1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Test - The Google C++ Testing Framework
33//
34// This file implements a universal value printer that can print a
35// value of any type T:
36//
37//   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
38//
39// A user can teach this function how to print a class type T by
40// defining either operator<<() or PrintTo() in the namespace that
41// defines T.  More specifically, the FIRST defined function in the
42// following list will be used (assuming T is defined in namespace
43// foo):
44//
45//   1. foo::PrintTo(const T&, ostream*)
46//   2. operator<<(ostream&, const T&) defined in either foo or the
47//      global namespace.
48//
49// If none of the above is defined, it will print the debug string of
50// the value if it is a protocol buffer, or print the raw bytes in the
51// value otherwise.
52//
53// To aid debugging: when T is a reference type, the address of the
54// value is also printed; when T is a (const) char pointer, both the
55// pointer value and the NUL-terminated string it points to are
56// printed.
57//
58// We also provide some convenient wrappers:
59//
60//   // Prints a value to a string.  For a (const or not) char
61//   // pointer, the NUL-terminated string (but not the pointer) is
62//   // printed.
63//   std::string ::testing::PrintToString(const T& value);
64//
65//   // Prints a value tersely: for a reference type, the referenced
66//   // value (but not the address) is printed; for a (const or not) char
67//   // pointer, the NUL-terminated string (but not the pointer) is
68//   // printed.
69//   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
70//
71//   // Prints value using the type inferred by the compiler.  The difference
72//   // from UniversalTersePrint() is that this function prints both the
73//   // pointer and the NUL-terminated string for a (const or not) char pointer.
74//   void ::testing::internal::UniversalPrint(const T& value, ostream*);
75//
76//   // Prints the fields of a tuple tersely to a string vector, one
77//   // element for each field. Tuple support must be enabled in
78//   // gtest-port.h.
79//   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
80//       const Tuple& value);
81//
82// Known limitation:
83//
84// The print primitives print the elements of an STL-style container
85// using the compiler-inferred type of *iter where iter is a
86// const_iterator of the container.  When const_iterator is an input
87// iterator but not a forward iterator, this inferred type may not
88// match value_type, and the print output may be incorrect.  In
89// practice, this is rarely a problem as for most containers
90// const_iterator is a forward iterator.  We'll fix this if there's an
91// actual need for it.  Note that this fix cannot rely on value_type
92// being defined as many user-defined container types don't have
93// value_type.
94
95#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
96#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
97
98#include <ostream>  // NOLINT
99#include <sstream>
100#include <string>
101#include <utility>
102#include <vector>
103#include "gtest/internal/gtest-port.h"
104#include "gtest/internal/gtest-internal.h"
105
106namespace testing {
107
108// Definitions in the 'internal' and 'internal2' name spaces are
109// subject to change without notice.  DO NOT USE THEM IN USER CODE!
110namespace internal2 {
111
112// Prints the given number of bytes in the given object to the given
113// ostream.
114GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
115                                     size_t count,
116                                     ::std::ostream* os);
117
118// For selecting which printer to use when a given type has neither <<
119// nor PrintTo().
120enum TypeKind {
121  kProtobuf,              // a protobuf type
122  kConvertibleToInteger,  // a type implicitly convertible to BiggestInt
123                          // (e.g. a named or unnamed enum type)
124  kOtherType              // anything else
125};
126
127// TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
128// by the universal printer to print a value of type T when neither
129// operator<< nor PrintTo() is defined for T, where kTypeKind is the
130// "kind" of T as defined by enum TypeKind.
131template <typename T, TypeKind kTypeKind>
132class TypeWithoutFormatter {
133 public:
134  // This default version is called when kTypeKind is kOtherType.
135  static void PrintValue(const T& value, ::std::ostream* os) {
136    PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
137                         sizeof(value), os);
138  }
139};
140
141// We print a protobuf using its ShortDebugString() when the string
142// doesn't exceed this many characters; otherwise we print it using
143// DebugString() for better readability.
144const size_t kProtobufOneLinerMaxLength = 50;
145
146template <typename T>
147class TypeWithoutFormatter<T, kProtobuf> {
148 public:
149  static void PrintValue(const T& value, ::std::ostream* os) {
150    const ::testing::internal::string short_str = value.ShortDebugString();
151    const ::testing::internal::string pretty_str =
152        short_str.length() <= kProtobufOneLinerMaxLength ?
153        short_str : ("\n" + value.DebugString());
154    *os << ("<" + pretty_str + ">");
155  }
156};
157
158template <typename T>
159class TypeWithoutFormatter<T, kConvertibleToInteger> {
160 public:
161  // Since T has no << operator or PrintTo() but can be implicitly
162  // converted to BiggestInt, we print it as a BiggestInt.
163  //
164  // Most likely T is an enum type (either named or unnamed), in which
165  // case printing it as an integer is the desired behavior.  In case
166  // T is not an enum, printing it as an integer is the best we can do
167  // given that it has no user-defined printer.
168  static void PrintValue(const T& value, ::std::ostream* os) {
169    const internal::BiggestInt kBigInt = value;
170    *os << kBigInt;
171  }
172};
173
174// Prints the given value to the given ostream.  If the value is a
175// protocol message, its debug string is printed; if it's an enum or
176// of a type implicitly convertible to BiggestInt, it's printed as an
177// integer; otherwise the bytes in the value are printed.  This is
178// what UniversalPrinter<T>::Print() does when it knows nothing about
179// type T and T has neither << operator nor PrintTo().
180//
181// A user can override this behavior for a class type Foo by defining
182// a << operator in the namespace where Foo is defined.
183//
184// We put this operator in namespace 'internal2' instead of 'internal'
185// to simplify the implementation, as much code in 'internal' needs to
186// use << in STL, which would conflict with our own << were it defined
187// in 'internal'.
188//
189// Note that this operator<< takes a generic std::basic_ostream<Char,
190// CharTraits> type instead of the more restricted std::ostream.  If
191// we define it to take an std::ostream instead, we'll get an
192// "ambiguous overloads" compiler error when trying to print a type
193// Foo that supports streaming to std::basic_ostream<Char,
194// CharTraits>, as the compiler cannot tell whether
195// operator<<(std::ostream&, const T&) or
196// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
197// specific.
198template <typename Char, typename CharTraits, typename T>
199::std::basic_ostream<Char, CharTraits>& operator<<(
200    ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
201  TypeWithoutFormatter<T,
202      (internal::IsAProtocolMessage<T>::value ? kProtobuf :
203       internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ?
204       kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
205  return os;
206}
207
208}  // namespace internal2
209}  // namespace testing
210
211// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
212// magic needed for implementing UniversalPrinter won't work.
213namespace testing_internal {
214
215// Used to print a value that is not an STL-style container when the
216// user doesn't define PrintTo() for it.
217template <typename T>
218void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
219  // With the following statement, during unqualified name lookup,
220  // testing::internal2::operator<< appears as if it was declared in
221  // the nearest enclosing namespace that contains both
222  // ::testing_internal and ::testing::internal2, i.e. the global
223  // namespace.  For more details, refer to the C++ Standard section
224  // 7.3.4-1 [namespace.udir].  This allows us to fall back onto
225  // testing::internal2::operator<< in case T doesn't come with a <<
226  // operator.
227  //
228  // We cannot write 'using ::testing::internal2::operator<<;', which
229  // gcc 3.3 fails to compile due to a compiler bug.
230  using namespace ::testing::internal2;  // NOLINT
231
232  // Assuming T is defined in namespace foo, in the next statement,
233  // the compiler will consider all of:
234  //
235  //   1. foo::operator<< (thanks to Koenig look-up),
236  //   2. ::operator<< (as the current namespace is enclosed in ::),
237  //   3. testing::internal2::operator<< (thanks to the using statement above).
238  //
239  // The operator<< whose type matches T best will be picked.
240  //
241  // We deliberately allow #2 to be a candidate, as sometimes it's
242  // impossible to define #1 (e.g. when foo is ::std, defining
243  // anything in it is undefined behavior unless you are a compiler
244  // vendor.).
245  *os << value;
246}
247
248}  // namespace testing_internal
249
250namespace testing {
251namespace internal {
252
253// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
254// value to the given ostream.  The caller must ensure that
255// 'ostream_ptr' is not NULL, or the behavior is undefined.
256//
257// We define UniversalPrinter as a class template (as opposed to a
258// function template), as we need to partially specialize it for
259// reference types, which cannot be done with function templates.
260template <typename T>
261class UniversalPrinter;
262
263template <typename T>
264void UniversalPrint(const T& value, ::std::ostream* os);
265
266// Used to print an STL-style container when the user doesn't define
267// a PrintTo() for it.
268template <typename C>
269void DefaultPrintTo(IsContainer /* dummy */,
270                    false_type /* is not a pointer */,
271                    const C& container, ::std::ostream* os) {
272  const size_t kMaxCount = 32;  // The maximum number of elements to print.
273  *os << '{';
274  size_t count = 0;
275  for (typename C::const_iterator it = container.begin();
276       it != container.end(); ++it, ++count) {
277    if (count > 0) {
278      *os << ',';
279      if (count == kMaxCount) {  // Enough has been printed.
280        *os << " ...";
281        break;
282      }
283    }
284    *os << ' ';
285    // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
286    // handle *it being a native array.
287    internal::UniversalPrint(*it, os);
288  }
289
290  if (count > 0) {
291    *os << ' ';
292  }
293  *os << '}';
294}
295
296// Used to print a pointer that is neither a char pointer nor a member
297// pointer, when the user doesn't define PrintTo() for it.  (A member
298// variable pointer or member function pointer doesn't really point to
299// a location in the address space.  Their representation is
300// implementation-defined.  Therefore they will be printed as raw
301// bytes.)
302template <typename T>
303void DefaultPrintTo(IsNotContainer /* dummy */,
304                    true_type /* is a pointer */,
305                    T* p, ::std::ostream* os) {
306  if (p == NULL) {
307    *os << "NULL";
308  } else {
309    // C++ doesn't allow casting from a function pointer to any object
310    // pointer.
311    //
312    // IsTrue() silences warnings: "Condition is always true",
313    // "unreachable code".
314    if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) {
315      // T is not a function type.  We just call << to print p,
316      // relying on ADL to pick up user-defined << for their pointer
317      // types, if any.
318      *os << p;
319    } else {
320      // T is a function type, so '*os << p' doesn't do what we want
321      // (it just prints p as bool).  We want to print p as a const
322      // void*.  However, we cannot cast it to const void* directly,
323      // even using reinterpret_cast, as earlier versions of gcc
324      // (e.g. 3.4.5) cannot compile the cast when p is a function
325      // pointer.  Casting to UInt64 first solves the problem.
326      *os << reinterpret_cast<const void*>(
327          reinterpret_cast<internal::UInt64>(p));
328    }
329  }
330}
331
332// Used to print a non-container, non-pointer value when the user
333// doesn't define PrintTo() for it.
334template <typename T>
335void DefaultPrintTo(IsNotContainer /* dummy */,
336                    false_type /* is not a pointer */,
337                    const T& value, ::std::ostream* os) {
338  ::testing_internal::DefaultPrintNonContainerTo(value, os);
339}
340
341// Prints the given value using the << operator if it has one;
342// otherwise prints the bytes in it.  This is what
343// UniversalPrinter<T>::Print() does when PrintTo() is not specialized
344// or overloaded for type T.
345//
346// A user can override this behavior for a class type Foo by defining
347// an overload of PrintTo() in the namespace where Foo is defined.  We
348// give the user this option as sometimes defining a << operator for
349// Foo is not desirable (e.g. the coding style may prevent doing it,
350// or there is already a << operator but it doesn't do what the user
351// wants).
352template <typename T>
353void PrintTo(const T& value, ::std::ostream* os) {
354  // DefaultPrintTo() is overloaded.  The type of its first two
355  // arguments determine which version will be picked.  If T is an
356  // STL-style container, the version for container will be called; if
357  // T is a pointer, the pointer version will be called; otherwise the
358  // generic version will be called.
359  //
360  // Note that we check for container types here, prior to we check
361  // for protocol message types in our operator<<.  The rationale is:
362  //
363  // For protocol messages, we want to give people a chance to
364  // override Google Mock's format by defining a PrintTo() or
365  // operator<<.  For STL containers, other formats can be
366  // incompatible with Google Mock's format for the container
367  // elements; therefore we check for container types here to ensure
368  // that our format is used.
369  //
370  // The second argument of DefaultPrintTo() is needed to bypass a bug
371  // in Symbian's C++ compiler that prevents it from picking the right
372  // overload between:
373  //
374  //   PrintTo(const T& x, ...);
375  //   PrintTo(T* x, ...);
376  DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
377}
378
379// The following list of PrintTo() overloads tells
380// UniversalPrinter<T>::Print() how to print standard types (built-in
381// types, strings, plain arrays, and pointers).
382
383// Overloads for various char types.
384GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
385GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
386inline void PrintTo(char c, ::std::ostream* os) {
387  // When printing a plain char, we always treat it as unsigned.  This
388  // way, the output won't be affected by whether the compiler thinks
389  // char is signed or not.
390  PrintTo(static_cast<unsigned char>(c), os);
391}
392
393// Overloads for other simple built-in types.
394inline void PrintTo(bool x, ::std::ostream* os) {
395  *os << (x ? "true" : "false");
396}
397
398// Overload for wchar_t type.
399// Prints a wchar_t as a symbol if it is printable or as its internal
400// code otherwise and also as its decimal code (except for L'\0').
401// The L'\0' char is printed as "L'\\0'". The decimal code is printed
402// as signed integer when wchar_t is implemented by the compiler
403// as a signed type and is printed as an unsigned integer when wchar_t
404// is implemented as an unsigned type.
405GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
406
407// Overloads for C strings.
408GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
409inline void PrintTo(char* s, ::std::ostream* os) {
410  PrintTo(ImplicitCast_<const char*>(s), os);
411}
412
413// signed/unsigned char is often used for representing binary data, so
414// we print pointers to it as void* to be safe.
415inline void PrintTo(const signed char* s, ::std::ostream* os) {
416  PrintTo(ImplicitCast_<const void*>(s), os);
417}
418inline void PrintTo(signed char* s, ::std::ostream* os) {
419  PrintTo(ImplicitCast_<const void*>(s), os);
420}
421inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
422  PrintTo(ImplicitCast_<const void*>(s), os);
423}
424inline void PrintTo(unsigned char* s, ::std::ostream* os) {
425  PrintTo(ImplicitCast_<const void*>(s), os);
426}
427
428// MSVC can be configured to define wchar_t as a typedef of unsigned
429// short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
430// type.  When wchar_t is a typedef, defining an overload for const
431// wchar_t* would cause unsigned short* be printed as a wide string,
432// possibly causing invalid memory accesses.
433#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
434// Overloads for wide C strings
435GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
436inline void PrintTo(wchar_t* s, ::std::ostream* os) {
437  PrintTo(ImplicitCast_<const wchar_t*>(s), os);
438}
439#endif
440
441// Overload for C arrays.  Multi-dimensional arrays are printed
442// properly.
443
444// Prints the given number of elements in an array, without printing
445// the curly braces.
446template <typename T>
447void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
448  UniversalPrint(a[0], os);
449  for (size_t i = 1; i != count; i++) {
450    *os << ", ";
451    UniversalPrint(a[i], os);
452  }
453}
454
455// Overloads for ::string and ::std::string.
456#if GTEST_HAS_GLOBAL_STRING
457GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
458inline void PrintTo(const ::string& s, ::std::ostream* os) {
459  PrintStringTo(s, os);
460}
461#endif  // GTEST_HAS_GLOBAL_STRING
462
463GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
464inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
465  PrintStringTo(s, os);
466}
467
468// Overloads for ::wstring and ::std::wstring.
469#if GTEST_HAS_GLOBAL_WSTRING
470GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
471inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
472  PrintWideStringTo(s, os);
473}
474#endif  // GTEST_HAS_GLOBAL_WSTRING
475
476#if GTEST_HAS_STD_WSTRING
477GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
478inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
479  PrintWideStringTo(s, os);
480}
481#endif  // GTEST_HAS_STD_WSTRING
482
483#if GTEST_HAS_TR1_TUPLE
484// Overload for ::std::tr1::tuple.  Needed for printing function arguments,
485// which are packed as tuples.
486
487// Helper function for printing a tuple.  T must be instantiated with
488// a tuple type.
489template <typename T>
490void PrintTupleTo(const T& t, ::std::ostream* os);
491
492// Overloaded PrintTo() for tuples of various arities.  We support
493// tuples of up-to 10 fields.  The following implementation works
494// regardless of whether tr1::tuple is implemented using the
495// non-standard variadic template feature or not.
496
497inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
498  PrintTupleTo(t, os);
499}
500
501template <typename T1>
502void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
503  PrintTupleTo(t, os);
504}
505
506template <typename T1, typename T2>
507void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
508  PrintTupleTo(t, os);
509}
510
511template <typename T1, typename T2, typename T3>
512void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
513  PrintTupleTo(t, os);
514}
515
516template <typename T1, typename T2, typename T3, typename T4>
517void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
518  PrintTupleTo(t, os);
519}
520
521template <typename T1, typename T2, typename T3, typename T4, typename T5>
522void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
523             ::std::ostream* os) {
524  PrintTupleTo(t, os);
525}
526
527template <typename T1, typename T2, typename T3, typename T4, typename T5,
528          typename T6>
529void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
530             ::std::ostream* os) {
531  PrintTupleTo(t, os);
532}
533
534template <typename T1, typename T2, typename T3, typename T4, typename T5,
535          typename T6, typename T7>
536void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
537             ::std::ostream* os) {
538  PrintTupleTo(t, os);
539}
540
541template <typename T1, typename T2, typename T3, typename T4, typename T5,
542          typename T6, typename T7, typename T8>
543void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
544             ::std::ostream* os) {
545  PrintTupleTo(t, os);
546}
547
548template <typename T1, typename T2, typename T3, typename T4, typename T5,
549          typename T6, typename T7, typename T8, typename T9>
550void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
551             ::std::ostream* os) {
552  PrintTupleTo(t, os);
553}
554
555template <typename T1, typename T2, typename T3, typename T4, typename T5,
556          typename T6, typename T7, typename T8, typename T9, typename T10>
557void PrintTo(
558    const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
559    ::std::ostream* os) {
560  PrintTupleTo(t, os);
561}
562#endif  // GTEST_HAS_TR1_TUPLE
563
564// Overload for std::pair.
565template <typename T1, typename T2>
566void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
567  *os << '(';
568  // We cannot use UniversalPrint(value.first, os) here, as T1 may be
569  // a reference type.  The same for printing value.second.
570  UniversalPrinter<T1>::Print(value.first, os);
571  *os << ", ";
572  UniversalPrinter<T2>::Print(value.second, os);
573  *os << ')';
574}
575
576// Implements printing a non-reference type T by letting the compiler
577// pick the right overload of PrintTo() for T.
578template <typename T>
579class UniversalPrinter {
580 public:
581  // MSVC warns about adding const to a function type, so we want to
582  // disable the warning.
583#ifdef _MSC_VER
584# pragma warning(push)          // Saves the current warning state.
585# pragma warning(disable:4180)  // Temporarily disables warning 4180.
586#endif  // _MSC_VER
587
588  // Note: we deliberately don't call this PrintTo(), as that name
589  // conflicts with ::testing::internal::PrintTo in the body of the
590  // function.
591  static void Print(const T& value, ::std::ostream* os) {
592    // By default, ::testing::internal::PrintTo() is used for printing
593    // the value.
594    //
595    // Thanks to Koenig look-up, if T is a class and has its own
596    // PrintTo() function defined in its namespace, that function will
597    // be visible here.  Since it is more specific than the generic ones
598    // in ::testing::internal, it will be picked by the compiler in the
599    // following statement - exactly what we want.
600    PrintTo(value, os);
601  }
602
603#ifdef _MSC_VER
604# pragma warning(pop)           // Restores the warning state.
605#endif  // _MSC_VER
606};
607
608// UniversalPrintArray(begin, len, os) prints an array of 'len'
609// elements, starting at address 'begin'.
610template <typename T>
611void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
612  if (len == 0) {
613    *os << "{}";
614  } else {
615    *os << "{ ";
616    const size_t kThreshold = 18;
617    const size_t kChunkSize = 8;
618    // If the array has more than kThreshold elements, we'll have to
619    // omit some details by printing only the first and the last
620    // kChunkSize elements.
621    // TODO(wan@google.com): let the user control the threshold using a flag.
622    if (len <= kThreshold) {
623      PrintRawArrayTo(begin, len, os);
624    } else {
625      PrintRawArrayTo(begin, kChunkSize, os);
626      *os << ", ..., ";
627      PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
628    }
629    *os << " }";
630  }
631}
632// This overload prints a (const) char array compactly.
633GTEST_API_ void UniversalPrintArray(const char* begin,
634                                    size_t len,
635                                    ::std::ostream* os);
636
637// Implements printing an array type T[N].
638template <typename T, size_t N>
639class UniversalPrinter<T[N]> {
640 public:
641  // Prints the given array, omitting some elements when there are too
642  // many.
643  static void Print(const T (&a)[N], ::std::ostream* os) {
644    UniversalPrintArray(a, N, os);
645  }
646};
647
648// Implements printing a reference type T&.
649template <typename T>
650class UniversalPrinter<T&> {
651 public:
652  // MSVC warns about adding const to a function type, so we want to
653  // disable the warning.
654#ifdef _MSC_VER
655# pragma warning(push)          // Saves the current warning state.
656# pragma warning(disable:4180)  // Temporarily disables warning 4180.
657#endif  // _MSC_VER
658
659  static void Print(const T& value, ::std::ostream* os) {
660    // Prints the address of the value.  We use reinterpret_cast here
661    // as static_cast doesn't compile when T is a function type.
662    *os << "@" << reinterpret_cast<const void*>(&value) << " ";
663
664    // Then prints the value itself.
665    UniversalPrint(value, os);
666  }
667
668#ifdef _MSC_VER
669# pragma warning(pop)           // Restores the warning state.
670#endif  // _MSC_VER
671};
672
673// Prints a value tersely: for a reference type, the referenced value
674// (but not the address) is printed; for a (const) char pointer, the
675// NUL-terminated string (but not the pointer) is printed.
676template <typename T>
677void UniversalTersePrint(const T& value, ::std::ostream* os) {
678  UniversalPrint(value, os);
679}
680inline void UniversalTersePrint(const char* str, ::std::ostream* os) {
681  if (str == NULL) {
682    *os << "NULL";
683  } else {
684    UniversalPrint(string(str), os);
685  }
686}
687inline void UniversalTersePrint(char* str, ::std::ostream* os) {
688  UniversalTersePrint(static_cast<const char*>(str), os);
689}
690
691// Prints a value using the type inferred by the compiler.  The
692// difference between this and UniversalTersePrint() is that for a
693// (const) char pointer, this prints both the pointer and the
694// NUL-terminated string.
695template <typename T>
696void UniversalPrint(const T& value, ::std::ostream* os) {
697  UniversalPrinter<T>::Print(value, os);
698}
699
700#if GTEST_HAS_TR1_TUPLE
701typedef ::std::vector<string> Strings;
702
703// This helper template allows PrintTo() for tuples and
704// UniversalTersePrintTupleFieldsToStrings() to be defined by
705// induction on the number of tuple fields.  The idea is that
706// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
707// fields in tuple t, and can be defined in terms of
708// TuplePrefixPrinter<N - 1>.
709
710// The inductive case.
711template <size_t N>
712struct TuplePrefixPrinter {
713  // Prints the first N fields of a tuple.
714  template <typename Tuple>
715  static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
716    TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
717    *os << ", ";
718    UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type>
719        ::Print(::std::tr1::get<N - 1>(t), os);
720  }
721
722  // Tersely prints the first N fields of a tuple to a string vector,
723  // one element for each field.
724  template <typename Tuple>
725  static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
726    TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
727    ::std::stringstream ss;
728    UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss);
729    strings->push_back(ss.str());
730  }
731};
732
733// Base cases.
734template <>
735struct TuplePrefixPrinter<0> {
736  template <typename Tuple>
737  static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
738
739  template <typename Tuple>
740  static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
741};
742// We have to specialize the entire TuplePrefixPrinter<> class
743// template here, even though the definition of
744// TersePrintPrefixToStrings() is the same as the generic version, as
745// Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't
746// support specializing a method template of a class template.
747template <>
748struct TuplePrefixPrinter<1> {
749  template <typename Tuple>
750  static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
751    UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>::
752        Print(::std::tr1::get<0>(t), os);
753  }
754
755  template <typename Tuple>
756  static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
757    ::std::stringstream ss;
758    UniversalTersePrint(::std::tr1::get<0>(t), &ss);
759    strings->push_back(ss.str());
760  }
761};
762
763// Helper function for printing a tuple.  T must be instantiated with
764// a tuple type.
765template <typename T>
766void PrintTupleTo(const T& t, ::std::ostream* os) {
767  *os << "(";
768  TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>::
769      PrintPrefixTo(t, os);
770  *os << ")";
771}
772
773// Prints the fields of a tuple tersely to a string vector, one
774// element for each field.  See the comment before
775// UniversalTersePrint() for how we define "tersely".
776template <typename Tuple>
777Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
778  Strings result;
779  TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>::
780      TersePrintPrefixToStrings(value, &result);
781  return result;
782}
783#endif  // GTEST_HAS_TR1_TUPLE
784
785}  // namespace internal
786
787template <typename T>
788::std::string PrintToString(const T& value) {
789  ::std::stringstream ss;
790  internal::UniversalTersePrint(value, &ss);
791  return ss.str();
792}
793
794}  // namespace testing
795
796#endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
797