nv50_program.c revision ccc7d0cb7afdac3bca985b7326b53e5c8bf83b3a
1/*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23#include "pipe/p_context.h"
24#include "pipe/p_defines.h"
25#include "pipe/p_state.h"
26#include "pipe/p_inlines.h"
27
28#include "pipe/p_shader_tokens.h"
29#include "tgsi/tgsi_parse.h"
30#include "tgsi/tgsi_util.h"
31
32#include "nv50_context.h"
33
34#define NV50_SU_MAX_TEMP 127
35#define NV50_SU_MAX_ADDR 4
36//#define NV50_PROGRAM_DUMP
37
38/* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40/* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * 	- Fuck it off, introduce a way to negate args for ops that
44 * 	  support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * 	- Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * 	  but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * 	ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * 	FP attr/result assignment - how?
61 * 		attrib
62 * 			- 0x16bc maps vp output onto fp hpos
63 * 			- 0x16c0 maps vp output onto fp col0
64 * 		result
65 * 			- colr always 0-3
66 * 			- depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * 	      "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * 	- 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * 	- XX == FP high something
78 */
79struct nv50_reg {
80	enum {
81		P_TEMP,
82		P_ATTR,
83		P_RESULT,
84		P_CONST,
85		P_IMMD,
86		P_ADDR
87	} type;
88	int index;
89
90	int hw;
91	int mod;
92
93	int rhw; /* result hw for FP outputs, or interpolant index */
94	int acc; /* instruction where this reg is last read (first insn == 1) */
95};
96
97#define NV50_MOD_NEG 1
98#define NV50_MOD_ABS 2
99#define NV50_MOD_NEG_ABS (NV50_MOD_NEG | NV50_MOD_ABS)
100#define NV50_MOD_SAT 4
101#define NV50_MOD_I32 8
102
103/* NV50_MOD_I32 is used to indicate integer mode for neg/abs */
104
105/* STACK: Conditionals and loops have to use the (per warp) stack.
106 * Stack entries consist of an entry type (divergent path, join at),
107 * a mask indicating the active threads of the warp, and an address.
108 * MPs can store 12 stack entries internally, if we need more (and
109 * we probably do), we have to create a stack buffer in VRAM.
110 */
111/* impose low limits for now */
112#define NV50_MAX_COND_NESTING 4
113#define NV50_MAX_LOOP_NESTING 3
114
115#define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2
116
117struct nv50_pc {
118	struct nv50_program *p;
119
120	/* hw resources */
121	struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
122	struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
123
124	/* tgsi resources */
125	struct nv50_reg *temp;
126	int temp_nr;
127	struct nv50_reg *attr;
128	int attr_nr;
129	struct nv50_reg *result;
130	int result_nr;
131	struct nv50_reg *param;
132	int param_nr;
133	struct nv50_reg *immd;
134	uint32_t *immd_buf;
135	int immd_nr;
136	struct nv50_reg **addr;
137	int addr_nr;
138	uint8_t addr_alloc; /* set bit indicates used for TGSI_FILE_ADDRESS */
139
140	struct nv50_reg *temp_temp[16];
141	unsigned temp_temp_nr;
142
143	/* broadcast and destination replacement regs */
144	struct nv50_reg *r_brdc;
145	struct nv50_reg *r_dst[4];
146
147	struct nv50_reg reg_instances[16];
148	unsigned reg_instance_nr;
149
150	unsigned interp_mode[32];
151	/* perspective interpolation registers */
152	struct nv50_reg *iv_p;
153	struct nv50_reg *iv_c;
154
155	struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING];
156	struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING];
157	struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING];
158	int if_lvl, loop_lvl;
159	unsigned loop_pos[NV50_MAX_LOOP_NESTING];
160
161	unsigned *insn_pos; /* actual program offset of each TGSI insn */
162	boolean in_subroutine;
163
164	/* current instruction and total number of insns */
165	unsigned insn_cur;
166	unsigned insn_nr;
167
168	boolean allow32;
169
170	uint8_t edgeflag_out;
171};
172
173static INLINE void
174ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
175{
176	reg->type = type;
177	reg->index = index;
178	reg->hw = hw;
179	reg->mod = 0;
180	reg->rhw = -1;
181	reg->acc = 0;
182}
183
184static INLINE unsigned
185popcnt4(uint32_t val)
186{
187	static const unsigned cnt[16]
188	= { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
189	return cnt[val & 0xf];
190}
191
192static void
193terminate_mbb(struct nv50_pc *pc)
194{
195	int i;
196
197	/* remove records of temporary address register values */
198	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
199		pc->r_addr[i].rhw = -1;
200}
201
202static void
203alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
204{
205	int i = 0;
206
207	if (reg->type == P_RESULT) {
208		if (pc->p->cfg.high_result < (reg->hw + 1))
209			pc->p->cfg.high_result = reg->hw + 1;
210	}
211
212	if (reg->type != P_TEMP)
213		return;
214
215	if (reg->hw >= 0) {
216		/*XXX: do this here too to catch FP temp-as-attr usage..
217		 *     not clean, but works */
218		if (pc->p->cfg.high_temp < (reg->hw + 1))
219			pc->p->cfg.high_temp = reg->hw + 1;
220		return;
221	}
222
223	if (reg->rhw != -1) {
224		/* try to allocate temporary with index rhw first */
225		if (!(pc->r_temp[reg->rhw])) {
226			pc->r_temp[reg->rhw] = reg;
227			reg->hw = reg->rhw;
228			if (pc->p->cfg.high_temp < (reg->rhw + 1))
229				pc->p->cfg.high_temp = reg->rhw + 1;
230			return;
231		}
232		/* make sure we don't get things like $r0 needs to go
233		 * in $r1 and $r1 in $r0
234		 */
235		i = pc->result_nr * 4;
236	}
237
238	for (; i < NV50_SU_MAX_TEMP; i++) {
239		if (!(pc->r_temp[i])) {
240			pc->r_temp[i] = reg;
241			reg->hw = i;
242			if (pc->p->cfg.high_temp < (i + 1))
243				pc->p->cfg.high_temp = i + 1;
244			return;
245		}
246	}
247
248	assert(0);
249}
250
251static INLINE struct nv50_reg *
252reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
253{
254	struct nv50_reg *ri;
255
256	assert(pc->reg_instance_nr < 16);
257	ri = &pc->reg_instances[pc->reg_instance_nr++];
258	if (reg) {
259		alloc_reg(pc, reg);
260		*ri = *reg;
261		reg->mod = 0;
262	}
263	return ri;
264}
265
266/* XXX: For shaders that aren't executed linearly (e.g. shaders that
267 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
268 * lest we risk temp_temps overwriting regs alloc'd "later".
269 */
270static struct nv50_reg *
271alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
272{
273	struct nv50_reg *r;
274	int i;
275
276	if (dst && dst->type == P_TEMP && dst->hw == -1)
277		return dst;
278
279	for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
280		if (!pc->r_temp[i]) {
281			r = MALLOC_STRUCT(nv50_reg);
282			ctor_reg(r, P_TEMP, -1, i);
283			pc->r_temp[i] = r;
284			return r;
285		}
286	}
287
288	assert(0);
289	return NULL;
290}
291
292/* release the hardware resource held by r */
293static void
294release_hw(struct nv50_pc *pc, struct nv50_reg *r)
295{
296	assert(r->type == P_TEMP);
297	if (r->hw == -1)
298		return;
299
300	assert(pc->r_temp[r->hw] == r);
301	pc->r_temp[r->hw] = NULL;
302
303	r->acc = 0;
304	if (r->index == -1)
305		FREE(r);
306}
307
308static void
309free_temp(struct nv50_pc *pc, struct nv50_reg *r)
310{
311	if (r->index == -1) {
312		unsigned hw = r->hw;
313
314		FREE(pc->r_temp[hw]);
315		pc->r_temp[hw] = NULL;
316	}
317}
318
319static int
320alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
321{
322	int i;
323
324	if ((idx + 4) >= NV50_SU_MAX_TEMP)
325		return 1;
326
327	if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
328	    pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
329		return alloc_temp4(pc, dst, idx + 4);
330
331	for (i = 0; i < 4; i++) {
332		dst[i] = MALLOC_STRUCT(nv50_reg);
333		ctor_reg(dst[i], P_TEMP, -1, idx + i);
334		pc->r_temp[idx + i] = dst[i];
335	}
336
337	return 0;
338}
339
340static void
341free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
342{
343	int i;
344
345	for (i = 0; i < 4; i++)
346		free_temp(pc, reg[i]);
347}
348
349static struct nv50_reg *
350temp_temp(struct nv50_pc *pc)
351{
352	if (pc->temp_temp_nr >= 16)
353		assert(0);
354
355	pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
356	return pc->temp_temp[pc->temp_temp_nr++];
357}
358
359static void
360kill_temp_temp(struct nv50_pc *pc)
361{
362	int i;
363
364	for (i = 0; i < pc->temp_temp_nr; i++)
365		free_temp(pc, pc->temp_temp[i]);
366	pc->temp_temp_nr = 0;
367}
368
369static int
370ctor_immd_4u32(struct nv50_pc *pc,
371	       uint32_t x, uint32_t y, uint32_t z, uint32_t w)
372{
373	unsigned size = pc->immd_nr * 4 * sizeof(uint32_t);
374
375	pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t));
376
377	pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
378	pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
379	pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
380	pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
381
382	return pc->immd_nr++;
383}
384
385static INLINE int
386ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w)
387{
388	return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w));
389}
390
391static struct nv50_reg *
392alloc_immd(struct nv50_pc *pc, float f)
393{
394	struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
395	unsigned hw;
396
397	for (hw = 0; hw < pc->immd_nr * 4; hw++)
398		if (pc->immd_buf[hw] == fui(f))
399			break;
400
401	if (hw == pc->immd_nr * 4)
402		hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4;
403
404	ctor_reg(r, P_IMMD, -1, hw);
405	return r;
406}
407
408static struct nv50_program_exec *
409exec(struct nv50_pc *pc)
410{
411	struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
412
413	e->param.index = -1;
414	return e;
415}
416
417static void
418emit(struct nv50_pc *pc, struct nv50_program_exec *e)
419{
420	struct nv50_program *p = pc->p;
421
422	if (p->exec_tail)
423		p->exec_tail->next = e;
424	if (!p->exec_head)
425		p->exec_head = e;
426	p->exec_tail = e;
427	p->exec_size += (e->inst[0] & 1) ? 2 : 1;
428}
429
430static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
431
432static boolean
433is_long(struct nv50_program_exec *e)
434{
435	if (e->inst[0] & 1)
436		return TRUE;
437	return FALSE;
438}
439
440static boolean
441is_immd(struct nv50_program_exec *e)
442{
443	if (is_long(e) && (e->inst[1] & 3) == 3)
444		return TRUE;
445	return FALSE;
446}
447
448static boolean
449is_join(struct nv50_program_exec *e)
450{
451	if (is_long(e) && (e->inst[1] & 3) == 2)
452		return TRUE;
453	return FALSE;
454}
455
456static INLINE void
457set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
458	 struct nv50_program_exec *e)
459{
460	assert(!is_immd(e));
461	set_long(pc, e);
462	e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
463	e->inst[1] |= (pred << 7) | (idx << 12);
464}
465
466static INLINE void
467set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
468	    struct nv50_program_exec *e)
469{
470	set_long(pc, e);
471	e->inst[1] &= ~((0x3 << 4) | (1 << 6));
472	e->inst[1] |= (idx << 4) | (on << 6);
473}
474
475static INLINE void
476set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
477{
478	if (is_long(e))
479		return;
480
481	e->inst[0] |= 1;
482	set_pred(pc, 0xf, 0, e);
483	set_pred_wr(pc, 0, 0, e);
484}
485
486static INLINE void
487set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
488{
489	if (dst->type == P_RESULT) {
490		set_long(pc, e);
491		e->inst[1] |= 0x00000008;
492	}
493
494	alloc_reg(pc, dst);
495	if (dst->hw > 63)
496		set_long(pc, e);
497	e->inst[0] |= (dst->hw << 2);
498}
499
500static INLINE void
501set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
502{
503	set_long(pc, e);
504	/* XXX: can't be predicated - bits overlap; cases where both
505	 * are required should be avoided by using pc->allow32 */
506	set_pred(pc, 0, 0, e);
507	set_pred_wr(pc, 0, 0, e);
508
509	e->inst[1] |= 0x00000002 | 0x00000001;
510	e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16;
511	e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2;
512}
513
514static INLINE void
515set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
516{
517	assert(!(e->inst[0] & 0x0c000000));
518	assert(!(e->inst[1] & 0x00000004));
519
520	e->inst[0] |= (a->hw & 3) << 26;
521	e->inst[1] |= (a->hw >> 2) << 2;
522}
523
524static void
525emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
526		  struct nv50_reg *src0, uint16_t src1_val)
527{
528	struct nv50_program_exec *e = exec(pc);
529
530	e->inst[0] = 0xd0000000 | (src1_val << 9);
531	e->inst[1] = 0x20000000;
532	set_long(pc, e);
533	e->inst[0] |= dst->hw << 2;
534	if (src0) /* otherwise will add to $a0, which is always 0 */
535		set_addr(e, src0);
536
537	emit(pc, e);
538}
539
540static struct nv50_reg *
541alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
542{
543	struct nv50_reg *a_tgsi = NULL, *a = NULL;
544	int i;
545	uint8_t avail = ~pc->addr_alloc;
546
547	if (!ref) {
548		/* allocate for TGSI_FILE_ADDRESS */
549		while (avail) {
550			i = ffs(avail) - 1;
551
552			if (pc->r_addr[i].rhw < 0 ||
553			    pc->r_addr[i].acc != pc->insn_cur) {
554				pc->addr_alloc |= (1 << i);
555
556				pc->r_addr[i].rhw = -1;
557				pc->r_addr[i].index = i;
558				return &pc->r_addr[i];
559			}
560			avail &= ~(1 << i);
561		}
562		assert(0);
563		return NULL;
564	}
565
566	/* Allocate and set an address reg so we can access 'ref'.
567	 *
568	 * If and r_addr->index will be -1 or the hw index the value
569	 * value in rhw is relative to. If rhw < 0, the reg has not
570	 * been initialized or is in use for TGSI_FILE_ADDRESS.
571	 */
572	while (avail) { /* only consider regs that are not TGSI */
573		i = ffs(avail) - 1;
574		avail &= ~(1 << i);
575
576		if ((!a || a->rhw >= 0) && pc->r_addr[i].rhw < 0) {
577			/* prefer an usused reg with low hw index */
578			a = &pc->r_addr[i];
579			continue;
580		}
581		if (!a && pc->r_addr[i].acc != pc->insn_cur)
582			a = &pc->r_addr[i];
583
584		if (ref->hw - pc->r_addr[i].rhw >= 128)
585			continue;
586
587		if ((ref->acc >= 0 && pc->r_addr[i].index < 0) ||
588		    (ref->acc < 0 && pc->r_addr[i].index == ref->index)) {
589			pc->r_addr[i].acc = pc->insn_cur;
590			return &pc->r_addr[i];
591		}
592	}
593	assert(a);
594
595	if (ref->acc < 0)
596		a_tgsi = pc->addr[ref->index];
597
598	emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
599
600	a->rhw = ref->hw & ~0x7f;
601	a->acc = pc->insn_cur;
602	a->index = a_tgsi ? ref->index : -1;
603	return a;
604}
605
606#define INTERP_LINEAR		0
607#define INTERP_FLAT		1
608#define INTERP_PERSPECTIVE	2
609#define INTERP_CENTROID		4
610
611/* interpolant index has been stored in dst->rhw */
612static void
613emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
614		unsigned mode)
615{
616	assert(dst->rhw != -1);
617	struct nv50_program_exec *e = exec(pc);
618
619	e->inst[0] |= 0x80000000;
620	set_dst(pc, dst, e);
621	e->inst[0] |= (dst->rhw << 16);
622
623	if (mode & INTERP_FLAT) {
624		e->inst[0] |= (1 << 8);
625	} else {
626		if (mode & INTERP_PERSPECTIVE) {
627			e->inst[0] |= (1 << 25);
628			alloc_reg(pc, iv);
629			e->inst[0] |= (iv->hw << 9);
630		}
631
632		if (mode & INTERP_CENTROID)
633			e->inst[0] |= (1 << 24);
634	}
635
636	emit(pc, e);
637}
638
639static void
640set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
641	 struct nv50_program_exec *e)
642{
643	set_long(pc, e);
644
645	e->param.index = src->hw & 127;
646	e->param.shift = s;
647	e->param.mask = m << (s % 32);
648
649	if (src->hw > 127)
650		set_addr(e, alloc_addr(pc, src));
651	else
652	if (src->acc < 0) {
653		assert(src->type == P_CONST);
654		set_addr(e, pc->addr[src->index]);
655	}
656
657	e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
658}
659
660/* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */
661static void
662emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
663{
664	struct nv50_program_exec *e = exec(pc);
665
666	e->inst[0] = 0x10000000;
667	if (!pc->allow32)
668		set_long(pc, e);
669
670	set_dst(pc, dst, e);
671
672	if (!is_long(e) && src->type == P_IMMD) {
673		set_immd(pc, src, e);
674		/*XXX: 32-bit, but steals part of "half" reg space - need to
675		 *     catch and handle this case if/when we do half-regs
676		 */
677	} else
678	if (src->type == P_IMMD || src->type == P_CONST) {
679		set_long(pc, e);
680		set_data(pc, src, 0x7f, 9, e);
681		e->inst[1] |= 0x20000000; /* mov from c[] */
682	} else {
683		if (src->type == P_ATTR) {
684			set_long(pc, e);
685			e->inst[1] |= 0x00200000;
686		}
687
688		alloc_reg(pc, src);
689		if (src->hw > 63)
690			set_long(pc, e);
691		e->inst[0] |= (src->hw << 9);
692	}
693
694	if (is_long(e) && !is_immd(e)) {
695		e->inst[1] |= 0x04000000; /* 32-bit */
696		e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
697		if (!(e->inst[1] & 0x20000000))
698			e->inst[1] |= 0x00030000; /* lane mask 2:3 */
699	} else
700		e->inst[0] |= 0x00008000;
701
702	emit(pc, e);
703}
704
705static INLINE void
706emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
707{
708	struct nv50_reg *imm = alloc_immd(pc, f);
709	emit_mov(pc, dst, imm);
710	FREE(imm);
711}
712
713/* Assign the hw of the discarded temporary register src
714 * to the tgsi register dst and free src.
715 */
716static void
717assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
718{
719	assert(src->index == -1 && src->hw != -1);
720
721	if (pc->if_lvl || pc->loop_lvl ||
722	    (dst->type != P_TEMP) ||
723	    (src->hw < pc->result_nr * 4 &&
724	     pc->p->type == PIPE_SHADER_FRAGMENT) ||
725	    pc->p->info.opcode_count[TGSI_OPCODE_CAL] ||
726	    pc->p->info.opcode_count[TGSI_OPCODE_BRA]) {
727
728		emit_mov(pc, dst, src);
729		free_temp(pc, src);
730		return;
731	}
732
733	if (dst->hw != -1)
734		pc->r_temp[dst->hw] = NULL;
735	pc->r_temp[src->hw] = dst;
736	dst->hw = src->hw;
737
738	FREE(src);
739}
740
741static void
742emit_nop(struct nv50_pc *pc)
743{
744	struct nv50_program_exec *e = exec(pc);
745
746	e->inst[0] = 0xf0000000;
747	set_long(pc, e);
748	e->inst[1] = 0xe0000000;
749	emit(pc, e);
750}
751
752static boolean
753check_swap_src_0_1(struct nv50_pc *pc,
754		   struct nv50_reg **s0, struct nv50_reg **s1)
755{
756	struct nv50_reg *src0 = *s0, *src1 = *s1;
757
758	if (src0->type == P_CONST) {
759		if (src1->type != P_CONST) {
760			*s0 = src1;
761			*s1 = src0;
762			return TRUE;
763		}
764	} else
765	if (src1->type == P_ATTR) {
766		if (src0->type != P_ATTR) {
767			*s0 = src1;
768			*s1 = src0;
769			return TRUE;
770		}
771	}
772
773	return FALSE;
774}
775
776static void
777set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
778		     struct nv50_program_exec *e)
779{
780	struct nv50_reg *temp;
781
782	if (src->type != P_TEMP) {
783		temp = temp_temp(pc);
784		emit_mov(pc, temp, src);
785		src = temp;
786	}
787
788	alloc_reg(pc, src);
789	if (src->hw > 63)
790		set_long(pc, e);
791	e->inst[0] |= (src->hw << 9);
792}
793
794static void
795set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
796{
797	if (src->type == P_ATTR) {
798		set_long(pc, e);
799		e->inst[1] |= 0x00200000;
800	} else
801	if (src->type == P_CONST || src->type == P_IMMD) {
802		struct nv50_reg *temp = temp_temp(pc);
803
804		emit_mov(pc, temp, src);
805		src = temp;
806	}
807
808	alloc_reg(pc, src);
809	if (src->hw > 63)
810		set_long(pc, e);
811	e->inst[0] |= (src->hw << 9);
812}
813
814static void
815set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
816{
817	if (src->type == P_ATTR) {
818		struct nv50_reg *temp = temp_temp(pc);
819
820		emit_mov(pc, temp, src);
821		src = temp;
822	} else
823	if (src->type == P_CONST || src->type == P_IMMD) {
824		assert(!(e->inst[0] & 0x00800000));
825		if (e->inst[0] & 0x01000000) {
826			struct nv50_reg *temp = temp_temp(pc);
827
828			emit_mov(pc, temp, src);
829			src = temp;
830		} else {
831			set_data(pc, src, 0x7f, 16, e);
832			e->inst[0] |= 0x00800000;
833		}
834	}
835
836	alloc_reg(pc, src);
837	if (src->hw > 63)
838		set_long(pc, e);
839	e->inst[0] |= ((src->hw & 127) << 16);
840}
841
842static void
843set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
844{
845	set_long(pc, e);
846
847	if (src->type == P_ATTR) {
848		struct nv50_reg *temp = temp_temp(pc);
849
850		emit_mov(pc, temp, src);
851		src = temp;
852	} else
853	if (src->type == P_CONST || src->type == P_IMMD) {
854		assert(!(e->inst[0] & 0x01000000));
855		if (e->inst[0] & 0x00800000) {
856			struct nv50_reg *temp = temp_temp(pc);
857
858			emit_mov(pc, temp, src);
859			src = temp;
860		} else {
861			set_data(pc, src, 0x7f, 32+14, e);
862			e->inst[0] |= 0x01000000;
863		}
864	}
865
866	alloc_reg(pc, src);
867	e->inst[1] |= ((src->hw & 127) << 14);
868}
869
870static void
871emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
872{
873	struct nv50_program_exec *e = exec(pc);
874
875	assert(dst->type == P_TEMP);
876	e->inst[1] = 0x20000000 | (pred << 12);
877	set_long(pc, e);
878	set_dst(pc, dst, e);
879
880	emit(pc, e);
881}
882
883static void
884emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
885{
886	struct nv50_program_exec *e = exec(pc);
887
888	e->inst[0] = 0x000001fc;
889	e->inst[1] = 0xa0000008;
890	set_long(pc, e);
891	set_pred_wr(pc, 1, pred, e);
892	set_src_0_restricted(pc, src, e);
893
894	emit(pc, e);
895}
896
897static void
898emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
899	 struct nv50_reg *src1)
900{
901	struct nv50_program_exec *e = exec(pc);
902
903	e->inst[0] |= 0xc0000000;
904
905	if (!pc->allow32)
906		set_long(pc, e);
907
908	check_swap_src_0_1(pc, &src0, &src1);
909	set_dst(pc, dst, e);
910	set_src_0(pc, src0, e);
911	if (src1->type == P_IMMD && !is_long(e)) {
912		if (src0->mod ^ src1->mod)
913			e->inst[0] |= 0x00008000;
914		set_immd(pc, src1, e);
915	} else {
916		set_src_1(pc, src1, e);
917		if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
918			if (is_long(e))
919				e->inst[1] |= 0x08000000;
920			else
921				e->inst[0] |= 0x00008000;
922		}
923	}
924
925	emit(pc, e);
926}
927
928static void
929emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
930	 struct nv50_reg *src0, struct nv50_reg *src1)
931{
932	struct nv50_program_exec *e = exec(pc);
933
934	e->inst[0] = 0xb0000000;
935
936	alloc_reg(pc, src1);
937	check_swap_src_0_1(pc, &src0, &src1);
938
939	if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
940		set_long(pc, e);
941		e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
942			      ((src1->mod & NV50_MOD_NEG) << 27);
943	}
944
945	set_dst(pc, dst, e);
946	set_src_0(pc, src0, e);
947	if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
948		set_src_2(pc, src1, e);
949	else
950	if (src1->type == P_IMMD)
951		set_immd(pc, src1, e);
952	else
953		set_src_1(pc, src1, e);
954
955	emit(pc, e);
956}
957
958static void
959emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
960	 uint8_t s)
961{
962	struct nv50_program_exec *e = exec(pc);
963
964	set_long(pc, e);
965	e->inst[1] |= 0xc0000000;
966
967	e->inst[0] |= dst->hw << 2;
968	e->inst[0] |= s << 16; /* shift left */
969	set_src_0_restricted(pc, src, e);
970
971	emit(pc, e);
972}
973
974static void
975emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
976	    struct nv50_reg *src0, struct nv50_reg *src1)
977{
978	struct nv50_program_exec *e = exec(pc);
979
980	set_long(pc, e);
981	e->inst[0] |= 0xb0000000;
982	e->inst[1] |= (sub << 29);
983
984	check_swap_src_0_1(pc, &src0, &src1);
985	set_dst(pc, dst, e);
986	set_src_0(pc, src0, e);
987	set_src_1(pc, src1, e);
988
989	if (src0->mod & NV50_MOD_ABS)
990		e->inst[1] |= 0x00100000;
991	if (src1->mod & NV50_MOD_ABS)
992		e->inst[1] |= 0x00080000;
993
994	emit(pc, e);
995}
996
997static INLINE void
998emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
999	 struct nv50_reg *src1)
1000{
1001	src1->mod ^= NV50_MOD_NEG;
1002	emit_add(pc, dst, src0, src1);
1003	src1->mod ^= NV50_MOD_NEG;
1004}
1005
1006static void
1007emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1008	    struct nv50_reg *src1, unsigned op)
1009{
1010	struct nv50_program_exec *e = exec(pc);
1011
1012	e->inst[0] = 0xd0000000;
1013	set_long(pc, e);
1014
1015	check_swap_src_0_1(pc, &src0, &src1);
1016	set_dst(pc, dst, e);
1017	set_src_0(pc, src0, e);
1018
1019	if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
1020	    op != TGSI_OPCODE_XOR)
1021		assert(!"invalid bit op");
1022
1023	assert(!(src0->mod | src1->mod));
1024
1025	if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
1026		set_immd(pc, src1, e);
1027		if (op == TGSI_OPCODE_OR)
1028			e->inst[0] |= 0x0100;
1029		else
1030		if (op == TGSI_OPCODE_XOR)
1031			e->inst[0] |= 0x8000;
1032	} else {
1033		set_src_1(pc, src1, e);
1034		e->inst[1] |= 0x04000000; /* 32 bit */
1035		if (op == TGSI_OPCODE_OR)
1036			e->inst[1] |= 0x4000;
1037		else
1038		if (op == TGSI_OPCODE_XOR)
1039			e->inst[1] |= 0x8000;
1040	}
1041
1042	emit(pc, e);
1043}
1044
1045static void
1046emit_shift(struct nv50_pc *pc, struct nv50_reg *dst,
1047	   struct nv50_reg *src0, struct nv50_reg *src1, unsigned dir)
1048{
1049	struct nv50_program_exec *e = exec(pc);
1050
1051	e->inst[0] = 0x30000000;
1052	e->inst[1] = 0xc4000000;
1053
1054	set_long(pc, e);
1055	set_dst(pc, dst, e);
1056	set_src_0(pc, src0, e);
1057
1058	if (src1->type == P_IMMD) {
1059		e->inst[1] |= (1 << 20);
1060		e->inst[0] |= (pc->immd_buf[src1->hw] & 0x7f) << 16;
1061	} else
1062		set_src_1(pc, src1, e);
1063
1064	if (dir != TGSI_OPCODE_SHL)
1065		e->inst[1] |= (1 << 29);
1066
1067	if (dir == TGSI_OPCODE_ISHR)
1068		e->inst[1] |= (1 << 27);
1069
1070	emit(pc, e);
1071}
1072
1073static void
1074emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1075	 struct nv50_reg *src1, struct nv50_reg *src2)
1076{
1077	struct nv50_program_exec *e = exec(pc);
1078
1079	e->inst[0] |= 0xe0000000;
1080
1081	check_swap_src_0_1(pc, &src0, &src1);
1082	set_dst(pc, dst, e);
1083	set_src_0(pc, src0, e);
1084	set_src_1(pc, src1, e);
1085	set_src_2(pc, src2, e);
1086
1087	if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
1088		e->inst[1] |= 0x04000000;
1089	if (src2->mod & NV50_MOD_NEG)
1090		e->inst[1] |= 0x08000000;
1091
1092	emit(pc, e);
1093}
1094
1095static INLINE void
1096emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1097	 struct nv50_reg *src1, struct nv50_reg *src2)
1098{
1099	src2->mod ^= NV50_MOD_NEG;
1100	emit_mad(pc, dst, src0, src1, src2);
1101	src2->mod ^= NV50_MOD_NEG;
1102}
1103
1104#define NV50_FLOP_RCP 0
1105#define NV50_FLOP_RSQ 2
1106#define NV50_FLOP_LG2 3
1107#define NV50_FLOP_SIN 4
1108#define NV50_FLOP_COS 5
1109#define NV50_FLOP_EX2 6
1110
1111/* rcp, rsqrt, lg2 support neg and abs */
1112static void
1113emit_flop(struct nv50_pc *pc, unsigned sub,
1114	  struct nv50_reg *dst, struct nv50_reg *src)
1115{
1116	struct nv50_program_exec *e = exec(pc);
1117
1118	e->inst[0] |= 0x90000000;
1119	if (sub || src->mod) {
1120		set_long(pc, e);
1121		e->inst[1] |= (sub << 29);
1122	}
1123
1124	set_dst(pc, dst, e);
1125	set_src_0_restricted(pc, src, e);
1126
1127	assert(!src->mod || sub < 4);
1128
1129	if (src->mod & NV50_MOD_NEG)
1130		e->inst[1] |= 0x04000000;
1131	if (src->mod & NV50_MOD_ABS)
1132		e->inst[1] |= 0x00100000;
1133
1134	emit(pc, e);
1135}
1136
1137static void
1138emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1139{
1140	struct nv50_program_exec *e = exec(pc);
1141
1142	e->inst[0] |= 0xb0000000;
1143
1144	set_dst(pc, dst, e);
1145	set_src_0(pc, src, e);
1146	set_long(pc, e);
1147	e->inst[1] |= (6 << 29) | 0x00004000;
1148
1149	if (src->mod & NV50_MOD_NEG)
1150		e->inst[1] |= 0x04000000;
1151	if (src->mod & NV50_MOD_ABS)
1152		e->inst[1] |= 0x00100000;
1153
1154	emit(pc, e);
1155}
1156
1157static void
1158emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1159{
1160	struct nv50_program_exec *e = exec(pc);
1161
1162	e->inst[0] |= 0xb0000000;
1163
1164	set_dst(pc, dst, e);
1165	set_src_0(pc, src, e);
1166	set_long(pc, e);
1167	e->inst[1] |= (6 << 29);
1168
1169	if (src->mod & NV50_MOD_NEG)
1170		e->inst[1] |= 0x04000000;
1171	if (src->mod & NV50_MOD_ABS)
1172		e->inst[1] |= 0x00100000;
1173
1174	emit(pc, e);
1175}
1176
1177#define CVT_RN    (0x00 << 16)
1178#define CVT_FLOOR (0x02 << 16)
1179#define CVT_CEIL  (0x04 << 16)
1180#define CVT_TRUNC (0x06 << 16)
1181#define CVT_SAT   (0x08 << 16)
1182#define CVT_ABS   (0x10 << 16)
1183
1184#define CVT_X32_X32 0x04004000
1185#define CVT_X32_S32 0x04014000
1186#define CVT_F32_F32 ((0xc0 << 24) | CVT_X32_X32)
1187#define CVT_S32_F32 ((0x88 << 24) | CVT_X32_X32)
1188#define CVT_U32_F32 ((0x80 << 24) | CVT_X32_X32)
1189#define CVT_F32_S32 ((0x40 << 24) | CVT_X32_S32)
1190#define CVT_F32_U32 ((0x40 << 24) | CVT_X32_X32)
1191#define CVT_S32_S32 ((0x08 << 24) | CVT_X32_S32)
1192#define CVT_S32_U32 ((0x08 << 24) | CVT_X32_X32)
1193#define CVT_U32_S32 ((0x00 << 24) | CVT_X32_S32)
1194
1195#define CVT_NEG 0x20000000
1196#define CVT_RI  0x08000000
1197
1198static void
1199emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
1200	 int wp, uint32_t cvn)
1201{
1202	struct nv50_program_exec *e;
1203
1204	e = exec(pc);
1205
1206	if (src->mod & NV50_MOD_NEG) cvn |= CVT_NEG;
1207	if (src->mod & NV50_MOD_ABS) cvn |= CVT_ABS;
1208
1209	e->inst[0] = 0xa0000000;
1210	e->inst[1] = cvn;
1211	set_long(pc, e);
1212	set_src_0(pc, src, e);
1213
1214	if (wp >= 0)
1215		set_pred_wr(pc, 1, wp, e);
1216
1217	if (dst)
1218		set_dst(pc, dst, e);
1219	else {
1220		e->inst[0] |= 0x000001fc;
1221		e->inst[1] |= 0x00000008;
1222	}
1223
1224	emit(pc, e);
1225}
1226
1227/* nv50 Condition codes:
1228 *  0x1 = LT
1229 *  0x2 = EQ
1230 *  0x3 = LE
1231 *  0x4 = GT
1232 *  0x5 = NE
1233 *  0x6 = GE
1234 *  0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1235 *  0x8 = unordered bit (allows NaN)
1236 */
1237static void
1238emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1239	 struct nv50_reg *src0, struct nv50_reg *src1)
1240{
1241	static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1242
1243	struct nv50_program_exec *e = exec(pc);
1244	struct nv50_reg *rdst;
1245
1246	assert(ccode < 16);
1247	if (check_swap_src_0_1(pc, &src0, &src1))
1248		ccode = cc_swapped[ccode & 7] | (ccode & 8);
1249
1250	rdst = dst;
1251	if (dst && dst->type != P_TEMP)
1252		dst = alloc_temp(pc, NULL);
1253
1254	/* set.u32 */
1255	set_long(pc, e);
1256	e->inst[0] |= 0xb0000000;
1257	e->inst[1] |= 0x60000000 | (ccode << 14);
1258
1259	/* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
1260	 * that doesn't seem to match what the hw actually does
1261	e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
1262	 */
1263
1264	if (wp >= 0)
1265		set_pred_wr(pc, 1, wp, e);
1266	if (dst)
1267		set_dst(pc, dst, e);
1268	else {
1269		e->inst[0] |= 0x000001fc;
1270		e->inst[1] |= 0x00000008;
1271	}
1272
1273	set_src_0(pc, src0, e);
1274	set_src_1(pc, src1, e);
1275
1276	emit(pc, e);
1277
1278	/* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
1279	if (rdst)
1280		emit_cvt(pc, rdst, dst, -1, CVT_ABS | CVT_F32_S32);
1281	if (rdst && rdst != dst)
1282		free_temp(pc, dst);
1283}
1284
1285static INLINE unsigned
1286map_tgsi_setop_cc(unsigned op)
1287{
1288	switch (op) {
1289	case TGSI_OPCODE_SLT: return 0x1;
1290	case TGSI_OPCODE_SGE: return 0x6;
1291	case TGSI_OPCODE_SEQ: return 0x2;
1292	case TGSI_OPCODE_SGT: return 0x4;
1293	case TGSI_OPCODE_SLE: return 0x3;
1294	case TGSI_OPCODE_SNE: return 0xd;
1295	default:
1296		assert(0);
1297		return 0;
1298	}
1299}
1300
1301static INLINE void
1302emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1303{
1304	emit_cvt(pc, dst, src, -1, CVT_FLOOR | CVT_F32_F32 | CVT_RI);
1305}
1306
1307static void
1308emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1309	 struct nv50_reg *v, struct nv50_reg *e)
1310{
1311	struct nv50_reg *temp = alloc_temp(pc, NULL);
1312
1313	emit_flop(pc, NV50_FLOP_LG2, temp, v);
1314	emit_mul(pc, temp, temp, e);
1315	emit_preex2(pc, temp, temp);
1316	emit_flop(pc, NV50_FLOP_EX2, dst, temp);
1317
1318	free_temp(pc, temp);
1319}
1320
1321static INLINE void
1322emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1323{
1324	emit_cvt(pc, dst, src, -1, CVT_SAT | CVT_F32_F32);
1325}
1326
1327static void
1328emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1329	 struct nv50_reg **src)
1330{
1331	struct nv50_reg *one = alloc_immd(pc, 1.0);
1332	struct nv50_reg *zero = alloc_immd(pc, 0.0);
1333	struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1334	struct nv50_reg *pos128 = alloc_immd(pc,  127.999999);
1335	struct nv50_reg *tmp[4];
1336	boolean allow32 = pc->allow32;
1337
1338	pc->allow32 = FALSE;
1339
1340	if (mask & (3 << 1)) {
1341		tmp[0] = alloc_temp(pc, NULL);
1342		emit_minmax(pc, 4, tmp[0], src[0], zero);
1343	}
1344
1345	if (mask & (1 << 2)) {
1346		set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1347
1348		tmp[1] = temp_temp(pc);
1349		emit_minmax(pc, 4, tmp[1], src[1], zero);
1350
1351		tmp[3] = temp_temp(pc);
1352		emit_minmax(pc, 4, tmp[3], src[3], neg128);
1353		emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1354
1355		emit_pow(pc, dst[2], tmp[1], tmp[3]);
1356		emit_mov(pc, dst[2], zero);
1357		set_pred(pc, 3, 0, pc->p->exec_tail);
1358	}
1359
1360	if (mask & (1 << 1))
1361		assimilate_temp(pc, dst[1], tmp[0]);
1362	else
1363	if (mask & (1 << 2))
1364		free_temp(pc, tmp[0]);
1365
1366	pc->allow32 = allow32;
1367
1368	/* do this last, in case src[i,j] == dst[0,3] */
1369	if (mask & (1 << 0))
1370		emit_mov(pc, dst[0], one);
1371
1372	if (mask & (1 << 3))
1373		emit_mov(pc, dst[3], one);
1374
1375	FREE(pos128);
1376	FREE(neg128);
1377	FREE(zero);
1378	FREE(one);
1379}
1380
1381static void
1382emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1383{
1384	struct nv50_program_exec *e;
1385	const int r_pred = 1;
1386
1387	e = exec(pc);
1388	e->inst[0] = 0x00000002; /* discard */
1389	set_long(pc, e); /* sets cond code to ALWAYS */
1390
1391	if (src) {
1392		set_pred(pc, 0x1 /* cc = LT */, r_pred, e);
1393		/* write to predicate reg */
1394		emit_cvt(pc, NULL, src, r_pred, CVT_F32_F32);
1395	}
1396
1397	emit(pc, e);
1398}
1399
1400static struct nv50_program_exec *
1401emit_control_flow(struct nv50_pc *pc, unsigned op, int pred, unsigned cc)
1402{
1403	struct nv50_program_exec *e = exec(pc);
1404
1405	e->inst[0] = (op << 28) | 2;
1406	set_long(pc, e);
1407	if (pred >= 0)
1408		set_pred(pc, cc, pred, e);
1409
1410	emit(pc, e);
1411	return e;
1412}
1413
1414static INLINE struct nv50_program_exec *
1415emit_breakaddr(struct nv50_pc *pc)
1416{
1417	return emit_control_flow(pc, 0x4, -1, 0);
1418}
1419
1420static INLINE void
1421emit_break(struct nv50_pc *pc, int pred, unsigned cc)
1422{
1423	emit_control_flow(pc, 0x5, pred, cc);
1424}
1425
1426static INLINE struct nv50_program_exec *
1427emit_joinat(struct nv50_pc *pc)
1428{
1429	return emit_control_flow(pc, 0xa, -1, 0);
1430}
1431
1432static INLINE struct nv50_program_exec *
1433emit_branch(struct nv50_pc *pc, int pred, unsigned cc)
1434{
1435	return emit_control_flow(pc, 0x1, pred, cc);
1436}
1437
1438static INLINE struct nv50_program_exec *
1439emit_call(struct nv50_pc *pc, int pred, unsigned cc)
1440{
1441	return emit_control_flow(pc, 0x2, pred, cc);
1442}
1443
1444static INLINE void
1445emit_ret(struct nv50_pc *pc, int pred, unsigned cc)
1446{
1447	emit_control_flow(pc, 0x3, pred, cc);
1448}
1449
1450#define QOP_ADD 0
1451#define QOP_SUBR 1
1452#define QOP_SUB 2
1453#define QOP_MOV_SRC1 3
1454
1455/* For a quad of threads / top left, top right, bottom left, bottom right
1456 * pixels, do a different operation, and take src0 from a specific thread.
1457 */
1458static void
1459emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
1460	    struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
1461{
1462       struct nv50_program_exec *e = exec(pc);
1463
1464       e->inst[0] = 0xc0000000;
1465       e->inst[1] = 0x80000000;
1466       set_long(pc, e);
1467       e->inst[0] |= lane_src0 << 16;
1468       set_src_0(pc, src0, e);
1469       set_src_2(pc, src1, e);
1470
1471       if (wp >= 0)
1472	       set_pred_wr(pc, 1, wp, e);
1473
1474       if (dst)
1475	       set_dst(pc, dst, e);
1476       else {
1477	       e->inst[0] |= 0x000001fc;
1478	       e->inst[1] |= 0x00000008;
1479       }
1480
1481       e->inst[0] |= (qop & 3) << 20;
1482       e->inst[1] |= (qop >> 2) << 22;
1483
1484       emit(pc, e);
1485}
1486
1487static void
1488load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1489		     struct nv50_reg **src, unsigned arg, boolean proj)
1490{
1491	int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
1492
1493	src[0]->mod |= NV50_MOD_ABS;
1494	src[1]->mod |= NV50_MOD_ABS;
1495	src[2]->mod |= NV50_MOD_ABS;
1496
1497	emit_minmax(pc, 4, t[2], src[0], src[1]);
1498	emit_minmax(pc, 4, t[2], src[2], t[2]);
1499
1500	src[0]->mod = mod[0];
1501	src[1]->mod = mod[1];
1502	src[2]->mod = mod[2];
1503
1504	if (proj && 0 /* looks more correct without this */)
1505		emit_mul(pc, t[2], t[2], src[3]);
1506	else
1507	if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
1508		emit_mov(pc, t[3], src[3]);
1509
1510	emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]);
1511
1512	emit_mul(pc, t[0], src[0], t[2]);
1513	emit_mul(pc, t[1], src[1], t[2]);
1514	emit_mul(pc, t[2], src[2], t[2]);
1515}
1516
1517static void
1518load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1519		     struct nv50_reg **src, unsigned dim, unsigned arg)
1520{
1521	unsigned c, mode;
1522
1523	if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1524		mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
1525
1526		t[3]->rhw = src[3]->rhw;
1527		emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1528		emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]);
1529
1530		for (c = 0; c < dim; ++c) {
1531			t[c]->rhw = src[c]->rhw;
1532			emit_interp(pc, t[c], t[3], mode);
1533		}
1534		if (arg != dim) { /* depth reference value */
1535			t[dim]->rhw = src[2]->rhw;
1536			emit_interp(pc, t[dim], t[3], mode);
1537		}
1538	} else {
1539		/* XXX: for some reason the blob sometimes uses MAD
1540		 * (mad f32 $rX $rY $rZ neg $r63)
1541		 */
1542		emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]);
1543		for (c = 0; c < dim; ++c)
1544			emit_mul(pc, t[c], src[c], t[3]);
1545		if (arg != dim) /* depth reference value */
1546			emit_mul(pc, t[dim], src[2], t[3]);
1547	}
1548}
1549
1550static INLINE void
1551get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
1552{
1553	switch (type) {
1554	case TGSI_TEXTURE_1D:
1555		*arg = *dim = 1;
1556		break;
1557	case TGSI_TEXTURE_SHADOW1D:
1558		*dim = 1;
1559		*arg = 2;
1560		break;
1561	case TGSI_TEXTURE_UNKNOWN:
1562	case TGSI_TEXTURE_2D:
1563	case TGSI_TEXTURE_RECT:
1564		*arg = *dim = 2;
1565		break;
1566	case TGSI_TEXTURE_SHADOW2D:
1567	case TGSI_TEXTURE_SHADOWRECT:
1568		*dim = 2;
1569		*arg = 3;
1570		break;
1571	case TGSI_TEXTURE_3D:
1572	case TGSI_TEXTURE_CUBE:
1573		*dim = *arg = 3;
1574		break;
1575	default:
1576		assert(0);
1577		break;
1578	}
1579}
1580
1581/* We shouldn't execute TEXLOD if any of the pixels in a quad have
1582 * different LOD values, so branch off groups of equal LOD.
1583 */
1584static void
1585emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
1586		     struct nv50_reg *src, struct nv50_program_exec *tex)
1587{
1588	struct nv50_program_exec *join_at;
1589	unsigned i, target = pc->p->exec_size + 9 * 2;
1590
1591	if (pc->p->type != PIPE_SHADER_FRAGMENT) {
1592		emit(pc, tex);
1593		return;
1594	}
1595	pc->allow32 = FALSE;
1596
1597	/* Subtract lod of each pixel from lod of top left pixel, jump
1598	 * texlod insn if result is 0, then repeat for 2 other pixels.
1599	 */
1600	join_at = emit_joinat(pc);
1601	emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
1602	emit_branch(pc, 0, 2)->param.index = target;
1603
1604	for (i = 1; i < 4; ++i) {
1605		emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
1606		emit_branch(pc, 0, 2)->param.index = target;
1607	}
1608
1609	emit_mov(pc, tlod, src); /* target */
1610	emit(pc, tex); /* texlod */
1611
1612	join_at->param.index = target + 2 * 2;
1613	JOIN_ON(emit_nop(pc)); /* join _after_ tex */
1614}
1615
1616static void
1617emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
1618		      struct nv50_program_exec *tex)
1619{
1620	struct nv50_program_exec *e;
1621	struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
1622	int r_pred = 0;
1623	unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
1624
1625	pc->allow32 = FALSE;
1626	ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
1627
1628	/* Subtract bias value of thread i from bias values of each thread,
1629	 * store result in r_pred, and set bit i in r_bits if result was 0.
1630	 */
1631	assert(arg < 4);
1632	for (i = 0; i < 4; ++i, ++imm_1248.hw) {
1633		emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
1634		emit_mov(pc, r_bits, &imm_1248);
1635		set_pred(pc, 2, r_pred, pc->p->exec_tail);
1636	}
1637	emit_mov_to_pred(pc, r_pred, r_bits);
1638
1639	/* The lanes of a quad are now grouped by the bit in r_pred they have
1640	 * set. Put the input values for TEX into a new register set for each
1641	 * group and execute TEX only for a specific group.
1642	 * We cannot use the same register set for each group because we need
1643	 * the derivatives, which are implicitly calculated, to be correct.
1644	 */
1645	for (i = 1; i < 4; ++i) {
1646		alloc_temp4(pc, t123[i], 0);
1647
1648		for (c = 0; c <= arg; ++c)
1649			emit_mov(pc, t123[i][c], t[c]);
1650
1651		*(e = exec(pc)) = *(tex);
1652		e->inst[0] &= ~0x01fc;
1653		set_dst(pc, t123[i][0], e);
1654		set_pred(pc, cc[i], r_pred, e);
1655		emit(pc, e);
1656	}
1657	/* finally TEX on the original regs (where we kept the input) */
1658	set_pred(pc, cc[0], r_pred, tex);
1659	emit(pc, tex);
1660
1661	/* put the 3 * n other results into regs for lane 0 */
1662	n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
1663	for (i = 1; i < 4; ++i) {
1664		for (c = 0; c < n; ++c) {
1665			emit_mov(pc, t[c], t123[i][c]);
1666			set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
1667		}
1668		free_temp4(pc, t123[i]);
1669	}
1670
1671	emit_nop(pc);
1672	free_temp(pc, r_bits);
1673}
1674
1675static void
1676emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1677	 struct nv50_reg **src, unsigned unit, unsigned type,
1678	 boolean proj, int bias_lod)
1679{
1680	struct nv50_reg *t[4];
1681	struct nv50_program_exec *e;
1682	unsigned c, dim, arg;
1683
1684	/* t[i] must be within a single 128 bit super-reg */
1685	alloc_temp4(pc, t, 0);
1686
1687	e = exec(pc);
1688	e->inst[0] = 0xf0000000;
1689	set_long(pc, e);
1690	set_dst(pc, t[0], e);
1691
1692	/* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
1693	e->inst[0] |= (unit << 9) /* | (unit << 17) */;
1694
1695	/* live flag (don't set if TEX results affect input to another TEX): */
1696	/* e->inst[0] |= 0x00000004; */
1697
1698	get_tex_dim(type, &dim, &arg);
1699
1700	if (type == TGSI_TEXTURE_CUBE) {
1701		e->inst[0] |= 0x08000000;
1702		load_cube_tex_coords(pc, t, src, arg, proj);
1703	} else
1704	if (proj)
1705		load_proj_tex_coords(pc, t, src, dim, arg);
1706	else {
1707		for (c = 0; c < dim; c++)
1708			emit_mov(pc, t[c], src[c]);
1709		if (arg != dim) /* depth reference value (always src.z here) */
1710			emit_mov(pc, t[dim], src[2]);
1711	}
1712
1713	e->inst[0] |= (mask & 0x3) << 25;
1714	e->inst[1] |= (mask & 0xc) << 12;
1715
1716	if (!bias_lod) {
1717		e->inst[0] |= (arg - 1) << 22;
1718		emit(pc, e);
1719	} else
1720	if (bias_lod < 0) {
1721		assert(pc->p->type == PIPE_SHADER_FRAGMENT);
1722		e->inst[0] |= arg << 22;
1723		e->inst[1] |= 0x20000000; /* texbias */
1724		emit_mov(pc, t[arg], src[3]);
1725		emit_texbias_sequence(pc, t, arg, e);
1726	} else {
1727		e->inst[0] |= arg << 22;
1728		e->inst[1] |= 0x40000000; /* texlod */
1729		emit_mov(pc, t[arg], src[3]);
1730		emit_texlod_sequence(pc, t[arg], src[3], e);
1731	}
1732
1733#if 1
1734	c = 0;
1735	if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1736	if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1737	if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1738	if (mask & 8) emit_mov(pc, dst[3], t[c]);
1739
1740	free_temp4(pc, t);
1741#else
1742	/* XXX: if p.e. MUL is used directly after TEX, it would still use
1743	 * the texture coordinates, not the fetched values: latency ? */
1744
1745	for (c = 0; c < 4; c++) {
1746		if (mask & (1 << c))
1747			assimilate_temp(pc, dst[c], t[c]);
1748		else
1749			free_temp(pc, t[c]);
1750	}
1751#endif
1752}
1753
1754static void
1755emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1756{
1757	struct nv50_program_exec *e = exec(pc);
1758
1759	assert(src->type == P_TEMP);
1760
1761	e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000;
1762	e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000;
1763	set_long(pc, e);
1764	set_dst(pc, dst, e);
1765	set_src_0(pc, src, e);
1766	set_src_2(pc, src, e);
1767
1768	emit(pc, e);
1769}
1770
1771static void
1772emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1773{
1774	struct nv50_program_exec *e = exec(pc);
1775
1776	assert(src->type == P_TEMP);
1777
1778	e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000;
1779	e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000;
1780	set_long(pc, e);
1781	set_dst(pc, dst, e);
1782	set_src_0(pc, src, e);
1783	set_src_2(pc, src, e);
1784
1785	emit(pc, e);
1786}
1787
1788static void
1789convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1790{
1791	unsigned q = 0, m = ~0;
1792
1793	assert(!is_long(e));
1794
1795	switch (e->inst[0] >> 28) {
1796	case 0x1:
1797		/* MOV */
1798		q = 0x0403c000;
1799		m = 0xffff7fff;
1800		break;
1801	case 0x8:
1802		/* INTERP (move centroid, perspective and flat bits) */
1803		m = ~0x03000100;
1804		q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1805		q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1806		break;
1807	case 0x9:
1808		/* RCP */
1809		break;
1810	case 0xB:
1811		/* ADD */
1812		m = ~(127 << 16);
1813		q = ((e->inst[0] & (~m)) >> 2);
1814		break;
1815	case 0xC:
1816		/* MUL */
1817		m = ~0x00008000;
1818		q = ((e->inst[0] & (~m)) << 12);
1819		break;
1820	case 0xE:
1821		/* MAD (if src2 == dst) */
1822		q = ((e->inst[0] & 0x1fc) << 12);
1823		break;
1824	default:
1825		assert(0);
1826		break;
1827	}
1828
1829	set_long(pc, e);
1830	pc->p->exec_size++;
1831
1832	e->inst[0] &= m;
1833	e->inst[1] |= q;
1834}
1835
1836/* Some operations support an optional negation flag. */
1837static int
1838get_supported_mods(const struct tgsi_full_instruction *insn, int i)
1839{
1840	switch (insn->Instruction.Opcode) {
1841	case TGSI_OPCODE_ADD:
1842	case TGSI_OPCODE_COS:
1843	case TGSI_OPCODE_DDX:
1844	case TGSI_OPCODE_DDY:
1845	case TGSI_OPCODE_DP3:
1846	case TGSI_OPCODE_DP4:
1847	case TGSI_OPCODE_EX2:
1848	case TGSI_OPCODE_KIL:
1849	case TGSI_OPCODE_LG2:
1850	case TGSI_OPCODE_MAD:
1851	case TGSI_OPCODE_MUL:
1852	case TGSI_OPCODE_POW:
1853	case TGSI_OPCODE_RCP:
1854	case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */
1855	case TGSI_OPCODE_SCS:
1856	case TGSI_OPCODE_SIN:
1857	case TGSI_OPCODE_SUB:
1858		return NV50_MOD_NEG;
1859	case TGSI_OPCODE_MAX:
1860	case TGSI_OPCODE_MIN:
1861	case TGSI_OPCODE_INEG: /* tgsi src sign toggle/set would be stupid */
1862		return NV50_MOD_ABS;
1863	case TGSI_OPCODE_CEIL:
1864	case TGSI_OPCODE_FLR:
1865	case TGSI_OPCODE_TRUNC:
1866		return NV50_MOD_NEG | NV50_MOD_ABS;
1867	case TGSI_OPCODE_F2I:
1868	case TGSI_OPCODE_F2U:
1869	case TGSI_OPCODE_I2F:
1870	case TGSI_OPCODE_U2F:
1871		return NV50_MOD_NEG | NV50_MOD_ABS | NV50_MOD_I32;
1872	case TGSI_OPCODE_SHL:
1873	case TGSI_OPCODE_ISHR:
1874	case TGSI_OPCODE_USHR:
1875		return NV50_MOD_I32;
1876	default:
1877		return 0;
1878	}
1879}
1880
1881/* Return a read mask for source registers deduced from opcode & write mask. */
1882static unsigned
1883nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1884{
1885	unsigned x, mask = insn->Dst[0].Register.WriteMask;
1886
1887	switch (insn->Instruction.Opcode) {
1888	case TGSI_OPCODE_COS:
1889	case TGSI_OPCODE_SIN:
1890		return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1891	case TGSI_OPCODE_DP3:
1892		return 0x7;
1893	case TGSI_OPCODE_DP4:
1894	case TGSI_OPCODE_DPH:
1895	case TGSI_OPCODE_KIL: /* WriteMask ignored */
1896		return 0xf;
1897	case TGSI_OPCODE_DST:
1898		return mask & (c ? 0xa : 0x6);
1899	case TGSI_OPCODE_EX2:
1900	case TGSI_OPCODE_EXP:
1901	case TGSI_OPCODE_LG2:
1902	case TGSI_OPCODE_LOG:
1903	case TGSI_OPCODE_POW:
1904	case TGSI_OPCODE_RCP:
1905	case TGSI_OPCODE_RSQ:
1906	case TGSI_OPCODE_SCS:
1907		return 0x1;
1908	case TGSI_OPCODE_IF:
1909		return 0x1;
1910	case TGSI_OPCODE_LIT:
1911		return 0xb;
1912	case TGSI_OPCODE_TEX:
1913	case TGSI_OPCODE_TXB:
1914	case TGSI_OPCODE_TXL:
1915	case TGSI_OPCODE_TXP:
1916	{
1917		const struct tgsi_instruction_texture *tex;
1918
1919		assert(insn->Instruction.Texture);
1920		tex = &insn->Texture;
1921
1922		mask = 0x7;
1923		if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
1924		    insn->Instruction.Opcode != TGSI_OPCODE_TXD)
1925			mask |= 0x8; /* bias, lod or proj */
1926
1927		switch (tex->Texture) {
1928		case TGSI_TEXTURE_1D:
1929			mask &= 0x9;
1930			break;
1931		case TGSI_TEXTURE_SHADOW1D:
1932			mask &= 0x5;
1933			break;
1934		case TGSI_TEXTURE_2D:
1935			mask &= 0xb;
1936			break;
1937		default:
1938			break;
1939		}
1940	}
1941		return mask;
1942	case TGSI_OPCODE_XPD:
1943		x = 0;
1944		if (mask & 1) x |= 0x6;
1945		if (mask & 2) x |= 0x5;
1946		if (mask & 4) x |= 0x3;
1947		return x;
1948	default:
1949		break;
1950	}
1951
1952	return mask;
1953}
1954
1955static struct nv50_reg *
1956tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1957{
1958	switch (dst->Register.File) {
1959	case TGSI_FILE_TEMPORARY:
1960		return &pc->temp[dst->Register.Index * 4 + c];
1961	case TGSI_FILE_OUTPUT:
1962		return &pc->result[dst->Register.Index * 4 + c];
1963	case TGSI_FILE_ADDRESS:
1964	{
1965		struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
1966		if (!r) {
1967			r = alloc_addr(pc, NULL);
1968			pc->addr[dst->Register.Index * 4 + c] = r;
1969		}
1970		assert(r);
1971		return r;
1972	}
1973	case TGSI_FILE_NULL:
1974		return NULL;
1975	default:
1976		break;
1977	}
1978
1979	return NULL;
1980}
1981
1982static struct nv50_reg *
1983tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1984	 int mod)
1985{
1986	struct nv50_reg *r = NULL;
1987	struct nv50_reg *temp = NULL;
1988	unsigned sgn, c, swz, cvn;
1989
1990	if (src->Register.File != TGSI_FILE_CONSTANT)
1991		assert(!src->Register.Indirect);
1992
1993	sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1994
1995	c = tgsi_util_get_full_src_register_swizzle(src, chan);
1996	switch (c) {
1997	case TGSI_SWIZZLE_X:
1998	case TGSI_SWIZZLE_Y:
1999	case TGSI_SWIZZLE_Z:
2000	case TGSI_SWIZZLE_W:
2001		switch (src->Register.File) {
2002		case TGSI_FILE_INPUT:
2003			r = &pc->attr[src->Register.Index * 4 + c];
2004			break;
2005		case TGSI_FILE_TEMPORARY:
2006			r = &pc->temp[src->Register.Index * 4 + c];
2007			break;
2008		case TGSI_FILE_CONSTANT:
2009			if (!src->Register.Indirect) {
2010				r = &pc->param[src->Register.Index * 4 + c];
2011				break;
2012			}
2013			/* Indicate indirection by setting r->acc < 0 and
2014			 * use the index field to select the address reg.
2015			 */
2016			r = reg_instance(pc, NULL);
2017			swz = tgsi_util_get_src_register_swizzle(
2018						 &src->Indirect, 0);
2019			ctor_reg(r, P_CONST,
2020				 src->Indirect.Index * 4 + swz,
2021				 src->Register.Index * 4 + c);
2022			r->acc = -1;
2023			break;
2024		case TGSI_FILE_IMMEDIATE:
2025			r = &pc->immd[src->Register.Index * 4 + c];
2026			break;
2027		case TGSI_FILE_SAMPLER:
2028			return NULL;
2029		case TGSI_FILE_ADDRESS:
2030			r = pc->addr[src->Register.Index * 4 + c];
2031			assert(r);
2032			break;
2033		default:
2034			assert(0);
2035			break;
2036		}
2037		break;
2038	default:
2039		assert(0);
2040		break;
2041	}
2042
2043	cvn = (mod & NV50_MOD_I32) ? CVT_S32_S32 : CVT_F32_F32;
2044
2045	switch (sgn) {
2046	case TGSI_UTIL_SIGN_CLEAR:
2047		r->mod = NV50_MOD_ABS;
2048		break;
2049	case TGSI_UTIL_SIGN_SET:
2050		r->mod = NV50_MOD_NEG_ABS;
2051		break;
2052	case TGSI_UTIL_SIGN_TOGGLE:
2053		r->mod = NV50_MOD_NEG;
2054		break;
2055	default:
2056		assert(!r->mod && sgn == TGSI_UTIL_SIGN_KEEP);
2057		break;
2058	}
2059
2060	if ((r->mod & mod) != r->mod) {
2061		temp = temp_temp(pc);
2062		emit_cvt(pc, temp, r, -1, cvn);
2063		r->mod = 0;
2064		r = temp;
2065	} else
2066		r->mod |= mod & NV50_MOD_I32;
2067
2068	assert(r);
2069	if (r->acc >= 0 && r != temp)
2070		return reg_instance(pc, r); /* will clear r->mod */
2071	return r;
2072}
2073
2074/* return TRUE for ops that produce only a single result */
2075static boolean
2076is_scalar_op(unsigned op)
2077{
2078	switch (op) {
2079	case TGSI_OPCODE_COS:
2080	case TGSI_OPCODE_DP2:
2081	case TGSI_OPCODE_DP3:
2082	case TGSI_OPCODE_DP4:
2083	case TGSI_OPCODE_DPH:
2084	case TGSI_OPCODE_EX2:
2085	case TGSI_OPCODE_LG2:
2086	case TGSI_OPCODE_POW:
2087	case TGSI_OPCODE_RCP:
2088	case TGSI_OPCODE_RSQ:
2089	case TGSI_OPCODE_SIN:
2090		/*
2091	case TGSI_OPCODE_KIL:
2092	case TGSI_OPCODE_LIT:
2093	case TGSI_OPCODE_SCS:
2094		*/
2095		return TRUE;
2096	default:
2097		return FALSE;
2098	}
2099}
2100
2101/* Returns a bitmask indicating which dst components depend
2102 * on source s, component c (reverse of nv50_tgsi_src_mask).
2103 */
2104static unsigned
2105nv50_tgsi_dst_revdep(unsigned op, int s, int c)
2106{
2107	if (is_scalar_op(op))
2108		return 0x1;
2109
2110	switch (op) {
2111	case TGSI_OPCODE_DST:
2112		return (1 << c) & (s ? 0xa : 0x6);
2113	case TGSI_OPCODE_XPD:
2114		switch (c) {
2115		case 0: return 0x6;
2116		case 1: return 0x5;
2117		case 2: return 0x3;
2118		case 3: return 0x0;
2119		default:
2120			assert(0);
2121			return 0x0;
2122		}
2123	case TGSI_OPCODE_EXP:
2124	case TGSI_OPCODE_LOG:
2125	case TGSI_OPCODE_LIT:
2126	case TGSI_OPCODE_SCS:
2127	case TGSI_OPCODE_TEX:
2128	case TGSI_OPCODE_TXB:
2129	case TGSI_OPCODE_TXL:
2130	case TGSI_OPCODE_TXP:
2131		/* these take care of dangerous swizzles themselves */
2132		return 0x0;
2133	case TGSI_OPCODE_IF:
2134	case TGSI_OPCODE_KIL:
2135		/* don't call this function for these ops */
2136		assert(0);
2137		return 0;
2138	default:
2139		/* linear vector instruction */
2140		return (1 << c);
2141	}
2142}
2143
2144static INLINE boolean
2145has_pred(struct nv50_program_exec *e, unsigned cc)
2146{
2147	if (!is_long(e) || is_immd(e))
2148		return FALSE;
2149	return ((e->inst[1] & 0x780) == (cc << 7));
2150}
2151
2152/* on ENDIF see if we can do "@p0.neu single_op" instead of:
2153 *        join_at ENDIF
2154 *        @p0.eq bra ENDIF
2155 *        single_op
2156 * ENDIF: nop.join
2157 */
2158static boolean
2159nv50_kill_branch(struct nv50_pc *pc)
2160{
2161	int lvl = pc->if_lvl;
2162
2163	if (pc->if_insn[lvl]->next != pc->p->exec_tail)
2164		return FALSE;
2165	if (is_immd(pc->p->exec_tail))
2166		return FALSE;
2167
2168	/* if ccode == 'true', the BRA is from an ELSE and the predicate
2169	 * reg may no longer be valid, since we currently always use $p0
2170	 */
2171	if (has_pred(pc->if_insn[lvl], 0xf))
2172		return FALSE;
2173	assert(pc->if_insn[lvl] && pc->if_join[lvl]);
2174
2175	/* We'll use the exec allocated for JOIN_AT (we can't easily
2176	 * access nv50_program_exec's prev).
2177	 */
2178	pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
2179
2180	*pc->if_join[lvl] = *pc->p->exec_tail;
2181
2182	FREE(pc->if_insn[lvl]);
2183	FREE(pc->p->exec_tail);
2184
2185	pc->p->exec_tail = pc->if_join[lvl];
2186	pc->p->exec_tail->next = NULL;
2187	set_pred(pc, 0xd, 0, pc->p->exec_tail);
2188
2189	return TRUE;
2190}
2191
2192static void
2193nv50_fp_move_results(struct nv50_pc *pc)
2194{
2195	struct nv50_reg reg;
2196	unsigned i;
2197
2198	ctor_reg(&reg, P_TEMP, -1, -1);
2199
2200	for (i = 0; i < pc->result_nr * 4; ++i) {
2201		if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2202			continue;
2203		if (pc->result[i].rhw != pc->result[i].hw) {
2204			reg.hw = pc->result[i].rhw;
2205			emit_mov(pc, &reg, &pc->result[i]);
2206		}
2207	}
2208}
2209
2210static boolean
2211nv50_program_tx_insn(struct nv50_pc *pc,
2212		     const struct tgsi_full_instruction *inst)
2213{
2214	struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
2215	unsigned mask, sat, unit;
2216	int i, c;
2217
2218	mask = inst->Dst[0].Register.WriteMask;
2219	sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
2220
2221	memset(src, 0, sizeof(src));
2222
2223	for (c = 0; c < 4; c++) {
2224		if ((mask & (1 << c)) && !pc->r_dst[c])
2225			dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
2226		else
2227			dst[c] = pc->r_dst[c];
2228		rdst[c] = dst[c];
2229	}
2230
2231	for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2232		const struct tgsi_full_src_register *fs = &inst->Src[i];
2233		unsigned src_mask;
2234		int mod_supp;
2235
2236		src_mask = nv50_tgsi_src_mask(inst, i);
2237		mod_supp = get_supported_mods(inst, i);
2238
2239		if (fs->Register.File == TGSI_FILE_SAMPLER)
2240			unit = fs->Register.Index;
2241
2242		for (c = 0; c < 4; c++)
2243			if (src_mask & (1 << c))
2244				src[i][c] = tgsi_src(pc, c, fs, mod_supp);
2245	}
2246
2247	brdc = temp = pc->r_brdc;
2248	if (brdc && brdc->type != P_TEMP) {
2249		temp = temp_temp(pc);
2250		if (sat)
2251			brdc = temp;
2252	} else
2253	if (sat) {
2254		for (c = 0; c < 4; c++) {
2255			if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
2256				continue;
2257			/* rdst[c] = dst[c]; */ /* done above */
2258			dst[c] = temp_temp(pc);
2259		}
2260	}
2261
2262	assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
2263
2264	switch (inst->Instruction.Opcode) {
2265	case TGSI_OPCODE_ABS:
2266		for (c = 0; c < 4; c++) {
2267			if (!(mask & (1 << c)))
2268				continue;
2269			emit_cvt(pc, dst[c], src[0][c], -1,
2270				 CVT_ABS | CVT_F32_F32);
2271		}
2272		break;
2273	case TGSI_OPCODE_ADD:
2274		for (c = 0; c < 4; c++) {
2275			if (!(mask & (1 << c)))
2276				continue;
2277			emit_add(pc, dst[c], src[0][c], src[1][c]);
2278		}
2279		break;
2280	case TGSI_OPCODE_AND:
2281	case TGSI_OPCODE_XOR:
2282	case TGSI_OPCODE_OR:
2283		for (c = 0; c < 4; c++) {
2284			if (!(mask & (1 << c)))
2285				continue;
2286			emit_bitop2(pc, dst[c], src[0][c], src[1][c],
2287				    inst->Instruction.Opcode);
2288		}
2289		break;
2290	case TGSI_OPCODE_ARL:
2291		assert(src[0][0]);
2292		temp = temp_temp(pc);
2293		emit_cvt(pc, temp, src[0][0], -1, CVT_FLOOR | CVT_S32_F32);
2294		emit_arl(pc, dst[0], temp, 4);
2295		break;
2296	case TGSI_OPCODE_BGNLOOP:
2297		pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc);
2298		pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
2299		terminate_mbb(pc);
2300		break;
2301	case TGSI_OPCODE_BGNSUB:
2302		assert(!pc->in_subroutine);
2303		pc->in_subroutine = TRUE;
2304		/* probably not necessary, but align to 8 byte boundary */
2305		if (!is_long(pc->p->exec_tail))
2306			convert_to_long(pc, pc->p->exec_tail);
2307		break;
2308	case TGSI_OPCODE_BRK:
2309		assert(pc->loop_lvl > 0);
2310		emit_break(pc, -1, 0);
2311		break;
2312	case TGSI_OPCODE_CAL:
2313		assert(inst->Label.Label < pc->insn_nr);
2314		emit_call(pc, -1, 0)->param.index = inst->Label.Label;
2315		/* replaced by actual offset in nv50_program_fixup_insns */
2316		break;
2317	case TGSI_OPCODE_CEIL:
2318		for (c = 0; c < 4; c++) {
2319			if (!(mask & (1 << c)))
2320				continue;
2321			emit_cvt(pc, dst[c], src[0][c], -1,
2322				 CVT_CEIL | CVT_F32_F32 | CVT_RI);
2323		}
2324		break;
2325	case TGSI_OPCODE_CMP:
2326		pc->allow32 = FALSE;
2327		for (c = 0; c < 4; c++) {
2328			if (!(mask & (1 << c)))
2329				continue;
2330			emit_cvt(pc, NULL, src[0][c], 1, CVT_F32_F32);
2331			emit_mov(pc, dst[c], src[1][c]);
2332			set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
2333			emit_mov(pc, dst[c], src[2][c]);
2334			set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
2335		}
2336		break;
2337	case TGSI_OPCODE_CONT:
2338		assert(pc->loop_lvl > 0);
2339		emit_branch(pc, -1, 0)->param.index =
2340			pc->loop_pos[pc->loop_lvl - 1];
2341		break;
2342	case TGSI_OPCODE_COS:
2343		if (mask & 8) {
2344			emit_precossin(pc, temp, src[0][3]);
2345			emit_flop(pc, NV50_FLOP_COS, dst[3], temp);
2346			if (!(mask &= 7))
2347				break;
2348			if (temp == dst[3])
2349				temp = brdc = temp_temp(pc);
2350		}
2351		emit_precossin(pc, temp, src[0][0]);
2352		emit_flop(pc, NV50_FLOP_COS, brdc, temp);
2353		break;
2354	case TGSI_OPCODE_DDX:
2355		for (c = 0; c < 4; c++) {
2356			if (!(mask & (1 << c)))
2357				continue;
2358			emit_ddx(pc, dst[c], src[0][c]);
2359		}
2360		break;
2361	case TGSI_OPCODE_DDY:
2362		for (c = 0; c < 4; c++) {
2363			if (!(mask & (1 << c)))
2364				continue;
2365			emit_ddy(pc, dst[c], src[0][c]);
2366		}
2367		break;
2368	case TGSI_OPCODE_DP3:
2369		emit_mul(pc, temp, src[0][0], src[1][0]);
2370		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2371		emit_mad(pc, brdc, src[0][2], src[1][2], temp);
2372		break;
2373	case TGSI_OPCODE_DP4:
2374		emit_mul(pc, temp, src[0][0], src[1][0]);
2375		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2376		emit_mad(pc, temp, src[0][2], src[1][2], temp);
2377		emit_mad(pc, brdc, src[0][3], src[1][3], temp);
2378		break;
2379	case TGSI_OPCODE_DPH:
2380		emit_mul(pc, temp, src[0][0], src[1][0]);
2381		emit_mad(pc, temp, src[0][1], src[1][1], temp);
2382		emit_mad(pc, temp, src[0][2], src[1][2], temp);
2383		emit_add(pc, brdc, src[1][3], temp);
2384		break;
2385	case TGSI_OPCODE_DST:
2386		if (mask & (1 << 1))
2387			emit_mul(pc, dst[1], src[0][1], src[1][1]);
2388		if (mask & (1 << 2))
2389			emit_mov(pc, dst[2], src[0][2]);
2390		if (mask & (1 << 3))
2391			emit_mov(pc, dst[3], src[1][3]);
2392		if (mask & (1 << 0))
2393			emit_mov_immdval(pc, dst[0], 1.0f);
2394		break;
2395	case TGSI_OPCODE_ELSE:
2396		emit_branch(pc, -1, 0);
2397		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2398		pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2399		terminate_mbb(pc);
2400		break;
2401	case TGSI_OPCODE_ENDIF:
2402		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2403
2404		/* try to replace branch over 1 insn with a predicated insn */
2405		if (nv50_kill_branch(pc) == TRUE)
2406			break;
2407
2408		if (pc->if_join[pc->if_lvl]) {
2409			pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size;
2410			pc->if_join[pc->if_lvl] = NULL;
2411		}
2412		terminate_mbb(pc);
2413		/* emit a NOP as join point, we could set it on the next
2414		 * one, but would have to make sure it is long and !immd
2415		 */
2416		JOIN_ON(emit_nop(pc));
2417		break;
2418	case TGSI_OPCODE_ENDLOOP:
2419		emit_branch(pc, -1, 0)->param.index =
2420			pc->loop_pos[--pc->loop_lvl];
2421		pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size;
2422		terminate_mbb(pc);
2423		break;
2424	case TGSI_OPCODE_ENDSUB:
2425		assert(pc->in_subroutine);
2426		pc->in_subroutine = FALSE;
2427		break;
2428	case TGSI_OPCODE_EX2:
2429		emit_preex2(pc, temp, src[0][0]);
2430		emit_flop(pc, NV50_FLOP_EX2, brdc, temp);
2431		break;
2432	case TGSI_OPCODE_EXP:
2433	{
2434		struct nv50_reg *t[2];
2435
2436		assert(!temp);
2437		t[0] = temp_temp(pc);
2438		t[1] = temp_temp(pc);
2439
2440		if (mask & 0x6)
2441			emit_mov(pc, t[0], src[0][0]);
2442		if (mask & 0x3)
2443			emit_flr(pc, t[1], src[0][0]);
2444
2445		if (mask & (1 << 1))
2446			emit_sub(pc, dst[1], t[0], t[1]);
2447		if (mask & (1 << 0)) {
2448			emit_preex2(pc, t[1], t[1]);
2449			emit_flop(pc, NV50_FLOP_EX2, dst[0], t[1]);
2450		}
2451		if (mask & (1 << 2)) {
2452			emit_preex2(pc, t[0], t[0]);
2453			emit_flop(pc, NV50_FLOP_EX2, dst[2], t[0]);
2454		}
2455		if (mask & (1 << 3))
2456			emit_mov_immdval(pc, dst[3], 1.0f);
2457	}
2458		break;
2459	case TGSI_OPCODE_F2I:
2460		for (c = 0; c < 4; c++) {
2461			if (!(mask & (1 << c)))
2462				continue;
2463			emit_cvt(pc, dst[c], src[0][c], -1,
2464				 CVT_TRUNC | CVT_S32_F32);
2465		}
2466		break;
2467	case TGSI_OPCODE_F2U:
2468		for (c = 0; c < 4; c++) {
2469			if (!(mask & (1 << c)))
2470				continue;
2471			emit_cvt(pc, dst[c], src[0][c], -1,
2472				 CVT_TRUNC | CVT_U32_F32);
2473		}
2474		break;
2475	case TGSI_OPCODE_FLR:
2476		for (c = 0; c < 4; c++) {
2477			if (!(mask & (1 << c)))
2478				continue;
2479			emit_flr(pc, dst[c], src[0][c]);
2480		}
2481		break;
2482	case TGSI_OPCODE_FRC:
2483		temp = temp_temp(pc);
2484		for (c = 0; c < 4; c++) {
2485			if (!(mask & (1 << c)))
2486				continue;
2487			emit_flr(pc, temp, src[0][c]);
2488			emit_sub(pc, dst[c], src[0][c], temp);
2489		}
2490		break;
2491	case TGSI_OPCODE_I2F:
2492		for (c = 0; c < 4; c++) {
2493			if (!(mask & (1 << c)))
2494				continue;
2495			emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_S32);
2496		}
2497		break;
2498	case TGSI_OPCODE_IF:
2499		assert(pc->if_lvl < NV50_MAX_COND_NESTING);
2500		emit_cvt(pc, NULL, src[0][0], 0, CVT_ABS | CVT_F32_F32);
2501		pc->if_join[pc->if_lvl] = emit_joinat(pc);
2502		pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);;
2503		terminate_mbb(pc);
2504		break;
2505	case TGSI_OPCODE_INEG:
2506		for (c = 0; c < 4; c++) {
2507			if (!(mask & (1 << c)))
2508				continue;
2509			emit_cvt(pc, dst[c], src[0][c], -1,
2510				 CVT_S32_S32 | CVT_NEG);
2511		}
2512		break;
2513	case TGSI_OPCODE_KIL:
2514		assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]);
2515		emit_kil(pc, src[0][0]);
2516		emit_kil(pc, src[0][1]);
2517		emit_kil(pc, src[0][2]);
2518		emit_kil(pc, src[0][3]);
2519		break;
2520	case TGSI_OPCODE_KILP:
2521		emit_kil(pc, NULL);
2522		break;
2523	case TGSI_OPCODE_LIT:
2524		emit_lit(pc, &dst[0], mask, &src[0][0]);
2525		break;
2526	case TGSI_OPCODE_LG2:
2527		emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]);
2528		break;
2529	case TGSI_OPCODE_LOG:
2530	{
2531		struct nv50_reg *t[2];
2532
2533		t[0] = temp_temp(pc);
2534		if (mask & (1 << 1))
2535			t[1] = temp_temp(pc);
2536		else
2537			t[1] = t[0];
2538
2539		emit_cvt(pc, t[0], src[0][0], -1, CVT_ABS | CVT_F32_F32);
2540		emit_flop(pc, NV50_FLOP_LG2, t[1], t[0]);
2541		if (mask & (1 << 2))
2542			emit_mov(pc, dst[2], t[1]);
2543		emit_flr(pc, t[1], t[1]);
2544		if (mask & (1 << 0))
2545			emit_mov(pc, dst[0], t[1]);
2546		if (mask & (1 << 1)) {
2547			t[1]->mod = NV50_MOD_NEG;
2548			emit_preex2(pc, t[1], t[1]);
2549			t[1]->mod = 0;
2550			emit_flop(pc, NV50_FLOP_EX2, t[1], t[1]);
2551			emit_mul(pc, dst[1], t[0], t[1]);
2552		}
2553		if (mask & (1 << 3))
2554			emit_mov_immdval(pc, dst[3], 1.0f);
2555	}
2556		break;
2557	case TGSI_OPCODE_LRP:
2558		temp = temp_temp(pc);
2559		for (c = 0; c < 4; c++) {
2560			if (!(mask & (1 << c)))
2561				continue;
2562			emit_sub(pc, temp, src[1][c], src[2][c]);
2563			emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2564		}
2565		break;
2566	case TGSI_OPCODE_MAD:
2567		for (c = 0; c < 4; c++) {
2568			if (!(mask & (1 << c)))
2569				continue;
2570			emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2571		}
2572		break;
2573	case TGSI_OPCODE_MAX:
2574		for (c = 0; c < 4; c++) {
2575			if (!(mask & (1 << c)))
2576				continue;
2577			emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
2578		}
2579		break;
2580	case TGSI_OPCODE_MIN:
2581		for (c = 0; c < 4; c++) {
2582			if (!(mask & (1 << c)))
2583				continue;
2584			emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
2585		}
2586		break;
2587	case TGSI_OPCODE_MOV:
2588		for (c = 0; c < 4; c++) {
2589			if (!(mask & (1 << c)))
2590				continue;
2591			emit_mov(pc, dst[c], src[0][c]);
2592		}
2593		break;
2594	case TGSI_OPCODE_MUL:
2595		for (c = 0; c < 4; c++) {
2596			if (!(mask & (1 << c)))
2597				continue;
2598			emit_mul(pc, dst[c], src[0][c], src[1][c]);
2599		}
2600		break;
2601	case TGSI_OPCODE_POW:
2602		emit_pow(pc, brdc, src[0][0], src[1][0]);
2603		break;
2604	case TGSI_OPCODE_RCP:
2605		emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]);
2606		break;
2607	case TGSI_OPCODE_RET:
2608		if (pc->p->type == PIPE_SHADER_FRAGMENT && !pc->in_subroutine)
2609			nv50_fp_move_results(pc);
2610		emit_ret(pc, -1, 0);
2611		break;
2612	case TGSI_OPCODE_RSQ:
2613		src[0][0]->mod |= NV50_MOD_ABS;
2614		emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]);
2615		break;
2616	case TGSI_OPCODE_SCS:
2617		temp = temp_temp(pc);
2618		if (mask & 3)
2619			emit_precossin(pc, temp, src[0][0]);
2620		if (mask & (1 << 0))
2621			emit_flop(pc, NV50_FLOP_COS, dst[0], temp);
2622		if (mask & (1 << 1))
2623			emit_flop(pc, NV50_FLOP_SIN, dst[1], temp);
2624		if (mask & (1 << 2))
2625			emit_mov_immdval(pc, dst[2], 0.0);
2626		if (mask & (1 << 3))
2627			emit_mov_immdval(pc, dst[3], 1.0);
2628		break;
2629	case TGSI_OPCODE_SHL:
2630	case TGSI_OPCODE_ISHR:
2631	case TGSI_OPCODE_USHR:
2632		for (c = 0; c < 4; c++) {
2633			if (!(mask & (1 << c)))
2634				continue;
2635			emit_shift(pc, dst[c], src[0][c], src[1][c],
2636				   inst->Instruction.Opcode);
2637		}
2638		break;
2639	case TGSI_OPCODE_SIN:
2640		if (mask & 8) {
2641			emit_precossin(pc, temp, src[0][3]);
2642			emit_flop(pc, NV50_FLOP_SIN, dst[3], temp);
2643			if (!(mask &= 7))
2644				break;
2645			if (temp == dst[3])
2646				temp = brdc = temp_temp(pc);
2647		}
2648		emit_precossin(pc, temp, src[0][0]);
2649		emit_flop(pc, NV50_FLOP_SIN, brdc, temp);
2650		break;
2651	case TGSI_OPCODE_SLT:
2652	case TGSI_OPCODE_SGE:
2653	case TGSI_OPCODE_SEQ:
2654	case TGSI_OPCODE_SGT:
2655	case TGSI_OPCODE_SLE:
2656	case TGSI_OPCODE_SNE:
2657		i = map_tgsi_setop_cc(inst->Instruction.Opcode);
2658		for (c = 0; c < 4; c++) {
2659			if (!(mask & (1 << c)))
2660				continue;
2661			emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
2662		}
2663		break;
2664	case TGSI_OPCODE_SUB:
2665		for (c = 0; c < 4; c++) {
2666			if (!(mask & (1 << c)))
2667				continue;
2668			emit_sub(pc, dst[c], src[0][c], src[1][c]);
2669		}
2670		break;
2671	case TGSI_OPCODE_TEX:
2672		emit_tex(pc, dst, mask, src[0], unit,
2673			 inst->Texture.Texture, FALSE, 0);
2674		break;
2675	case TGSI_OPCODE_TXB:
2676		emit_tex(pc, dst, mask, src[0], unit,
2677			 inst->Texture.Texture, FALSE, -1);
2678		break;
2679	case TGSI_OPCODE_TXL:
2680		emit_tex(pc, dst, mask, src[0], unit,
2681			 inst->Texture.Texture, FALSE, 1);
2682		break;
2683	case TGSI_OPCODE_TXP:
2684		emit_tex(pc, dst, mask, src[0], unit,
2685			 inst->Texture.Texture, TRUE, 0);
2686		break;
2687	case TGSI_OPCODE_TRUNC:
2688		for (c = 0; c < 4; c++) {
2689			if (!(mask & (1 << c)))
2690				continue;
2691			emit_cvt(pc, dst[c], src[0][c], -1,
2692				 CVT_TRUNC | CVT_F32_F32 | CVT_RI);
2693		}
2694		break;
2695	case TGSI_OPCODE_U2F:
2696		for (c = 0; c < 4; c++) {
2697			if (!(mask & (1 << c)))
2698				continue;
2699			emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_U32);
2700		}
2701		break;
2702	case TGSI_OPCODE_XPD:
2703		temp = temp_temp(pc);
2704		if (mask & (1 << 0)) {
2705			emit_mul(pc, temp, src[0][2], src[1][1]);
2706			emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2707		}
2708		if (mask & (1 << 1)) {
2709			emit_mul(pc, temp, src[0][0], src[1][2]);
2710			emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2711		}
2712		if (mask & (1 << 2)) {
2713			emit_mul(pc, temp, src[0][1], src[1][0]);
2714			emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2715		}
2716		if (mask & (1 << 3))
2717			emit_mov_immdval(pc, dst[3], 1.0);
2718		break;
2719	case TGSI_OPCODE_END:
2720		if (pc->p->type == PIPE_SHADER_FRAGMENT)
2721			nv50_fp_move_results(pc);
2722
2723		/* last insn must be long so it can have the exit bit set */
2724		if (!is_long(pc->p->exec_tail))
2725			convert_to_long(pc, pc->p->exec_tail);
2726		else
2727		if (is_immd(pc->p->exec_tail) || is_join(pc->p->exec_tail))
2728			emit_nop(pc);
2729
2730		pc->p->exec_tail->inst[1] |= 1; /* set exit bit */
2731		break;
2732	default:
2733		NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2734		return FALSE;
2735	}
2736
2737	if (brdc) {
2738		if (sat)
2739			emit_sat(pc, brdc, brdc);
2740		for (c = 0; c < 4; c++)
2741			if ((mask & (1 << c)) && dst[c] != brdc)
2742				emit_mov(pc, dst[c], brdc);
2743	} else
2744	if (sat) {
2745		for (c = 0; c < 4; c++) {
2746			if (!(mask & (1 << c)))
2747				continue;
2748			/* In this case we saturate later, and dst[c] won't
2749			 * be another temp_temp (and thus lost), since rdst
2750			 * already is TEMP (see above). */
2751			if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2752				continue;
2753			emit_sat(pc, rdst[c], dst[c]);
2754		}
2755	}
2756
2757	kill_temp_temp(pc);
2758	pc->reg_instance_nr = 0;
2759
2760	return TRUE;
2761}
2762
2763static void
2764prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2765{
2766	struct nv50_reg *reg = NULL;
2767	const struct tgsi_full_src_register *src;
2768	const struct tgsi_dst_register *dst;
2769	unsigned i, c, k, mask;
2770
2771	dst = &insn->Dst[0].Register;
2772	mask = dst->WriteMask;
2773
2774        if (dst->File == TGSI_FILE_TEMPORARY)
2775		reg = pc->temp;
2776        else
2777	if (dst->File == TGSI_FILE_OUTPUT) {
2778		reg = pc->result;
2779
2780		if (insn->Instruction.Opcode == TGSI_OPCODE_MOV &&
2781		    dst->Index == pc->edgeflag_out &&
2782		    insn->Src[0].Register.File == TGSI_FILE_INPUT)
2783			pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index;
2784	}
2785
2786	if (reg) {
2787		for (c = 0; c < 4; c++) {
2788			if (!(mask & (1 << c)))
2789				continue;
2790			reg[dst->Index * 4 + c].acc = pc->insn_nr;
2791		}
2792	}
2793
2794	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2795		src = &insn->Src[i];
2796
2797		if (src->Register.File == TGSI_FILE_TEMPORARY)
2798			reg = pc->temp;
2799		else
2800		if (src->Register.File == TGSI_FILE_INPUT)
2801			reg = pc->attr;
2802		else
2803			continue;
2804
2805		mask = nv50_tgsi_src_mask(insn, i);
2806
2807		for (c = 0; c < 4; c++) {
2808			if (!(mask & (1 << c)))
2809				continue;
2810			k = tgsi_util_get_full_src_register_swizzle(src, c);
2811
2812			reg[src->Register.Index * 4 + k].acc = pc->insn_nr;
2813		}
2814	}
2815}
2816
2817/* Returns a bitmask indicating which dst components need to be
2818 * written to temporaries first to avoid 'corrupting' sources.
2819 *
2820 * m[i]   (out) indicate component to write in the i-th position
2821 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2822 */
2823static unsigned
2824nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2825{
2826	unsigned i, c, x, unsafe;
2827
2828	for (c = 0; c < 4; c++)
2829		m[c] = c;
2830
2831	/* Swap as long as a dst component written earlier is depended on
2832	 * by one written later, but the next one isn't depended on by it.
2833	 */
2834	for (c = 0; c < 3; c++) {
2835		if (rdep[m[c + 1]] & (1 << m[c]))
2836			continue; /* if next one is depended on by us */
2837		for (i = c + 1; i < 4; i++)
2838			/* if we are depended on by a later one */
2839			if (rdep[m[c]] & (1 << m[i]))
2840				break;
2841		if (i == 4)
2842			continue;
2843		/* now, swap */
2844		x = m[c];
2845		m[c] = m[c + 1];
2846		m[c + 1] = x;
2847
2848		/* restart */
2849		c = 0;
2850	}
2851
2852	/* mark dependencies that could not be resolved by reordering */
2853	for (i = 0; i < 3; ++i)
2854		for (c = i + 1; c < 4; ++c)
2855			if (rdep[m[i]] & (1 << m[c]))
2856				unsafe |= (1 << i);
2857
2858	/* NOTE: $unsafe is with respect to order, not component */
2859	return unsafe;
2860}
2861
2862/* Select a suitable dst register for broadcasting scalar results,
2863 * or return NULL if we have to allocate an extra TEMP.
2864 *
2865 * If e.g. only 1 component is written, we may also emit the final
2866 * result to a write-only register.
2867 */
2868static struct nv50_reg *
2869tgsi_broadcast_dst(struct nv50_pc *pc,
2870		   const struct tgsi_full_dst_register *fd, unsigned mask)
2871{
2872	if (fd->Register.File == TGSI_FILE_TEMPORARY) {
2873		int c = ffs(~mask & fd->Register.WriteMask);
2874		if (c)
2875			return tgsi_dst(pc, c - 1, fd);
2876	} else {
2877		int c = ffs(fd->Register.WriteMask) - 1;
2878		if ((1 << c) == fd->Register.WriteMask)
2879			return tgsi_dst(pc, c, fd);
2880	}
2881
2882	return NULL;
2883}
2884
2885/* Scan source swizzles and return a bitmask indicating dst regs that
2886 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2887 */
2888static unsigned
2889nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2890		       unsigned rdep[4])
2891{
2892	const struct tgsi_full_dst_register *fd = &insn->Dst[0];
2893	const struct tgsi_full_src_register *fs;
2894	unsigned i, deqs = 0;
2895
2896	for (i = 0; i < 4; ++i)
2897		rdep[i] = 0;
2898
2899	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2900		unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2901		int ms = get_supported_mods(insn, i);
2902
2903		fs = &insn->Src[i];
2904		if (fs->Register.File != fd->Register.File ||
2905		    fs->Register.Index != fd->Register.Index)
2906			continue;
2907
2908		for (chn = 0; chn < 4; ++chn) {
2909			unsigned s, c;
2910
2911			if (!(mask & (1 << chn))) /* src is not read */
2912				continue;
2913			c = tgsi_util_get_full_src_register_swizzle(fs, chn);
2914			s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2915
2916			if (!(fd->Register.WriteMask & (1 << c)))
2917				continue;
2918
2919			if (s == TGSI_UTIL_SIGN_TOGGLE && !(ms & NV50_MOD_NEG))
2920					continue;
2921			if (s == TGSI_UTIL_SIGN_CLEAR && !(ms & NV50_MOD_ABS))
2922					continue;
2923			if ((s == TGSI_UTIL_SIGN_SET) && ((ms & 3) != 3))
2924					continue;
2925
2926			rdep[c] |= nv50_tgsi_dst_revdep(
2927				insn->Instruction.Opcode, i, chn);
2928			deqs |= (1 << c);
2929		}
2930	}
2931
2932	return deqs;
2933}
2934
2935static boolean
2936nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2937{
2938	struct tgsi_full_instruction insn = tok->FullInstruction;
2939	const struct tgsi_full_dst_register *fd;
2940	unsigned i, deqs, rdep[4], m[4];
2941
2942	fd = &tok->FullInstruction.Dst[0];
2943	deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2944
2945	if (is_scalar_op(insn.Instruction.Opcode)) {
2946		pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2947		if (!pc->r_brdc)
2948			pc->r_brdc = temp_temp(pc);
2949		return nv50_program_tx_insn(pc, &insn);
2950	}
2951	pc->r_brdc = NULL;
2952
2953	if (!deqs || (!rdep[0] && !rdep[1] && !rdep[2] && !rdep[3]))
2954		return nv50_program_tx_insn(pc, &insn);
2955
2956	deqs = nv50_revdep_reorder(m, rdep);
2957
2958	for (i = 0; i < 4; ++i) {
2959		assert(pc->r_dst[m[i]] == NULL);
2960
2961		insn.Dst[0].Register.WriteMask =
2962			fd->Register.WriteMask & (1 << m[i]);
2963
2964		if (!insn.Dst[0].Register.WriteMask)
2965			continue;
2966
2967		if (deqs & (1 << i))
2968			pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2969
2970		if (!nv50_program_tx_insn(pc, &insn))
2971			return FALSE;
2972	}
2973
2974	for (i = 0; i < 4; i++) {
2975		struct nv50_reg *reg = pc->r_dst[i];
2976		if (!reg)
2977			continue;
2978		pc->r_dst[i] = NULL;
2979
2980		if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2981			emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2982		else
2983			emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2984		free_temp(pc, reg);
2985	}
2986
2987	return TRUE;
2988}
2989
2990static void
2991load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2992{
2993	struct nv50_reg *iv, **ppiv;
2994	unsigned mode = pc->interp_mode[reg->index];
2995
2996	ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2997	iv = *ppiv;
2998
2999	if ((mode & INTERP_PERSPECTIVE) && !iv) {
3000		iv = *ppiv = alloc_temp(pc, NULL);
3001		iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
3002
3003		emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
3004		emit_flop(pc, NV50_FLOP_RCP, iv, iv);
3005
3006		/* XXX: when loading interpolants dynamically, move these
3007		 * to the program head, or make sure it can't be skipped.
3008		 */
3009	}
3010
3011	emit_interp(pc, reg, iv, mode);
3012}
3013
3014/* The face input is always at v[255] (varying space), with a
3015 * value of 0 for back-facing, and 0xffffffff for front-facing.
3016 */
3017static void
3018load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
3019{
3020	struct nv50_reg *one = alloc_immd(pc, 1.0f);
3021
3022	assert(a->rhw == -1);
3023	alloc_reg(pc, a); /* do this before rhw is set */
3024	a->rhw = 255;
3025	load_interpolant(pc, a);
3026	emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
3027
3028	FREE(one);
3029}
3030
3031static boolean
3032nv50_program_tx_prep(struct nv50_pc *pc)
3033{
3034	struct tgsi_parse_context tp;
3035	struct nv50_program *p = pc->p;
3036	boolean ret = FALSE;
3037	unsigned i, c, flat_nr = 0;
3038
3039	tgsi_parse_init(&tp, pc->p->pipe.tokens);
3040	while (!tgsi_parse_end_of_tokens(&tp)) {
3041		const union tgsi_full_token *tok = &tp.FullToken;
3042
3043		tgsi_parse_token(&tp);
3044		switch (tok->Token.Type) {
3045		case TGSI_TOKEN_TYPE_IMMEDIATE:
3046		{
3047			const struct tgsi_full_immediate *imm =
3048				&tp.FullToken.FullImmediate;
3049
3050			ctor_immd_4f32(pc, imm->u[0].Float,
3051				       imm->u[1].Float,
3052				       imm->u[2].Float,
3053				       imm->u[3].Float);
3054		}
3055			break;
3056		case TGSI_TOKEN_TYPE_DECLARATION:
3057		{
3058			const struct tgsi_full_declaration *d;
3059			unsigned si, last, first, mode;
3060
3061			d = &tp.FullToken.FullDeclaration;
3062			first = d->Range.First;
3063			last = d->Range.Last;
3064
3065			switch (d->Declaration.File) {
3066			case TGSI_FILE_TEMPORARY:
3067				break;
3068			case TGSI_FILE_OUTPUT:
3069				if (!d->Declaration.Semantic ||
3070				    p->type == PIPE_SHADER_FRAGMENT)
3071					break;
3072
3073				si = d->Semantic.Index;
3074				switch (d->Semantic.Name) {
3075				case TGSI_SEMANTIC_BCOLOR:
3076					p->cfg.two_side[si].hw = first;
3077					if (p->cfg.io_nr > first)
3078						p->cfg.io_nr = first;
3079					break;
3080				case TGSI_SEMANTIC_PSIZE:
3081					p->cfg.psiz = first;
3082					if (p->cfg.io_nr > first)
3083						p->cfg.io_nr = first;
3084					break;
3085				case TGSI_SEMANTIC_EDGEFLAG:
3086					pc->edgeflag_out = first;
3087					break;
3088					/*
3089				case TGSI_SEMANTIC_CLIP_DISTANCE:
3090					p->cfg.clpd = MIN2(p->cfg.clpd, first);
3091					break;
3092					*/
3093				default:
3094					break;
3095				}
3096				break;
3097			case TGSI_FILE_INPUT:
3098			{
3099				if (p->type != PIPE_SHADER_FRAGMENT)
3100					break;
3101
3102				switch (d->Declaration.Interpolate) {
3103				case TGSI_INTERPOLATE_CONSTANT:
3104					mode = INTERP_FLAT;
3105					flat_nr++;
3106					break;
3107				case TGSI_INTERPOLATE_PERSPECTIVE:
3108					mode = INTERP_PERSPECTIVE;
3109					p->cfg.regs[1] |= 0x08 << 24;
3110					break;
3111				default:
3112					mode = INTERP_LINEAR;
3113					break;
3114				}
3115				if (d->Declaration.Centroid)
3116					mode |= INTERP_CENTROID;
3117
3118				assert(last < 32);
3119				for (i = first; i <= last; i++)
3120					pc->interp_mode[i] = mode;
3121			}
3122				break;
3123			case TGSI_FILE_ADDRESS:
3124			case TGSI_FILE_CONSTANT:
3125			case TGSI_FILE_SAMPLER:
3126				break;
3127			default:
3128				NOUVEAU_ERR("bad decl file %d\n",
3129					    d->Declaration.File);
3130				goto out_err;
3131			}
3132		}
3133			break;
3134		case TGSI_TOKEN_TYPE_INSTRUCTION:
3135			pc->insn_nr++;
3136			prep_inspect_insn(pc, &tok->FullInstruction);
3137			break;
3138		default:
3139			break;
3140		}
3141	}
3142
3143	if (p->type == PIPE_SHADER_VERTEX) {
3144		int rid = 0;
3145
3146		for (i = 0; i < pc->attr_nr * 4; ++i) {
3147			if (pc->attr[i].acc) {
3148				pc->attr[i].hw = rid++;
3149				p->cfg.attr[i / 32] |= 1 << (i % 32);
3150			}
3151		}
3152
3153		for (i = 0, rid = 0; i < pc->result_nr; ++i) {
3154			p->cfg.io[i].hw = rid;
3155			p->cfg.io[i].id = i;
3156
3157			for (c = 0; c < 4; ++c) {
3158				int n = i * 4 + c;
3159				if (!pc->result[n].acc)
3160					continue;
3161				pc->result[n].hw = rid++;
3162				p->cfg.io[i].mask |= 1 << c;
3163			}
3164		}
3165
3166		for (c = 0; c < 2; ++c)
3167			if (p->cfg.two_side[c].hw < 0x40)
3168				p->cfg.two_side[c] = p->cfg.io[
3169					p->cfg.two_side[c].hw];
3170
3171		if (p->cfg.psiz < 0x40)
3172			p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
3173	} else
3174	if (p->type == PIPE_SHADER_FRAGMENT) {
3175		int rid, aid;
3176		unsigned n = 0, m = pc->attr_nr - flat_nr;
3177
3178		pc->allow32 = TRUE;
3179
3180		int base = (TGSI_SEMANTIC_POSITION ==
3181			    p->info.input_semantic_name[0]) ? 0 : 1;
3182
3183		/* non-flat interpolants have to be mapped to
3184		 * the lower hardware IDs, so sort them:
3185		 */
3186		for (i = 0; i < pc->attr_nr; i++) {
3187			if (pc->interp_mode[i] == INTERP_FLAT)
3188				p->cfg.io[m++].id = i;
3189			else {
3190				if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
3191					p->cfg.io[n].linear = TRUE;
3192				p->cfg.io[n++].id = i;
3193			}
3194		}
3195
3196		if (!base) /* set w-coordinate mask from perspective interp */
3197			p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
3198
3199		aid = popcnt4( /* if fcrd isn't contained in cfg.io */
3200			base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
3201
3202		for (n = 0; n < pc->attr_nr; ++n) {
3203			p->cfg.io[n].hw = rid = aid;
3204			i = p->cfg.io[n].id;
3205
3206			if (p->info.input_semantic_name[n] ==
3207			    TGSI_SEMANTIC_FACE) {
3208				load_frontfacing(pc, &pc->attr[i * 4]);
3209				continue;
3210			}
3211
3212			for (c = 0; c < 4; ++c) {
3213				if (!pc->attr[i * 4 + c].acc)
3214					continue;
3215				pc->attr[i * 4 + c].rhw = rid++;
3216				p->cfg.io[n].mask |= 1 << c;
3217
3218				load_interpolant(pc, &pc->attr[i * 4 + c]);
3219			}
3220			aid += popcnt4(p->cfg.io[n].mask);
3221		}
3222
3223		if (!base)
3224			p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
3225
3226		m = popcnt4(p->cfg.regs[1] >> 24);
3227
3228		/* set count of non-position inputs and of non-flat
3229		 * non-position inputs for FP_INTERPOLANT_CTRL
3230		 */
3231		p->cfg.regs[1] |= aid - m;
3232
3233		if (flat_nr) {
3234			i = p->cfg.io[pc->attr_nr - flat_nr].hw;
3235			p->cfg.regs[1] |= (i - m) << 16;
3236		} else
3237			p->cfg.regs[1] |= p->cfg.regs[1] << 16;
3238
3239		/* mark color semantic for light-twoside */
3240		n = 0x40;
3241		for (i = 0; i < pc->attr_nr; i++) {
3242			ubyte si, sn;
3243
3244			sn = p->info.input_semantic_name[p->cfg.io[i].id];
3245			si = p->info.input_semantic_index[p->cfg.io[i].id];
3246
3247			if (sn == TGSI_SEMANTIC_COLOR) {
3248				p->cfg.two_side[si] = p->cfg.io[i];
3249
3250				/* increase colour count */
3251				p->cfg.regs[0] += popcnt4(
3252					p->cfg.two_side[si].mask) << 16;
3253
3254				n = MIN2(n, p->cfg.io[i].hw - m);
3255			}
3256		}
3257		if (n < 0x40)
3258			p->cfg.regs[0] += n;
3259
3260		/* Initialize FP results:
3261		 * FragDepth is always first TGSI and last hw output
3262		 */
3263		i = p->info.writes_z ? 4 : 0;
3264		for (rid = 0; i < pc->result_nr * 4; i++)
3265			pc->result[i].rhw = rid++;
3266		if (p->info.writes_z)
3267			pc->result[2].rhw = rid;
3268
3269		p->cfg.high_result = rid;
3270
3271		/* separate/different colour results for MRTs ? */
3272		if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
3273			p->cfg.regs[2] |= 1;
3274	}
3275
3276	if (pc->immd_nr) {
3277		int rid = 0;
3278
3279		pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
3280		if (!pc->immd)
3281			goto out_err;
3282
3283		for (i = 0; i < pc->immd_nr; i++) {
3284			for (c = 0; c < 4; c++, rid++)
3285				ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
3286		}
3287	}
3288
3289	ret = TRUE;
3290out_err:
3291	if (pc->iv_p)
3292		free_temp(pc, pc->iv_p);
3293	if (pc->iv_c)
3294		free_temp(pc, pc->iv_c);
3295
3296	tgsi_parse_free(&tp);
3297	return ret;
3298}
3299
3300static void
3301free_nv50_pc(struct nv50_pc *pc)
3302{
3303	if (pc->immd)
3304		FREE(pc->immd);
3305	if (pc->param)
3306		FREE(pc->param);
3307	if (pc->result)
3308		FREE(pc->result);
3309	if (pc->attr)
3310		FREE(pc->attr);
3311	if (pc->temp)
3312		FREE(pc->temp);
3313
3314	FREE(pc);
3315}
3316
3317static boolean
3318ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
3319{
3320	int i, c;
3321	unsigned rtype[2] = { P_ATTR, P_RESULT };
3322
3323	pc->p = p;
3324	pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
3325	pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
3326	pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
3327	pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
3328	pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
3329	assert(pc->addr_nr <= 2);
3330
3331	p->cfg.high_temp = 4;
3332
3333	p->cfg.two_side[0].hw = 0x40;
3334	p->cfg.two_side[1].hw = 0x40;
3335
3336	p->cfg.edgeflag_in = pc->edgeflag_out = 0xff;
3337
3338	switch (p->type) {
3339	case PIPE_SHADER_VERTEX:
3340		p->cfg.psiz = 0x40;
3341		p->cfg.clpd = 0x40;
3342		p->cfg.io_nr = pc->result_nr;
3343		break;
3344	case PIPE_SHADER_FRAGMENT:
3345		rtype[0] = rtype[1] = P_TEMP;
3346
3347		p->cfg.regs[0] = 0x01000004;
3348		p->cfg.io_nr = pc->attr_nr;
3349
3350		if (p->info.writes_z) {
3351			p->cfg.regs[2] |= 0x00000100;
3352			p->cfg.regs[3] |= 0x00000011;
3353		}
3354		if (p->info.uses_kill)
3355			p->cfg.regs[2] |= 0x00100000;
3356		break;
3357	}
3358
3359	if (pc->temp_nr) {
3360		pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
3361		if (!pc->temp)
3362			return FALSE;
3363
3364		for (i = 0; i < pc->temp_nr * 4; ++i)
3365			ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
3366	}
3367
3368	if (pc->attr_nr) {
3369		pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
3370		if (!pc->attr)
3371			return FALSE;
3372
3373		for (i = 0; i < pc->attr_nr * 4; ++i)
3374			ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
3375	}
3376
3377	if (pc->result_nr) {
3378		unsigned nr = pc->result_nr * 4;
3379
3380		pc->result = MALLOC(nr * sizeof(struct nv50_reg));
3381		if (!pc->result)
3382			return FALSE;
3383
3384		for (i = 0; i < nr; ++i)
3385			ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
3386	}
3387
3388	if (pc->param_nr) {
3389		int rid = 0;
3390
3391		pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
3392		if (!pc->param)
3393			return FALSE;
3394
3395		for (i = 0; i < pc->param_nr; ++i)
3396			for (c = 0; c < 4; ++c, ++rid)
3397				ctor_reg(&pc->param[rid], P_CONST, i, rid);
3398	}
3399
3400	if (pc->addr_nr) {
3401		pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
3402		if (!pc->addr)
3403			return FALSE;
3404	}
3405	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
3406		ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
3407
3408	return TRUE;
3409}
3410
3411static void
3412nv50_program_fixup_insns(struct nv50_pc *pc)
3413{
3414	struct nv50_program_exec *e, **bra_list;
3415	unsigned i, n, pos;
3416
3417	bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
3418
3419	/* Collect branch instructions, we need to adjust their offsets
3420	 * when converting 32 bit instructions to 64 bit ones
3421	 */
3422	for (n = 0, e = pc->p->exec_head; e; e = e->next)
3423		if (e->param.index >= 0 && !e->param.mask)
3424			bra_list[n++] = e;
3425
3426	/* Make sure we don't have any single 32 bit instructions. */
3427	for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
3428		pos += is_long(e) ? 2 : 1;
3429
3430		if ((pos & 1) && (!e->next || is_long(e->next))) {
3431			for (i = 0; i < n; ++i)
3432				if (bra_list[i]->param.index >= pos)
3433					bra_list[i]->param.index += 1;
3434			for (i = 0; i < pc->insn_nr; ++i)
3435				if (pc->insn_pos[i] >= pos)
3436					pc->insn_pos[i] += 1;
3437			convert_to_long(pc, e);
3438			++pos;
3439		}
3440	}
3441
3442	FREE(bra_list);
3443
3444	if (!pc->p->info.opcode_count[TGSI_OPCODE_CAL])
3445		return;
3446
3447	/* fill in CALL offsets */
3448	for (e = pc->p->exec_head; e; e = e->next) {
3449		if ((e->inst[0] & 2) && (e->inst[0] >> 28) == 0x2)
3450			e->param.index = pc->insn_pos[e->param.index];
3451	}
3452}
3453
3454static boolean
3455nv50_program_tx(struct nv50_program *p)
3456{
3457	struct tgsi_parse_context parse;
3458	struct nv50_pc *pc;
3459	boolean ret;
3460
3461	pc = CALLOC_STRUCT(nv50_pc);
3462	if (!pc)
3463		return FALSE;
3464
3465	ret = ctor_nv50_pc(pc, p);
3466	if (ret == FALSE)
3467		goto out_cleanup;
3468
3469	ret = nv50_program_tx_prep(pc);
3470	if (ret == FALSE)
3471		goto out_cleanup;
3472
3473	pc->insn_pos = MALLOC(pc->insn_nr * sizeof(unsigned));
3474
3475	tgsi_parse_init(&parse, pc->p->pipe.tokens);
3476	while (!tgsi_parse_end_of_tokens(&parse)) {
3477		const union tgsi_full_token *tok = &parse.FullToken;
3478
3479		/* previously allow32 was FALSE for first & last instruction */
3480		pc->allow32 = TRUE;
3481
3482		tgsi_parse_token(&parse);
3483
3484		switch (tok->Token.Type) {
3485		case TGSI_TOKEN_TYPE_INSTRUCTION:
3486			pc->insn_pos[pc->insn_cur] = pc->p->exec_size;
3487			++pc->insn_cur;
3488			ret = nv50_tgsi_insn(pc, tok);
3489			if (ret == FALSE)
3490				goto out_err;
3491			break;
3492		default:
3493			break;
3494		}
3495	}
3496
3497	nv50_program_fixup_insns(pc);
3498
3499	p->param_nr = pc->param_nr * 4;
3500	p->immd_nr = pc->immd_nr * 4;
3501	p->immd = pc->immd_buf;
3502
3503out_err:
3504	tgsi_parse_free(&parse);
3505
3506out_cleanup:
3507	free_nv50_pc(pc);
3508	return ret;
3509}
3510
3511static void
3512nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
3513{
3514	if (nv50_program_tx(p) == FALSE)
3515		assert(0);
3516	p->translated = TRUE;
3517}
3518
3519static void
3520nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map,
3521			unsigned start, unsigned count, unsigned cbuf)
3522{
3523	struct nouveau_channel *chan = nv50->screen->base.channel;
3524	struct nouveau_grobj *tesla = nv50->screen->tesla;
3525
3526	while (count) {
3527		unsigned nr = count > 2047 ? 2047 : count;
3528
3529		BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3530		OUT_RING  (chan, (cbuf << 0) | (start << 8));
3531		BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3532		OUT_RINGp (chan, map, nr);
3533
3534		map += nr;
3535		start += nr;
3536		count -= nr;
3537	}
3538}
3539
3540static void
3541nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
3542{
3543	struct pipe_screen *pscreen = nv50->pipe.screen;
3544
3545	if (!p->data[0] && p->immd_nr) {
3546		struct nouveau_resource *heap = nv50->screen->immd_heap[0];
3547
3548		if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
3549			while (heap->next && heap->size < p->immd_nr) {
3550				struct nv50_program *evict = heap->next->priv;
3551				nouveau_resource_free(&evict->data[0]);
3552			}
3553
3554			if (nouveau_resource_alloc(heap, p->immd_nr, p,
3555						   &p->data[0]))
3556				assert(0);
3557		}
3558
3559		/* immediates only need to be uploaded again when freed */
3560		nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
3561					 p->immd_nr, NV50_CB_PMISC);
3562	}
3563
3564	assert(p->param_nr <= 512);
3565
3566	if (p->param_nr) {
3567		unsigned cb;
3568		uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
3569						PIPE_BUFFER_USAGE_CPU_READ);
3570
3571		if (p->type == PIPE_SHADER_VERTEX)
3572			cb = NV50_CB_PVP;
3573		else
3574			cb = NV50_CB_PFP;
3575
3576		nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
3577		pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
3578	}
3579}
3580
3581static void
3582nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
3583{
3584	struct nouveau_channel *chan = nv50->screen->base.channel;
3585	struct nv50_program_exec *e;
3586	uint32_t *up, i;
3587	boolean upload = FALSE;
3588
3589	if (!p->bo) {
3590		nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
3591			       p->exec_size * 4, &p->bo);
3592		upload = TRUE;
3593	}
3594
3595	if (p->data[0] && p->data[0]->start != p->data_start[0])
3596		upload = TRUE;
3597
3598	if (!upload)
3599		return;
3600
3601	up = MALLOC(p->exec_size * 4);
3602
3603	for (i = 0, e = p->exec_head; e; e = e->next) {
3604		unsigned ei, ci, bs;
3605
3606		if (e->param.index >= 0 && e->param.mask) {
3607			bs = (e->inst[1] >> 22) & 0x07;
3608			assert(bs < 2);
3609			ei = e->param.shift >> 5;
3610			ci = e->param.index;
3611			if (bs == 0)
3612				ci += p->data[bs]->start;
3613
3614			e->inst[ei] &= ~e->param.mask;
3615			e->inst[ei] |= (ci << e->param.shift);
3616		} else
3617		if (e->param.index >= 0) {
3618			/* zero mask means param is a jump/branch offset */
3619			assert(!(e->param.index & 1));
3620			/* seem to be 8 byte steps */
3621			ei = (e->param.index >> 1) + 0 /* START_ID */;
3622
3623			e->inst[0] &= 0xf0000fff;
3624			e->inst[0] |= ei << 12;
3625		}
3626
3627		up[i++] = e->inst[0];
3628		if (is_long(e))
3629			up[i++] = e->inst[1];
3630	}
3631	assert(i == p->exec_size);
3632
3633	if (p->data[0])
3634		p->data_start[0] = p->data[0]->start;
3635
3636#ifdef NV50_PROGRAM_DUMP
3637	NOUVEAU_ERR("-------\n");
3638	for (e = p->exec_head; e; e = e->next) {
3639		NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3640		if (is_long(e))
3641			NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3642	}
3643#endif
3644	nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
3645			 NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
3646			 up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
3647			 0, 0, p->exec_size * 4, 1, 1);
3648
3649	FREE(up);
3650}
3651
3652void
3653nv50_vertprog_validate(struct nv50_context *nv50)
3654{
3655	struct nouveau_grobj *tesla = nv50->screen->tesla;
3656	struct nv50_program *p = nv50->vertprog;
3657	struct nouveau_stateobj *so;
3658
3659	if (!p->translated) {
3660		nv50_program_validate(nv50, p);
3661		if (!p->translated)
3662			assert(0);
3663	}
3664
3665	nv50_program_validate_data(nv50, p);
3666	nv50_program_validate_code(nv50, p);
3667
3668	so = so_new(5, 8, 2);
3669	so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3670	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3671		      NOUVEAU_BO_HIGH, 0, 0);
3672	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3673		      NOUVEAU_BO_LOW, 0, 0);
3674	so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3675	so_data  (so, p->cfg.attr[0]);
3676	so_data  (so, p->cfg.attr[1]);
3677	so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3678	so_data  (so, p->cfg.high_result);
3679	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3680	so_data  (so, p->cfg.high_result); //8);
3681	so_data  (so, p->cfg.high_temp);
3682	so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3683	so_data  (so, 0); /* program start offset */
3684	so_ref(so, &nv50->state.vertprog);
3685	so_ref(NULL, &so);
3686}
3687
3688void
3689nv50_fragprog_validate(struct nv50_context *nv50)
3690{
3691	struct nouveau_grobj *tesla = nv50->screen->tesla;
3692	struct nv50_program *p = nv50->fragprog;
3693	struct nouveau_stateobj *so;
3694
3695	if (!p->translated) {
3696		nv50_program_validate(nv50, p);
3697		if (!p->translated)
3698			assert(0);
3699	}
3700
3701	nv50_program_validate_data(nv50, p);
3702	nv50_program_validate_code(nv50, p);
3703
3704	so = so_new(6, 7, 2);
3705	so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3706	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3707		      NOUVEAU_BO_HIGH, 0, 0);
3708	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3709		      NOUVEAU_BO_LOW, 0, 0);
3710	so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3711	so_data  (so, p->cfg.high_temp);
3712	so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3713	so_data  (so, p->cfg.high_result);
3714	so_method(so, tesla, NV50TCL_FP_CONTROL, 1);
3715	so_data  (so, p->cfg.regs[2]);
3716	so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3717	so_data  (so, p->cfg.regs[3]);
3718	so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3719	so_data  (so, 0); /* program start offset */
3720	so_ref(so, &nv50->state.fragprog);
3721	so_ref(NULL, &so);
3722}
3723
3724static void
3725nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3726{
3727	struct nv50_program *fp = nv50->fragprog;
3728	struct nv50_program *vp = nv50->vertprog;
3729	unsigned i, c, m = base;
3730
3731	/* XXX: this might not work correctly in all cases yet - we'll
3732	 * just assume that an FP generic input that is not written in
3733	 * the VP is PointCoord.
3734	 */
3735	memset(pntc, 0, 8 * sizeof(uint32_t));
3736
3737	for (i = 0; i < fp->cfg.io_nr; i++) {
3738		uint8_t sn, si;
3739		uint8_t j, k = fp->cfg.io[i].id;
3740		unsigned n = popcnt4(fp->cfg.io[i].mask);
3741
3742		if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3743			m += n;
3744			continue;
3745		}
3746
3747		for (j = 0; j < vp->info.num_outputs; ++j) {
3748			sn = vp->info.output_semantic_name[j];
3749			si = vp->info.output_semantic_index[j];
3750
3751			if (sn == fp->info.input_semantic_name[k] &&
3752			    si == fp->info.input_semantic_index[k])
3753				break;
3754		}
3755
3756		if (j < vp->info.num_outputs) {
3757			ubyte mode =
3758				nv50->rasterizer->pipe.sprite_coord_mode[si];
3759
3760			if (mode == PIPE_SPRITE_COORD_NONE) {
3761				m += n;
3762				continue;
3763			}
3764		}
3765
3766		/* this is either PointCoord or replaced by sprite coords */
3767		for (c = 0; c < 4; c++) {
3768			if (!(fp->cfg.io[i].mask & (1 << c)))
3769				continue;
3770			pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3771			++m;
3772		}
3773	}
3774}
3775
3776static int
3777nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3778	       struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3779{
3780	int c;
3781	uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3782	uint8_t *map = (uint8_t *)p_map;
3783
3784	for (c = 0; c < 4; ++c) {
3785		if (mf & 1) {
3786			if (fpi->linear == TRUE)
3787				lin[mid / 32] |= 1 << (mid % 32);
3788			map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3789		}
3790
3791		oid += mv & 1;
3792		mf >>= 1;
3793		mv >>= 1;
3794	}
3795
3796	return mid;
3797}
3798
3799void
3800nv50_linkage_validate(struct nv50_context *nv50)
3801{
3802	struct nouveau_grobj *tesla = nv50->screen->tesla;
3803	struct nv50_program *vp = nv50->vertprog;
3804	struct nv50_program *fp = nv50->fragprog;
3805	struct nouveau_stateobj *so;
3806	struct nv50_sreg4 dummy, *vpo;
3807	int i, n, c, m = 0;
3808	uint32_t map[16], lin[4], reg[5], pcrd[8];
3809
3810	memset(map, 0, sizeof(map));
3811	memset(lin, 0, sizeof(lin));
3812
3813	reg[1] = 0x00000004; /* low and high clip distance map ids */
3814	reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3815	reg[3] = 0x00000000; /* point size map id & enable */
3816	reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3817	reg[4] = fp->cfg.regs[1]; /* interpolant info */
3818
3819	dummy.linear = FALSE;
3820	dummy.mask = 0xf; /* map all components of HPOS */
3821	m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3822
3823	dummy.mask = 0x0;
3824
3825	if (vp->cfg.clpd < 0x40) {
3826		for (c = 0; c < vp->cfg.clpd_nr; ++c)
3827			map[m++] = vp->cfg.clpd + c;
3828		reg[1] = (m << 8);
3829	}
3830
3831	reg[0] |= m << 8; /* adjust BFC0 id */
3832
3833	/* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3834	if (nv50->rasterizer->pipe.light_twoside) {
3835		vpo = &vp->cfg.two_side[0];
3836
3837		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3838		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3839	}
3840
3841	reg[0] += m - 4; /* adjust FFC0 id */
3842	reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3843
3844	for (i = 0; i < fp->cfg.io_nr; i++) {
3845		ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
3846		ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
3847
3848		/* position must be mapped first */
3849		assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
3850
3851		/* maybe even remove these from cfg.io */
3852		if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
3853			continue;
3854
3855		/* VP outputs and vp->cfg.io are in the same order */
3856		for (n = 0; n < vp->info.num_outputs; ++n) {
3857			if (vp->info.output_semantic_name[n] == sn &&
3858			    vp->info.output_semantic_index[n] == si)
3859				break;
3860		}
3861		vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
3862
3863		m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3864	}
3865
3866	if (nv50->rasterizer->pipe.point_size_per_vertex) {
3867		map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3868		reg[3] = (m++ << 4) | 1;
3869	}
3870
3871	/* now fill the stateobj */
3872	so = so_new(6, 58, 0);
3873
3874	n = (m + 3) / 4;
3875	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3876	so_data  (so, m);
3877	so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3878	so_datap (so, map, n);
3879
3880	so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3881	so_datap (so, reg, 4);
3882
3883	so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3884	so_data  (so, reg[4]);
3885
3886	so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4);
3887	so_datap (so, lin, 4);
3888
3889	if (nv50->rasterizer->pipe.point_sprite) {
3890		nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3891
3892		so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3893		so_datap (so, pcrd, 8);
3894	}
3895
3896        so_ref(so, &nv50->state.programs);
3897        so_ref(NULL, &so);
3898}
3899
3900void
3901nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3902{
3903	while (p->exec_head) {
3904		struct nv50_program_exec *e = p->exec_head;
3905
3906		p->exec_head = e->next;
3907		FREE(e);
3908	}
3909	p->exec_tail = NULL;
3910	p->exec_size = 0;
3911
3912	nouveau_bo_ref(NULL, &p->bo);
3913
3914	nouveau_resource_free(&p->data[0]);
3915
3916	p->translated = 0;
3917}
3918