(mask & (1 << c)))
1782				continue;
1783			emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
1784		}
1785		break;
1786	case TGSI_OPCODE_MOV:
1787	case TGSI_OPCODE_SWZ:
1788		for (c = 0; c < 4; c++) {
1789			if (!(mask & (1 << c)))
1790				continue;
1791			emit_mov(pc, dst[c], src[0][c]);
1792		}
1793		break;
1794	case TGSI_OPCODE_MUL:
1795		for (c = 0; c < 4; c++) {
1796			if (!(mask & (1 << c)))
1797				continue;
1798			emit_mul(pc, dst[c], src[0][c], src[1][c]);
1799		}
1800		break;
1801	case TGSI_OPCODE_POW:
1802		emit_pow(pc, brdc, src[0][0], src[1][0]);
1803		break;
1804	case TGSI_OPCODE_RCP:
1805		emit_flop(pc, 0, brdc, src[0][0]);
1806		break;
1807	case TGSI_OPCODE_RSQ:
1808		emit_flop(pc, 2, brdc, src[0][0]);
1809		break;
1810	case TGSI_OPCODE_SCS:
1811		temp = temp_temp(pc);
1812		if (mask & 3)
1813			emit_precossin(pc, temp, src[0][0]);
1814		if (mask & (1 << 0))
1815			emit_flop(pc, 5, dst[0], temp);
1816		if (mask & (1 << 1))
1817			emit_flop(pc, 4, dst[1], temp);
1818		if (mask & (1 << 2))
1819			emit_mov_immdval(pc, dst[2], 0.0);
1820		if (mask & (1 << 3))
1821			emit_mov_immdval(pc, dst[3], 1.0);
1822		break;
1823	case TGSI_OPCODE_SIN:
1824		if (mask & 8) {
1825			emit_precossin(pc, temp, src[0][3]);
1826			emit_flop(pc, 4, dst[3], temp);
1827			if (!(mask &= 7))
1828				break;
1829			if (temp == dst[3])
1830				temp = brdc = temp_temp(pc);
1831		}
1832		emit_precossin(pc, temp, src[0][0]);
1833		emit_flop(pc, 4, brdc, temp);
1834		break;
1835	case TGSI_OPCODE_SLT:
1836	case TGSI_OPCODE_SGE:
1837	case TGSI_OPCODE_SEQ:
1838	case TGSI_OPCODE_SGT:
1839	case TGSI_OPCODE_SLE:
1840	case TGSI_OPCODE_SNE:
1841		i = map_tgsi_setop_cc(inst->Instruction.Opcode);
1842		for (c = 0; c < 4; c++) {
1843			if (!(mask & (1 << c)))
1844				continue;
1845			emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
1846		}
1847		break;
1848	case TGSI_OPCODE_SUB:
1849		for (c = 0; c < 4; c++) {
1850			if (!(mask & (1 << c)))
1851				continue;
1852			emit_sub(pc, dst[c], src[0][c], src[1][c]);
1853		}
1854		break;
1855	case TGSI_OPCODE_TEX:
1856		emit_tex(pc, dst, mask, src[0], unit,
1857			 inst->InstructionExtTexture.Texture, FALSE);
1858		break;
1859	case TGSI_OPCODE_TXP:
1860		emit_tex(pc, dst, mask, src[0], unit,
1861			 inst->InstructionExtTexture.Texture, TRUE);
1862		break;
1863	case TGSI_OPCODE_TRUNC:
1864		for (c = 0; c < 4; c++) {
1865			if (!(mask & (1 << c)))
1866				continue;
1867			emit_cvt(pc, dst[c], src[0][c], -1,
1868				 CVTOP_TRUNC, CVT_F32_F32 | CVT_RI);
1869		}
1870		break;
1871	case TGSI_OPCODE_XPD:
1872		temp = temp_temp(pc);
1873		if (mask & (1 << 0)) {
1874			emit_mul(pc, temp, src[0][2], src[1][1]);
1875			emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
1876		}
1877		if (mask & (1 << 1)) {
1878			emit_mul(pc, temp, src[0][0], src[1][2]);
1879			emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
1880		}
1881		if (mask & (1 << 2)) {
1882			emit_mul(pc, temp, src[0][1], src[1][0]);
1883			emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
1884		}
1885		if (mask & (1 << 3))
1886			emit_mov_immdval(pc, dst[3], 1.0);
1887		break;
1888	case TGSI_OPCODE_END:
1889		break;
1890	default:
1891		NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
1892		return FALSE;
1893	}
1894
1895	if (brdc) {
1896		if (sat)
1897			emit_sat(pc, brdc, brdc);
1898		for (c = 0; c < 4; c++)
1899			if ((mask & (1 << c)) && dst[c] != brdc)
1900				emit_mov(pc, dst[c], brdc);
1901	} else
1902	if (sat) {
1903		for (c = 0; c < 4; c++) {
1904			if (!(mask & (1 << c)))
1905				continue;
1906			/* in this case we saturate later */
1907			if (dst[c]->type == P_TEMP && dst[c]->index < 0)
1908				continue;
1909			emit_sat(pc, rdst[c], dst[c]);
1910		}
1911	}
1912
1913	for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1914		for (c = 0; c < 4; c++) {
1915			if (!src[i][c])
1916				continue;
1917			if (src[i][c]->index == -1 && src[i][c]->type == P_IMMD)
1918				FREE(src[i][c]);
1919		}
1920	}
1921
1922	kill_temp_temp(pc);
1923	return TRUE;
1924}
1925
1926static void
1927prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
1928{
1929	struct nv50_reg *reg = NULL;
1930	const struct tgsi_full_src_register *src;
1931	const struct tgsi_dst_register *dst;
1932	unsigned i, c, k, mask;
1933
1934	dst = &insn->FullDstRegisters[0].DstRegister;
1935	mask = dst->WriteMask;
1936
1937        if (dst->File == TGSI_FILE_TEMPORARY)
1938                reg = pc->temp;
1939        else
1940        if (dst->File == TGSI_FILE_OUTPUT)
1941                reg = pc->result;
1942
1943	if (reg) {
1944		for (c = 0; c < 4; c++) {
1945			if (!(mask & (1 << c)))
1946				continue;
1947			reg[dst->Index * 4 + c].acc = pc->insn_nr;
1948		}
1949	}
1950
1951	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
1952		src = &insn->FullSrcRegisters[i];
1953
1954		if (src->SrcRegister.File == TGSI_FILE_TEMPORARY)
1955			reg = pc->temp;
1956		else
1957		if (src->SrcRegister.File == TGSI_FILE_INPUT)
1958			reg = pc->attr;
1959		else
1960			continue;
1961
1962		mask = nv50_tgsi_src_mask(insn, i);
1963
1964		for (c = 0; c < 4; c++) {
1965			if (!(mask & (1 << c)))
1966				continue;
1967			k = tgsi_util_get_full_src_register_extswizzle(src, c);
1968
1969			if (k > TGSI_EXTSWIZZLE_W)
1970				continue;
1971
1972			reg[src->SrcRegister.Index * 4 + k].acc = pc->insn_nr;
1973		}
1974	}
1975}
1976
1977/* Returns a bitmask indicating which dst components need to be
1978 * written to temporaries first to avoid 'corrupting' sources.
1979 *
1980 * m[i]   (out) indicate component to write in the i-th position
1981 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
1982 */
1983static unsigned
1984nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
1985{
1986	unsigned i, c, x, unsafe;
1987
1988	for (c = 0; c < 4; c++)
1989		m[c] = c;
1990
1991	/* Swap as long as a dst component written earlier is depended on
1992	 * by one written later, but the next one isn't depended on by it.
1993	 */
1994	for (c = 0; c < 3; c++) {
1995		if (rdep[m[c + 1]] & (1 << m[c]))
1996			continue; /* if next one is depended on by us */
1997		for (i = c + 1; i < 4; i++)
1998			/* if we are depended on by a later one */
1999			if (rdep[m[c]] & (1 << m[i]))
2000				break;
2001		if (i == 4)
2002			continue;
2003		/* now, swap */
2004		x = m[c];
2005		m[c] = m[c + 1];
2006		m[c + 1] = x;
2007
2008		/* restart */
2009		c = 0;
2010	}
2011
2012	/* mark dependencies that could not be resolved by reordering */
2013	for (i = 0; i < 3; ++i)
2014		for (c = i + 1; c < 4; ++c)
2015			if (rdep[m[i]] & (1 << m[c]))
2016				unsafe |= (1 << i);
2017
2018	/* NOTE: $unsafe is with respect to order, not component */
2019	return unsafe;
2020}
2021
2022/* Select a suitable dst register for broadcasting scalar results,
2023 * or return NULL if we have to allocate an extra TEMP.
2024 *
2025 * If e.g. only 1 component is written, we may also emit the final
2026 * result to a write-only register.
2027 */
2028static struct nv50_reg *
2029tgsi_broadcast_dst(struct nv50_pc *pc,
2030		   const struct tgsi_full_dst_register *fd, unsigned mask)
2031{
2032	if (fd->DstRegister.File == TGSI_FILE_TEMPORARY) {
2033		int c = ffs(~mask & fd->DstRegister.WriteMask);
2034		if (c)
2035			return tgsi_dst(pc, c - 1, fd);
2036	} else {
2037		int c = ffs(fd->DstRegister.WriteMask) - 1;
2038		if ((1 << c) == fd->DstRegister.WriteMask)
2039			return tgsi_dst(pc, c, fd);
2040	}
2041
2042	return NULL;
2043}
2044
2045/* Scan source swizzles and return a bitmask indicating dst regs that
2046 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2047 */
2048static unsigned
2049nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2050		       unsigned rdep[4])
2051{
2052	const struct tgsi_full_dst_register *fd = &insn->FullDstRegisters[0];
2053	const struct tgsi_full_src_register *fs;
2054	unsigned i, deqs = 0;
2055
2056	for (i = 0; i < 4; ++i)
2057		rdep[i] = 0;
2058
2059	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2060		unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2061		boolean neg_supp = negate_supported(insn, i);
2062
2063		fs = &insn->FullSrcRegisters[i];
2064		if (fs->SrcRegister.File != fd->DstRegister.File ||
2065		    fs->SrcRegister.Index != fd->DstRegister.Index)
2066			continue;
2067
2068		for (chn = 0; chn < 4; ++chn) {
2069			unsigned s, c;
2070
2071			if (!(mask & (1 << chn))) /* src is not read */
2072				continue;
2073			c = tgsi_util_get_full_src_register_extswizzle(fs, chn);
2074			s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2075
2076			if (c > TGSI_EXTSWIZZLE_W ||
2077			    !(fd->DstRegister.WriteMask & (1 << c)))
2078				continue;
2079
2080			/* no danger if src is copied to TEMP first */
2081			if ((s != TGSI_UTIL_SIGN_KEEP) &&
2082			    (s != TGSI_UTIL_SIGN_TOGGLE || !neg_supp))
2083				continue;
2084
2085			rdep[c] |= nv50_tgsi_dst_revdep(
2086				insn->Instruction.Opcode, i, chn);
2087			deqs |= (1 << c);
2088		}
2089	}
2090
2091	return deqs;
2092}
2093
2094static boolean
2095nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2096{
2097	struct tgsi_full_instruction insn = tok->FullInstruction;
2098	const struct tgsi_full_dst_register *fd;
2099	unsigned i, deqs, rdep[4], m[4];
2100
2101	fd = &tok->FullInstruction.FullDstRegisters[0];
2102	deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2103
2104	if (is_scalar_op(insn.Instruction.Opcode)) {
2105		pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2106		if (!pc->r_brdc)
2107			pc->r_brdc = temp_temp(pc);
2108		return nv50_program_tx_insn(pc, &insn);
2109	}
2110	pc->r_brdc = NULL;
2111
2112	if (!deqs)
2113		return nv50_program_tx_insn(pc, &insn);
2114
2115	deqs = nv50_revdep_reorder(m, rdep);
2116
2117	for (i = 0; i < 4; ++i) {
2118		assert(pc->r_dst[m[i]] == NULL);
2119
2120		insn.FullDstRegisters[0].DstRegister.WriteMask =
2121			fd->DstRegister.WriteMask & (1 << m[i]);
2122
2123		if (!insn.FullDstRegisters[0].DstRegister.WriteMask)
2124			continue;
2125
2126		if (deqs & (1 << i))
2127			pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2128
2129		if (!nv50_program_tx_insn(pc, &insn))
2130			return FALSE;
2131	}
2132
2133	for (i = 0; i < 4; i++) {
2134		struct nv50_reg *reg = pc->r_dst[i];
2135		if (!reg)
2136			continue;
2137		pc->r_dst[i] = NULL;
2138
2139		if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2140			emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2141		else
2142			emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2143		free_temp(pc, reg);
2144	}
2145
2146	return TRUE;
2147}
2148
2149static void
2150load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2151{
2152	struct nv50_reg *iv, **ppiv;
2153	unsigned mode = pc->interp_mode[reg->index];
2154
2155	ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2156	iv = *ppiv;
2157
2158	if ((mode & INTERP_PERSPECTIVE) && !iv) {
2159		iv = *ppiv = alloc_temp(pc, NULL);
2160		iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
2161
2162		emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
2163		emit_flop(pc, 0, iv, iv);
2164
2165		/* XXX: when loading interpolants dynamically, move these
2166		 * to the program head, or make sure it can't be skipped.
2167		 */
2168	}
2169
2170	emit_interp(pc, reg, iv, mode);
2171}
2172
2173static boolean
2174nv50_program_tx_prep(struct nv50_pc *pc)
2175{
2176	struct tgsi_parse_context tp;
2177	struct nv50_program *p = pc->p;
2178	boolean ret = FALSE;
2179	unsigned i, c, flat_nr = 0;
2180
2181	tgsi_parse_init(&tp, pc->p->pipe.tokens);
2182	while (!tgsi_parse_end_of_tokens(&tp)) {
2183		const union tgsi_full_token *tok = &tp.FullToken;
2184
2185		tgsi_parse_token(&tp);
2186		switch (tok->Token.Type) {
2187		case TGSI_TOKEN_TYPE_IMMEDIATE:
2188		{
2189			const struct tgsi_full_immediate *imm =
2190				&tp.FullToken.FullImmediate;
2191
2192			ctor_immd(pc, imm->u[0].Float,
2193				      imm->u[1].Float,
2194				      imm->u[2].Float,
2195				      imm->u[3].Float);
2196		}
2197			break;
2198		case TGSI_TOKEN_TYPE_DECLARATION:
2199		{
2200			const struct tgsi_full_declaration *d;
2201			unsigned si, last, first, mode;
2202
2203			d = &tp.FullToken.FullDeclaration;
2204			first = d->DeclarationRange.First;
2205			last = d->DeclarationRange.Last;
2206
2207			switch (d->Declaration.File) {
2208			case TGSI_FILE_TEMPORARY:
2209				break;
2210			case TGSI_FILE_OUTPUT:
2211				if (!d->Declaration.Semantic ||
2212				    p->type == PIPE_SHADER_FRAGMENT)
2213					break;
2214
2215				si = d->Semantic.SemanticIndex;
2216				switch (d->Semantic.SemanticName) {
2217				case TGSI_SEMANTIC_BCOLOR:
2218					p->cfg.two_side[si].hw = first;
2219					if (p->cfg.io_nr > first)
2220						p->cfg.io_nr = first;
2221					break;
2222				case TGSI_SEMANTIC_PSIZE:
2223					p->cfg.psiz = first;
2224					if (p->cfg.io_nr > first)
2225						p->cfg.io_nr = first;
2226					break;
2227					/*
2228				case TGSI_SEMANTIC_CLIP_DISTANCE:
2229					p->cfg.clpd = MIN2(p->cfg.clpd, first);
2230					break;
2231					*/
2232				default:
2233					break;
2234				}
2235				break;
2236			case TGSI_FILE_INPUT:
2237			{
2238				if (p->type != PIPE_SHADER_FRAGMENT)
2239					break;
2240
2241				switch (d->Declaration.Interpolate) {
2242				case TGSI_INTERPOLATE_CONSTANT:
2243					mode = INTERP_FLAT;
2244					flat_nr++;
2245					break;
2246				case TGSI_INTERPOLATE_PERSPECTIVE:
2247					mode = INTERP_PERSPECTIVE;
2248					p->cfg.regs[1] |= 0x08 << 24;
2249					break;
2250				default:
2251					mode = INTERP_LINEAR;
2252					break;
2253				}
2254				if (d->Declaration.Centroid)
2255					mode |= INTERP_CENTROID;
2256
2257				assert(last < 32);
2258				for (i = first; i <= last; i++)
2259					pc->interp_mode[i] = mode;
2260			}
2261				break;
2262			case TGSI_FILE_CONSTANT:
2263				break;
2264			case TGSI_FILE_SAMPLER:
2265				break;
2266			default:
2267				NOUVEAU_ERR("bad decl file %d\n",
2268					    d->Declaration.File);
2269				goto out_err;
2270			}
2271		}
2272			break;
2273		case TGSI_TOKEN_TYPE_INSTRUCTION:
2274			pc->insn_nr++;
2275			prep_inspect_insn(pc, &tok->FullInstruction);
2276			break;
2277		default:
2278			break;
2279		}
2280	}
2281
2282	if (p->type == PIPE_SHADER_VERTEX) {
2283		int rid = 0;
2284
2285		for (i = 0; i < pc->attr_nr * 4; ++i) {
2286			if (pc->attr[i].acc) {
2287				pc->attr[i].hw = rid++;
2288				p->cfg.attr[i / 32] |= 1 << (i % 32);
2289			}
2290		}
2291
2292		for (i = 0, rid = 0; i < pc->result_nr; ++i) {
2293			p->cfg.io[i].hw = rid;
2294			p->cfg.io[i].id_vp = i;
2295
2296			for (c = 0; c < 4; ++c) {
2297				int n = i * 4 + c;
2298				if (!pc->result[n].acc)
2299					continue;
2300				pc->result[n].hw = rid++;
2301				p->cfg.io[i].mask |= 1 << c;
2302			}
2303		}
2304
2305		for (c = 0; c < 2; ++c)
2306			if (p->cfg.two_side[c].hw < 0x40)
2307				p->cfg.two_side[c] = p->cfg.io[
2308					p->cfg.two_side[c].hw];
2309
2310		if (p->cfg.psiz < 0x40)
2311			p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
2312	} else
2313	if (p->type == PIPE_SHADER_FRAGMENT) {
2314		int rid, aid;
2315		unsigned n = 0, m = pc->attr_nr - flat_nr;
2316
2317		int base = (TGSI_SEMANTIC_POSITION ==
2318			    p->info.input_semantic_name[0]) ? 0 : 1;
2319
2320		/* non-flat interpolants have to be mapped to
2321		 * the lower hardware IDs, so sort them:
2322		 */
2323		for (i = 0; i < pc->attr_nr; i++) {
2324			if (pc->interp_mode[i] == INTERP_FLAT) {
2325				p->cfg.io[m].id_vp = i + base;
2326				p->cfg.io[m++].id_fp = i;
2327			} else {
2328				if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
2329					p->cfg.io[n].linear = TRUE;
2330				p->cfg.io[n].id_vp = i + base;
2331				p->cfg.io[n++].id_fp = i;
2332			}
2333		}
2334
2335		if (!base) /* set w-coordinate mask from perspective interp */
2336			p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
2337
2338		aid = popcnt4( /* if fcrd isn't contained in cfg.io */
2339			base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
2340
2341		for (n = 0; n < pc->attr_nr; ++n) {
2342			p->cfg.io[n].hw = rid = aid;
2343			i = p->cfg.io[n].id_fp;
2344
2345			for (c = 0; c < 4; ++c) {
2346				if (!pc->attr[i * 4 + c].acc)
2347					continue;
2348				pc->attr[i * 4 + c].rhw = rid++;
2349				p->cfg.io[n].mask |= 1 << c;
2350
2351				load_interpolant(pc, &pc->attr[i * 4 + c]);
2352			}
2353			aid += popcnt4(p->cfg.io[n].mask);
2354		}
2355
2356		if (!base)
2357			p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
2358
2359		m = popcnt4(p->cfg.regs[1] >> 24);
2360
2361		/* set count of non-position inputs and of non-flat
2362		 * non-position inputs for FP_INTERPOLANT_CTRL
2363		 */
2364		p->cfg.regs[1] |= aid - m;
2365
2366		if (flat_nr) {
2367			i = p->cfg.io[pc->attr_nr - flat_nr].hw;
2368			p->cfg.regs[1] |= (i - m) << 16;
2369		} else
2370			p->cfg.regs[1] |= p->cfg.regs[1] << 16;
2371
2372		/* mark color semantic for light-twoside */
2373		n = 0x40;
2374		for (i = 0; i < pc->attr_nr; i++) {
2375			ubyte si, sn;
2376
2377			sn = p->info.input_semantic_name[p->cfg.io[i].id_fp];
2378			si = p->info.input_semantic_index[p->cfg.io[i].id_fp];
2379
2380			if (sn == TGSI_SEMANTIC_COLOR) {
2381				p->cfg.two_side[si] = p->cfg.io[i];
2382
2383				/* increase colour count */
2384				p->cfg.regs[0] += popcnt4(
2385					p->cfg.two_side[si].mask) << 16;
2386
2387				n = MIN2(n, p->cfg.io[i].hw - m);
2388			}
2389		}
2390		if (n < 0x40)
2391			p->cfg.regs[0] += n;
2392
2393		/* Initialize FP results:
2394		 * FragDepth is always first TGSI and last hw output
2395		 */
2396		i = p->info.writes_z ? 4 : 0;
2397		for (rid = 0; i < pc->result_nr * 4; i++)
2398			pc->result[i].rhw = rid++;
2399		if (p->info.writes_z)
2400			pc->result[2].rhw = rid;
2401
2402		p->cfg.high_result = rid;
2403	}
2404
2405	if (pc->immd_nr) {
2406		int rid = 0;
2407
2408		pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
2409		if (!pc->immd)
2410			goto out_err;
2411
2412		for (i = 0; i < pc->immd_nr; i++) {
2413			for (c = 0; c < 4; c++, rid++)
2414				ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
2415		}
2416	}
2417
2418	ret = TRUE;
2419out_err:
2420	if (pc->iv_p)
2421		free_temp(pc, pc->iv_p);
2422	if (pc->iv_c)
2423		free_temp(pc, pc->iv_c);
2424
2425	tgsi_parse_free(&tp);
2426	return ret;
2427}
2428
2429static void
2430free_nv50_pc(struct nv50_pc *pc)
2431{
2432	if (pc->immd)
2433		FREE(pc->immd);
2434	if (pc->param)
2435		FREE(pc->param);
2436	if (pc->result)
2437		FREE(pc->result);
2438	if (pc->attr)
2439		FREE(pc->attr);
2440	if (pc->temp)
2441		FREE(pc->temp);
2442
2443	FREE(pc);
2444}
2445
2446static boolean
2447ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
2448{
2449	int i, c;
2450	unsigned rtype[2] = { P_ATTR, P_RESULT };
2451
2452	pc->p = p;
2453	pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
2454	pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
2455	pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
2456	pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
2457
2458	p->cfg.high_temp = 4;
2459
2460	p->cfg.two_side[0].hw = 0x40;
2461	p->cfg.two_side[1].hw = 0x40;
2462
2463	switch (p->type) {
2464	case PIPE_SHADER_VERTEX:
2465		p->cfg.psiz = 0x40;
2466		p->cfg.clpd = 0x40;
2467		p->cfg.io_nr = pc->result_nr;
2468		break;
2469	case PIPE_SHADER_FRAGMENT:
2470		rtype[0] = rtype[1] = P_TEMP;
2471
2472		p->cfg.regs[0] = 0x01000004;
2473		p->cfg.io_nr = pc->attr_nr;
2474
2475		if (p->info.writes_z) {
2476			p->cfg.regs[2] |= 0x00000100;
2477			p->cfg.regs[3] |= 0x00000011;
2478		}
2479		if (p->info.uses_kill)
2480			p->cfg.regs[2] |= 0x00100000;
2481		break;
2482	}
2483
2484	if (pc->temp_nr) {
2485		pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
2486		if (!pc->temp)
2487			return FALSE;
2488
2489		for (i = 0; i < pc->temp_nr * 4; ++i)
2490			ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
2491	}
2492
2493	if (pc->attr_nr) {
2494		pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
2495		if (!pc->attr)
2496			return FALSE;
2497
2498		for (i = 0; i < pc->attr_nr * 4; ++i)
2499			ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
2500	}
2501
2502	if (pc->result_nr) {
2503		unsigned nr = pc->result_nr * 4;
2504
2505		pc->result = MALLOC(nr * sizeof(struct nv50_reg));
2506		if (!pc->result)
2507			return FALSE;
2508
2509		for (i = 0; i < nr; ++i)
2510			ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
2511	}
2512
2513	if (pc->param_nr) {
2514		int rid = 0;
2515
2516		pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
2517		if (!pc->param)
2518			return FALSE;
2519
2520		for (i = 0; i < pc->param_nr; ++i)
2521			for (c = 0; c < 4; ++c, ++rid)
2522				ctor_reg(&pc->param[rid], P_CONST, i, rid);
2523	}
2524
2525	return TRUE;
2526}
2527
2528static void
2529nv50_fp_move_results(struct nv50_pc *pc)
2530{
2531	struct nv50_reg reg;
2532	unsigned i;
2533
2534	ctor_reg(&reg, P_TEMP, -1, -1);
2535
2536	for (i = 0; i < pc->result_nr * 4; ++i) {
2537		if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2538			continue;
2539		if (pc->result[i].rhw != pc->result[i].hw) {
2540			reg.hw = pc->result[i].rhw;
2541			emit_mov(pc, &reg, &pc->result[i]);
2542		}
2543	}
2544}
2545
2546static void
2547nv50_program_fixup_insns(struct nv50_pc *pc)
2548{
2549	struct nv50_program_exec *e, *prev = NULL, **bra_list;
2550	unsigned i, n, pos;
2551
2552	bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
2553
2554	/* Collect branch instructions, we need to adjust their offsets
2555	 * when converting 32 bit instructions to 64 bit ones
2556	 */
2557	for (n = 0, e = pc->p->exec_head; e; e = e->next)
2558		if (e->param.index >= 0 && !e->param.mask)
2559			bra_list[n++] = e;
2560
2561	/* Make sure we don't have any single 32 bit instructions. */
2562	for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
2563		pos += is_long(e) ? 2 : 1;
2564
2565		if ((pos & 1) && (!e->next || is_long(e->next))) {
2566			for (i = 0; i < n; ++i)
2567				if (bra_list[i]->param.index >= pos)
2568					bra_list[i]->param.index += 1;
2569			convert_to_long(pc, e);
2570			++pos;
2571		}
2572		if (e->next)
2573			prev = e;
2574	}
2575
2576	assert(!is_immd(pc->p->exec_head));
2577	assert(!is_immd(pc->p->exec_tail));
2578
2579	/* last instruction must be long so it can have the end bit set */
2580	if (!is_long(pc->p->exec_tail)) {
2581		convert_to_long(pc, pc->p->exec_tail);
2582		if (prev)
2583			convert_to_long(pc, prev);
2584	}
2585	assert(!(pc->p->exec_tail->inst[1] & 2));
2586	/* set the end-bit */
2587	pc->p->exec_tail->inst[1] |= 1;
2588
2589	FREE(bra_list);
2590}
2591
2592static boolean
2593nv50_program_tx(struct nv50_program *p)
2594{
2595	struct tgsi_parse_context parse;
2596	struct nv50_pc *pc;
2597	boolean ret;
2598
2599	pc = CALLOC_STRUCT(nv50_pc);
2600	if (!pc)
2601		return FALSE;
2602
2603	ret = ctor_nv50_pc(pc, p);
2604	if (ret == FALSE)
2605		goto out_cleanup;
2606
2607	ret = nv50_program_tx_prep(pc);
2608	if (ret == FALSE)
2609		goto out_cleanup;
2610
2611	tgsi_parse_init(&parse, pc->p->pipe.tokens);
2612	while (!tgsi_parse_end_of_tokens(&parse)) {
2613		const union tgsi_full_token *tok = &parse.FullToken;
2614
2615		/* don't allow half insn/immd on first and last instruction */
2616		pc->allow32 = TRUE;
2617		if (pc->insn_cur == 0 || pc->insn_cur + 2 == pc->insn_nr)
2618			pc->allow32 = FALSE;
2619
2620		tgsi_parse_token(&parse);
2621
2622		switch (tok->Token.Type) {
2623		case TGSI_TOKEN_TYPE_INSTRUCTION:
2624			++pc->insn_cur;
2625			ret = nv50_tgsi_insn(pc, tok);
2626			if (ret == FALSE)
2627				goto out_err;
2628			break;
2629		default:
2630			break;
2631		}
2632	}
2633
2634	if (pc->p->type == PIPE_SHADER_FRAGMENT)
2635		nv50_fp_move_results(pc);
2636
2637	nv50_program_fixup_insns(pc);
2638
2639	p->param_nr = pc->param_nr * 4;
2640	p->immd_nr = pc->immd_nr * 4;
2641	p->immd = pc->immd_buf;
2642
2643out_err:
2644	tgsi_parse_free(&parse);
2645
2646out_cleanup:
2647	free_nv50_pc(pc);
2648	return ret;
2649}
2650
2651static void
2652nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
2653{
2654	if (nv50_program_tx(p) == FALSE)
2655		assert(0);
2656	p->translated = TRUE;
2657}
2658
2659static void
2660nv50_program_upload_data(struct nv50_context *nv50, float *map,
2661			unsigned start, unsigned count, unsigned cbuf)
2662{
2663	struct nouveau_channel *chan = nv50->screen->base.channel;
2664	struct nouveau_grobj *tesla = nv50->screen->tesla;
2665
2666	while (count) {
2667		unsigned nr = count > 2047 ? 2047 : count;
2668
2669		BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
2670		OUT_RING  (chan, (cbuf << 0) | (start << 8));
2671		BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
2672		OUT_RINGp (chan, map, nr);
2673
2674		map += nr;
2675		start += nr;
2676		count -= nr;
2677	}
2678}
2679
2680static void
2681nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
2682{
2683	struct pipe_screen *pscreen = nv50->pipe.screen;
2684
2685	if (!p->data[0] && p->immd_nr) {
2686		struct nouveau_resource *heap = nv50->screen->immd_heap[0];
2687
2688		if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
2689			while (heap->next && heap->size < p->immd_nr) {
2690				struct nv50_program *evict = heap->next->priv;
2691				nouveau_resource_free(&evict->data[0]);
2692			}
2693
2694			if (nouveau_resource_alloc(heap, p->immd_nr, p,
2695						   &p->data[0]))
2696				assert(0);
2697		}
2698
2699		/* immediates only need to be uploaded again when freed */
2700		nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
2701					 p->immd_nr, NV50_CB_PMISC);
2702	}
2703
2704	assert(p->param_nr <= 128);
2705
2706	if (p->param_nr) {
2707		unsigned cb;
2708		float *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
2709					     PIPE_BUFFER_USAGE_CPU_READ);
2710
2711		if (p->type == PIPE_SHADER_VERTEX)
2712			cb = NV50_CB_PVP;
2713		else
2714			cb = NV50_CB_PFP;
2715
2716		nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
2717		pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
2718	}
2719}
2720
2721static void
2722nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
2723{
2724	struct nouveau_channel *chan = nv50->screen->base.channel;
2725	struct nouveau_grobj *tesla = nv50->screen->tesla;
2726	struct nv50_program_exec *e;
2727	struct nouveau_stateobj *so;
2728	const unsigned flags = NOUVEAU_BO_VRAM | NOUVEAU_BO_WR;
2729	unsigned start, count, *up, *ptr;
2730	boolean upload = FALSE;
2731
2732	if (!p->bo) {
2733		nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
2734			       p->exec_size * 4, &p->bo);
2735		upload = TRUE;
2736	}
2737
2738	if (p->data[0] && p->data[0]->start != p->data_start[0])
2739		upload = TRUE;
2740
2741	if (!upload)
2742		return;
2743
2744	for (e = p->exec_head; e; e = e->next) {
2745		unsigned ei, ci, bs;
2746
2747		if (e->param.index < 0)
2748			continue;
2749
2750		if (e->param.mask == 0) {
2751			assert(!(e->param.index & 1));
2752			/* seem to be 8 byte steps */
2753			ei = (e->param.index >> 1) + 0 /* START_ID */;
2754
2755			e->inst[0] &= 0xf0000fff;
2756			e->inst[0] |= ei << 12;
2757			continue;
2758		}
2759
2760		bs = (e->inst[1] >> 22) & 0x07;
2761		assert(bs < 2);
2762		ei = e->param.shift >> 5;
2763		ci = e->param.index;
2764		if (bs == 0)
2765			ci += p->data[bs]->start;
2766
2767		e->inst[ei] &= ~e->param.mask;
2768		e->inst[ei] |= (ci << e->param.shift);
2769	}
2770
2771	if (p->data[0])
2772		p->data_start[0] = p->data[0]->start;
2773
2774#ifdef NV50_PROGRAM_DUMP
2775	NOUVEAU_ERR("-------\n");
2776	for (e = p->exec_head; e; e = e->next) {
2777		NOUVEAU_ERR("0x%08x\n", e->inst[0]);
2778		if (is_long(e))
2779			NOUVEAU_ERR("0x%08x\n", e->inst[1]);
2780	}
2781#endif
2782
2783	up = ptr = MALLOC(p->exec_size * 4);
2784	for (e = p->exec_head; e; e = e->next) {
2785		*(ptr++) = e->inst[0];
2786		if (is_long(e))
2787			*(ptr++) = e->inst[1];
2788	}
2789
2790	so = so_new(4,2);
2791	so_method(so, nv50->screen->tesla, NV50TCL_CB_DEF_ADDRESS_HIGH, 3);
2792	so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_HIGH, 0, 0);
2793	so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_LOW, 0, 0);
2794	so_data  (so, (NV50_CB_PUPLOAD << 16) | 0x0800); //(p->exec_size * 4));
2795
2796	start = 0; count = p->exec_size;
2797	while (count) {
2798		struct nouveau_channel *chan = nv50->screen->base.channel;
2799		unsigned nr;
2800
2801		so_emit(chan, so);
2802
2803		nr = MIN2(count, 2047);
2804		nr = MIN2(chan->pushbuf->remaining, nr);
2805		if (chan->pushbuf->remaining < (nr + 3)) {
2806			FIRE_RING(chan);
2807			continue;
2808		}
2809
2810		BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
2811		OUT_RING  (chan, (start << 8) | NV50_CB_PUPLOAD);
2812		BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
2813		OUT_RINGp (chan, up + start, nr);
2814
2815		start += nr;
2816		count -= nr;
2817	}
2818
2819	FREE(up);
2820	so_ref(NULL, &so);
2821}
2822
2823void
2824nv50_vertprog_validate(struct nv50_context *nv50)
2825{
2826	struct nouveau_grobj *tesla = nv50->screen->tesla;
2827	struct nv50_program *p = nv50->vertprog;
2828	struct nouveau_stateobj *so;
2829
2830	if (!p->translated) {
2831		nv50_program_validate(nv50, p);
2832		if (!p->translated)
2833			assert(0);
2834	}
2835
2836	nv50_program_validate_data(nv50, p);
2837	nv50_program_validate_code(nv50, p);
2838
2839	so = so_new(13, 2);
2840	so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
2841	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
2842		      NOUVEAU_BO_HIGH, 0, 0);
2843	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
2844		      NOUVEAU_BO_LOW, 0, 0);
2845	so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
2846	so_data  (so, p->cfg.attr[0]);
2847	so_data  (so, p->cfg.attr[1]);
2848	so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
2849	so_data  (so, p->cfg.high_result);
2850	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
2851	so_data  (so, p->cfg.high_result); //8);
2852	so_data  (so, p->cfg.high_temp);
2853	so_method(so, tesla, NV50TCL_VP_START_ID, 1);
2854	so_data  (so, 0); /* program start offset */
2855	so_ref(so, &nv50->state.vertprog);
2856	so_ref(NULL, &so);
2857}
2858
2859void
2860nv50_fragprog_validate(struct nv50_context *nv50)
2861{
2862	struct nouveau_grobj *tesla = nv50->screen->tesla;
2863	struct nv50_program *p = nv50->fragprog;
2864	struct nouveau_stateobj *so;
2865
2866	if (!p->translated) {
2867		nv50_program_validate(nv50, p);
2868		if (!p->translated)
2869			assert(0);
2870	}
2871
2872	nv50_program_validate_data(nv50, p);
2873	nv50_program_validate_code(nv50, p);
2874
2875	so = so_new(64, 2);
2876	so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
2877	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
2878		      NOUVEAU_BO_HIGH, 0, 0);
2879	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
2880		      NOUVEAU_BO_LOW, 0, 0);
2881	so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
2882	so_data  (so, p->cfg.high_temp);
2883	so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
2884	so_data  (so, p->cfg.high_result);
2885	so_method(so, tesla, NV50TCL_FP_CTRL_UNK19A8, 1);
2886	so_data  (so, p->cfg.regs[2]);
2887	so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
2888	so_data  (so, p->cfg.regs[3]);
2889	so_method(so, tesla, NV50TCL_FP_START_ID, 1);
2890	so_data  (so, 0); /* program start offset */
2891	so_ref(so, &nv50->state.fragprog);
2892	so_ref(NULL, &so);
2893}
2894
2895static void
2896nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
2897{
2898	struct nv50_program *fp = nv50->fragprog;
2899	struct nv50_program *vp = nv50->vertprog;
2900	unsigned i, c, m = base;
2901
2902	/* XXX: This can't work correctly in all cases yet, we either
2903	 * have to create TGSI_SEMANTIC_PNTC or sprite_coord_mode has
2904	 * to be per FP input instead of per VP output
2905	 */
2906	memset(pntc, 0, 8 * sizeof(uint32_t));
2907
2908	for (i = 0; i < fp->cfg.io_nr; i++) {
2909		uint8_t sn, si;
2910		uint8_t j = fp->cfg.io[i].id_vp, k = fp->cfg.io[i].id_fp;
2911		unsigned n = popcnt4(fp->cfg.io[i].mask);
2912
2913		if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
2914			m += n;
2915			continue;
2916		}
2917
2918		sn = vp->info.input_semantic_name[j];
2919		si = vp->info.input_semantic_index[j];
2920
2921		if (j < fp->cfg.io_nr && sn == TGSI_SEMANTIC_GENERIC) {
2922			ubyte mode =
2923				nv50->rasterizer->pipe.sprite_coord_mode[si];
2924
2925			if (mode == PIPE_SPRITE_COORD_NONE) {
2926				m += n;
2927				continue;
2928			}
2929		}
2930
2931		/* this is either PointCoord or replaced by sprite coords */
2932		for (c = 0; c < 4; c++) {
2933			if (!(fp->cfg.io[i].mask & (1 << c)))
2934				continue;
2935			pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
2936			++m;
2937		}
2938	}
2939}
2940
2941static int
2942nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
2943	       struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
2944{
2945	int c;
2946	uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
2947	uint8_t *map = (uint8_t *)p_map;
2948
2949	for (c = 0; c < 4; ++c) {
2950		if (mf & 1) {
2951			if (fpi->linear == TRUE)
2952				lin[mid / 32] |= 1 << (mid % 32);
2953			map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
2954		}
2955
2956		oid += mv & 1;
2957		mf >>= 1;
2958		mv >>= 1;
2959	}
2960
2961	return mid;
2962}
2963
2964void
2965nv50_linkage_validate(struct nv50_context *nv50)
2966{
2967	struct nouveau_grobj *tesla = nv50->screen->tesla;
2968	struct nv50_program *vp = nv50->vertprog;
2969	struct nv50_program *fp = nv50->fragprog;
2970	struct nouveau_stateobj *so;
2971	struct nv50_sreg4 dummy, *vpo;
2972	int i, n, c, m = 0;
2973	uint32_t map[16], lin[4], reg[5], pcrd[8];
2974
2975	memset(map, 0, sizeof(map));
2976	memset(lin, 0, sizeof(lin));
2977
2978	reg[1] = 0x00000004; /* low and high clip distance map ids */
2979	reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
2980	reg[3] = 0x00000000; /* point size map id & enable */
2981	reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
2982	reg[4] = fp->cfg.regs[1]; /* interpolant info */
2983
2984	dummy.linear = FALSE;
2985	dummy.mask = 0xf; /* map all components of HPOS */
2986	m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
2987
2988	dummy.mask = 0x0;
2989
2990	if (vp->cfg.clpd < 0x40) {
2991		for (c = 0; c < vp->cfg.clpd_nr; ++c)
2992			map[m++] = vp->cfg.clpd + c;
2993		reg[1] = (m << 8);
2994	}
2995
2996	reg[0] |= m << 8; /* adjust BFC0 id */
2997
2998	/* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
2999	if (nv50->rasterizer->pipe.light_twoside) {
3000		vpo = &vp->cfg.two_side[0];
3001
3002		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3003		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3004	}
3005
3006	reg[0] += m - 4; /* adjust FFC0 id */
3007	reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3008
3009	i = 0;
3010	if (fp->info.input_semantic_name[0] == TGSI_SEMANTIC_POSITION)
3011		i = 1;
3012	for (; i < fp->cfg.io_nr; i++) {
3013		ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id_fp];
3014		ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id_fp];
3015
3016		n = fp->cfg.io[i].id_vp;
3017		if (n >= vp->cfg.io_nr ||
3018		    vp->info.output_semantic_name[n] != sn ||
3019		    vp->info.output_semantic_index[n] != si)
3020			vpo = &dummy;
3021		else
3022			vpo = &vp->cfg.io[n];
3023
3024		m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3025	}
3026
3027	if (nv50->rasterizer->pipe.point_size_per_vertex) {
3028		map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3029		reg[3] = (m++ << 4) | 1;
3030	}
3031
3032	/* now fill the stateobj */
3033	so = so_new(64, 0);
3034
3035	n = (m + 3) / 4;
3036	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3037	so_data  (so, m);
3038	so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3039	so_datap (so, map, n);
3040
3041	so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3042	so_datap (so, reg, 4);
3043
3044	so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3045	so_data  (so, reg[4]);
3046
3047	so_method(so, tesla, 0x1540, 4);
3048	so_datap (so, lin, 4);
3049
3050	if (nv50->rasterizer->pipe.point_sprite) {
3051		nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3052
3053		so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3054		so_datap (so, pcrd, 8);
3055	}
3056
3057        so_ref(so, &nv50->state.programs);
3058        so_ref(NULL, &so);
3059}
3060
3061void
3062nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3063{
3064	while (p->exec_head) {
3065		struct nv50_program_exec *e = p->exec_head;
3066
3067		p->exec_head = e->next;
3068		FREE(e);
3069	}
3070	p->exec_tail = NULL;
3071	p->exec_size = 0;
3072
3073	nouveau_bo_ref(NULL, &p->bo);
3074
3075	nouveau_resource_free(&p->data[0]);
3076
3077	p->translated = 0;
3078}
3079