nv50_program.c revision a5f771d7583f9cd2d47bc795fe9231d647659432
1/*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23#include "pipe/p_context.h"
24#include "pipe/p_defines.h"
25#include "pipe/p_state.h"
26#include "pipe/p_inlines.h"
27
28#include "pipe/p_shader_tokens.h"
29#include "tgsi/tgsi_parse.h"
30#include "tgsi/tgsi_util.h"
31
32#include "nv50_context.h"
33
34#define NV50_SU_MAX_TEMP 127
35#define NV50_SU_MAX_ADDR 4
36//#define NV50_PROGRAM_DUMP
37
38/* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40/* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * 	- Fuck it off, introduce a way to negate args for ops that
44 * 	  support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * 	- Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * 	  but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * 	ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * 	FP attr/result assignment - how?
61 * 		attrib
62 * 			- 0x16bc maps vp output onto fp hpos
63 * 			- 0x16c0 maps vp output onto fp col0
64 * 		result
65 * 			- colr always 0-3
66 * 			- depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * 	      "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * 	- 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * 	- XX == FP high something
78 */
79struct nv50_reg {
80	enum {
81		P_TEMP,
82		P_ATTR,
83		P_RESULT,
84		P_CONST,
85		P_IMMD,
86		P_ADDR
87	} type;
88	int index;
89
90	int hw;
91	int mod;
92
93	int rhw; /* result hw for FP outputs, or interpolant index */
94	int acc; /* instruction where this reg is last read (first insn == 1) */
95};
96
97#define NV50_MOD_NEG 1
98#define NV50_MOD_ABS 2
99#define NV50_MOD_NEG_ABS (NV50_MOD_NEG | NV50_MOD_ABS)
100#define NV50_MOD_SAT 4
101#define NV50_MOD_I32 8
102
103/* NV50_MOD_I32 is used to indicate integer mode for neg/abs */
104
105/* STACK: Conditionals and loops have to use the (per warp) stack.
106 * Stack entries consist of an entry type (divergent path, join at),
107 * a mask indicating the active threads of the warp, and an address.
108 * MPs can store 12 stack entries internally, if we need more (and
109 * we probably do), we have to create a stack buffer in VRAM.
110 */
111/* impose low limits for now */
112#define NV50_MAX_COND_NESTING 4
113#define NV50_MAX_LOOP_NESTING 3
114
115#define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2
116
117struct nv50_pc {
118	struct nv50_program *p;
119
120	/* hw resources */
121	struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
122	struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
123
124	/* tgsi resources */
125	struct nv50_reg *temp;
126	int temp_nr;
127	struct nv50_reg *attr;
128	int attr_nr;
129	struct nv50_reg *result;
130	int result_nr;
131	struct nv50_reg *param;
132	int param_nr;
133	struct nv50_reg *immd;
134	uint32_t *immd_buf;
135	int immd_nr;
136	struct nv50_reg **addr;
137	int addr_nr;
138	uint8_t addr_alloc; /* set bit indicates used for TGSI_FILE_ADDRESS */
139
140	struct nv50_reg *temp_temp[16];
141	unsigned temp_temp_nr;
142
143	/* broadcast and destination replacement regs */
144	struct nv50_reg *r_brdc;
145	struct nv50_reg *r_dst[4];
146
147	struct nv50_reg reg_instances[16];
148	unsigned reg_instance_nr;
149
150	unsigned interp_mode[32];
151	/* perspective interpolation registers */
152	struct nv50_reg *iv_p;
153	struct nv50_reg *iv_c;
154
155	struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING];
156	struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING];
157	struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING];
158	int if_lvl, loop_lvl;
159	unsigned loop_pos[NV50_MAX_LOOP_NESTING];
160
161	unsigned *insn_pos; /* actual program offset of each TGSI insn */
162	boolean in_subroutine;
163
164	/* current instruction and total number of insns */
165	unsigned insn_cur;
166	unsigned insn_nr;
167
168	boolean allow32;
169
170	uint8_t edgeflag_out;
171};
172
173static INLINE void
174ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
175{
176	reg->type = type;
177	reg->index = index;
178	reg->hw = hw;
179	reg->mod = 0;
180	reg->rhw = -1;
181	reg->acc = 0;
182}
183
184static INLINE unsigned
185popcnt4(uint32_t val)
186{
187	static const unsigned cnt[16]
188	= { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
189	return cnt[val & 0xf];
190}
191
192static void
193terminate_mbb(struct nv50_pc *pc)
194{
195	int i;
196
197	/* remove records of temporary address register values */
198	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
199		pc->r_addr[i].rhw = -1;
200}
201
202static void
203alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
204{
205	int i = 0;
206
207	if (reg->type == P_RESULT) {
208		if (pc->p->cfg.high_result < (reg->hw + 1))
209			pc->p->cfg.high_result = reg->hw + 1;
210	}
211
212	if (reg->type != P_TEMP)
213		return;
214
215	if (reg->hw >= 0) {
216		/*XXX: do this here too to catch FP temp-as-attr usage..
217		 *     not clean, but works */
218		if (pc->p->cfg.high_temp < (reg->hw + 1))
219			pc->p->cfg.high_temp = reg->hw + 1;
220		return;
221	}
222
223	if (reg->rhw != -1) {
224		/* try to allocate temporary with index rhw first */
225		if (!(pc->r_temp[reg->rhw])) {
226			pc->r_temp[reg->rhw] = reg;
227			reg->hw = reg->rhw;
228			if (pc->p->cfg.high_temp < (reg->rhw + 1))
229				pc->p->cfg.high_temp = reg->rhw + 1;
230			return;
231		}
232		/* make sure we don't get things like $r0 needs to go
233		 * in $r1 and $r1 in $r0
234		 */
235		i = pc->result_nr * 4;
236	}
237
238	for (; i < NV50_SU_MAX_TEMP; i++) {
239		if (!(pc->r_temp[i])) {
240			pc->r_temp[i] = reg;
241			reg->hw = i;
242			if (pc->p->cfg.high_temp < (i + 1))
243				pc->p->cfg.high_temp = i + 1;
244			return;
245		}
246	}
247
248	assert(0);
249}
250
251static INLINE struct nv50_reg *
252reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
253{
254	struct nv50_reg *ri;
255
256	assert(pc->reg_instance_nr < 16);
257	ri = &pc->reg_instances[pc->reg_instance_nr++];
258	if (reg) {
259		alloc_reg(pc, reg);
260		*ri = *reg;
261		reg->mod = 0;
262	}
263	return ri;
264}
265
266/* XXX: For shaders that aren't executed linearly (e.g. shaders that
267 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
268 * lest we risk temp_temps overwriting regs alloc'd "later".
269 */
270static struct nv50_reg *
271alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
272{
273	struct nv50_reg *r;
274	int i;
275
276	if (dst && dst->type == P_TEMP && dst->hw == -1)
277		return dst;
278
279	for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
280		if (!pc->r_temp[i]) {
281			r = MALLOC_STRUCT(nv50_reg);
282			ctor_reg(r, P_TEMP, -1, i);
283			pc->r_temp[i] = r;
284			return r;
285		}
286	}
287
288	assert(0);
289	return NULL;
290}
291
292/* release the hardware resource held by r */
293static void
294release_hw(struct nv50_pc *pc, struct nv50_reg *r)
295{
296	assert(r->type == P_TEMP);
297	if (r->hw == -1)
298		return;
299
300	assert(pc->r_temp[r->hw] == r);
301	pc->r_temp[r->hw] = NULL;
302
303	r->acc = 0;
304	if (r->index == -1)
305		FREE(r);
306}
307
308static void
309free_temp(struct nv50_pc *pc, struct nv50_reg *r)
310{
311	if (r->index == -1) {
312		unsigned hw = r->hw;
313
314		FREE(pc->r_temp[hw]);
315		pc->r_temp[hw] = NULL;
316	}
317}
318
319static int
320alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
321{
322	int i;
323
324	if ((idx + 4) >= NV50_SU_MAX_TEMP)
325		return 1;
326
327	if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
328	    pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
329		return alloc_temp4(pc, dst, idx + 4);
330
331	for (i = 0; i < 4; i++) {
332		dst[i] = MALLOC_STRUCT(nv50_reg);
333		ctor_reg(dst[i], P_TEMP, -1, idx + i);
334		pc->r_temp[idx + i] = dst[i];
335	}
336
337	return 0;
338}
339
340static void
341free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
342{
343	int i;
344
345	for (i = 0; i < 4; i++)
346		free_temp(pc, reg[i]);
347}
348
349static struct nv50_reg *
350temp_temp(struct nv50_pc *pc)
351{
352	if (pc->temp_temp_nr >= 16)
353		assert(0);
354
355	pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
356	return pc->temp_temp[pc->temp_temp_nr++];
357}
358
359static void
360kill_temp_temp(struct nv50_pc *pc)
361{
362	int i;
363
364	for (i = 0; i < pc->temp_temp_nr; i++)
365		free_temp(pc, pc->temp_temp[i]);
366	pc->temp_temp_nr = 0;
367}
368
369static int
370ctor_immd_4u32(struct nv50_pc *pc,
371	       uint32_t x, uint32_t y, uint32_t z, uint32_t w)
372{
373	unsigned size = pc->immd_nr * 4 * sizeof(uint32_t);
374
375	pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t));
376
377	pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
378	pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
379	pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
380	pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
381
382	return pc->immd_nr++;
383}
384
385static INLINE int
386ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w)
387{
388	return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w));
389}
390
391static struct nv50_reg *
392alloc_immd(struct nv50_pc *pc, float f)
393{
394	struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
395	unsigned hw;
396
397	for (hw = 0; hw < pc->immd_nr * 4; hw++)
398		if (pc->immd_buf[hw] == fui(f))
399			break;
400
401	if (hw == pc->immd_nr * 4)
402		hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4;
403
404	ctor_reg(r, P_IMMD, -1, hw);
405	return r;
406}
407
408static struct nv50_program_exec *
409exec(struct nv50_pc *pc)
410{
411	struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
412
413	e->param.index = -1;
414	return e;
415}
416
417static void
418emit(struct nv50_pc *pc, struct nv50_program_exec *e)
419{
420	struct nv50_program *p = pc->p;
421
422	if (p->exec_tail)
423		p->exec_tail->next = e;
424	if (!p->exec_head)
425		p->exec_head = e;
426	p->exec_tail = e;
427	p->exec_size += (e->inst[0] & 1) ? 2 : 1;
428}
429
430static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
431
432static boolean
433is_long(struct nv50_program_exec *e)
434{
435	if (e->inst[0] & 1)
436		return TRUE;
437	return FALSE;
438}
439
440static boolean
441is_immd(struct nv50_program_exec *e)
442{
443	if (is_long(e) && (e->inst[1] & 3) == 3)
444		return TRUE;
445	return FALSE;
446}
447
448static boolean
449is_join(struct nv50_program_exec *e)
450{
451	if (is_long(e) && (e->inst[1] & 3) == 2)
452		return TRUE;
453	return FALSE;
454}
455
456static INLINE void
457set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
458	 struct nv50_program_exec *e)
459{
460	assert(!is_immd(e));
461	set_long(pc, e);
462	e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
463	e->inst[1] |= (pred << 7) | (idx << 12);
464}
465
466static INLINE void
467set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
468	    struct nv50_program_exec *e)
469{
470	set_long(pc, e);
471	e->inst[1] &= ~((0x3 << 4) | (1 << 6));
472	e->inst[1] |= (idx << 4) | (on << 6);
473}
474
475static INLINE void
476set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
477{
478	if (is_long(e))
479		return;
480
481	e->inst[0] |= 1;
482	set_pred(pc, 0xf, 0, e);
483	set_pred_wr(pc, 0, 0, e);
484}
485
486static INLINE void
487set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
488{
489	if (dst->type == P_RESULT) {
490		set_long(pc, e);
491		e->inst[1] |= 0x00000008;
492	}
493
494	alloc_reg(pc, dst);
495	if (dst->hw > 63)
496		set_long(pc, e);
497	e->inst[0] |= (dst->hw << 2);
498}
499
500static INLINE void
501set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
502{
503	set_long(pc, e);
504	/* XXX: can't be predicated - bits overlap; cases where both
505	 * are required should be avoided by using pc->allow32 */
506	set_pred(pc, 0, 0, e);
507	set_pred_wr(pc, 0, 0, e);
508
509	e->inst[1] |= 0x00000002 | 0x00000001;
510	e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16;
511	e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2;
512}
513
514static INLINE void
515set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
516{
517	assert(!(e->inst[0] & 0x0c000000));
518	assert(!(e->inst[1] & 0x00000004));
519
520	e->inst[0] |= (a->hw & 3) << 26;
521	e->inst[1] |= (a->hw >> 2) << 2;
522}
523
524static void
525emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
526		  struct nv50_reg *src0, uint16_t src1_val)
527{
528	struct nv50_program_exec *e = exec(pc);
529
530	e->inst[0] = 0xd0000000 | (src1_val << 9);
531	e->inst[1] = 0x20000000;
532	set_long(pc, e);
533	e->inst[0] |= dst->hw << 2;
534	if (src0) /* otherwise will add to $a0, which is always 0 */
535		set_addr(e, src0);
536
537	emit(pc, e);
538}
539
540static struct nv50_reg *
541alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
542{
543	struct nv50_reg *a_tgsi = NULL, *a = NULL;
544	int i;
545	uint8_t avail = ~pc->addr_alloc;
546
547	if (!ref) {
548		/* allocate for TGSI_FILE_ADDRESS */
549		while (avail) {
550			i = ffs(avail) - 1;
551
552			if (pc->r_addr[i].rhw < 0 ||
553			    pc->r_addr[i].acc != pc->insn_cur) {
554				pc->addr_alloc |= (1 << i);
555
556				pc->r_addr[i].rhw = -1;
557				pc->r_addr[i].index = i;
558				return &pc->r_addr[i];
559			}
560			avail &= ~(1 << i);
561		}
562		assert(0);
563		return NULL;
564	}
565
566	/* Allocate and set an address reg so we can access 'ref'.
567	 *
568	 * If and r_addr->index will be -1 or the hw index the value
569	 * value in rhw is relative to. If rhw < 0, the reg has not
570	 * been initialized or is in use for TGSI_FILE_ADDRESS.
571	 */
572	while (avail) { /* only consider regs that are not TGSI */
573		i = ffs(avail) - 1;
574		avail &= ~(1 << i);
575
576		if ((!a || a->rhw >= 0) && pc->r_addr[i].rhw < 0) {
577			/* prefer an usused reg with low hw index */
578			a = &pc->r_addr[i];
579			continue;
580		}
581		if (!a && pc->r_addr[i].acc != pc->insn_cur)
582			a = &pc->r_addr[i];
583
584		if (ref->hw - pc->r_addr[i].rhw >= 128)
585			continue;
586
587		if ((ref->acc >= 0 && pc->r_addr[i].index < 0) ||
588		    (ref->acc < 0 && pc->r_addr[i].index == ref->index)) {
589			pc->r_addr[i].acc = pc->insn_cur;
590			return &pc->r_addr[i];
591		}
592	}
593	assert(a);
594
595	if (ref->acc < 0)
596		a_tgsi = pc->addr[ref->index];
597
598	emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
599
600	a->rhw = ref->hw & ~0x7f;
601	a->acc = pc->insn_cur;
602	a->index = a_tgsi ? ref->index : -1;
603	return a;
604}
605
606#define INTERP_LINEAR		0
607#define INTERP_FLAT		1
608#define INTERP_PERSPECTIVE	2
609#define INTERP_CENTROID		4
610
611/* interpolant index has been stored in dst->rhw */
612static void
613emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
614		unsigned mode)
615{
616	assert(dst->rhw != -1);
617	struct nv50_program_exec *e = exec(pc);
618
619	e->inst[0] |= 0x80000000;
620	set_dst(pc, dst, e);
621	e->inst[0] |= (dst->rhw << 16);
622
623	if (mode & INTERP_FLAT) {
624		e->inst[0] |= (1 << 8);
625	} else {
626		if (mode & INTERP_PERSPECTIVE) {
627			e->inst[0] |= (1 << 25);
628			alloc_reg(pc, iv);
629			e->inst[0] |= (iv->hw << 9);
630		}
631
632		if (mode & INTERP_CENTROID)
633			e->inst[0] |= (1 << 24);
634	}
635
636	emit(pc, e);
637}
638
639static void
640set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
641	 struct nv50_program_exec *e)
642{
643	set_long(pc, e);
644
645	e->param.index = src->hw & 127;
646	e->param.shift = s;
647	e->param.mask = m << (s % 32);
648
649	if (src->hw > 127)
650		set_addr(e, alloc_addr(pc, src));
651	else
652	if (src->acc < 0) {
653		assert(src->type == P_CONST);
654		set_addr(e, pc->addr[src->index]);
655	}
656
657	e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
658}
659
660/* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */
661static void
662emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
663{
664	struct nv50_program_exec *e = exec(pc);
665
666	e->inst[0] = 0x10000000;
667	if (!pc->allow32)
668		set_long(pc, e);
669
670	set_dst(pc, dst, e);
671
672	if (!is_long(e) && src->type == P_IMMD) {
673		set_immd(pc, src, e);
674		/*XXX: 32-bit, but steals part of "half" reg space - need to
675		 *     catch and handle this case if/when we do half-regs
676		 */
677	} else
678	if (src->type == P_IMMD || src->type == P_CONST) {
679		set_long(pc, e);
680		set_data(pc, src, 0x7f, 9, e);
681		e->inst[1] |= 0x20000000; /* mov from c[] */
682	} else {
683		if (src->type == P_ATTR) {
684			set_long(pc, e);
685			e->inst[1] |= 0x00200000;
686		}
687
688		alloc_reg(pc, src);
689		if (src->hw > 63)
690			set_long(pc, e);
691		e->inst[0] |= (src->hw << 9);
692	}
693
694	if (is_long(e) && !is_immd(e)) {
695		e->inst[1] |= 0x04000000; /* 32-bit */
696		e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
697		if (!(e->inst[1] & 0x20000000))
698			e->inst[1] |= 0x00030000; /* lane mask 2:3 */
699	} else
700		e->inst[0] |= 0x00008000;
701
702	emit(pc, e);
703}
704
705static INLINE void
706emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
707{
708	struct nv50_reg *imm = alloc_immd(pc, f);
709	emit_mov(pc, dst, imm);
710	FREE(imm);
711}
712
713/* Assign the hw of the discarded temporary register src
714 * to the tgsi register dst and free src.
715 */
716static void
717assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
718{
719	assert(src->index == -1 && src->hw != -1);
720
721	if (pc->if_lvl || pc->loop_lvl ||
722	    (dst->type != P_TEMP) ||
723	    (src->hw < pc->result_nr * 4 &&
724	     pc->p->type == PIPE_SHADER_FRAGMENT) ||
725	    pc->p->info.opcode_count[TGSI_OPCODE_CAL] ||
726	    pc->p->info.opcode_count[TGSI_OPCODE_BRA]) {
727
728		emit_mov(pc, dst, src);
729		free_temp(pc, src);
730		return;
731	}
732
733	if (dst->hw != -1)
734		pc->r_temp[dst->hw] = NULL;
735	pc->r_temp[src->hw] = dst;
736	dst->hw = src->hw;
737
738	FREE(src);
739}
740
741static void
742emit_nop(struct nv50_pc *pc)
743{
744	struct nv50_program_exec *e = exec(pc);
745
746	e->inst[0] = 0xf0000000;
747	set_long(pc, e);
748	e->inst[1] = 0xe0000000;
749	emit(pc, e);
750}
751
752static boolean
753check_swap_src_0_1(struct nv50_pc *pc,
754		   struct nv50_reg **s0, struct nv50_reg **s1)
755{
756	struct nv50_reg *src0 = *s0, *src1 = *s1;
757
758	if (src0->type == P_CONST) {
759		if (src1->type != P_CONST) {
760			*s0 = src1;
761			*s1 = src0;
762			return TRUE;
763		}
764	} else
765	if (src1->type == P_ATTR) {
766		if (src0->type != P_ATTR) {
767			*s0 = src1;
768			*s1 = src0;
769			return TRUE;
770		}
771	}
772
773	return FALSE;
774}
775
776static void
777set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
778		     struct nv50_program_exec *e)
779{
780	struct nv50_reg *temp;
781
782	if (src->type != P_TEMP) {
783		temp = temp_temp(pc);
784		emit_mov(pc, temp, src);
785		src = temp;
786	}
787
788	alloc_reg(pc, src);
789	if (src->hw > 63)
790		set_long(pc, e);
791	e->inst[0] |= (src->hw << 9);
792}
793
794static void
795set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
796{
797	if (src->type == P_ATTR) {
798		set_long(pc, e);
799		e->inst[1] |= 0x00200000;
800	} else
801	if (src->type == P_CONST || src->type == P_IMMD) {
802		struct nv50_reg *temp = temp_temp(pc);
803
804		emit_mov(pc, temp, src);
805		src = temp;
806	}
807
808	alloc_reg(pc, src);
809	if (src->hw > 63)
810		set_long(pc, e);
811	e->inst[0] |= (src->hw << 9);
812}
813
814static void
815set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
816{
817	if (src->type == P_ATTR) {
818		struct nv50_reg *temp = temp_temp(pc);
819
820		emit_mov(pc, temp, src);
821		src = temp;
822	} else
823	if (src->type == P_CONST || src->type == P_IMMD) {
824		assert(!(e->inst[0] & 0x00800000));
825		if (e->inst[0] & 0x01000000) {
826			struct nv50_reg *temp = temp_temp(pc);
827
828			emit_mov(pc, temp, src);
829			src = temp;
830		} else {
831			set_data(pc, src, 0x7f, 16, e);
832			e->inst[0] |= 0x00800000;
833		}
834	}
835
836	alloc_reg(pc, src);
837	if (src->hw > 63)
838		set_long(pc, e);
839	e->inst[0] |= ((src->hw & 127) << 16);
840}
841
842static void
843set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
844{
845	set_long(pc, e);
846
847	if (src->type == P_ATTR) {
848		struct nv50_reg *temp = temp_temp(pc);
849
850		emit_mov(pc, temp, src);
851		src = temp;
852	} else
853	if (src->type == P_CONST || src->type == P_IMMD) {
854		assert(!(e->inst[0] & 0x01000000));
855		if (e->inst[0] & 0x00800000) {
856			struct nv50_reg *temp = temp_temp(pc);
857
858			emit_mov(pc, temp, src);
859			src = temp;
860		} else {
861			set_data(pc, src, 0x7f, 32+14, e);
862			e->inst[0] |= 0x01000000;
863		}
864	}
865
866	alloc_reg(pc, src);
867	e->inst[1] |= ((src->hw & 127) << 14);
868}
869
870static void
871emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
872{
873	struct nv50_program_exec *e = exec(pc);
874
875	assert(dst->type == P_TEMP);
876	e->inst[1] = 0x20000000 | (pred << 12);
877	set_long(pc, e);
878	set_dst(pc, dst, e);
879
880	emit(pc, e);
881}
882
883static void
884emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
885{
886	struct nv50_program_exec *e = exec(pc);
887
888	e->inst[0] = 0x000001fc;
889	e->inst[1] = 0xa0000008;
890	set_long(pc, e);
891	set_pred_wr(pc, 1, pred, e);
892	set_src_0_restricted(pc, src, e);
893
894	emit(pc, e);
895}
896
897static void
898emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
899	 struct nv50_reg *src1)
900{
901	struct nv50_program_exec *e = exec(pc);
902
903	e->inst[0] |= 0xc0000000;
904
905	if (!pc->allow32)
906		set_long(pc, e);
907
908	check_swap_src_0_1(pc, &src0, &src1);
909	set_dst(pc, dst, e);
910	set_src_0(pc, src0, e);
911	if (src1->type == P_IMMD && !is_long(e)) {
912		if (src0->mod ^ src1->mod)
913			e->inst[0] |= 0x00008000;
914		set_immd(pc, src1, e);
915	} else {
916		set_src_1(pc, src1, e);
917		if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
918			if (is_long(e))
919				e->inst[1] |= 0x08000000;
920			else
921				e->inst[0] |= 0x00008000;
922		}
923	}
924
925	emit(pc, e);
926}
927
928static void
929emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
930	 struct nv50_reg *src0, struct nv50_reg *src1)
931{
932	struct nv50_program_exec *e = exec(pc);
933
934	e->inst[0] = 0xb0000000;
935
936	alloc_reg(pc, src1);
937	check_swap_src_0_1(pc, &src0, &src1);
938
939	if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
940		set_long(pc, e);
941		e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
942			      ((src1->mod & NV50_MOD_NEG) << 27);
943	}
944
945	set_dst(pc, dst, e);
946	set_src_0(pc, src0, e);
947	if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
948		set_src_2(pc, src1, e);
949	else
950	if (src1->type == P_IMMD)
951		set_immd(pc, src1, e);
952	else
953		set_src_1(pc, src1, e);
954
955	emit(pc, e);
956}
957
958static void
959emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
960	 uint8_t s)
961{
962	struct nv50_program_exec *e = exec(pc);
963
964	set_long(pc, e);
965	e->inst[1] |= 0xc0000000;
966
967	e->inst[0] |= dst->hw << 2;
968	e->inst[0] |= s << 16; /* shift left */
969	set_src_0_restricted(pc, src, e);
970
971	emit(pc, e);
972}
973
974#define NV50_MAX_F32 0x880
975#define NV50_MAX_S32 0x08c
976#define NV50_MAX_U32 0x084
977#define NV50_MIN_F32 0x8a0
978#define NV50_MIN_S32 0x0ac
979#define NV50_MIN_U32 0x0a4
980
981static void
982emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
983	    struct nv50_reg *src0, struct nv50_reg *src1)
984{
985	struct nv50_program_exec *e = exec(pc);
986
987	set_long(pc, e);
988	e->inst[0] |= 0x30000000 | ((sub & 0x800) << 20);
989	e->inst[1] |= (sub << 24);
990
991	check_swap_src_0_1(pc, &src0, &src1);
992	set_dst(pc, dst, e);
993	set_src_0(pc, src0, e);
994	set_src_1(pc, src1, e);
995
996	if (src0->mod & NV50_MOD_ABS)
997		e->inst[1] |= 0x00100000;
998	if (src1->mod & NV50_MOD_ABS)
999		e->inst[1] |= 0x00080000;
1000
1001	emit(pc, e);
1002}
1003
1004static INLINE void
1005emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1006	 struct nv50_reg *src1)
1007{
1008	src1->mod ^= NV50_MOD_NEG;
1009	emit_add(pc, dst, src0, src1);
1010	src1->mod ^= NV50_MOD_NEG;
1011}
1012
1013static void
1014emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1015	    struct nv50_reg *src1, unsigned op)
1016{
1017	struct nv50_program_exec *e = exec(pc);
1018
1019	e->inst[0] = 0xd0000000;
1020	set_long(pc, e);
1021
1022	check_swap_src_0_1(pc, &src0, &src1);
1023	set_dst(pc, dst, e);
1024	set_src_0(pc, src0, e);
1025
1026	if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
1027	    op != TGSI_OPCODE_XOR)
1028		assert(!"invalid bit op");
1029
1030	assert(!(src0->mod | src1->mod));
1031
1032	if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
1033		set_immd(pc, src1, e);
1034		if (op == TGSI_OPCODE_OR)
1035			e->inst[0] |= 0x0100;
1036		else
1037		if (op == TGSI_OPCODE_XOR)
1038			e->inst[0] |= 0x8000;
1039	} else {
1040		set_src_1(pc, src1, e);
1041		e->inst[1] |= 0x04000000; /* 32 bit */
1042		if (op == TGSI_OPCODE_OR)
1043			e->inst[1] |= 0x4000;
1044		else
1045		if (op == TGSI_OPCODE_XOR)
1046			e->inst[1] |= 0x8000;
1047	}
1048
1049	emit(pc, e);
1050}
1051
1052static void
1053emit_shift(struct nv50_pc *pc, struct nv50_reg *dst,
1054	   struct nv50_reg *src0, struct nv50_reg *src1, unsigned dir)
1055{
1056	struct nv50_program_exec *e = exec(pc);
1057
1058	e->inst[0] = 0x30000000;
1059	e->inst[1] = 0xc4000000;
1060
1061	set_long(pc, e);
1062	set_dst(pc, dst, e);
1063	set_src_0(pc, src0, e);
1064
1065	if (src1->type == P_IMMD) {
1066		e->inst[1] |= (1 << 20);
1067		e->inst[0] |= (pc->immd_buf[src1->hw] & 0x7f) << 16;
1068	} else
1069		set_src_1(pc, src1, e);
1070
1071	if (dir != TGSI_OPCODE_SHL)
1072		e->inst[1] |= (1 << 29);
1073
1074	if (dir == TGSI_OPCODE_ISHR)
1075		e->inst[1] |= (1 << 27);
1076
1077	emit(pc, e);
1078}
1079
1080static void
1081emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1082	 struct nv50_reg *src1, struct nv50_reg *src2)
1083{
1084	struct nv50_program_exec *e = exec(pc);
1085
1086	e->inst[0] |= 0xe0000000;
1087
1088	check_swap_src_0_1(pc, &src0, &src1);
1089	set_dst(pc, dst, e);
1090	set_src_0(pc, src0, e);
1091	set_src_1(pc, src1, e);
1092	set_src_2(pc, src2, e);
1093
1094	if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
1095		e->inst[1] |= 0x04000000;
1096	if (src2->mod & NV50_MOD_NEG)
1097		e->inst[1] |= 0x08000000;
1098
1099	emit(pc, e);
1100}
1101
1102static INLINE void
1103emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1104	 struct nv50_reg *src1, struct nv50_reg *src2)
1105{
1106	src2->mod ^= NV50_MOD_NEG;
1107	emit_mad(pc, dst, src0, src1, src2);
1108	src2->mod ^= NV50_MOD_NEG;
1109}
1110
1111#define NV50_FLOP_RCP 0
1112#define NV50_FLOP_RSQ 2
1113#define NV50_FLOP_LG2 3
1114#define NV50_FLOP_SIN 4
1115#define NV50_FLOP_COS 5
1116#define NV50_FLOP_EX2 6
1117
1118/* rcp, rsqrt, lg2 support neg and abs */
1119static void
1120emit_flop(struct nv50_pc *pc, unsigned sub,
1121	  struct nv50_reg *dst, struct nv50_reg *src)
1122{
1123	struct nv50_program_exec *e = exec(pc);
1124
1125	e->inst[0] |= 0x90000000;
1126	if (sub || src->mod) {
1127		set_long(pc, e);
1128		e->inst[1] |= (sub << 29);
1129	}
1130
1131	set_dst(pc, dst, e);
1132	set_src_0_restricted(pc, src, e);
1133
1134	assert(!src->mod || sub < 4);
1135
1136	if (src->mod & NV50_MOD_NEG)
1137		e->inst[1] |= 0x04000000;
1138	if (src->mod & NV50_MOD_ABS)
1139		e->inst[1] |= 0x00100000;
1140
1141	emit(pc, e);
1142}
1143
1144static void
1145emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1146{
1147	struct nv50_program_exec *e = exec(pc);
1148
1149	e->inst[0] |= 0xb0000000;
1150
1151	set_dst(pc, dst, e);
1152	set_src_0(pc, src, e);
1153	set_long(pc, e);
1154	e->inst[1] |= (6 << 29) | 0x00004000;
1155
1156	if (src->mod & NV50_MOD_NEG)
1157		e->inst[1] |= 0x04000000;
1158	if (src->mod & NV50_MOD_ABS)
1159		e->inst[1] |= 0x00100000;
1160
1161	emit(pc, e);
1162}
1163
1164static void
1165emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1166{
1167	struct nv50_program_exec *e = exec(pc);
1168
1169	e->inst[0] |= 0xb0000000;
1170
1171	set_dst(pc, dst, e);
1172	set_src_0(pc, src, e);
1173	set_long(pc, e);
1174	e->inst[1] |= (6 << 29);
1175
1176	if (src->mod & NV50_MOD_NEG)
1177		e->inst[1] |= 0x04000000;
1178	if (src->mod & NV50_MOD_ABS)
1179		e->inst[1] |= 0x00100000;
1180
1181	emit(pc, e);
1182}
1183
1184#define CVT_RN    (0x00 << 16)
1185#define CVT_FLOOR (0x02 << 16)
1186#define CVT_CEIL  (0x04 << 16)
1187#define CVT_TRUNC (0x06 << 16)
1188#define CVT_SAT   (0x08 << 16)
1189#define CVT_ABS   (0x10 << 16)
1190
1191#define CVT_X32_X32 0x04004000
1192#define CVT_X32_S32 0x04014000
1193#define CVT_F32_F32 ((0xc0 << 24) | CVT_X32_X32)
1194#define CVT_S32_F32 ((0x88 << 24) | CVT_X32_X32)
1195#define CVT_U32_F32 ((0x80 << 24) | CVT_X32_X32)
1196#define CVT_F32_S32 ((0x40 << 24) | CVT_X32_S32)
1197#define CVT_F32_U32 ((0x40 << 24) | CVT_X32_X32)
1198#define CVT_S32_S32 ((0x08 << 24) | CVT_X32_S32)
1199#define CVT_S32_U32 ((0x08 << 24) | CVT_X32_X32)
1200#define CVT_U32_S32 ((0x00 << 24) | CVT_X32_S32)
1201
1202#define CVT_NEG 0x20000000
1203#define CVT_RI  0x08000000
1204
1205static void
1206emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
1207	 int wp, uint32_t cvn)
1208{
1209	struct nv50_program_exec *e;
1210
1211	e = exec(pc);
1212
1213	if (src->mod & NV50_MOD_NEG) cvn |= CVT_NEG;
1214	if (src->mod & NV50_MOD_ABS) cvn |= CVT_ABS;
1215
1216	e->inst[0] = 0xa0000000;
1217	e->inst[1] = cvn;
1218	set_long(pc, e);
1219	set_src_0(pc, src, e);
1220
1221	if (wp >= 0)
1222		set_pred_wr(pc, 1, wp, e);
1223
1224	if (dst)
1225		set_dst(pc, dst, e);
1226	else {
1227		e->inst[0] |= 0x000001fc;
1228		e->inst[1] |= 0x00000008;
1229	}
1230
1231	emit(pc, e);
1232}
1233
1234/* nv50 Condition codes:
1235 *  0x1 = LT
1236 *  0x2 = EQ
1237 *  0x3 = LE
1238 *  0x4 = GT
1239 *  0x5 = NE
1240 *  0x6 = GE
1241 *  0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1242 *  0x8 = unordered bit (allows NaN)
1243 *
1244 *  mode = 0x04 (u32), 0x0c (s32), 0x80 (f32)
1245 */
1246static void
1247emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1248	 struct nv50_reg *src0, struct nv50_reg *src1, uint8_t mode)
1249{
1250	static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1251
1252	struct nv50_program_exec *e = exec(pc);
1253	struct nv50_reg *rdst;
1254
1255	assert(ccode < 16);
1256	if (check_swap_src_0_1(pc, &src0, &src1))
1257		ccode = cc_swapped[ccode & 7] | (ccode & 8);
1258
1259	rdst = dst;
1260	if (dst && dst->type != P_TEMP)
1261		dst = alloc_temp(pc, NULL);
1262
1263	set_long(pc, e);
1264	e->inst[0] |= 0x30000000 | (mode << 24);
1265	e->inst[1] |= 0x60000000 | (ccode << 14);
1266
1267	if (wp >= 0)
1268		set_pred_wr(pc, 1, wp, e);
1269	if (dst)
1270		set_dst(pc, dst, e);
1271	else {
1272		e->inst[0] |= 0x000001fc;
1273		e->inst[1] |= 0x00000008;
1274	}
1275
1276	set_src_0(pc, src0, e);
1277	set_src_1(pc, src1, e);
1278
1279	emit(pc, e);
1280
1281	if (rdst && mode == 0x80) /* convert to float ? */
1282		emit_cvt(pc, rdst, dst, -1, CVT_ABS | CVT_F32_S32);
1283	if (rdst && rdst != dst)
1284		free_temp(pc, dst);
1285}
1286
1287static INLINE void
1288map_tgsi_setop_hw(unsigned op, uint8_t *cc, uint8_t *ty)
1289{
1290	switch (op) {
1291	case TGSI_OPCODE_SLT: *cc = 0x1; *ty = 0x80; break;
1292	case TGSI_OPCODE_SGE: *cc = 0x6; *ty = 0x80; break;
1293	case TGSI_OPCODE_SEQ: *cc = 0x2; *ty = 0x80; break;
1294	case TGSI_OPCODE_SGT: *cc = 0x4; *ty = 0x80; break;
1295	case TGSI_OPCODE_SLE: *cc = 0x3; *ty = 0x80; break;
1296	case TGSI_OPCODE_SNE: *cc = 0xd; *ty = 0x80; break;
1297
1298	case TGSI_OPCODE_ISLT: *cc = 0x1; *ty = 0x0c; break;
1299	case TGSI_OPCODE_ISGE: *cc = 0x6; *ty = 0x0c; break;
1300	case TGSI_OPCODE_USEQ: *cc = 0x2; *ty = 0x04; break;
1301	case TGSI_OPCODE_USGE: *cc = 0x6; *ty = 0x04; break;
1302	case TGSI_OPCODE_USLT: *cc = 0x1; *ty = 0x04; break;
1303	case TGSI_OPCODE_USNE: *cc = 0x5; *ty = 0x04; break;
1304	default:
1305		assert(0);
1306		return;
1307	}
1308}
1309
1310static void
1311emit_add_b32(struct nv50_pc *pc, struct nv50_reg *dst,
1312	     struct nv50_reg *src0, struct nv50_reg *rsrc1)
1313{
1314	struct nv50_program_exec *e = exec(pc);
1315	struct nv50_reg *src1;
1316
1317	e->inst[0] = 0x20000000;
1318
1319	alloc_reg(pc, rsrc1);
1320	check_swap_src_0_1(pc, &src0, &rsrc1);
1321
1322	src1 = rsrc1;
1323	if (src0->mod & rsrc1->mod & NV50_MOD_NEG) {
1324		src1 = alloc_temp(pc, NULL);
1325		emit_cvt(pc, src1, rsrc1, -1, CVT_S32_S32);
1326	}
1327
1328	if (!pc->allow32 || src1->hw > 63 ||
1329	    (src1->type != P_TEMP && src1->type != P_IMMD))
1330		set_long(pc, e);
1331
1332	set_dst(pc, dst, e);
1333	set_src_0(pc, src0, e);
1334
1335	if (is_long(e)) {
1336		e->inst[1] |= 1 << 26;
1337		set_src_2(pc, src1, e);
1338	} else {
1339		e->inst[0] |= 0x8000;
1340		if (src1->type == P_IMMD)
1341			set_immd(pc, src1, e);
1342		else
1343			set_src_1(pc, src1, e);
1344	}
1345
1346	if (src0->mod & NV50_MOD_NEG)
1347		e->inst[0] |= 1 << 28;
1348	else
1349	if (src1->mod & NV50_MOD_NEG)
1350		e->inst[0] |= 1 << 22;
1351
1352	emit(pc, e);
1353
1354	if (src1 != rsrc1)
1355		free_temp(pc, src1);
1356}
1357
1358static void
1359emit_sad(struct nv50_pc *pc, struct nv50_reg *dst,
1360	 struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2)
1361{
1362	struct nv50_program_exec *e = exec(pc);
1363
1364	e->inst[0] = 0x50000000;
1365	set_dst(pc, dst, e);
1366	set_src_0(pc, src0, e);
1367	set_src_1(pc, src1, e);
1368	alloc_reg(pc, src2);
1369	if (is_long(e) || (src2->type != dst->type) || (src2->hw != dst->hw))
1370		set_src_2(pc, src2, e);
1371
1372	if (is_long(e))
1373		e->inst[1] |= 0x0c << 24;
1374	else
1375		e->inst[0] |= 0x81 << 8;
1376}
1377
1378static INLINE void
1379emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1380{
1381	emit_cvt(pc, dst, src, -1, CVT_FLOOR | CVT_F32_F32 | CVT_RI);
1382}
1383
1384static void
1385emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1386	 struct nv50_reg *v, struct nv50_reg *e)
1387{
1388	struct nv50_reg *temp = alloc_temp(pc, NULL);
1389
1390	emit_flop(pc, NV50_FLOP_LG2, temp, v);
1391	emit_mul(pc, temp, temp, e);
1392	emit_preex2(pc, temp, temp);
1393	emit_flop(pc, NV50_FLOP_EX2, dst, temp);
1394
1395	free_temp(pc, temp);
1396}
1397
1398static INLINE void
1399emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1400{
1401	emit_cvt(pc, dst, src, -1, CVT_SAT | CVT_F32_F32);
1402}
1403
1404static void
1405emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1406	 struct nv50_reg **src)
1407{
1408	struct nv50_reg *one = alloc_immd(pc, 1.0);
1409	struct nv50_reg *zero = alloc_immd(pc, 0.0);
1410	struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1411	struct nv50_reg *pos128 = alloc_immd(pc,  127.999999);
1412	struct nv50_reg *tmp[4];
1413	boolean allow32 = pc->allow32;
1414
1415	pc->allow32 = FALSE;
1416
1417	if (mask & (3 << 1)) {
1418		tmp[0] = alloc_temp(pc, NULL);
1419		emit_minmax(pc, NV50_MAX_F32, tmp[0], src[0], zero);
1420	}
1421
1422	if (mask & (1 << 2)) {
1423		set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1424
1425		tmp[1] = temp_temp(pc);
1426		emit_minmax(pc, NV50_MAX_F32, tmp[1], src[1], zero);
1427
1428		tmp[3] = temp_temp(pc);
1429		emit_minmax(pc, NV50_MAX_F32, tmp[3], src[3], neg128);
1430		emit_minmax(pc, NV50_MIN_F32, tmp[3], tmp[3], pos128);
1431
1432		emit_pow(pc, dst[2], tmp[1], tmp[3]);
1433		emit_mov(pc, dst[2], zero);
1434		set_pred(pc, 3, 0, pc->p->exec_tail);
1435	}
1436
1437	if (mask & (1 << 1))
1438		assimilate_temp(pc, dst[1], tmp[0]);
1439	else
1440	if (mask & (1 << 2))
1441		free_temp(pc, tmp[0]);
1442
1443	pc->allow32 = allow32;
1444
1445	/* do this last, in case src[i,j] == dst[0,3] */
1446	if (mask & (1 << 0))
1447		emit_mov(pc, dst[0], one);
1448
1449	if (mask & (1 << 3))
1450		emit_mov(pc, dst[3], one);
1451
1452	FREE(pos128);
1453	FREE(neg128);
1454	FREE(zero);
1455	FREE(one);
1456}
1457
1458static void
1459emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1460{
1461	struct nv50_program_exec *e;
1462	const int r_pred = 1;
1463
1464	e = exec(pc);
1465	e->inst[0] = 0x00000002; /* discard */
1466	set_long(pc, e); /* sets cond code to ALWAYS */
1467
1468	if (src) {
1469		set_pred(pc, 0x1 /* cc = LT */, r_pred, e);
1470		/* write to predicate reg */
1471		emit_cvt(pc, NULL, src, r_pred, CVT_F32_F32);
1472	}
1473
1474	emit(pc, e);
1475}
1476
1477static struct nv50_program_exec *
1478emit_control_flow(struct nv50_pc *pc, unsigned op, int pred, unsigned cc)
1479{
1480	struct nv50_program_exec *e = exec(pc);
1481
1482	e->inst[0] = (op << 28) | 2;
1483	set_long(pc, e);
1484	if (pred >= 0)
1485		set_pred(pc, cc, pred, e);
1486
1487	emit(pc, e);
1488	return e;
1489}
1490
1491static INLINE struct nv50_program_exec *
1492emit_breakaddr(struct nv50_pc *pc)
1493{
1494	return emit_control_flow(pc, 0x4, -1, 0);
1495}
1496
1497static INLINE void
1498emit_break(struct nv50_pc *pc, int pred, unsigned cc)
1499{
1500	emit_control_flow(pc, 0x5, pred, cc);
1501}
1502
1503static INLINE struct nv50_program_exec *
1504emit_joinat(struct nv50_pc *pc)
1505{
1506	return emit_control_flow(pc, 0xa, -1, 0);
1507}
1508
1509static INLINE struct nv50_program_exec *
1510emit_branch(struct nv50_pc *pc, int pred, unsigned cc)
1511{
1512	return emit_control_flow(pc, 0x1, pred, cc);
1513}
1514
1515static INLINE struct nv50_program_exec *
1516emit_call(struct nv50_pc *pc, int pred, unsigned cc)
1517{
1518	return emit_control_flow(pc, 0x2, pred, cc);
1519}
1520
1521static INLINE void
1522emit_ret(struct nv50_pc *pc, int pred, unsigned cc)
1523{
1524	emit_control_flow(pc, 0x3, pred, cc);
1525}
1526
1527#define QOP_ADD 0
1528#define QOP_SUBR 1
1529#define QOP_SUB 2
1530#define QOP_MOV_SRC1 3
1531
1532/* For a quad of threads / top left, top right, bottom left, bottom right
1533 * pixels, do a different operation, and take src0 from a specific thread.
1534 */
1535static void
1536emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
1537	    struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
1538{
1539       struct nv50_program_exec *e = exec(pc);
1540
1541       e->inst[0] = 0xc0000000;
1542       e->inst[1] = 0x80000000;
1543       set_long(pc, e);
1544       e->inst[0] |= lane_src0 << 16;
1545       set_src_0(pc, src0, e);
1546       set_src_2(pc, src1, e);
1547
1548       if (wp >= 0)
1549	       set_pred_wr(pc, 1, wp, e);
1550
1551       if (dst)
1552	       set_dst(pc, dst, e);
1553       else {
1554	       e->inst[0] |= 0x000001fc;
1555	       e->inst[1] |= 0x00000008;
1556       }
1557
1558       e->inst[0] |= (qop & 3) << 20;
1559       e->inst[1] |= (qop >> 2) << 22;
1560
1561       emit(pc, e);
1562}
1563
1564static void
1565load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1566		     struct nv50_reg **src, unsigned arg, boolean proj)
1567{
1568	int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
1569
1570	src[0]->mod |= NV50_MOD_ABS;
1571	src[1]->mod |= NV50_MOD_ABS;
1572	src[2]->mod |= NV50_MOD_ABS;
1573
1574	emit_minmax(pc, NV50_MAX_F32, t[2], src[0], src[1]);
1575	emit_minmax(pc, NV50_MAX_F32, t[2], src[2], t[2]);
1576
1577	src[0]->mod = mod[0];
1578	src[1]->mod = mod[1];
1579	src[2]->mod = mod[2];
1580
1581	if (proj && 0 /* looks more correct without this */)
1582		emit_mul(pc, t[2], t[2], src[3]);
1583	else
1584	if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
1585		emit_mov(pc, t[3], src[3]);
1586
1587	emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]);
1588
1589	emit_mul(pc, t[0], src[0], t[2]);
1590	emit_mul(pc, t[1], src[1], t[2]);
1591	emit_mul(pc, t[2], src[2], t[2]);
1592}
1593
1594static void
1595load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1596		     struct nv50_reg **src, unsigned dim, unsigned arg)
1597{
1598	unsigned c, mode;
1599
1600	if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1601		mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
1602
1603		t[3]->rhw = src[3]->rhw;
1604		emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1605		emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]);
1606
1607		for (c = 0; c < dim; ++c) {
1608			t[c]->rhw = src[c]->rhw;
1609			emit_interp(pc, t[c], t[3], mode);
1610		}
1611		if (arg != dim) { /* depth reference value */
1612			t[dim]->rhw = src[2]->rhw;
1613			emit_interp(pc, t[dim], t[3], mode);
1614		}
1615	} else {
1616		/* XXX: for some reason the blob sometimes uses MAD
1617		 * (mad f32 $rX $rY $rZ neg $r63)
1618		 */
1619		emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]);
1620		for (c = 0; c < dim; ++c)
1621			emit_mul(pc, t[c], src[c], t[3]);
1622		if (arg != dim) /* depth reference value */
1623			emit_mul(pc, t[dim], src[2], t[3]);
1624	}
1625}
1626
1627static INLINE void
1628get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
1629{
1630	switch (type) {
1631	case TGSI_TEXTURE_1D:
1632		*arg = *dim = 1;
1633		break;
1634	case TGSI_TEXTURE_SHADOW1D:
1635		*dim = 1;
1636		*arg = 2;
1637		break;
1638	case TGSI_TEXTURE_UNKNOWN:
1639	case TGSI_TEXTURE_2D:
1640	case TGSI_TEXTURE_RECT:
1641		*arg = *dim = 2;
1642		break;
1643	case TGSI_TEXTURE_SHADOW2D:
1644	case TGSI_TEXTURE_SHADOWRECT:
1645		*dim = 2;
1646		*arg = 3;
1647		break;
1648	case TGSI_TEXTURE_3D:
1649	case TGSI_TEXTURE_CUBE:
1650		*dim = *arg = 3;
1651		break;
1652	default:
1653		assert(0);
1654		break;
1655	}
1656}
1657
1658/* We shouldn't execute TEXLOD if any of the pixels in a quad have
1659 * different LOD values, so branch off groups of equal LOD.
1660 */
1661static void
1662emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
1663		     struct nv50_reg *src, struct nv50_program_exec *tex)
1664{
1665	struct nv50_program_exec *join_at;
1666	unsigned i, target = pc->p->exec_size + 9 * 2;
1667
1668	if (pc->p->type != PIPE_SHADER_FRAGMENT) {
1669		emit(pc, tex);
1670		return;
1671	}
1672	pc->allow32 = FALSE;
1673
1674	/* Subtract lod of each pixel from lod of top left pixel, jump
1675	 * texlod insn if result is 0, then repeat for 2 other pixels.
1676	 */
1677	join_at = emit_joinat(pc);
1678	emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
1679	emit_branch(pc, 0, 2)->param.index = target;
1680
1681	for (i = 1; i < 4; ++i) {
1682		emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
1683		emit_branch(pc, 0, 2)->param.index = target;
1684	}
1685
1686	emit_mov(pc, tlod, src); /* target */
1687	emit(pc, tex); /* texlod */
1688
1689	join_at->param.index = target + 2 * 2;
1690	JOIN_ON(emit_nop(pc)); /* join _after_ tex */
1691}
1692
1693static void
1694emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
1695		      struct nv50_program_exec *tex)
1696{
1697	struct nv50_program_exec *e;
1698	struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
1699	int r_pred = 0;
1700	unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
1701
1702	pc->allow32 = FALSE;
1703	ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
1704
1705	/* Subtract bias value of thread i from bias values of each thread,
1706	 * store result in r_pred, and set bit i in r_bits if result was 0.
1707	 */
1708	assert(arg < 4);
1709	for (i = 0; i < 4; ++i, ++imm_1248.hw) {
1710		emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
1711		emit_mov(pc, r_bits, &imm_1248);
1712		set_pred(pc, 2, r_pred, pc->p->exec_tail);
1713	}
1714	emit_mov_to_pred(pc, r_pred, r_bits);
1715
1716	/* The lanes of a quad are now grouped by the bit in r_pred they have
1717	 * set. Put the input values for TEX into a new register set for each
1718	 * group and execute TEX only for a specific group.
1719	 * We cannot use the same register set for each group because we need
1720	 * the derivatives, which are implicitly calculated, to be correct.
1721	 */
1722	for (i = 1; i < 4; ++i) {
1723		alloc_temp4(pc, t123[i], 0);
1724
1725		for (c = 0; c <= arg; ++c)
1726			emit_mov(pc, t123[i][c], t[c]);
1727
1728		*(e = exec(pc)) = *(tex);
1729		e->inst[0] &= ~0x01fc;
1730		set_dst(pc, t123[i][0], e);
1731		set_pred(pc, cc[i], r_pred, e);
1732		emit(pc, e);
1733	}
1734	/* finally TEX on the original regs (where we kept the input) */
1735	set_pred(pc, cc[0], r_pred, tex);
1736	emit(pc, tex);
1737
1738	/* put the 3 * n other results into regs for lane 0 */
1739	n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
1740	for (i = 1; i < 4; ++i) {
1741		for (c = 0; c < n; ++c) {
1742			emit_mov(pc, t[c], t123[i][c]);
1743			set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
1744		}
1745		free_temp4(pc, t123[i]);
1746	}
1747
1748	emit_nop(pc);
1749	free_temp(pc, r_bits);
1750}
1751
1752static void
1753emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1754	 struct nv50_reg **src, unsigned unit, unsigned type,
1755	 boolean proj, int bias_lod)
1756{
1757	struct nv50_reg *t[4];
1758	struct nv50_program_exec *e;
1759	unsigned c, dim, arg;
1760
1761	/* t[i] must be within a single 128 bit super-reg */
1762	alloc_temp4(pc, t, 0);
1763
1764	e = exec(pc);
1765	e->inst[0] = 0xf0000000;
1766	set_long(pc, e);
1767	set_dst(pc, t[0], e);
1768
1769	/* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
1770	e->inst[0] |= (unit << 9) /* | (unit << 17) */;
1771
1772	/* live flag (don't set if TEX results affect input to another TEX): */
1773	/* e->inst[0] |= 0x00000004; */
1774
1775	get_tex_dim(type, &dim, &arg);
1776
1777	if (type == TGSI_TEXTURE_CUBE) {
1778		e->inst[0] |= 0x08000000;
1779		load_cube_tex_coords(pc, t, src, arg, proj);
1780	} else
1781	if (proj)
1782		load_proj_tex_coords(pc, t, src, dim, arg);
1783	else {
1784		for (c = 0; c < dim; c++)
1785			emit_mov(pc, t[c], src[c]);
1786		if (arg != dim) /* depth reference value (always src.z here) */
1787			emit_mov(pc, t[dim], src[2]);
1788	}
1789
1790	e->inst[0] |= (mask & 0x3) << 25;
1791	e->inst[1] |= (mask & 0xc) << 12;
1792
1793	if (!bias_lod) {
1794		e->inst[0] |= (arg - 1) << 22;
1795		emit(pc, e);
1796	} else
1797	if (bias_lod < 0) {
1798		assert(pc->p->type == PIPE_SHADER_FRAGMENT);
1799		e->inst[0] |= arg << 22;
1800		e->inst[1] |= 0x20000000; /* texbias */
1801		emit_mov(pc, t[arg], src[3]);
1802		emit_texbias_sequence(pc, t, arg, e);
1803	} else {
1804		e->inst[0] |= arg << 22;
1805		e->inst[1] |= 0x40000000; /* texlod */
1806		emit_mov(pc, t[arg], src[3]);
1807		emit_texlod_sequence(pc, t[arg], src[3], e);
1808	}
1809
1810#if 1
1811	c = 0;
1812	if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1813	if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1814	if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1815	if (mask & 8) emit_mov(pc, dst[3], t[c]);
1816
1817	free_temp4(pc, t);
1818#else
1819	/* XXX: if p.e. MUL is used directly after TEX, it would still use
1820	 * the texture coordinates, not the fetched values: latency ? */
1821
1822	for (c = 0; c < 4; c++) {
1823		if (mask & (1 << c))
1824			assimilate_temp(pc, dst[c], t[c]);
1825		else
1826			free_temp(pc, t[c]);
1827	}
1828#endif
1829}
1830
1831static void
1832emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1833{
1834	struct nv50_program_exec *e = exec(pc);
1835
1836	assert(src->type == P_TEMP);
1837
1838	e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000;
1839	e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000;
1840	set_long(pc, e);
1841	set_dst(pc, dst, e);
1842	set_src_0(pc, src, e);
1843	set_src_2(pc, src, e);
1844
1845	emit(pc, e);
1846}
1847
1848static void
1849emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1850{
1851	struct nv50_program_exec *e = exec(pc);
1852
1853	assert(src->type == P_TEMP);
1854
1855	e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000;
1856	e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000;
1857	set_long(pc, e);
1858	set_dst(pc, dst, e);
1859	set_src_0(pc, src, e);
1860	set_src_2(pc, src, e);
1861
1862	emit(pc, e);
1863}
1864
1865static void
1866convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1867{
1868	unsigned q = 0, m = ~0;
1869
1870	assert(!is_long(e));
1871
1872	switch (e->inst[0] >> 28) {
1873	case 0x1:
1874		/* MOV */
1875		q = 0x0403c000;
1876		m = 0xffff7fff;
1877		break;
1878	case 0x2:
1879	case 0x3:
1880		/* ADD, SUB, SUBR b32 */
1881		m = ~(0x8000 | (127 << 16));
1882		q = ((e->inst[0] & (~m)) >> 2) | (1 << 26);
1883		break;
1884	case 0x5:
1885		/* SAD */
1886		m = ~(0x81 << 8);
1887		q = 0x0c << 24;
1888		break;
1889	case 0x8:
1890		/* INTERP (move centroid, perspective and flat bits) */
1891		m = ~0x03000100;
1892		q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1893		q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1894		break;
1895	case 0x9:
1896		/* RCP */
1897		break;
1898	case 0xB:
1899		/* ADD */
1900		m = ~(127 << 16);
1901		q = ((e->inst[0] & (~m)) >> 2);
1902		break;
1903	case 0xC:
1904		/* MUL */
1905		m = ~0x00008000;
1906		q = ((e->inst[0] & (~m)) << 12);
1907		break;
1908	case 0xE:
1909		/* MAD (if src2 == dst) */
1910		q = ((e->inst[0] & 0x1fc) << 12);
1911		break;
1912	default:
1913		assert(0);
1914		break;
1915	}
1916
1917	set_long(pc, e);
1918	pc->p->exec_size++;
1919
1920	e->inst[0] &= m;
1921	e->inst[1] |= q;
1922}
1923
1924/* Some operations support an optional negation flag. */
1925static int
1926get_supported_mods(const struct tgsi_full_instruction *insn, int i)
1927{
1928	switch (insn->Instruction.Opcode) {
1929	case TGSI_OPCODE_ADD:
1930	case TGSI_OPCODE_COS:
1931	case TGSI_OPCODE_DDX:
1932	case TGSI_OPCODE_DDY:
1933	case TGSI_OPCODE_DP3:
1934	case TGSI_OPCODE_DP4:
1935	case TGSI_OPCODE_EX2:
1936	case TGSI_OPCODE_KIL:
1937	case TGSI_OPCODE_LG2:
1938	case TGSI_OPCODE_MAD:
1939	case TGSI_OPCODE_MUL:
1940	case TGSI_OPCODE_POW:
1941	case TGSI_OPCODE_RCP:
1942	case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */
1943	case TGSI_OPCODE_SCS:
1944	case TGSI_OPCODE_SIN:
1945	case TGSI_OPCODE_SUB:
1946		return NV50_MOD_NEG;
1947	case TGSI_OPCODE_MAX:
1948	case TGSI_OPCODE_MIN:
1949	case TGSI_OPCODE_INEG: /* tgsi src sign toggle/set would be stupid */
1950		return NV50_MOD_ABS;
1951	case TGSI_OPCODE_CEIL:
1952	case TGSI_OPCODE_FLR:
1953	case TGSI_OPCODE_TRUNC:
1954		return NV50_MOD_NEG | NV50_MOD_ABS;
1955	case TGSI_OPCODE_F2I:
1956	case TGSI_OPCODE_F2U:
1957	case TGSI_OPCODE_I2F:
1958	case TGSI_OPCODE_U2F:
1959		return NV50_MOD_NEG | NV50_MOD_ABS | NV50_MOD_I32;
1960	case TGSI_OPCODE_UADD:
1961		return NV50_MOD_NEG | NV50_MOD_I32;
1962	case TGSI_OPCODE_SAD:
1963	case TGSI_OPCODE_SHL:
1964	case TGSI_OPCODE_IMAX:
1965	case TGSI_OPCODE_IMIN:
1966	case TGSI_OPCODE_ISHR:
1967	case TGSI_OPCODE_UMAX:
1968	case TGSI_OPCODE_UMIN:
1969	case TGSI_OPCODE_USHR:
1970		return NV50_MOD_I32;
1971	default:
1972		return 0;
1973	}
1974}
1975
1976/* Return a read mask for source registers deduced from opcode & write mask. */
1977static unsigned
1978nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1979{
1980	unsigned x, mask = insn->Dst[0].Register.WriteMask;
1981
1982	switch (insn->Instruction.Opcode) {
1983	case TGSI_OPCODE_COS:
1984	case TGSI_OPCODE_SIN:
1985		return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1986	case TGSI_OPCODE_DP3:
1987		return 0x7;
1988	case TGSI_OPCODE_DP4:
1989	case TGSI_OPCODE_DPH:
1990	case TGSI_OPCODE_KIL: /* WriteMask ignored */
1991		return 0xf;
1992	case TGSI_OPCODE_DST:
1993		return mask & (c ? 0xa : 0x6);
1994	case TGSI_OPCODE_EX2:
1995	case TGSI_OPCODE_EXP:
1996	case TGSI_OPCODE_LG2:
1997	case TGSI_OPCODE_LOG:
1998	case TGSI_OPCODE_POW:
1999	case TGSI_OPCODE_RCP:
2000	case TGSI_OPCODE_RSQ:
2001	case TGSI_OPCODE_SCS:
2002		return 0x1;
2003	case TGSI_OPCODE_IF:
2004		return 0x1;
2005	case TGSI_OPCODE_LIT:
2006		return 0xb;
2007	case TGSI_OPCODE_TEX:
2008	case TGSI_OPCODE_TXB:
2009	case TGSI_OPCODE_TXL:
2010	case TGSI_OPCODE_TXP:
2011	{
2012		const struct tgsi_instruction_texture *tex;
2013
2014		assert(insn->Instruction.Texture);
2015		tex = &insn->Texture;
2016
2017		mask = 0x7;
2018		if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
2019		    insn->Instruction.Opcode != TGSI_OPCODE_TXD)
2020			mask |= 0x8; /* bias, lod or proj */
2021
2022		switch (tex->Texture) {
2023		case TGSI_TEXTURE_1D:
2024			mask &= 0x9;
2025			break;
2026		case TGSI_TEXTURE_SHADOW1D:
2027			mask &= 0x5;
2028			break;
2029		case TGSI_TEXTURE_2D:
2030			mask &= 0xb;
2031			break;
2032		default:
2033			break;
2034		}
2035	}
2036		return mask;
2037	case TGSI_OPCODE_XPD:
2038		x = 0;
2039		if (mask & 1) x |= 0x6;
2040		if (mask & 2) x |= 0x5;
2041		if (mask & 4) x |= 0x3;
2042		return x;
2043	default:
2044		break;
2045	}
2046
2047	return mask;
2048}
2049
2050static struct nv50_reg *
2051tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
2052{
2053	switch (dst->Register.File) {
2054	case TGSI_FILE_TEMPORARY:
2055		return &pc->temp[dst->Register.Index * 4 + c];
2056	case TGSI_FILE_OUTPUT:
2057		return &pc->result[dst->Register.Index * 4 + c];
2058	case TGSI_FILE_ADDRESS:
2059	{
2060		struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
2061		if (!r) {
2062			r = alloc_addr(pc, NULL);
2063			pc->addr[dst->Register.Index * 4 + c] = r;
2064		}
2065		assert(r);
2066		return r;
2067	}
2068	case TGSI_FILE_NULL:
2069		return NULL;
2070	default:
2071		break;
2072	}
2073
2074	return NULL;
2075}
2076
2077static struct nv50_reg *
2078tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
2079	 int mod)
2080{
2081	struct nv50_reg *r = NULL;
2082	struct nv50_reg *temp = NULL;
2083	unsigned sgn, c, swz, cvn;
2084
2085	if (src->Register.File != TGSI_FILE_CONSTANT)
2086		assert(!src->Register.Indirect);
2087
2088	sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
2089
2090	c = tgsi_util_get_full_src_register_swizzle(src, chan);
2091	switch (c) {
2092	case TGSI_SWIZZLE_X:
2093	case TGSI_SWIZZLE_Y:
2094	case TGSI_SWIZZLE_Z:
2095	case TGSI_SWIZZLE_W:
2096		switch (src->Register.File) {
2097		case TGSI_FILE_INPUT:
2098			r = &pc->attr[src->Register.Index * 4 + c];
2099			break;
2100		case TGSI_FILE_TEMPORARY:
2101			r = &pc->temp[src->Register.Index * 4 + c];
2102			break;
2103		case TGSI_FILE_CONSTANT:
2104			if (!src->Register.Indirect) {
2105				r = &pc->param[src->Register.Index * 4 + c];
2106				break;
2107			}
2108			/* Indicate indirection by setting r->acc < 0 and
2109			 * use the index field to select the address reg.
2110			 */
2111			r = reg_instance(pc, NULL);
2112			swz = tgsi_util_get_src_register_swizzle(
2113						 &src->Indirect, 0);
2114			ctor_reg(r, P_CONST,
2115				 src->Indirect.Index * 4 + swz,
2116				 src->Register.Index * 4 + c);
2117			r->acc = -1;
2118			break;
2119		case TGSI_FILE_IMMEDIATE:
2120			r = &pc->immd[src->Register.Index * 4 + c];
2121			break;
2122		case TGSI_FILE_SAMPLER:
2123			return NULL;
2124		case TGSI_FILE_ADDRESS:
2125			r = pc->addr[src->Register.Index * 4 + c];
2126			assert(r);
2127			break;
2128		default:
2129			assert(0);
2130			break;
2131		}
2132		break;
2133	default:
2134		assert(0);
2135		break;
2136	}
2137
2138	cvn = (mod & NV50_MOD_I32) ? CVT_S32_S32 : CVT_F32_F32;
2139
2140	switch (sgn) {
2141	case TGSI_UTIL_SIGN_CLEAR:
2142		r->mod = NV50_MOD_ABS;
2143		break;
2144	case TGSI_UTIL_SIGN_SET:
2145		r->mod = NV50_MOD_NEG_ABS;
2146		break;
2147	case TGSI_UTIL_SIGN_TOGGLE:
2148		r->mod = NV50_MOD_NEG;
2149		break;
2150	default:
2151		assert(!r->mod && sgn == TGSI_UTIL_SIGN_KEEP);
2152		break;
2153	}
2154
2155	if ((r->mod & mod) != r->mod) {
2156		temp = temp_temp(pc);
2157		emit_cvt(pc, temp, r, -1, cvn);
2158		r->mod = 0;
2159		r = temp;
2160	} else
2161		r->mod |= mod & NV50_MOD_I32;
2162
2163	assert(r);
2164	if (r->acc >= 0 && r != temp)
2165		return reg_instance(pc, r); /* will clear r->mod */
2166	return r;
2167}
2168
2169/* return TRUE for ops that produce only a single result */
2170static boolean
2171is_scalar_op(unsigned op)
2172{
2173	switch (op) {
2174	case TGSI_OPCODE_COS:
2175	case TGSI_OPCODE_DP2:
2176	case TGSI_OPCODE_DP3:
2177	case TGSI_OPCODE_DP4:
2178	case TGSI_OPCODE_DPH:
2179	case TGSI_OPCODE_EX2:
2180	case TGSI_OPCODE_LG2:
2181	case TGSI_OPCODE_POW:
2182	case TGSI_OPCODE_RCP:
2183	case TGSI_OPCODE_RSQ:
2184	case TGSI_OPCODE_SIN:
2185		/*
2186	case TGSI_OPCODE_KIL:
2187	case TGSI_OPCODE_LIT:
2188	case TGSI_OPCODE_SCS:
2189		*/
2190		return TRUE;
2191	default:
2192		return FALSE;
2193	}
2194}
2195
2196/* Returns a bitmask indicating which dst components depend
2197 * on source s, component c (reverse of nv50_tgsi_src_mask).
2198 */
2199static unsigned
2200nv50_tgsi_dst_revdep(unsigned op, int s, int c)
2201{
2202	if (is_scalar_op(op))
2203		return 0x1;
2204
2205	switch (op) {
2206	case TGSI_OPCODE_DST:
2207		return (1 << c) & (s ? 0xa : 0x6);
2208	case TGSI_OPCODE_XPD:
2209		switch (c) {
2210		case 0: return 0x6;
2211		case 1: return 0x5;
2212		case 2: return 0x3;
2213		case 3: return 0x0;
2214		default:
2215			assert(0);
2216			return 0x0;
2217		}
2218	case TGSI_OPCODE_EXP:
2219	case TGSI_OPCODE_LOG:
2220	case TGSI_OPCODE_LIT:
2221	case TGSI_OPCODE_SCS:
2222	case TGSI_OPCODE_TEX:
2223	case TGSI_OPCODE_TXB:
2224	case TGSI_OPCODE_TXL:
2225	case TGSI_OPCODE_TXP:
2226		/* these take care of dangerous swizzles themselves */
2227		return 0x0;
2228	case TGSI_OPCODE_IF:
2229	case TGSI_OPCODE_KIL:
2230		/* don't call this function for these ops */
2231		assert(0);
2232		return 0;
2233	default:
2234		/* linear vector instruction */
2235		return (1 << c);
2236	}
2237}
2238
2239static INLINE boolean
2240has_pred(struct nv50_program_exec *e, unsigned cc)
2241{
2242	if (!is_long(e) || is_immd(e))
2243		return FALSE;
2244	return ((e->inst[1] & 0x780) == (cc << 7));
2245}
2246
2247/* on ENDIF see if we can do "@p0.neu single_op" instead of:
2248 *        join_at ENDIF
2249 *        @p0.eq bra ENDIF
2250 *        single_op
2251 * ENDIF: nop.join
2252 */
2253static boolean
2254nv50_kill_branch(struct nv50_pc *pc)
2255{
2256	int lvl = pc->if_lvl;
2257
2258	if (pc->if_insn[lvl]->next != pc->p->exec_tail)
2259		return FALSE;
2260	if (is_immd(pc->p->exec_tail))
2261		return FALSE;
2262
2263	/* if ccode == 'true', the BRA is from an ELSE and the predicate
2264	 * reg may no longer be valid, since we currently always use $p0
2265	 */
2266	if (has_pred(pc->if_insn[lvl], 0xf))
2267		return FALSE;
2268	assert(pc->if_insn[lvl] && pc->if_join[lvl]);
2269
2270	/* We'll use the exec allocated for JOIN_AT (we can't easily
2271	 * access nv50_program_exec's prev).
2272	 */
2273	pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
2274
2275	*pc->if_join[lvl] = *pc->p->exec_tail;
2276
2277	FREE(pc->if_insn[lvl]);
2278	FREE(pc->p->exec_tail);
2279
2280	pc->p->exec_tail = pc->if_join[lvl];
2281	pc->p->exec_tail->next = NULL;
2282	set_pred(pc, 0xd, 0, pc->p->exec_tail);
2283
2284	return TRUE;
2285}
2286
2287static void
2288nv50_fp_move_results(struct nv50_pc *pc)
2289{
2290	struct nv50_reg reg;
2291	unsigned i;
2292
2293	ctor_reg(&reg, P_TEMP, -1, -1);
2294
2295	for (i = 0; i < pc->result_nr * 4; ++i) {
2296		if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2297			continue;
2298		if (pc->result[i].rhw != pc->result[i].hw) {
2299			reg.hw = pc->result[i].rhw;
2300			emit_mov(pc, &reg, &pc->result[i]);
2301		}
2302	}
2303}
2304
2305static boolean
2306nv50_program_tx_insn(struct nv50_pc *pc,
2307		     const struct tgsi_full_instruction *inst)
2308{
2309	struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
2310	unsigned mask, sat, unit;
2311	int i, c;
2312
2313	mask = inst->Dst[0].Register.WriteMask;
2314	sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
2315
2316	memset(src, 0, sizeof(src));
2317
2318	for (c = 0; c < 4; c++) {
2319		if ((mask & (1 << c)) && !pc->r_dst[c])
2320			dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
2321		else
2322			dst[c] = pc->r_dst[c];
2323		rdst[c] = dst[c];
2324	}
2325
2326	for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2327		const struct tgsi_full_src_register *fs = &inst->Src[i];
2328		unsigned src_mask;
2329		int mod_supp;
2330
2331		src_mask = nv50_tgsi_src_mask(inst, i);
2332		mod_supp = get_supported_mods(inst, i);
2333
2334		if (fs->Register.File == TGSI_FILE_SAMPLER)
2335			unit = fs->Register.Index;
2336
2337		for (c = 0; c < 4; c++)
2338			if (src_mask & (1 << c))
2339				src[i][c] = tgsi_src(pc, c, fs, mod_supp);
2340	}
2341
2342	brdc = temp = pc->r_brdc;
2343	if (brdc && brdc->type != P_TEMP) {
2344		temp = temp_temp(pc);
2345		if (sat)
2346			brdc = temp;
2347	} else
2348	if (sat) {
2349		for (c = 0; c < 4; c++) {
2350			if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
2351				continue;
2352			/* rdst[c] = dst[c]; */ /* done above */
2353			dst[c] = temp_temp(pc);
2354		}
2355	}
2356
2357	assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
2358
2359	switch (inst->Instruction.Opcode) {
2360	case TGSI_OPCODE_ABS:
2361		for (c = 0; c < 4; c++) {
2362			if (!(mask & (1 << c)))
2363				continue;
2364			emit_cvt(pc, dst[c], src[0][c], -1,
2365				 CVT_ABS | CVT_F32_F32);
2366		}
2367		break;
2368	case TGSI_OPCODE_ADD:
2369		for (c = 0; c < 4; c++) {
2370			if (!(mask & (1 << c)))
2371				continue;
2372			emit_add(pc, dst[c], src[0][c], src[1][c]);
2373		}
2374		break;
2375	case TGSI_OPCODE_AND:
2376	case TGSI_OPCODE_XOR:
2377	case TGSI_OPCODE_OR:
2378		for (c = 0; c < 4; c++) {
2379			if (!(mask & (1 << c)))
2380				continue;
2381			emit_bitop2(pc, dst[c], src[0][c], src[1][c],
2382				    inst->Instruction.Opcode);
2383		}
2384		break;
2385	case TGSI_OPCODE_ARL:
2386		assert(src[0][0]);
2387		temp = temp_temp(pc);
2388		emit_cvt(pc, temp, src[0][0], -1, CVT_FLOOR | CVT_S32_F32);
2389		emit_arl(pc, dst[0], temp, 4);
2390		break;
2391	case TGSI_OPCODE_BGNLOOP:
2392		pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc);
2393		pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
2394		terminate_mbb(pc);
2395		break;
2396	case TGSI_OPCODE_BGNSUB:
2397		assert(!pc->in_subroutine);
2398		pc->in_subroutine = TRUE;
2399		/* probably not necessary, but align to 8 byte boundary */
2400		if (!is_long(pc->p->exec_tail))
2401			convert_to_long(pc, pc->p->exec_tail);
2402		break;
2403	case TGSI_OPCODE_BRK:
2404		assert(pc->loop_lvl > 0);
2405		emit_break(pc, -1, 0);
2406		break;
2407	case TGSI_OPCODE_CAL:
2408		assert(inst->Label.Label < pc->insn_nr);
2409		emit_call(pc, -1, 0)->param.index = inst->Label.Label;
2410		/* replaced by actual offset in nv50_program_fixup_insns */
2411		break;
2412	case TGSI_OPCODE_CEIL:
2413		for (c = 0; c < 4; c++) {
2414			if (!(mask & (1 << c)))
2415				continue;
2416			emit_cvt(pc, dst[c], src[0][c], -1,
2417				 CVT_CEIL | CVT_F32_F32 | CVT_RI);
2418		}
2419		break;
2420	case TGSI_OPCODE_CMP:
2421		pc->allow32 = FALSE;
2422		for (c = 0; c < 4; c++) {
2423			if (!(mask & (1 << c)))
2424				continue;
2425			emit_cvt(pc, NULL, src[0][c], 1, CVT_F32_F32);
2426			emit_mov(pc, dst[c], src[1][c]);
2427			set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
2428			emit_mov(pc, dst[c], src[2][c]);
2429			set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
2430		}
2431		break;
2432	case TGSI_OPCODE_CONT:
2433		assert(pc->loop_lvl > 0);
2434		emit_branch(pc, -1, 0)->param.index =
2435			pc->loop_pos[pc->loop_lvl - 1];
2436		break;
2437	case TGSI_OPCODE_COS:
2438		if (mask & 8) {
2439			emit_precossin(pc, temp, src[0][3]);
2440			emit_flop(pc, NV50_FLOP_COS, dst[3], temp);
2441			if (!(mask &= 7))
2442				break;
2443			if (temp == dst[3])
2444				temp = brdc = temp_temp(pc);
2445		}
2446		emit_precossin(pc, temp, src[0][0]);
2447		emit_flop(pc, NV50_FLOP_COS, brdc, temp);
2448		break;
2449	case TGSI_OPCODE_DDX:
2450		for (c = 0; c < 4; c++) {
2451			if (!(mask & (1 << c)))
2452				continue;
2453			emit_ddx(pc, dst[c], src[0][c]);
2454		}
2455		break;
2456	case TGSI_OPCODE_DDY:
2457		for (c = 0; c < 4; c++) {
2458			if (!(mask & (1 << c)))
2459				continue;
2460			emit_ddy(pc, dst[c], src[0][c]);
2461		}
2462		break;
2463	case TGSI_OPCODE_DP3:
2464		emit_mul(pc, temp, src[0][0], src[1][0]);
2465		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2466		emit_mad(pc, brdc, src[0][2], src[1][2], temp);
2467		break;
2468	case TGSI_OPCODE_DP4:
2469		emit_mul(pc, temp, src[0][0], src[1][0]);
2470		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2471		emit_mad(pc, temp, src[0][2], src[1][2], temp);
2472		emit_mad(pc, brdc, src[0][3], src[1][3], temp);
2473		break;
2474	case TGSI_OPCODE_DPH:
2475		emit_mul(pc, temp, src[0][0], src[1][0]);
2476		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2477		emit_mad(pc, temp, src[0][2], src[1][2], temp);
2478		emit_add(pc, brdc, src[1][3], temp);
2479		break;
2480	case TGSI_OPCODE_DST:
2481		if (mask & (1 << 1))
2482			emit_mul(pc, dst[1], src[0][1], src[1][1]);
2483		if (mask & (1 << 2))
2484			emit_mov(pc, dst[2], src[0][2]);
2485		if (mask & (1 << 3))
2486			emit_mov(pc, dst[3], src[1][3]);
2487		if (mask & (1 << 0))
2488			emit_mov_immdval(pc, dst[0], 1.0f);
2489		break;
2490	case TGSI_OPCODE_ELSE:
2491		emit_branch(pc, -1, 0);
2492		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2493		pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2494		terminate_mbb(pc);
2495		break;
2496	case TGSI_OPCODE_ENDIF:
2497		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2498
2499		/* try to replace branch over 1 insn with a predicated insn */
2500		if (nv50_kill_branch(pc) == TRUE)
2501			break;
2502
2503		if (pc->if_join[pc->if_lvl]) {
2504			pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size;
2505			pc->if_join[pc->if_lvl] = NULL;
2506		}
2507		terminate_mbb(pc);
2508		/* emit a NOP as join point, we could set it on the next
2509		 * one, but would have to make sure it is long and !immd
2510		 */
2511		JOIN_ON(emit_nop(pc));
2512		break;
2513	case TGSI_OPCODE_ENDLOOP:
2514		emit_branch(pc, -1, 0)->param.index =
2515			pc->loop_pos[--pc->loop_lvl];
2516		pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size;
2517		terminate_mbb(pc);
2518		break;
2519	case TGSI_OPCODE_ENDSUB:
2520		assert(pc->in_subroutine);
2521		pc->in_subroutine = FALSE;
2522		break;
2523	case TGSI_OPCODE_EX2:
2524		emit_preex2(pc, temp, src[0][0]);
2525		emit_flop(pc, NV50_FLOP_EX2, brdc, temp);
2526		break;
2527	case TGSI_OPCODE_EXP:
2528	{
2529		struct nv50_reg *t[2];
2530
2531		assert(!temp);
2532		t[0] = temp_temp(pc);
2533		t[1] = temp_temp(pc);
2534
2535		if (mask & 0x6)
2536			emit_mov(pc, t[0], src[0][0]);
2537		if (mask & 0x3)
2538			emit_flr(pc, t[1], src[0][0]);
2539
2540		if (mask & (1 << 1))
2541			emit_sub(pc, dst[1], t[0], t[1]);
2542		if (mask & (1 << 0)) {
2543			emit_preex2(pc, t[1], t[1]);
2544			emit_flop(pc, NV50_FLOP_EX2, dst[0], t[1]);
2545		}
2546		if (mask & (1 << 2)) {
2547			emit_preex2(pc, t[0], t[0]);
2548			emit_flop(pc, NV50_FLOP_EX2, dst[2], t[0]);
2549		}
2550		if (mask & (1 << 3))
2551			emit_mov_immdval(pc, dst[3], 1.0f);
2552	}
2553		break;
2554	case TGSI_OPCODE_F2I:
2555		for (c = 0; c < 4; c++) {
2556			if (!(mask & (1 << c)))
2557				continue;
2558			emit_cvt(pc, dst[c], src[0][c], -1,
2559				 CVT_TRUNC | CVT_S32_F32);
2560		}
2561		break;
2562	case TGSI_OPCODE_F2U:
2563		for (c = 0; c < 4; c++) {
2564			if (!(mask & (1 << c)))
2565				continue;
2566			emit_cvt(pc, dst[c], src[0][c], -1,
2567				 CVT_TRUNC | CVT_U32_F32);
2568		}
2569		break;
2570	case TGSI_OPCODE_FLR:
2571		for (c = 0; c < 4; c++) {
2572			if (!(mask & (1 << c)))
2573				continue;
2574			emit_flr(pc, dst[c], src[0][c]);
2575		}
2576		break;
2577	case TGSI_OPCODE_FRC:
2578		temp = temp_temp(pc);
2579		for (c = 0; c < 4; c++) {
2580			if (!(mask & (1 << c)))
2581				continue;
2582			emit_flr(pc, temp, src[0][c]);
2583			emit_sub(pc, dst[c], src[0][c], temp);
2584		}
2585		break;
2586	case TGSI_OPCODE_I2F:
2587		for (c = 0; c < 4; c++) {
2588			if (!(mask & (1 << c)))
2589				continue;
2590			emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_S32);
2591		}
2592		break;
2593	case TGSI_OPCODE_IF:
2594		assert(pc->if_lvl < NV50_MAX_COND_NESTING);
2595		emit_cvt(pc, NULL, src[0][0], 0, CVT_ABS | CVT_F32_F32);
2596		pc->if_join[pc->if_lvl] = emit_joinat(pc);
2597		pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);;
2598		terminate_mbb(pc);
2599		break;
2600	case TGSI_OPCODE_IMAX:
2601		for (c = 0; c < 4; c++) {
2602			if (!(mask & (1 << c)))
2603				continue;
2604			emit_minmax(pc, 0x08c, dst[c], src[0][c], src[1][c]);
2605		}
2606		break;
2607	case TGSI_OPCODE_IMIN:
2608		for (c = 0; c < 4; c++) {
2609			if (!(mask & (1 << c)))
2610				continue;
2611			emit_minmax(pc, 0x0ac, dst[c], src[0][c], src[1][c]);
2612		}
2613		break;
2614	case TGSI_OPCODE_INEG:
2615		for (c = 0; c < 4; c++) {
2616			if (!(mask & (1 << c)))
2617				continue;
2618			emit_cvt(pc, dst[c], src[0][c], -1,
2619				 CVT_S32_S32 | CVT_NEG);
2620		}
2621		break;
2622	case TGSI_OPCODE_KIL:
2623		assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]);
2624		emit_kil(pc, src[0][0]);
2625		emit_kil(pc, src[0][1]);
2626		emit_kil(pc, src[0][2]);
2627		emit_kil(pc, src[0][3]);
2628		break;
2629	case TGSI_OPCODE_KILP:
2630		emit_kil(pc, NULL);
2631		break;
2632	case TGSI_OPCODE_LIT:
2633		emit_lit(pc, &dst[0], mask, &src[0][0]);
2634		break;
2635	case TGSI_OPCODE_LG2:
2636		emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]);
2637		break;
2638	case TGSI_OPCODE_LOG:
2639	{
2640		struct nv50_reg *t[2];
2641
2642		t[0] = temp_temp(pc);
2643		if (mask & (1 << 1))
2644			t[1] = temp_temp(pc);
2645		else
2646			t[1] = t[0];
2647
2648		emit_cvt(pc, t[0], src[0][0], -1, CVT_ABS | CVT_F32_F32);
2649		emit_flop(pc, NV50_FLOP_LG2, t[1], t[0]);
2650		if (mask & (1 << 2))
2651			emit_mov(pc, dst[2], t[1]);
2652		emit_flr(pc, t[1], t[1]);
2653		if (mask & (1 << 0))
2654			emit_mov(pc, dst[0], t[1]);
2655		if (mask & (1 << 1)) {
2656			t[1]->mod = NV50_MOD_NEG;
2657			emit_preex2(pc, t[1], t[1]);
2658			t[1]->mod = 0;
2659			emit_flop(pc, NV50_FLOP_EX2, t[1], t[1]);
2660			emit_mul(pc, dst[1], t[0], t[1]);
2661		}
2662		if (mask & (1 << 3))
2663			emit_mov_immdval(pc, dst[3], 1.0f);
2664	}
2665		break;
2666	case TGSI_OPCODE_LRP:
2667		temp = temp_temp(pc);
2668		for (c = 0; c < 4; c++) {
2669			if (!(mask & (1 << c)))
2670				continue;
2671			emit_sub(pc, temp, src[1][c], src[2][c]);
2672			emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2673		}
2674		break;
2675	case TGSI_OPCODE_MAD:
2676		for (c = 0; c < 4; c++) {
2677			if (!(mask & (1 << c)))
2678				continue;
2679			emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2680		}
2681		break;
2682	case TGSI_OPCODE_MAX:
2683		for (c = 0; c < 4; c++) {
2684			if (!(mask & (1 << c)))
2685				continue;
2686			emit_minmax(pc, 0x880, dst[c], src[0][c], src[1][c]);
2687		}
2688		break;
2689	case TGSI_OPCODE_MIN:
2690		for (c = 0; c < 4; c++) {
2691			if (!(mask & (1 << c)))
2692				continue;
2693			emit_minmax(pc, 0x8a0, dst[c], src[0][c], src[1][c]);
2694		}
2695		break;
2696	case TGSI_OPCODE_MOV:
2697		for (c = 0; c < 4; c++) {
2698			if (!(mask & (1 << c)))
2699				continue;
2700			emit_mov(pc, dst[c], src[0][c]);
2701		}
2702		break;
2703	case TGSI_OPCODE_MUL:
2704		for (c = 0; c < 4; c++) {
2705			if (!(mask & (1 << c)))
2706				continue;
2707			emit_mul(pc, dst[c], src[0][c], src[1][c]);
2708		}
2709		break;
2710	case TGSI_OPCODE_POW:
2711		emit_pow(pc, brdc, src[0][0], src[1][0]);
2712		break;
2713	case TGSI_OPCODE_RCP:
2714		emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]);
2715		break;
2716	case TGSI_OPCODE_RET:
2717		if (pc->p->type == PIPE_SHADER_FRAGMENT && !pc->in_subroutine)
2718			nv50_fp_move_results(pc);
2719		emit_ret(pc, -1, 0);
2720		break;
2721	case TGSI_OPCODE_RSQ:
2722		src[0][0]->mod |= NV50_MOD_ABS;
2723		emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]);
2724		break;
2725	case TGSI_OPCODE_SAD:
2726		for (c = 0; c < 4; c++) {
2727			if (!(mask & (1 << c)))
2728				continue;
2729			emit_sad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2730		}
2731		break;
2732	case TGSI_OPCODE_SCS:
2733		temp = temp_temp(pc);
2734		if (mask & 3)
2735			emit_precossin(pc, temp, src[0][0]);
2736		if (mask & (1 << 0))
2737			emit_flop(pc, NV50_FLOP_COS, dst[0], temp);
2738		if (mask & (1 << 1))
2739			emit_flop(pc, NV50_FLOP_SIN, dst[1], temp);
2740		if (mask & (1 << 2))
2741			emit_mov_immdval(pc, dst[2], 0.0);
2742		if (mask & (1 << 3))
2743			emit_mov_immdval(pc, dst[3], 1.0);
2744		break;
2745	case TGSI_OPCODE_SHL:
2746	case TGSI_OPCODE_ISHR:
2747	case TGSI_OPCODE_USHR:
2748		for (c = 0; c < 4; c++) {
2749			if (!(mask & (1 << c)))
2750				continue;
2751			emit_shift(pc, dst[c], src[0][c], src[1][c],
2752				   inst->Instruction.Opcode);
2753		}
2754		break;
2755	case TGSI_OPCODE_SIN:
2756		if (mask & 8) {
2757			emit_precossin(pc, temp, src[0][3]);
2758			emit_flop(pc, NV50_FLOP_SIN, dst[3], temp);
2759			if (!(mask &= 7))
2760				break;
2761			if (temp == dst[3])
2762				temp = brdc = temp_temp(pc);
2763		}
2764		emit_precossin(pc, temp, src[0][0]);
2765		emit_flop(pc, NV50_FLOP_SIN, brdc, temp);
2766		break;
2767	case TGSI_OPCODE_SLT:
2768	case TGSI_OPCODE_SGE:
2769	case TGSI_OPCODE_SEQ:
2770	case TGSI_OPCODE_SGT:
2771	case TGSI_OPCODE_SLE:
2772	case TGSI_OPCODE_SNE:
2773	case TGSI_OPCODE_ISLT:
2774	case TGSI_OPCODE_ISGE:
2775	case TGSI_OPCODE_USEQ:
2776	case TGSI_OPCODE_USGE:
2777	case TGSI_OPCODE_USLT:
2778	case TGSI_OPCODE_USNE:
2779	{
2780		uint8_t cc, ty;
2781
2782		map_tgsi_setop_hw(inst->Instruction.Opcode, &cc, &ty);
2783
2784		for (c = 0; c < 4; c++) {
2785			if (!(mask & (1 << c)))
2786				continue;
2787			emit_set(pc, cc, dst[c], -1, src[0][c], src[1][c], ty);
2788		}
2789	}
2790		break;
2791	case TGSI_OPCODE_SUB:
2792		for (c = 0; c < 4; c++) {
2793			if (!(mask & (1 << c)))
2794				continue;
2795			emit_sub(pc, dst[c], src[0][c], src[1][c]);
2796		}
2797		break;
2798	case TGSI_OPCODE_TEX:
2799		emit_tex(pc, dst, mask, src[0], unit,
2800			 inst->Texture.Texture, FALSE, 0);
2801		break;
2802	case TGSI_OPCODE_TXB:
2803		emit_tex(pc, dst, mask, src[0], unit,
2804			 inst->Texture.Texture, FALSE, -1);
2805		break;
2806	case TGSI_OPCODE_TXL:
2807		emit_tex(pc, dst, mask, src[0], unit,
2808			 inst->Texture.Texture, FALSE, 1);
2809		break;
2810	case TGSI_OPCODE_TXP:
2811		emit_tex(pc, dst, mask, src[0], unit,
2812			 inst->Texture.Texture, TRUE, 0);
2813		break;
2814	case TGSI_OPCODE_TRUNC:
2815		for (c = 0; c < 4; c++) {
2816			if (!(mask & (1 << c)))
2817				continue;
2818			emit_cvt(pc, dst[c], src[0][c], -1,
2819				 CVT_TRUNC | CVT_F32_F32 | CVT_RI);
2820		}
2821		break;
2822	case TGSI_OPCODE_U2F:
2823		for (c = 0; c < 4; c++) {
2824			if (!(mask & (1 << c)))
2825				continue;
2826			emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_U32);
2827		}
2828		break;
2829	case TGSI_OPCODE_UADD:
2830		for (c = 0; c < 4; c++) {
2831			if (!(mask & (1 << c)))
2832				continue;
2833			emit_add_b32(pc, dst[c], src[0][c], src[1][c]);
2834		}
2835		break;
2836	case TGSI_OPCODE_UMAX:
2837		for (c = 0; c < 4; c++) {
2838			if (!(mask & (1 << c)))
2839				continue;
2840			emit_minmax(pc, 0x084, dst[c], src[0][c], src[1][c]);
2841		}
2842		break;
2843	case TGSI_OPCODE_UMIN:
2844		for (c = 0; c < 4; c++) {
2845			if (!(mask & (1 << c)))
2846				continue;
2847			emit_minmax(pc, 0x0a4, dst[c], src[0][c], src[1][c]);
2848		}
2849		break;
2850	case TGSI_OPCODE_XPD:
2851		temp = temp_temp(pc);
2852		if (mask & (1 << 0)) {
2853			emit_mul(pc, temp, src[0][2], src[1][1]);
2854			emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2855		}
2856		if (mask & (1 << 1)) {
2857			emit_mul(pc, temp, src[0][0], src[1][2]);
2858			emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2859		}
2860		if (mask & (1 << 2)) {
2861			emit_mul(pc, temp, src[0][1], src[1][0]);
2862			emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2863		}
2864		if (mask & (1 << 3))
2865			emit_mov_immdval(pc, dst[3], 1.0);
2866		break;
2867	case TGSI_OPCODE_END:
2868		if (pc->p->type == PIPE_SHADER_FRAGMENT)
2869			nv50_fp_move_results(pc);
2870
2871		/* last insn must be long so it can have the exit bit set */
2872		if (!is_long(pc->p->exec_tail))
2873			convert_to_long(pc, pc->p->exec_tail);
2874		else
2875		if (is_immd(pc->p->exec_tail) || is_join(pc->p->exec_tail))
2876			emit_nop(pc);
2877
2878		pc->p->exec_tail->inst[1] |= 1; /* set exit bit */
2879		break;
2880	default:
2881		NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2882		return FALSE;
2883	}
2884
2885	if (brdc) {
2886		if (sat)
2887			emit_sat(pc, brdc, brdc);
2888		for (c = 0; c < 4; c++)
2889			if ((mask & (1 << c)) && dst[c] != brdc)
2890				emit_mov(pc, dst[c], brdc);
2891	} else
2892	if (sat) {
2893		for (c = 0; c < 4; c++) {
2894			if (!(mask & (1 << c)))
2895				continue;
2896			/* In this case we saturate later, and dst[c] won't
2897			 * be another temp_temp (and thus lost), since rdst
2898			 * already is TEMP (see above). */
2899			if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2900				continue;
2901			emit_sat(pc, rdst[c], dst[c]);
2902		}
2903	}
2904
2905	kill_temp_temp(pc);
2906	pc->reg_instance_nr = 0;
2907
2908	return TRUE;
2909}
2910
2911static void
2912prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2913{
2914	struct nv50_reg *r, *reg = NULL;
2915	const struct tgsi_full_src_register *src;
2916	const struct tgsi_dst_register *dst;
2917	unsigned i, c, k, mask;
2918
2919	dst = &insn->Dst[0].Register;
2920	mask = dst->WriteMask;
2921
2922        if (dst->File == TGSI_FILE_TEMPORARY)
2923		reg = pc->temp;
2924        else
2925	if (dst->File == TGSI_FILE_OUTPUT) {
2926		reg = pc->result;
2927
2928		if (insn->Instruction.Opcode == TGSI_OPCODE_MOV &&
2929		    dst->Index == pc->edgeflag_out &&
2930		    insn->Src[0].Register.File == TGSI_FILE_INPUT)
2931			pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index;
2932	}
2933
2934	if (reg) {
2935		for (c = 0; c < 4; c++) {
2936			if (!(mask & (1 << c)))
2937				continue;
2938			reg[dst->Index * 4 + c].acc = pc->insn_nr;
2939		}
2940	}
2941
2942	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2943		src = &insn->Src[i];
2944
2945		if (src->Register.File == TGSI_FILE_TEMPORARY)
2946			reg = pc->temp;
2947		else
2948		if (src->Register.File == TGSI_FILE_INPUT)
2949			reg = pc->attr;
2950		else
2951			continue;
2952
2953		mask = nv50_tgsi_src_mask(insn, i);
2954
2955		for (c = 0; c < 4; c++) {
2956			if (!(mask & (1 << c)))
2957				continue;
2958			k = tgsi_util_get_full_src_register_swizzle(src, c);
2959
2960			r = &reg[src->Register.Index * 4 + k];
2961
2962			/* If used before written, pre-allocate the reg,
2963			 * lest we overwrite results from a subroutine.
2964			 */
2965			if (!r->acc && r->type == P_TEMP)
2966				alloc_reg(pc, r);
2967
2968			r->acc = pc->insn_nr;
2969		}
2970	}
2971}
2972
2973/* Returns a bitmask indicating which dst components need to be
2974 * written to temporaries first to avoid 'corrupting' sources.
2975 *
2976 * m[i]   (out) indicate component to write in the i-th position
2977 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2978 */
2979static unsigned
2980nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2981{
2982	unsigned i, c, x, unsafe;
2983
2984	for (c = 0; c < 4; c++)
2985		m[c] = c;
2986
2987	/* Swap as long as a dst component written earlier is depended on
2988	 * by one written later, but the next one isn't depended on by it.
2989	 */
2990	for (c = 0; c < 3; c++) {
2991		if (rdep[m[c + 1]] & (1 << m[c]))
2992			continue; /* if next one is depended on by us */
2993		for (i = c + 1; i < 4; i++)
2994			/* if we are depended on by a later one */
2995			if (rdep[m[c]] & (1 << m[i]))
2996				break;
2997		if (i == 4)
2998			continue;
2999		/* now, swap */
3000		x = m[c];
3001		m[c] = m[c + 1];
3002		m[c + 1] = x;
3003
3004		/* restart */
3005		c = 0;
3006	}
3007
3008	/* mark dependencies that could not be resolved by reordering */
3009	for (i = 0; i < 3; ++i)
3010		for (c = i + 1; c < 4; ++c)
3011			if (rdep[m[i]] & (1 << m[c]))
3012				unsafe |= (1 << i);
3013
3014	/* NOTE: $unsafe is with respect to order, not component */
3015	return unsafe;
3016}
3017
3018/* Select a suitable dst register for broadcasting scalar results,
3019 * or return NULL if we have to allocate an extra TEMP.
3020 *
3021 * If e.g. only 1 component is written, we may also emit the final
3022 * result to a write-only register.
3023 */
3024static struct nv50_reg *
3025tgsi_broadcast_dst(struct nv50_pc *pc,
3026		   const struct tgsi_full_dst_register *fd, unsigned mask)
3027{
3028	if (fd->Register.File == TGSI_FILE_TEMPORARY) {
3029		int c = ffs(~mask & fd->Register.WriteMask);
3030		if (c)
3031			return tgsi_dst(pc, c - 1, fd);
3032	} else {
3033		int c = ffs(fd->Register.WriteMask) - 1;
3034		if ((1 << c) == fd->Register.WriteMask)
3035			return tgsi_dst(pc, c, fd);
3036	}
3037
3038	return NULL;
3039}
3040
3041/* Scan source swizzles and return a bitmask indicating dst regs that
3042 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
3043 */
3044static unsigned
3045nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
3046		       unsigned rdep[4])
3047{
3048	const struct tgsi_full_dst_register *fd = &insn->Dst[0];
3049	const struct tgsi_full_src_register *fs;
3050	unsigned i, deqs = 0;
3051
3052	for (i = 0; i < 4; ++i)
3053		rdep[i] = 0;
3054
3055	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
3056		unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
3057		int ms = get_supported_mods(insn, i);
3058
3059		fs = &insn->Src[i];
3060		if (fs->Register.File != fd->Register.File ||
3061		    fs->Register.Index != fd->Register.Index)
3062			continue;
3063
3064		for (chn = 0; chn < 4; ++chn) {
3065			unsigned s, c;
3066
3067			if (!(mask & (1 << chn))) /* src is not read */
3068				continue;
3069			c = tgsi_util_get_full_src_register_swizzle(fs, chn);
3070			s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
3071
3072			if (!(fd->Register.WriteMask & (1 << c)))
3073				continue;
3074
3075			if (s == TGSI_UTIL_SIGN_TOGGLE && !(ms & NV50_MOD_NEG))
3076					continue;
3077			if (s == TGSI_UTIL_SIGN_CLEAR && !(ms & NV50_MOD_ABS))
3078					continue;
3079			if ((s == TGSI_UTIL_SIGN_SET) && ((ms & 3) != 3))
3080					continue;
3081
3082			rdep[c] |= nv50_tgsi_dst_revdep(
3083				insn->Instruction.Opcode, i, chn);
3084			deqs |= (1 << c);
3085		}
3086	}
3087
3088	return deqs;
3089}
3090
3091static boolean
3092nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
3093{
3094	struct tgsi_full_instruction insn = tok->FullInstruction;
3095	const struct tgsi_full_dst_register *fd;
3096	unsigned i, deqs, rdep[4], m[4];
3097
3098	fd = &tok->FullInstruction.Dst[0];
3099	deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
3100
3101	if (is_scalar_op(insn.Instruction.Opcode)) {
3102		pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
3103		if (!pc->r_brdc)
3104			pc->r_brdc = temp_temp(pc);
3105		return nv50_program_tx_insn(pc, &insn);
3106	}
3107	pc->r_brdc = NULL;
3108
3109	if (!deqs || (!rdep[0] && !rdep[1] && !rdep[2] && !rdep[3]))
3110		return nv50_program_tx_insn(pc, &insn);
3111
3112	deqs = nv50_revdep_reorder(m, rdep);
3113
3114	for (i = 0; i < 4; ++i) {
3115		assert(pc->r_dst[m[i]] == NULL);
3116
3117		insn.Dst[0].Register.WriteMask =
3118			fd->Register.WriteMask & (1 << m[i]);
3119
3120		if (!insn.Dst[0].Register.WriteMask)
3121			continue;
3122
3123		if (deqs & (1 << i))
3124			pc->r_dst[m[i]] = alloc_temp(pc, NULL);
3125
3126		if (!nv50_program_tx_insn(pc, &insn))
3127			return FALSE;
3128	}
3129
3130	for (i = 0; i < 4; i++) {
3131		struct nv50_reg *reg = pc->r_dst[i];
3132		if (!reg)
3133			continue;
3134		pc->r_dst[i] = NULL;
3135
3136		if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
3137			emit_sat(pc, tgsi_dst(pc, i, fd), reg);
3138		else
3139			emit_mov(pc, tgsi_dst(pc, i, fd), reg);
3140		free_temp(pc, reg);
3141	}
3142
3143	return TRUE;
3144}
3145
3146static void
3147load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
3148{
3149	struct nv50_reg *iv, **ppiv;
3150	unsigned mode = pc->interp_mode[reg->index];
3151
3152	ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
3153	iv = *ppiv;
3154
3155	if ((mode & INTERP_PERSPECTIVE) && !iv) {
3156		iv = *ppiv = alloc_temp(pc, NULL);
3157		iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
3158
3159		emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
3160		emit_flop(pc, NV50_FLOP_RCP, iv, iv);
3161
3162		/* XXX: when loading interpolants dynamically, move these
3163		 * to the program head, or make sure it can't be skipped.
3164		 */
3165	}
3166
3167	emit_interp(pc, reg, iv, mode);
3168}
3169
3170/* The face input is always at v[255] (varying space), with a
3171 * value of 0 for back-facing, and 0xffffffff for front-facing.
3172 */
3173static void
3174load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
3175{
3176	struct nv50_reg *one = alloc_immd(pc, 1.0f);
3177
3178	assert(a->rhw == -1);
3179	alloc_reg(pc, a); /* do this before rhw is set */
3180	a->rhw = 255;
3181	load_interpolant(pc, a);
3182	emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
3183
3184	FREE(one);
3185}
3186
3187static boolean
3188nv50_program_tx_prep(struct nv50_pc *pc)
3189{
3190	struct tgsi_parse_context tp;
3191	struct nv50_program *p = pc->p;
3192	boolean ret = FALSE;
3193	unsigned i, c, flat_nr = 0;
3194
3195	tgsi_parse_init(&tp, pc->p->pipe.tokens);
3196	while (!tgsi_parse_end_of_tokens(&tp)) {
3197		const union tgsi_full_token *tok = &tp.FullToken;
3198
3199		tgsi_parse_token(&tp);
3200		switch (tok->Token.Type) {
3201		case TGSI_TOKEN_TYPE_IMMEDIATE:
3202		{
3203			const struct tgsi_full_immediate *imm =
3204				&tp.FullToken.FullImmediate;
3205
3206			ctor_immd_4f32(pc, imm->u[0].Float,
3207				       imm->u[1].Float,
3208				       imm->u[2].Float,
3209				       imm->u[3].Float);
3210		}
3211			break;
3212		case TGSI_TOKEN_TYPE_DECLARATION:
3213		{
3214			const struct tgsi_full_declaration *d;
3215			unsigned si, last, first, mode;
3216
3217			d = &tp.FullToken.FullDeclaration;
3218			first = d->Range.First;
3219			last = d->Range.Last;
3220
3221			switch (d->Declaration.File) {
3222			case TGSI_FILE_TEMPORARY:
3223				break;
3224			case TGSI_FILE_OUTPUT:
3225				if (!d->Declaration.Semantic ||
3226				    p->type == PIPE_SHADER_FRAGMENT)
3227					break;
3228
3229				si = d->Semantic.Index;
3230				switch (d->Semantic.Name) {
3231				case TGSI_SEMANTIC_BCOLOR:
3232					p->cfg.two_side[si].hw = first;
3233					if (p->cfg.io_nr > first)
3234						p->cfg.io_nr = first;
3235					break;
3236				case TGSI_SEMANTIC_PSIZE:
3237					p->cfg.psiz = first;
3238					if (p->cfg.io_nr > first)
3239						p->cfg.io_nr = first;
3240					break;
3241				case TGSI_SEMANTIC_EDGEFLAG:
3242					pc->edgeflag_out = first;
3243					break;
3244					/*
3245				case TGSI_SEMANTIC_CLIP_DISTANCE:
3246					p->cfg.clpd = MIN2(p->cfg.clpd, first);
3247					break;
3248					*/
3249				default:
3250					break;
3251				}
3252				break;
3253			case TGSI_FILE_INPUT:
3254			{
3255				if (p->type != PIPE_SHADER_FRAGMENT)
3256					break;
3257
3258				switch (d->Declaration.Interpolate) {
3259				case TGSI_INTERPOLATE_CONSTANT:
3260					mode = INTERP_FLAT;
3261					flat_nr++;
3262					break;
3263				case TGSI_INTERPOLATE_PERSPECTIVE:
3264					mode = INTERP_PERSPECTIVE;
3265					p->cfg.regs[1] |= 0x08 << 24;
3266					break;
3267				default:
3268					mode = INTERP_LINEAR;
3269					break;
3270				}
3271				if (d->Declaration.Centroid)
3272					mode |= INTERP_CENTROID;
3273
3274				assert(last < 32);
3275				for (i = first; i <= last; i++)
3276					pc->interp_mode[i] = mode;
3277			}
3278				break;
3279			case TGSI_FILE_ADDRESS:
3280			case TGSI_FILE_CONSTANT:
3281			case TGSI_FILE_SAMPLER:
3282				break;
3283			default:
3284				NOUVEAU_ERR("bad decl file %d\n",
3285					    d->Declaration.File);
3286				goto out_err;
3287			}
3288		}
3289			break;
3290		case TGSI_TOKEN_TYPE_INSTRUCTION:
3291			pc->insn_nr++;
3292			prep_inspect_insn(pc, &tok->FullInstruction);
3293			break;
3294		default:
3295			break;
3296		}
3297	}
3298
3299	if (p->type == PIPE_SHADER_VERTEX) {
3300		int rid = 0;
3301
3302		for (i = 0; i < pc->attr_nr * 4; ++i) {
3303			if (pc->attr[i].acc) {
3304				pc->attr[i].hw = rid++;
3305				p->cfg.attr[i / 32] |= 1 << (i % 32);
3306			}
3307		}
3308
3309		for (i = 0, rid = 0; i < pc->result_nr; ++i) {
3310			p->cfg.io[i].hw = rid;
3311			p->cfg.io[i].id = i;
3312
3313			for (c = 0; c < 4; ++c) {
3314				int n = i * 4 + c;
3315				if (!pc->result[n].acc)
3316					continue;
3317				pc->result[n].hw = rid++;
3318				p->cfg.io[i].mask |= 1 << c;
3319			}
3320		}
3321
3322		for (c = 0; c < 2; ++c)
3323			if (p->cfg.two_side[c].hw < 0x40)
3324				p->cfg.two_side[c] = p->cfg.io[
3325					p->cfg.two_side[c].hw];
3326
3327		if (p->cfg.psiz < 0x40)
3328			p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
3329	} else
3330	if (p->type == PIPE_SHADER_FRAGMENT) {
3331		int rid, aid;
3332		unsigned n = 0, m = pc->attr_nr - flat_nr;
3333
3334		pc->allow32 = TRUE;
3335
3336		int base = (TGSI_SEMANTIC_POSITION ==
3337			    p->info.input_semantic_name[0]) ? 0 : 1;
3338
3339		/* non-flat interpolants have to be mapped to
3340		 * the lower hardware IDs, so sort them:
3341		 */
3342		for (i = 0; i < pc->attr_nr; i++) {
3343			if (pc->interp_mode[i] == INTERP_FLAT)
3344				p->cfg.io[m++].id = i;
3345			else {
3346				if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
3347					p->cfg.io[n].linear = TRUE;
3348				p->cfg.io[n++].id = i;
3349			}
3350		}
3351
3352		if (!base) /* set w-coordinate mask from perspective interp */
3353			p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
3354
3355		aid = popcnt4( /* if fcrd isn't contained in cfg.io */
3356			base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
3357
3358		for (n = 0; n < pc->attr_nr; ++n) {
3359			p->cfg.io[n].hw = rid = aid;
3360			i = p->cfg.io[n].id;
3361
3362			if (p->info.input_semantic_name[n] ==
3363			    TGSI_SEMANTIC_FACE) {
3364				load_frontfacing(pc, &pc->attr[i * 4]);
3365				continue;
3366			}
3367
3368			for (c = 0; c < 4; ++c) {
3369				if (!pc->attr[i * 4 + c].acc)
3370					continue;
3371				pc->attr[i * 4 + c].rhw = rid++;
3372				p->cfg.io[n].mask |= 1 << c;
3373
3374				load_interpolant(pc, &pc->attr[i * 4 + c]);
3375			}
3376			aid += popcnt4(p->cfg.io[n].mask);
3377		}
3378
3379		if (!base)
3380			p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
3381
3382		m = popcnt4(p->cfg.regs[1] >> 24);
3383
3384		/* set count of non-position inputs and of non-flat
3385		 * non-position inputs for FP_INTERPOLANT_CTRL
3386		 */
3387		p->cfg.regs[1] |= aid - m;
3388
3389		if (flat_nr) {
3390			i = p->cfg.io[pc->attr_nr - flat_nr].hw;
3391			p->cfg.regs[1] |= (i - m) << 16;
3392		} else
3393			p->cfg.regs[1] |= p->cfg.regs[1] << 16;
3394
3395		/* mark color semantic for light-twoside */
3396		n = 0x40;
3397		for (i = 0; i < pc->attr_nr; i++) {
3398			ubyte si, sn;
3399
3400			sn = p->info.input_semantic_name[p->cfg.io[i].id];
3401			si = p->info.input_semantic_index[p->cfg.io[i].id];
3402
3403			if (sn == TGSI_SEMANTIC_COLOR) {
3404				p->cfg.two_side[si] = p->cfg.io[i];
3405
3406				/* increase colour count */
3407				p->cfg.regs[0] += popcnt4(
3408					p->cfg.two_side[si].mask) << 16;
3409
3410				n = MIN2(n, p->cfg.io[i].hw - m);
3411			}
3412		}
3413		if (n < 0x40)
3414			p->cfg.regs[0] += n;
3415
3416		/* Initialize FP results:
3417		 * FragDepth is always first TGSI and last hw output
3418		 */
3419		i = p->info.writes_z ? 4 : 0;
3420		for (rid = 0; i < pc->result_nr * 4; i++)
3421			pc->result[i].rhw = rid++;
3422		if (p->info.writes_z)
3423			pc->result[2].rhw = rid;
3424
3425		p->cfg.high_result = rid;
3426
3427		/* separate/different colour results for MRTs ? */
3428		if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
3429			p->cfg.regs[2] |= 1;
3430	}
3431
3432	if (pc->immd_nr) {
3433		int rid = 0;
3434
3435		pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
3436		if (!pc->immd)
3437			goto out_err;
3438
3439		for (i = 0; i < pc->immd_nr; i++) {
3440			for (c = 0; c < 4; c++, rid++)
3441				ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
3442		}
3443	}
3444
3445	ret = TRUE;
3446out_err:
3447	if (pc->iv_p)
3448		free_temp(pc, pc->iv_p);
3449	if (pc->iv_c)
3450		free_temp(pc, pc->iv_c);
3451
3452	tgsi_parse_free(&tp);
3453	return ret;
3454}
3455
3456static void
3457free_nv50_pc(struct nv50_pc *pc)
3458{
3459	if (pc->immd)
3460		FREE(pc->immd);
3461	if (pc->param)
3462		FREE(pc->param);
3463	if (pc->result)
3464		FREE(pc->result);
3465	if (pc->attr)
3466		FREE(pc->attr);
3467	if (pc->temp)
3468		FREE(pc->temp);
3469
3470	FREE(pc);
3471}
3472
3473static boolean
3474ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
3475{
3476	int i, c;
3477	unsigned rtype[2] = { P_ATTR, P_RESULT };
3478
3479	pc->p = p;
3480	pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
3481	pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
3482	pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
3483	pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
3484	pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
3485	assert(pc->addr_nr <= 2);
3486
3487	p->cfg.high_temp = 4;
3488
3489	p->cfg.two_side[0].hw = 0x40;
3490	p->cfg.two_side[1].hw = 0x40;
3491
3492	p->cfg.edgeflag_in = pc->edgeflag_out = 0xff;
3493
3494	switch (p->type) {
3495	case PIPE_SHADER_VERTEX:
3496		p->cfg.psiz = 0x40;
3497		p->cfg.clpd = 0x40;
3498		p->cfg.io_nr = pc->result_nr;
3499		break;
3500	case PIPE_SHADER_FRAGMENT:
3501		rtype[0] = rtype[1] = P_TEMP;
3502
3503		p->cfg.regs[0] = 0x01000004;
3504		p->cfg.io_nr = pc->attr_nr;
3505
3506		if (p->info.writes_z) {
3507			p->cfg.regs[2] |= 0x00000100;
3508			p->cfg.regs[3] |= 0x00000011;
3509		}
3510		if (p->info.uses_kill)
3511			p->cfg.regs[2] |= 0x00100000;
3512		break;
3513	}
3514
3515	if (pc->temp_nr) {
3516		pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
3517		if (!pc->temp)
3518			return FALSE;
3519
3520		for (i = 0; i < pc->temp_nr * 4; ++i)
3521			ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
3522	}
3523
3524	if (pc->attr_nr) {
3525		pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
3526		if (!pc->attr)
3527			return FALSE;
3528
3529		for (i = 0; i < pc->attr_nr * 4; ++i)
3530			ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
3531	}
3532
3533	if (pc->result_nr) {
3534		unsigned nr = pc->result_nr * 4;
3535
3536		pc->result = MALLOC(nr * sizeof(struct nv50_reg));
3537		if (!pc->result)
3538			return FALSE;
3539
3540		for (i = 0; i < nr; ++i)
3541			ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
3542	}
3543
3544	if (pc->param_nr) {
3545		int rid = 0;
3546
3547		pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
3548		if (!pc->param)
3549			return FALSE;
3550
3551		for (i = 0; i < pc->param_nr; ++i)
3552			for (c = 0; c < 4; ++c, ++rid)
3553				ctor_reg(&pc->param[rid], P_CONST, i, rid);
3554	}
3555
3556	if (pc->addr_nr) {
3557		pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
3558		if (!pc->addr)
3559			return FALSE;
3560	}
3561	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
3562		ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
3563
3564	return TRUE;
3565}
3566
3567static void
3568nv50_program_fixup_insns(struct nv50_pc *pc)
3569{
3570	struct nv50_program_exec *e, **bra_list;
3571	unsigned i, n, pos;
3572
3573	bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
3574
3575	/* Collect branch instructions, we need to adjust their offsets
3576	 * when converting 32 bit instructions to 64 bit ones
3577	 */
3578	for (n = 0, e = pc->p->exec_head; e; e = e->next)
3579		if (e->param.index >= 0 && !e->param.mask)
3580			bra_list[n++] = e;
3581
3582	/* Make sure we don't have any single 32 bit instructions. */
3583	for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
3584		pos += is_long(e) ? 2 : 1;
3585
3586		if ((pos & 1) && (!e->next || is_long(e->next))) {
3587			for (i = 0; i < n; ++i)
3588				if (bra_list[i]->param.index >= pos)
3589					bra_list[i]->param.index += 1;
3590			for (i = 0; i < pc->insn_nr; ++i)
3591				if (pc->insn_pos[i] >= pos)
3592					pc->insn_pos[i] += 1;
3593			convert_to_long(pc, e);
3594			++pos;
3595		}
3596	}
3597
3598	FREE(bra_list);
3599
3600	if (!pc->p->info.opcode_count[TGSI_OPCODE_CAL])
3601		return;
3602
3603	/* fill in CALL offsets */
3604	for (e = pc->p->exec_head; e; e = e->next) {
3605		if ((e->inst[0] & 2) && (e->inst[0] >> 28) == 0x2)
3606			e->param.index = pc->insn_pos[e->param.index];
3607	}
3608}
3609
3610static boolean
3611nv50_program_tx(struct nv50_program *p)
3612{
3613	struct tgsi_parse_context parse;
3614	struct nv50_pc *pc;
3615	boolean ret;
3616
3617	pc = CALLOC_STRUCT(nv50_pc);
3618	if (!pc)
3619		return FALSE;
3620
3621	ret = ctor_nv50_pc(pc, p);
3622	if (ret == FALSE)
3623		goto out_cleanup;
3624
3625	ret = nv50_program_tx_prep(pc);
3626	if (ret == FALSE)
3627		goto out_cleanup;
3628
3629	pc->insn_pos = MALLOC(pc->insn_nr * sizeof(unsigned));
3630
3631	tgsi_parse_init(&parse, pc->p->pipe.tokens);
3632	while (!tgsi_parse_end_of_tokens(&parse)) {
3633		const union tgsi_full_token *tok = &parse.FullToken;
3634
3635		/* previously allow32 was FALSE for first & last instruction */
3636		pc->allow32 = TRUE;
3637
3638		tgsi_parse_token(&parse);
3639
3640		switch (tok->Token.Type) {
3641		case TGSI_TOKEN_TYPE_INSTRUCTION:
3642			pc->insn_pos[pc->insn_cur] = pc->p->exec_size;
3643			++pc->insn_cur;
3644			ret = nv50_tgsi_insn(pc, tok);
3645			if (ret == FALSE)
3646				goto out_err;
3647			break;
3648		default:
3649			break;
3650		}
3651	}
3652
3653	nv50_program_fixup_insns(pc);
3654
3655	p->param_nr = pc->param_nr * 4;
3656	p->immd_nr = pc->immd_nr * 4;
3657	p->immd = pc->immd_buf;
3658
3659out_err:
3660	tgsi_parse_free(&parse);
3661
3662out_cleanup:
3663	free_nv50_pc(pc);
3664	return ret;
3665}
3666
3667static void
3668nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
3669{
3670	if (nv50_program_tx(p) == FALSE)
3671		assert(0);
3672	p->translated = TRUE;
3673}
3674
3675static void
3676nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map,
3677			unsigned start, unsigned count, unsigned cbuf)
3678{
3679	struct nouveau_channel *chan = nv50->screen->base.channel;
3680	struct nouveau_grobj *tesla = nv50->screen->tesla;
3681
3682	while (count) {
3683		unsigned nr = count > 2047 ? 2047 : count;
3684
3685		BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3686		OUT_RING  (chan, (cbuf << 0) | (start << 8));
3687		BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3688		OUT_RINGp (chan, map, nr);
3689
3690		map += nr;
3691		start += nr;
3692		count -= nr;
3693	}
3694}
3695
3696static void
3697nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
3698{
3699	struct pipe_screen *pscreen = nv50->pipe.screen;
3700
3701	if (!p->data[0] && p->immd_nr) {
3702		struct nouveau_resource *heap = nv50->screen->immd_heap[0];
3703
3704		if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
3705			while (heap->next && heap->size < p->immd_nr) {
3706				struct nv50_program *evict = heap->next->priv;
3707				nouveau_resource_free(&evict->data[0]);
3708			}
3709
3710			if (nouveau_resource_alloc(heap, p->immd_nr, p,
3711						   &p->data[0]))
3712				assert(0);
3713		}
3714
3715		/* immediates only need to be uploaded again when freed */
3716		nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
3717					 p->immd_nr, NV50_CB_PMISC);
3718	}
3719
3720	assert(p->param_nr <= 512);
3721
3722	if (p->param_nr) {
3723		unsigned cb;
3724		uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
3725						PIPE_BUFFER_USAGE_CPU_READ);
3726
3727		if (p->type == PIPE_SHADER_VERTEX)
3728			cb = NV50_CB_PVP;
3729		else
3730			cb = NV50_CB_PFP;
3731
3732		nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
3733		pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
3734	}
3735}
3736
3737static void
3738nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
3739{
3740	struct nouveau_channel *chan = nv50->screen->base.channel;
3741	struct nv50_program_exec *e;
3742	uint32_t *up, i;
3743	boolean upload = FALSE;
3744
3745	if (!p->bo) {
3746		nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
3747			       p->exec_size * 4, &p->bo);
3748		upload = TRUE;
3749	}
3750
3751	if (p->data[0] && p->data[0]->start != p->data_start[0])
3752		upload = TRUE;
3753
3754	if (!upload)
3755		return;
3756
3757	up = MALLOC(p->exec_size * 4);
3758
3759	for (i = 0, e = p->exec_head; e; e = e->next) {
3760		unsigned ei, ci, bs;
3761
3762		if (e->param.index >= 0 && e->param.mask) {
3763			bs = (e->inst[1] >> 22) & 0x07;
3764			assert(bs < 2);
3765			ei = e->param.shift >> 5;
3766			ci = e->param.index;
3767			if (bs == 0)
3768				ci += p->data[bs]->start;
3769
3770			e->inst[ei] &= ~e->param.mask;
3771			e->inst[ei] |= (ci << e->param.shift);
3772		} else
3773		if (e->param.index >= 0) {
3774			/* zero mask means param is a jump/branch offset */
3775			assert(!(e->param.index & 1));
3776			/* seem to be 8 byte steps */
3777			ei = (e->param.index >> 1) + 0 /* START_ID */;
3778
3779			e->inst[0] &= 0xf0000fff;
3780			e->inst[0] |= ei << 12;
3781		}
3782
3783		up[i++] = e->inst[0];
3784		if (is_long(e))
3785			up[i++] = e->inst[1];
3786	}
3787	assert(i == p->exec_size);
3788
3789	if (p->data[0])
3790		p->data_start[0] = p->data[0]->start;
3791
3792#ifdef NV50_PROGRAM_DUMP
3793	NOUVEAU_ERR("-------\n");
3794	for (e = p->exec_head; e; e = e->next) {
3795		NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3796		if (is_long(e))
3797			NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3798	}
3799#endif
3800	nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
3801			 NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
3802			 up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
3803			 0, 0, p->exec_size * 4, 1, 1);
3804
3805	FREE(up);
3806}
3807
3808void
3809nv50_vertprog_validate(struct nv50_context *nv50)
3810{
3811	struct nouveau_grobj *tesla = nv50->screen->tesla;
3812	struct nv50_program *p = nv50->vertprog;
3813	struct nouveau_stateobj *so;
3814
3815	if (!p->translated) {
3816		nv50_program_validate(nv50, p);
3817		if (!p->translated)
3818			assert(0);
3819	}
3820
3821	nv50_program_validate_data(nv50, p);
3822	nv50_program_validate_code(nv50, p);
3823
3824	so = so_new(5, 8, 2);
3825	so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3826	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3827		      NOUVEAU_BO_HIGH, 0, 0);
3828	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3829		      NOUVEAU_BO_LOW, 0, 0);
3830	so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3831	so_data  (so, p->cfg.attr[0]);
3832	so_data  (so, p->cfg.attr[1]);
3833	so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3834	so_data  (so, p->cfg.high_result);
3835	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3836	so_data  (so, p->cfg.high_result); //8);
3837	so_data  (so, p->cfg.high_temp);
3838	so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3839	so_data  (so, 0); /* program start offset */
3840	so_ref(so, &nv50->state.vertprog);
3841	so_ref(NULL, &so);
3842}
3843
3844void
3845nv50_fragprog_validate(struct nv50_context *nv50)
3846{
3847	struct nouveau_grobj *tesla = nv50->screen->tesla;
3848	struct nv50_program *p = nv50->fragprog;
3849	struct nouveau_stateobj *so;
3850
3851	if (!p->translated) {
3852		nv50_program_validate(nv50, p);
3853		if (!p->translated)
3854			assert(0);
3855	}
3856
3857	nv50_program_validate_data(nv50, p);
3858	nv50_program_validate_code(nv50, p);
3859
3860	so = so_new(6, 7, 2);
3861	so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3862	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3863		      NOUVEAU_BO_HIGH, 0, 0);
3864	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3865		      NOUVEAU_BO_LOW, 0, 0);
3866	so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3867	so_data  (so, p->cfg.high_temp);
3868	so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3869	so_data  (so, p->cfg.high_result);
3870	so_method(so, tesla, NV50TCL_FP_CONTROL, 1);
3871	so_data  (so, p->cfg.regs[2]);
3872	so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3873	so_data  (so, p->cfg.regs[3]);
3874	so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3875	so_data  (so, 0); /* program start offset */
3876	so_ref(so, &nv50->state.fragprog);
3877	so_ref(NULL, &so);
3878}
3879
3880static uint32_t
3881nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3882{
3883	struct nv50_program *fp = nv50->fragprog;
3884	struct nv50_program *vp = nv50->vertprog;
3885	unsigned i, c, m = base;
3886	uint32_t origin = 0x00000010;
3887
3888	/* XXX: this might not work correctly in all cases yet - we'll
3889	 * just assume that an FP generic input that is not written in
3890	 * the VP is PointCoord.
3891	 */
3892	memset(pntc, 0, 8 * sizeof(uint32_t));
3893
3894	for (i = 0; i < fp->cfg.io_nr; i++) {
3895		uint8_t sn, si;
3896		uint8_t j, k = fp->cfg.io[i].id;
3897		unsigned n = popcnt4(fp->cfg.io[i].mask);
3898
3899		if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3900			m += n;
3901			continue;
3902		}
3903
3904		for (j = 0; j < vp->info.num_outputs; ++j) {
3905			sn = vp->info.output_semantic_name[j];
3906			si = vp->info.output_semantic_index[j];
3907
3908			if (sn == fp->info.input_semantic_name[k] &&
3909			    si == fp->info.input_semantic_index[k])
3910				break;
3911		}
3912
3913		if (j < vp->info.num_outputs) {
3914			ubyte mode =
3915				nv50->rasterizer->pipe.sprite_coord_mode[si];
3916
3917			if (mode == PIPE_SPRITE_COORD_NONE) {
3918				m += n;
3919				continue;
3920			} else
3921			if (mode == PIPE_SPRITE_COORD_LOWER_LEFT)
3922				origin = 0;
3923		}
3924
3925		/* this is either PointCoord or replaced by sprite coords */
3926		for (c = 0; c < 4; c++) {
3927			if (!(fp->cfg.io[i].mask & (1 << c)))
3928				continue;
3929			pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3930			++m;
3931		}
3932	}
3933	return origin;
3934}
3935
3936static int
3937nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3938	       struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3939{
3940	int c;
3941	uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3942	uint8_t *map = (uint8_t *)p_map;
3943
3944	for (c = 0; c < 4; ++c) {
3945		if (mf & 1) {
3946			if (fpi->linear == TRUE)
3947				lin[mid / 32] |= 1 << (mid % 32);
3948			map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3949		}
3950
3951		oid += mv & 1;
3952		mf >>= 1;
3953		mv >>= 1;
3954	}
3955
3956	return mid;
3957}
3958
3959void
3960nv50_linkage_validate(struct nv50_context *nv50)
3961{
3962	struct nouveau_grobj *tesla = nv50->screen->tesla;
3963	struct nv50_program *vp = nv50->vertprog;
3964	struct nv50_program *fp = nv50->fragprog;
3965	struct nouveau_stateobj *so;
3966	struct nv50_sreg4 dummy, *vpo;
3967	int i, n, c, m = 0;
3968	uint32_t map[16], lin[4], reg[5], pcrd[8];
3969
3970	memset(map, 0, sizeof(map));
3971	memset(lin, 0, sizeof(lin));
3972
3973	reg[1] = 0x00000004; /* low and high clip distance map ids */
3974	reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3975	reg[3] = 0x00000000; /* point size map id & enable */
3976	reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3977	reg[4] = fp->cfg.regs[1]; /* interpolant info */
3978
3979	dummy.linear = FALSE;
3980	dummy.mask = 0xf; /* map all components of HPOS */
3981	m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3982
3983	dummy.mask = 0x0;
3984
3985	if (vp->cfg.clpd < 0x40) {
3986		for (c = 0; c < vp->cfg.clpd_nr; ++c)
3987			map[m++] = vp->cfg.clpd + c;
3988		reg[1] = (m << 8);
3989	}
3990
3991	reg[0] |= m << 8; /* adjust BFC0 id */
3992
3993	/* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3994	if (nv50->rasterizer->pipe.light_twoside) {
3995		vpo = &vp->cfg.two_side[0];
3996
3997		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3998		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3999	}
4000
4001	reg[0] += m - 4; /* adjust FFC0 id */
4002	reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
4003
4004	for (i = 0; i < fp->cfg.io_nr; i++) {
4005		ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
4006		ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
4007
4008		/* position must be mapped first */
4009		assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
4010
4011		/* maybe even remove these from cfg.io */
4012		if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
4013			continue;
4014
4015		/* VP outputs and vp->cfg.io are in the same order */
4016		for (n = 0; n < vp->info.num_outputs; ++n) {
4017			if (vp->info.output_semantic_name[n] == sn &&
4018			    vp->info.output_semantic_index[n] == si)
4019				break;
4020		}
4021		vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
4022
4023		m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
4024	}
4025
4026	if (nv50->rasterizer->pipe.point_size_per_vertex) {
4027		map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
4028		reg[3] = (m++ << 4) | 1;
4029	}
4030
4031	/* now fill the stateobj */
4032	so = so_new(7, 57, 0);
4033
4034	n = (m + 3) / 4;
4035	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
4036	so_data  (so, m);
4037	so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
4038	so_datap (so, map, n);
4039
4040	so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
4041	so_datap (so, reg, 4);
4042
4043	so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
4044	so_data  (so, reg[4]);
4045
4046	so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4);
4047	so_datap (so, lin, 4);
4048
4049	if (nv50->rasterizer->pipe.point_sprite) {
4050		so_method(so, tesla, NV50TCL_POINT_SPRITE_CTRL, 1);
4051		so_data  (so,
4052			  nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff));
4053
4054		so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
4055		so_datap (so, pcrd, 8);
4056	}
4057
4058        so_ref(so, &nv50->state.programs);
4059        so_ref(NULL, &so);
4060}
4061
4062void
4063nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
4064{
4065	while (p->exec_head) {
4066		struct nv50_program_exec *e = p->exec_head;
4067
4068		p->exec_head = e->next;
4069		FREE(e);
4070	}
4071	p->exec_tail = NULL;
4072	p->exec_size = 0;
4073
4074	nouveau_bo_ref(NULL, &p->bo);
4075
4076	nouveau_resource_free(&p->data[0]);
4077
4078	p->translated = 0;
4079}
4080