1// Copyright 2007, Google Inc. 2// All rights reserved. 3// 4// Redistribution and use in source and binary forms, with or without 5// modification, are permitted provided that the following conditions are 6// met: 7// 8// * Redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer. 10// * Redistributions in binary form must reproduce the above 11// copyright notice, this list of conditions and the following disclaimer 12// in the documentation and/or other materials provided with the 13// distribution. 14// * Neither the name of Google Inc. nor the names of its 15// contributors may be used to endorse or promote products derived from 16// this software without specific prior written permission. 17// 18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29// 30// Author: wan@google.com (Zhanyong Wan) 31 32// Google Test - The Google C++ Testing Framework 33// 34// This file implements a universal value printer that can print a 35// value of any type T: 36// 37// void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); 38// 39// A user can teach this function how to print a class type T by 40// defining either operator<<() or PrintTo() in the namespace that 41// defines T. More specifically, the FIRST defined function in the 42// following list will be used (assuming T is defined in namespace 43// foo): 44// 45// 1. foo::PrintTo(const T&, ostream*) 46// 2. operator<<(ostream&, const T&) defined in either foo or the 47// global namespace. 48// 49// If none of the above is defined, it will print the debug string of 50// the value if it is a protocol buffer, or print the raw bytes in the 51// value otherwise. 52// 53// To aid debugging: when T is a reference type, the address of the 54// value is also printed; when T is a (const) char pointer, both the 55// pointer value and the NUL-terminated string it points to are 56// printed. 57// 58// We also provide some convenient wrappers: 59// 60// // Prints a value to a string. For a (const or not) char 61// // pointer, the NUL-terminated string (but not the pointer) is 62// // printed. 63// std::string ::testing::PrintToString(const T& value); 64// 65// // Prints a value tersely: for a reference type, the referenced 66// // value (but not the address) is printed; for a (const or not) char 67// // pointer, the NUL-terminated string (but not the pointer) is 68// // printed. 69// void ::testing::internal::UniversalTersePrint(const T& value, ostream*); 70// 71// // Prints value using the type inferred by the compiler. The difference 72// // from UniversalTersePrint() is that this function prints both the 73// // pointer and the NUL-terminated string for a (const or not) char pointer. 74// void ::testing::internal::UniversalPrint(const T& value, ostream*); 75// 76// // Prints the fields of a tuple tersely to a string vector, one 77// // element for each field. Tuple support must be enabled in 78// // gtest-port.h. 79// std::vector<string> UniversalTersePrintTupleFieldsToStrings( 80// const Tuple& value); 81// 82// Known limitation: 83// 84// The print primitives print the elements of an STL-style container 85// using the compiler-inferred type of *iter where iter is a 86// const_iterator of the container. When const_iterator is an input 87// iterator but not a forward iterator, this inferred type may not 88// match value_type, and the print output may be incorrect. In 89// practice, this is rarely a problem as for most containers 90// const_iterator is a forward iterator. We'll fix this if there's an 91// actual need for it. Note that this fix cannot rely on value_type 92// being defined as many user-defined container types don't have 93// value_type. 94 95#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 96#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 97 98#include <ostream> // NOLINT 99#include <sstream> 100#include <string> 101#include <utility> 102#include <vector> 103#include "gtest/internal/gtest-port.h" 104#include "gtest/internal/gtest-internal.h" 105 106namespace testing { 107 108// Definitions in the 'internal' and 'internal2' name spaces are 109// subject to change without notice. DO NOT USE THEM IN USER CODE! 110namespace internal2 { 111 112// Prints the given number of bytes in the given object to the given 113// ostream. 114GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, 115 size_t count, 116 ::std::ostream* os); 117 118// For selecting which printer to use when a given type has neither << 119// nor PrintTo(). 120enum TypeKind { 121 kProtobuf, // a protobuf type 122 kConvertibleToInteger, // a type implicitly convertible to BiggestInt 123 // (e.g. a named or unnamed enum type) 124 kOtherType // anything else 125}; 126 127// TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called 128// by the universal printer to print a value of type T when neither 129// operator<< nor PrintTo() is defined for T, where kTypeKind is the 130// "kind" of T as defined by enum TypeKind. 131template <typename T, TypeKind kTypeKind> 132class TypeWithoutFormatter { 133 public: 134 // This default version is called when kTypeKind is kOtherType. 135 static void PrintValue(const T& value, ::std::ostream* os) { 136 PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), 137 sizeof(value), os); 138 } 139}; 140 141// We print a protobuf using its ShortDebugString() when the string 142// doesn't exceed this many characters; otherwise we print it using 143// DebugString() for better readability. 144const size_t kProtobufOneLinerMaxLength = 50; 145 146template <typename T> 147class TypeWithoutFormatter<T, kProtobuf> { 148 public: 149 static void PrintValue(const T& value, ::std::ostream* os) { 150 const ::testing::internal::string short_str = value.ShortDebugString(); 151 const ::testing::internal::string pretty_str = 152 short_str.length() <= kProtobufOneLinerMaxLength ? 153 short_str : ("\n" + value.DebugString()); 154 *os << ("<" + pretty_str + ">"); 155 } 156}; 157 158template <typename T> 159class TypeWithoutFormatter<T, kConvertibleToInteger> { 160 public: 161 // Since T has no << operator or PrintTo() but can be implicitly 162 // converted to BiggestInt, we print it as a BiggestInt. 163 // 164 // Most likely T is an enum type (either named or unnamed), in which 165 // case printing it as an integer is the desired behavior. In case 166 // T is not an enum, printing it as an integer is the best we can do 167 // given that it has no user-defined printer. 168 static void PrintValue(const T& value, ::std::ostream* os) { 169 const internal::BiggestInt kBigInt = value; 170 *os << kBigInt; 171 } 172}; 173 174// Prints the given value to the given ostream. If the value is a 175// protocol message, its debug string is printed; if it's an enum or 176// of a type implicitly convertible to BiggestInt, it's printed as an 177// integer; otherwise the bytes in the value are printed. This is 178// what UniversalPrinter<T>::Print() does when it knows nothing about 179// type T and T has neither << operator nor PrintTo(). 180// 181// A user can override this behavior for a class type Foo by defining 182// a << operator in the namespace where Foo is defined. 183// 184// We put this operator in namespace 'internal2' instead of 'internal' 185// to simplify the implementation, as much code in 'internal' needs to 186// use << in STL, which would conflict with our own << were it defined 187// in 'internal'. 188// 189// Note that this operator<< takes a generic std::basic_ostream<Char, 190// CharTraits> type instead of the more restricted std::ostream. If 191// we define it to take an std::ostream instead, we'll get an 192// "ambiguous overloads" compiler error when trying to print a type 193// Foo that supports streaming to std::basic_ostream<Char, 194// CharTraits>, as the compiler cannot tell whether 195// operator<<(std::ostream&, const T&) or 196// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more 197// specific. 198template <typename Char, typename CharTraits, typename T> 199::std::basic_ostream<Char, CharTraits>& operator<<( 200 ::std::basic_ostream<Char, CharTraits>& os, const T& x) { 201 TypeWithoutFormatter<T, 202 (internal::IsAProtocolMessage<T>::value ? kProtobuf : 203 internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? 204 kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); 205 return os; 206} 207 208} // namespace internal2 209} // namespace testing 210 211// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up 212// magic needed for implementing UniversalPrinter won't work. 213namespace testing_internal { 214 215// Used to print a value that is not an STL-style container when the 216// user doesn't define PrintTo() for it. 217template <typename T> 218void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { 219 // With the following statement, during unqualified name lookup, 220 // testing::internal2::operator<< appears as if it was declared in 221 // the nearest enclosing namespace that contains both 222 // ::testing_internal and ::testing::internal2, i.e. the global 223 // namespace. For more details, refer to the C++ Standard section 224 // 7.3.4-1 [namespace.udir]. This allows us to fall back onto 225 // testing::internal2::operator<< in case T doesn't come with a << 226 // operator. 227 // 228 // We cannot write 'using ::testing::internal2::operator<<;', which 229 // gcc 3.3 fails to compile due to a compiler bug. 230 using namespace ::testing::internal2; // NOLINT 231 232 // Assuming T is defined in namespace foo, in the next statement, 233 // the compiler will consider all of: 234 // 235 // 1. foo::operator<< (thanks to Koenig look-up), 236 // 2. ::operator<< (as the current namespace is enclosed in ::), 237 // 3. testing::internal2::operator<< (thanks to the using statement above). 238 // 239 // The operator<< whose type matches T best will be picked. 240 // 241 // We deliberately allow #2 to be a candidate, as sometimes it's 242 // impossible to define #1 (e.g. when foo is ::std, defining 243 // anything in it is undefined behavior unless you are a compiler 244 // vendor.). 245 *os << value; 246} 247 248} // namespace testing_internal 249 250namespace testing { 251namespace internal { 252 253// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given 254// value to the given ostream. The caller must ensure that 255// 'ostream_ptr' is not NULL, or the behavior is undefined. 256// 257// We define UniversalPrinter as a class template (as opposed to a 258// function template), as we need to partially specialize it for 259// reference types, which cannot be done with function templates. 260template <typename T> 261class UniversalPrinter; 262 263template <typename T> 264void UniversalPrint(const T& value, ::std::ostream* os); 265 266// Used to print an STL-style container when the user doesn't define 267// a PrintTo() for it. 268template <typename C> 269void DefaultPrintTo(IsContainer /* dummy */, 270 false_type /* is not a pointer */, 271 const C& container, ::std::ostream* os) { 272 const size_t kMaxCount = 32; // The maximum number of elements to print. 273 *os << '{'; 274 size_t count = 0; 275 for (typename C::const_iterator it = container.begin(); 276 it != container.end(); ++it, ++count) { 277 if (count > 0) { 278 *os << ','; 279 if (count == kMaxCount) { // Enough has been printed. 280 *os << " ..."; 281 break; 282 } 283 } 284 *os << ' '; 285 // We cannot call PrintTo(*it, os) here as PrintTo() doesn't 286 // handle *it being a native array. 287 internal::UniversalPrint(*it, os); 288 } 289 290 if (count > 0) { 291 *os << ' '; 292 } 293 *os << '}'; 294} 295 296// Used to print a pointer that is neither a char pointer nor a member 297// pointer, when the user doesn't define PrintTo() for it. (A member 298// variable pointer or member function pointer doesn't really point to 299// a location in the address space. Their representation is 300// implementation-defined. Therefore they will be printed as raw 301// bytes.) 302template <typename T> 303void DefaultPrintTo(IsNotContainer /* dummy */, 304 true_type /* is a pointer */, 305 T* p, ::std::ostream* os) { 306 if (p == NULL) { 307 *os << "NULL"; 308 } else { 309 // C++ doesn't allow casting from a function pointer to any object 310 // pointer. 311 // 312 // IsTrue() silences warnings: "Condition is always true", 313 // "unreachable code". 314 if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { 315 // T is not a function type. We just call << to print p, 316 // relying on ADL to pick up user-defined << for their pointer 317 // types, if any. 318 *os << p; 319 } else { 320 // T is a function type, so '*os << p' doesn't do what we want 321 // (it just prints p as bool). We want to print p as a const 322 // void*. However, we cannot cast it to const void* directly, 323 // even using reinterpret_cast, as earlier versions of gcc 324 // (e.g. 3.4.5) cannot compile the cast when p is a function 325 // pointer. Casting to UInt64 first solves the problem. 326 *os << reinterpret_cast<const void*>( 327 reinterpret_cast<internal::UInt64>(p)); 328 } 329 } 330} 331 332// Used to print a non-container, non-pointer value when the user 333// doesn't define PrintTo() for it. 334template <typename T> 335void DefaultPrintTo(IsNotContainer /* dummy */, 336 false_type /* is not a pointer */, 337 const T& value, ::std::ostream* os) { 338 ::testing_internal::DefaultPrintNonContainerTo(value, os); 339} 340 341// Prints the given value using the << operator if it has one; 342// otherwise prints the bytes in it. This is what 343// UniversalPrinter<T>::Print() does when PrintTo() is not specialized 344// or overloaded for type T. 345// 346// A user can override this behavior for a class type Foo by defining 347// an overload of PrintTo() in the namespace where Foo is defined. We 348// give the user this option as sometimes defining a << operator for 349// Foo is not desirable (e.g. the coding style may prevent doing it, 350// or there is already a << operator but it doesn't do what the user 351// wants). 352template <typename T> 353void PrintTo(const T& value, ::std::ostream* os) { 354 // DefaultPrintTo() is overloaded. The type of its first two 355 // arguments determine which version will be picked. If T is an 356 // STL-style container, the version for container will be called; if 357 // T is a pointer, the pointer version will be called; otherwise the 358 // generic version will be called. 359 // 360 // Note that we check for container types here, prior to we check 361 // for protocol message types in our operator<<. The rationale is: 362 // 363 // For protocol messages, we want to give people a chance to 364 // override Google Mock's format by defining a PrintTo() or 365 // operator<<. For STL containers, other formats can be 366 // incompatible with Google Mock's format for the container 367 // elements; therefore we check for container types here to ensure 368 // that our format is used. 369 // 370 // The second argument of DefaultPrintTo() is needed to bypass a bug 371 // in Symbian's C++ compiler that prevents it from picking the right 372 // overload between: 373 // 374 // PrintTo(const T& x, ...); 375 // PrintTo(T* x, ...); 376 DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); 377} 378 379// The following list of PrintTo() overloads tells 380// UniversalPrinter<T>::Print() how to print standard types (built-in 381// types, strings, plain arrays, and pointers). 382 383// Overloads for various char types. 384GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); 385GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); 386inline void PrintTo(char c, ::std::ostream* os) { 387 // When printing a plain char, we always treat it as unsigned. This 388 // way, the output won't be affected by whether the compiler thinks 389 // char is signed or not. 390 PrintTo(static_cast<unsigned char>(c), os); 391} 392 393// Overloads for other simple built-in types. 394inline void PrintTo(bool x, ::std::ostream* os) { 395 *os << (x ? "true" : "false"); 396} 397 398// Overload for wchar_t type. 399// Prints a wchar_t as a symbol if it is printable or as its internal 400// code otherwise and also as its decimal code (except for L'\0'). 401// The L'\0' char is printed as "L'\\0'". The decimal code is printed 402// as signed integer when wchar_t is implemented by the compiler 403// as a signed type and is printed as an unsigned integer when wchar_t 404// is implemented as an unsigned type. 405GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); 406 407// Overloads for C strings. 408GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); 409inline void PrintTo(char* s, ::std::ostream* os) { 410 PrintTo(ImplicitCast_<const char*>(s), os); 411} 412 413// signed/unsigned char is often used for representing binary data, so 414// we print pointers to it as void* to be safe. 415inline void PrintTo(const signed char* s, ::std::ostream* os) { 416 PrintTo(ImplicitCast_<const void*>(s), os); 417} 418inline void PrintTo(signed char* s, ::std::ostream* os) { 419 PrintTo(ImplicitCast_<const void*>(s), os); 420} 421inline void PrintTo(const unsigned char* s, ::std::ostream* os) { 422 PrintTo(ImplicitCast_<const void*>(s), os); 423} 424inline void PrintTo(unsigned char* s, ::std::ostream* os) { 425 PrintTo(ImplicitCast_<const void*>(s), os); 426} 427 428// MSVC can be configured to define wchar_t as a typedef of unsigned 429// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native 430// type. When wchar_t is a typedef, defining an overload for const 431// wchar_t* would cause unsigned short* be printed as a wide string, 432// possibly causing invalid memory accesses. 433#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) 434// Overloads for wide C strings 435GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); 436inline void PrintTo(wchar_t* s, ::std::ostream* os) { 437 PrintTo(ImplicitCast_<const wchar_t*>(s), os); 438} 439#endif 440 441// Overload for C arrays. Multi-dimensional arrays are printed 442// properly. 443 444// Prints the given number of elements in an array, without printing 445// the curly braces. 446template <typename T> 447void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { 448 UniversalPrint(a[0], os); 449 for (size_t i = 1; i != count; i++) { 450 *os << ", "; 451 UniversalPrint(a[i], os); 452 } 453} 454 455// Overloads for ::string and ::std::string. 456#if GTEST_HAS_GLOBAL_STRING 457GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); 458inline void PrintTo(const ::string& s, ::std::ostream* os) { 459 PrintStringTo(s, os); 460} 461#endif // GTEST_HAS_GLOBAL_STRING 462 463GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); 464inline void PrintTo(const ::std::string& s, ::std::ostream* os) { 465 PrintStringTo(s, os); 466} 467 468// Overloads for ::wstring and ::std::wstring. 469#if GTEST_HAS_GLOBAL_WSTRING 470GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); 471inline void PrintTo(const ::wstring& s, ::std::ostream* os) { 472 PrintWideStringTo(s, os); 473} 474#endif // GTEST_HAS_GLOBAL_WSTRING 475 476#if GTEST_HAS_STD_WSTRING 477GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); 478inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { 479 PrintWideStringTo(s, os); 480} 481#endif // GTEST_HAS_STD_WSTRING 482 483#if GTEST_HAS_TR1_TUPLE 484// Overload for ::std::tr1::tuple. Needed for printing function arguments, 485// which are packed as tuples. 486 487// Helper function for printing a tuple. T must be instantiated with 488// a tuple type. 489template <typename T> 490void PrintTupleTo(const T& t, ::std::ostream* os); 491 492// Overloaded PrintTo() for tuples of various arities. We support 493// tuples of up-to 10 fields. The following implementation works 494// regardless of whether tr1::tuple is implemented using the 495// non-standard variadic template feature or not. 496 497inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { 498 PrintTupleTo(t, os); 499} 500 501template <typename T1> 502void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { 503 PrintTupleTo(t, os); 504} 505 506template <typename T1, typename T2> 507void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { 508 PrintTupleTo(t, os); 509} 510 511template <typename T1, typename T2, typename T3> 512void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { 513 PrintTupleTo(t, os); 514} 515 516template <typename T1, typename T2, typename T3, typename T4> 517void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { 518 PrintTupleTo(t, os); 519} 520 521template <typename T1, typename T2, typename T3, typename T4, typename T5> 522void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, 523 ::std::ostream* os) { 524 PrintTupleTo(t, os); 525} 526 527template <typename T1, typename T2, typename T3, typename T4, typename T5, 528 typename T6> 529void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, 530 ::std::ostream* os) { 531 PrintTupleTo(t, os); 532} 533 534template <typename T1, typename T2, typename T3, typename T4, typename T5, 535 typename T6, typename T7> 536void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, 537 ::std::ostream* os) { 538 PrintTupleTo(t, os); 539} 540 541template <typename T1, typename T2, typename T3, typename T4, typename T5, 542 typename T6, typename T7, typename T8> 543void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, 544 ::std::ostream* os) { 545 PrintTupleTo(t, os); 546} 547 548template <typename T1, typename T2, typename T3, typename T4, typename T5, 549 typename T6, typename T7, typename T8, typename T9> 550void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, 551 ::std::ostream* os) { 552 PrintTupleTo(t, os); 553} 554 555template <typename T1, typename T2, typename T3, typename T4, typename T5, 556 typename T6, typename T7, typename T8, typename T9, typename T10> 557void PrintTo( 558 const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, 559 ::std::ostream* os) { 560 PrintTupleTo(t, os); 561} 562#endif // GTEST_HAS_TR1_TUPLE 563 564// Overload for std::pair. 565template <typename T1, typename T2> 566void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { 567 *os << '('; 568 // We cannot use UniversalPrint(value.first, os) here, as T1 may be 569 // a reference type. The same for printing value.second. 570 UniversalPrinter<T1>::Print(value.first, os); 571 *os << ", "; 572 UniversalPrinter<T2>::Print(value.second, os); 573 *os << ')'; 574} 575 576// Implements printing a non-reference type T by letting the compiler 577// pick the right overload of PrintTo() for T. 578template <typename T> 579class UniversalPrinter { 580 public: 581 // MSVC warns about adding const to a function type, so we want to 582 // disable the warning. 583#ifdef _MSC_VER 584# pragma warning(push) // Saves the current warning state. 585# pragma warning(disable:4180) // Temporarily disables warning 4180. 586#endif // _MSC_VER 587 588 // Note: we deliberately don't call this PrintTo(), as that name 589 // conflicts with ::testing::internal::PrintTo in the body of the 590 // function. 591 static void Print(const T& value, ::std::ostream* os) { 592 // By default, ::testing::internal::PrintTo() is used for printing 593 // the value. 594 // 595 // Thanks to Koenig look-up, if T is a class and has its own 596 // PrintTo() function defined in its namespace, that function will 597 // be visible here. Since it is more specific than the generic ones 598 // in ::testing::internal, it will be picked by the compiler in the 599 // following statement - exactly what we want. 600 PrintTo(value, os); 601 } 602 603#ifdef _MSC_VER 604# pragma warning(pop) // Restores the warning state. 605#endif // _MSC_VER 606}; 607 608// UniversalPrintArray(begin, len, os) prints an array of 'len' 609// elements, starting at address 'begin'. 610template <typename T> 611void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { 612 if (len == 0) { 613 *os << "{}"; 614 } else { 615 *os << "{ "; 616 const size_t kThreshold = 18; 617 const size_t kChunkSize = 8; 618 // If the array has more than kThreshold elements, we'll have to 619 // omit some details by printing only the first and the last 620 // kChunkSize elements. 621 // TODO(wan@google.com): let the user control the threshold using a flag. 622 if (len <= kThreshold) { 623 PrintRawArrayTo(begin, len, os); 624 } else { 625 PrintRawArrayTo(begin, kChunkSize, os); 626 *os << ", ..., "; 627 PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); 628 } 629 *os << " }"; 630 } 631} 632// This overload prints a (const) char array compactly. 633GTEST_API_ void UniversalPrintArray(const char* begin, 634 size_t len, 635 ::std::ostream* os); 636 637// Implements printing an array type T[N]. 638template <typename T, size_t N> 639class UniversalPrinter<T[N]> { 640 public: 641 // Prints the given array, omitting some elements when there are too 642 // many. 643 static void Print(const T (&a)[N], ::std::ostream* os) { 644 UniversalPrintArray(a, N, os); 645 } 646}; 647 648// Implements printing a reference type T&. 649template <typename T> 650class UniversalPrinter<T&> { 651 public: 652 // MSVC warns about adding const to a function type, so we want to 653 // disable the warning. 654#ifdef _MSC_VER 655# pragma warning(push) // Saves the current warning state. 656# pragma warning(disable:4180) // Temporarily disables warning 4180. 657#endif // _MSC_VER 658 659 static void Print(const T& value, ::std::ostream* os) { 660 // Prints the address of the value. We use reinterpret_cast here 661 // as static_cast doesn't compile when T is a function type. 662 *os << "@" << reinterpret_cast<const void*>(&value) << " "; 663 664 // Then prints the value itself. 665 UniversalPrint(value, os); 666 } 667 668#ifdef _MSC_VER 669# pragma warning(pop) // Restores the warning state. 670#endif // _MSC_VER 671}; 672 673// Prints a value tersely: for a reference type, the referenced value 674// (but not the address) is printed; for a (const) char pointer, the 675// NUL-terminated string (but not the pointer) is printed. 676template <typename T> 677void UniversalTersePrint(const T& value, ::std::ostream* os) { 678 UniversalPrint(value, os); 679} 680inline void UniversalTersePrint(const char* str, ::std::ostream* os) { 681 if (str == NULL) { 682 *os << "NULL"; 683 } else { 684 UniversalPrint(string(str), os); 685 } 686} 687inline void UniversalTersePrint(char* str, ::std::ostream* os) { 688 UniversalTersePrint(static_cast<const char*>(str), os); 689} 690 691// Prints a value using the type inferred by the compiler. The 692// difference between this and UniversalTersePrint() is that for a 693// (const) char pointer, this prints both the pointer and the 694// NUL-terminated string. 695template <typename T> 696void UniversalPrint(const T& value, ::std::ostream* os) { 697 UniversalPrinter<T>::Print(value, os); 698} 699 700#if GTEST_HAS_TR1_TUPLE 701typedef ::std::vector<string> Strings; 702 703// This helper template allows PrintTo() for tuples and 704// UniversalTersePrintTupleFieldsToStrings() to be defined by 705// induction on the number of tuple fields. The idea is that 706// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N 707// fields in tuple t, and can be defined in terms of 708// TuplePrefixPrinter<N - 1>. 709 710// The inductive case. 711template <size_t N> 712struct TuplePrefixPrinter { 713 // Prints the first N fields of a tuple. 714 template <typename Tuple> 715 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { 716 TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); 717 *os << ", "; 718 UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> 719 ::Print(::std::tr1::get<N - 1>(t), os); 720 } 721 722 // Tersely prints the first N fields of a tuple to a string vector, 723 // one element for each field. 724 template <typename Tuple> 725 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { 726 TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); 727 ::std::stringstream ss; 728 UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); 729 strings->push_back(ss.str()); 730 } 731}; 732 733// Base cases. 734template <> 735struct TuplePrefixPrinter<0> { 736 template <typename Tuple> 737 static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} 738 739 template <typename Tuple> 740 static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} 741}; 742// We have to specialize the entire TuplePrefixPrinter<> class 743// template here, even though the definition of 744// TersePrintPrefixToStrings() is the same as the generic version, as 745// Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't 746// support specializing a method template of a class template. 747template <> 748struct TuplePrefixPrinter<1> { 749 template <typename Tuple> 750 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { 751 UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: 752 Print(::std::tr1::get<0>(t), os); 753 } 754 755 template <typename Tuple> 756 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { 757 ::std::stringstream ss; 758 UniversalTersePrint(::std::tr1::get<0>(t), &ss); 759 strings->push_back(ss.str()); 760 } 761}; 762 763// Helper function for printing a tuple. T must be instantiated with 764// a tuple type. 765template <typename T> 766void PrintTupleTo(const T& t, ::std::ostream* os) { 767 *os << "("; 768 TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: 769 PrintPrefixTo(t, os); 770 *os << ")"; 771} 772 773// Prints the fields of a tuple tersely to a string vector, one 774// element for each field. See the comment before 775// UniversalTersePrint() for how we define "tersely". 776template <typename Tuple> 777Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { 778 Strings result; 779 TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: 780 TersePrintPrefixToStrings(value, &result); 781 return result; 782} 783#endif // GTEST_HAS_TR1_TUPLE 784 785} // namespace internal 786 787template <typename T> 788::std::string PrintToString(const T& value) { 789 ::std::stringstream ss; 790 internal::UniversalTersePrint(value, &ss); 791 return ss.str(); 792} 793 794} // namespace testing 795 796#endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 797