v8.h revision 9ac36c9faca11611ada13b4054edbaa0738661d0
1// Copyright 2007-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28/** \mainpage V8 API Reference Guide
29 *
30 * V8 is Google's open source JavaScript engine.
31 *
32 * This set of documents provides reference material generated from the
33 * V8 header file, include/v8.h.
34 *
35 * For other documentation see http://code.google.com/apis/v8/
36 */
37
38#ifndef V8_H_
39#define V8_H_
40
41#include <stdio.h>
42
43#ifdef _WIN32
44// When compiling on MinGW stdint.h is available.
45#ifdef __MINGW32__
46#include <stdint.h>
47#else  // __MINGW32__
48typedef signed char int8_t;
49typedef unsigned char uint8_t;
50typedef short int16_t;  // NOLINT
51typedef unsigned short uint16_t;  // NOLINT
52typedef int int32_t;
53typedef unsigned int uint32_t;
54typedef __int64 int64_t;
55typedef unsigned __int64 uint64_t;
56// intptr_t and friends are defined in crtdefs.h through stdio.h.
57#endif  // __MINGW32__
58
59// Setup for Windows DLL export/import. When building the V8 DLL the
60// BUILDING_V8_SHARED needs to be defined. When building a program which uses
61// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
62// static library or building a program which uses the V8 static library neither
63// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
64#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
65#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
66  build configuration to ensure that at most one of these is set
67#endif
68
69#ifdef BUILDING_V8_SHARED
70#define V8EXPORT __declspec(dllexport)
71#elif USING_V8_SHARED
72#define V8EXPORT __declspec(dllimport)
73#else
74#define V8EXPORT
75#endif  // BUILDING_V8_SHARED
76
77#else  // _WIN32
78
79#include <stdint.h>
80
81// Setup for Linux shared library export. There is no need to distinguish
82// between building or using the V8 shared library, but we should not
83// export symbols when we are building a static library.
84#if defined(__GNUC__) && (__GNUC__ >= 4) && defined(V8_SHARED)
85#define V8EXPORT __attribute__ ((visibility("default")))
86#else  // defined(__GNUC__) && (__GNUC__ >= 4)
87#define V8EXPORT
88#endif  // defined(__GNUC__) && (__GNUC__ >= 4)
89
90#endif  // _WIN32
91
92/**
93 * The v8 JavaScript engine.
94 */
95namespace v8 {
96
97class Context;
98class String;
99class Value;
100class Utils;
101class Number;
102class Object;
103class Array;
104class Int32;
105class Uint32;
106class External;
107class Primitive;
108class Boolean;
109class Integer;
110class Function;
111class Date;
112class ImplementationUtilities;
113class Signature;
114template <class T> class Handle;
115template <class T> class Local;
116template <class T> class Persistent;
117class FunctionTemplate;
118class ObjectTemplate;
119class Data;
120class AccessorInfo;
121class StackTrace;
122class StackFrame;
123
124namespace internal {
125
126class Arguments;
127class Object;
128class Heap;
129class Top;
130
131}
132
133
134// --- W e a k  H a n d l e s
135
136
137/**
138 * A weak reference callback function.
139 *
140 * This callback should either explicitly invoke Dispose on |object| if
141 * V8 wrapper is not needed anymore, or 'revive' it by invocation of MakeWeak.
142 *
143 * \param object the weak global object to be reclaimed by the garbage collector
144 * \param parameter the value passed in when making the weak global object
145 */
146typedef void (*WeakReferenceCallback)(Persistent<Value> object,
147                                      void* parameter);
148
149
150// --- H a n d l e s ---
151
152#define TYPE_CHECK(T, S)                                       \
153  while (false) {                                              \
154    *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
155  }
156
157/**
158 * An object reference managed by the v8 garbage collector.
159 *
160 * All objects returned from v8 have to be tracked by the garbage
161 * collector so that it knows that the objects are still alive.  Also,
162 * because the garbage collector may move objects, it is unsafe to
163 * point directly to an object.  Instead, all objects are stored in
164 * handles which are known by the garbage collector and updated
165 * whenever an object moves.  Handles should always be passed by value
166 * (except in cases like out-parameters) and they should never be
167 * allocated on the heap.
168 *
169 * There are two types of handles: local and persistent handles.
170 * Local handles are light-weight and transient and typically used in
171 * local operations.  They are managed by HandleScopes.  Persistent
172 * handles can be used when storing objects across several independent
173 * operations and have to be explicitly deallocated when they're no
174 * longer used.
175 *
176 * It is safe to extract the object stored in the handle by
177 * dereferencing the handle (for instance, to extract the Object* from
178 * an Handle<Object>); the value will still be governed by a handle
179 * behind the scenes and the same rules apply to these values as to
180 * their handles.
181 */
182template <class T> class Handle {
183 public:
184
185  /**
186   * Creates an empty handle.
187   */
188  inline Handle();
189
190  /**
191   * Creates a new handle for the specified value.
192   */
193  inline explicit Handle(T* val) : val_(val) { }
194
195  /**
196   * Creates a handle for the contents of the specified handle.  This
197   * constructor allows you to pass handles as arguments by value and
198   * to assign between handles.  However, if you try to assign between
199   * incompatible handles, for instance from a Handle<String> to a
200   * Handle<Number> it will cause a compiletime error.  Assigning
201   * between compatible handles, for instance assigning a
202   * Handle<String> to a variable declared as Handle<Value>, is legal
203   * because String is a subclass of Value.
204   */
205  template <class S> inline Handle(Handle<S> that)
206      : val_(reinterpret_cast<T*>(*that)) {
207    /**
208     * This check fails when trying to convert between incompatible
209     * handles. For example, converting from a Handle<String> to a
210     * Handle<Number>.
211     */
212    TYPE_CHECK(T, S);
213  }
214
215  /**
216   * Returns true if the handle is empty.
217   */
218  inline bool IsEmpty() const { return val_ == 0; }
219
220  inline T* operator->() const { return val_; }
221
222  inline T* operator*() const { return val_; }
223
224  /**
225   * Sets the handle to be empty. IsEmpty() will then return true.
226   */
227  inline void Clear() { this->val_ = 0; }
228
229  /**
230   * Checks whether two handles are the same.
231   * Returns true if both are empty, or if the objects
232   * to which they refer are identical.
233   * The handles' references are not checked.
234   */
235  template <class S> inline bool operator==(Handle<S> that) const {
236    internal::Object** a = reinterpret_cast<internal::Object**>(**this);
237    internal::Object** b = reinterpret_cast<internal::Object**>(*that);
238    if (a == 0) return b == 0;
239    if (b == 0) return false;
240    return *a == *b;
241  }
242
243  /**
244   * Checks whether two handles are different.
245   * Returns true if only one of the handles is empty, or if
246   * the objects to which they refer are different.
247   * The handles' references are not checked.
248   */
249  template <class S> inline bool operator!=(Handle<S> that) const {
250    return !operator==(that);
251  }
252
253  template <class S> static inline Handle<T> Cast(Handle<S> that) {
254#ifdef V8_ENABLE_CHECKS
255    // If we're going to perform the type check then we have to check
256    // that the handle isn't empty before doing the checked cast.
257    if (that.IsEmpty()) return Handle<T>();
258#endif
259    return Handle<T>(T::Cast(*that));
260  }
261
262  template <class S> inline Handle<S> As() {
263    return Handle<S>::Cast(*this);
264  }
265
266 private:
267  T* val_;
268};
269
270
271/**
272 * A light-weight stack-allocated object handle.  All operations
273 * that return objects from within v8 return them in local handles.  They
274 * are created within HandleScopes, and all local handles allocated within a
275 * handle scope are destroyed when the handle scope is destroyed.  Hence it
276 * is not necessary to explicitly deallocate local handles.
277 */
278template <class T> class Local : public Handle<T> {
279 public:
280  inline Local();
281  template <class S> inline Local(Local<S> that)
282      : Handle<T>(reinterpret_cast<T*>(*that)) {
283    /**
284     * This check fails when trying to convert between incompatible
285     * handles. For example, converting from a Handle<String> to a
286     * Handle<Number>.
287     */
288    TYPE_CHECK(T, S);
289  }
290  template <class S> inline Local(S* that) : Handle<T>(that) { }
291  template <class S> static inline Local<T> Cast(Local<S> that) {
292#ifdef V8_ENABLE_CHECKS
293    // If we're going to perform the type check then we have to check
294    // that the handle isn't empty before doing the checked cast.
295    if (that.IsEmpty()) return Local<T>();
296#endif
297    return Local<T>(T::Cast(*that));
298  }
299
300  template <class S> inline Local<S> As() {
301    return Local<S>::Cast(*this);
302  }
303
304  /** Create a local handle for the content of another handle.
305   *  The referee is kept alive by the local handle even when
306   *  the original handle is destroyed/disposed.
307   */
308  inline static Local<T> New(Handle<T> that);
309};
310
311
312/**
313 * An object reference that is independent of any handle scope.  Where
314 * a Local handle only lives as long as the HandleScope in which it was
315 * allocated, a Persistent handle remains valid until it is explicitly
316 * disposed.
317 *
318 * A persistent handle contains a reference to a storage cell within
319 * the v8 engine which holds an object value and which is updated by
320 * the garbage collector whenever the object is moved.  A new storage
321 * cell can be created using Persistent::New and existing handles can
322 * be disposed using Persistent::Dispose.  Since persistent handles
323 * are passed by value you may have many persistent handle objects
324 * that point to the same storage cell.  For instance, if you pass a
325 * persistent handle as an argument to a function you will not get two
326 * different storage cells but rather two references to the same
327 * storage cell.
328 */
329template <class T> class Persistent : public Handle<T> {
330 public:
331
332  /**
333   * Creates an empty persistent handle that doesn't point to any
334   * storage cell.
335   */
336  inline Persistent();
337
338  /**
339   * Creates a persistent handle for the same storage cell as the
340   * specified handle.  This constructor allows you to pass persistent
341   * handles as arguments by value and to assign between persistent
342   * handles.  However, attempting to assign between incompatible
343   * persistent handles, for instance from a Persistent<String> to a
344   * Persistent<Number> will cause a compiletime error.  Assigning
345   * between compatible persistent handles, for instance assigning a
346   * Persistent<String> to a variable declared as Persistent<Value>,
347   * is allowed as String is a subclass of Value.
348   */
349  template <class S> inline Persistent(Persistent<S> that)
350      : Handle<T>(reinterpret_cast<T*>(*that)) {
351    /**
352     * This check fails when trying to convert between incompatible
353     * handles. For example, converting from a Handle<String> to a
354     * Handle<Number>.
355     */
356    TYPE_CHECK(T, S);
357  }
358
359  template <class S> inline Persistent(S* that) : Handle<T>(that) { }
360
361  /**
362   * "Casts" a plain handle which is known to be a persistent handle
363   * to a persistent handle.
364   */
365  template <class S> explicit inline Persistent(Handle<S> that)
366      : Handle<T>(*that) { }
367
368  template <class S> static inline Persistent<T> Cast(Persistent<S> that) {
369#ifdef V8_ENABLE_CHECKS
370    // If we're going to perform the type check then we have to check
371    // that the handle isn't empty before doing the checked cast.
372    if (that.IsEmpty()) return Persistent<T>();
373#endif
374    return Persistent<T>(T::Cast(*that));
375  }
376
377  template <class S> inline Persistent<S> As() {
378    return Persistent<S>::Cast(*this);
379  }
380
381  /**
382   * Creates a new persistent handle for an existing local or
383   * persistent handle.
384   */
385  inline static Persistent<T> New(Handle<T> that);
386
387  /**
388   * Releases the storage cell referenced by this persistent handle.
389   * Does not remove the reference to the cell from any handles.
390   * This handle's reference, and any any other references to the storage
391   * cell remain and IsEmpty will still return false.
392   */
393  inline void Dispose();
394
395  /**
396   * Make the reference to this object weak.  When only weak handles
397   * refer to the object, the garbage collector will perform a
398   * callback to the given V8::WeakReferenceCallback function, passing
399   * it the object reference and the given parameters.
400   */
401  inline void MakeWeak(void* parameters, WeakReferenceCallback callback);
402
403  /** Clears the weak reference to this object.*/
404  inline void ClearWeak();
405
406  /**
407   *Checks if the handle holds the only reference to an object.
408   */
409  inline bool IsNearDeath() const;
410
411  /**
412   * Returns true if the handle's reference is weak.
413   */
414  inline bool IsWeak() const;
415
416 private:
417  friend class ImplementationUtilities;
418  friend class ObjectTemplate;
419};
420
421
422 /**
423 * A stack-allocated class that governs a number of local handles.
424 * After a handle scope has been created, all local handles will be
425 * allocated within that handle scope until either the handle scope is
426 * deleted or another handle scope is created.  If there is already a
427 * handle scope and a new one is created, all allocations will take
428 * place in the new handle scope until it is deleted.  After that,
429 * new handles will again be allocated in the original handle scope.
430 *
431 * After the handle scope of a local handle has been deleted the
432 * garbage collector will no longer track the object stored in the
433 * handle and may deallocate it.  The behavior of accessing a handle
434 * for which the handle scope has been deleted is undefined.
435 */
436class V8EXPORT HandleScope {
437 public:
438  HandleScope();
439
440  ~HandleScope();
441
442  /**
443   * Closes the handle scope and returns the value as a handle in the
444   * previous scope, which is the new current scope after the call.
445   */
446  template <class T> Local<T> Close(Handle<T> value);
447
448  /**
449   * Counts the number of allocated handles.
450   */
451  static int NumberOfHandles();
452
453  /**
454   * Creates a new handle with the given value.
455   */
456  static internal::Object** CreateHandle(internal::Object* value);
457
458 private:
459  // Make it impossible to create heap-allocated or illegal handle
460  // scopes by disallowing certain operations.
461  HandleScope(const HandleScope&);
462  void operator=(const HandleScope&);
463  void* operator new(size_t size);
464  void operator delete(void*, size_t);
465
466  // This Data class is accessible internally as HandleScopeData through a
467  // typedef in the ImplementationUtilities class.
468  class V8EXPORT Data {
469   public:
470    int extensions;
471    internal::Object** next;
472    internal::Object** limit;
473    inline void Initialize() {
474      extensions = -1;
475      next = limit = NULL;
476    }
477  };
478
479  Data previous_;
480
481  // Allow for the active closing of HandleScopes which allows to pass a handle
482  // from the HandleScope being closed to the next top most HandleScope.
483  bool is_closed_;
484  internal::Object** RawClose(internal::Object** value);
485
486  friend class ImplementationUtilities;
487};
488
489
490// --- S p e c i a l   o b j e c t s ---
491
492
493/**
494 * The superclass of values and API object templates.
495 */
496class V8EXPORT Data {
497 private:
498  Data();
499};
500
501
502/**
503 * Pre-compilation data that can be associated with a script.  This
504 * data can be calculated for a script in advance of actually
505 * compiling it, and can be stored between compilations.  When script
506 * data is given to the compile method compilation will be faster.
507 */
508class V8EXPORT ScriptData {  // NOLINT
509 public:
510  virtual ~ScriptData() { }
511
512  /**
513   * Pre-compiles the specified script (context-independent).
514   *
515   * \param input Pointer to UTF-8 script source code.
516   * \param length Length of UTF-8 script source code.
517   */
518  static ScriptData* PreCompile(const char* input, int length);
519
520  /**
521   * Pre-compiles the specified script (context-independent).
522   *
523   * NOTE: Pre-compilation using this method cannot happen on another thread
524   * without using Lockers.
525   *
526   * \param source Script source code.
527   */
528  static ScriptData* PreCompile(Handle<String> source);
529
530  /**
531   * Load previous pre-compilation data.
532   *
533   * \param data Pointer to data returned by a call to Data() of a previous
534   *   ScriptData. Ownership is not transferred.
535   * \param length Length of data.
536   */
537  static ScriptData* New(const char* data, int length);
538
539  /**
540   * Returns the length of Data().
541   */
542  virtual int Length() = 0;
543
544  /**
545   * Returns a serialized representation of this ScriptData that can later be
546   * passed to New(). NOTE: Serialized data is platform-dependent.
547   */
548  virtual const char* Data() = 0;
549
550  /**
551   * Returns true if the source code could not be parsed.
552   */
553  virtual bool HasError() = 0;
554};
555
556
557/**
558 * The origin, within a file, of a script.
559 */
560class ScriptOrigin {
561 public:
562  inline ScriptOrigin(
563      Handle<Value> resource_name,
564      Handle<Integer> resource_line_offset = Handle<Integer>(),
565      Handle<Integer> resource_column_offset = Handle<Integer>())
566      : resource_name_(resource_name),
567        resource_line_offset_(resource_line_offset),
568        resource_column_offset_(resource_column_offset) { }
569  inline Handle<Value> ResourceName() const;
570  inline Handle<Integer> ResourceLineOffset() const;
571  inline Handle<Integer> ResourceColumnOffset() const;
572 private:
573  Handle<Value> resource_name_;
574  Handle<Integer> resource_line_offset_;
575  Handle<Integer> resource_column_offset_;
576};
577
578
579/**
580 * A compiled JavaScript script.
581 */
582class V8EXPORT Script {
583 public:
584
585  /**
586   * Compiles the specified script (context-independent).
587   *
588   * \param source Script source code.
589   * \param origin Script origin, owned by caller, no references are kept
590   *   when New() returns
591   * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
592   *   using pre_data speeds compilation if it's done multiple times.
593   *   Owned by caller, no references are kept when New() returns.
594   * \param script_data Arbitrary data associated with script. Using
595   *   this has same effect as calling SetData(), but allows data to be
596   *   available to compile event handlers.
597   * \return Compiled script object (context independent; when run it
598   *   will use the currently entered context).
599   */
600  static Local<Script> New(Handle<String> source,
601                           ScriptOrigin* origin = NULL,
602                           ScriptData* pre_data = NULL,
603                           Handle<String> script_data = Handle<String>());
604
605  /**
606   * Compiles the specified script using the specified file name
607   * object (typically a string) as the script's origin.
608   *
609   * \param source Script source code.
610   * \param file_name file name object (typically a string) to be used
611   *   as the script's origin.
612   * \return Compiled script object (context independent; when run it
613   *   will use the currently entered context).
614   */
615  static Local<Script> New(Handle<String> source,
616                           Handle<Value> file_name);
617
618  /**
619   * Compiles the specified script (bound to current context).
620   *
621   * \param source Script source code.
622   * \param origin Script origin, owned by caller, no references are kept
623   *   when Compile() returns
624   * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
625   *   using pre_data speeds compilation if it's done multiple times.
626   *   Owned by caller, no references are kept when Compile() returns.
627   * \param script_data Arbitrary data associated with script. Using
628   *   this has same effect as calling SetData(), but makes data available
629   *   earlier (i.e. to compile event handlers).
630   * \return Compiled script object, bound to the context that was active
631   *   when this function was called.  When run it will always use this
632   *   context.
633   */
634  static Local<Script> Compile(Handle<String> source,
635                               ScriptOrigin* origin = NULL,
636                               ScriptData* pre_data = NULL,
637                               Handle<String> script_data = Handle<String>());
638
639  /**
640   * Compiles the specified script using the specified file name
641   * object (typically a string) as the script's origin.
642   *
643   * \param source Script source code.
644   * \param file_name File name to use as script's origin
645   * \param script_data Arbitrary data associated with script. Using
646   *   this has same effect as calling SetData(), but makes data available
647   *   earlier (i.e. to compile event handlers).
648   * \return Compiled script object, bound to the context that was active
649   *   when this function was called.  When run it will always use this
650   *   context.
651   */
652  static Local<Script> Compile(Handle<String> source,
653                               Handle<Value> file_name,
654                               Handle<String> script_data = Handle<String>());
655
656  /**
657   * Runs the script returning the resulting value.  If the script is
658   * context independent (created using ::New) it will be run in the
659   * currently entered context.  If it is context specific (created
660   * using ::Compile) it will be run in the context in which it was
661   * compiled.
662   */
663  Local<Value> Run();
664
665  /**
666   * Returns the script id value.
667   */
668  Local<Value> Id();
669
670  /**
671   * Associate an additional data object with the script. This is mainly used
672   * with the debugger as this data object is only available through the
673   * debugger API.
674   */
675  void SetData(Handle<String> data);
676};
677
678
679/**
680 * An error message.
681 */
682class V8EXPORT Message {
683 public:
684  Local<String> Get() const;
685  Local<String> GetSourceLine() const;
686
687  /**
688   * Returns the resource name for the script from where the function causing
689   * the error originates.
690   */
691  Handle<Value> GetScriptResourceName() const;
692
693  /**
694   * Returns the resource data for the script from where the function causing
695   * the error originates.
696   */
697  Handle<Value> GetScriptData() const;
698
699  /**
700   * Exception stack trace. By default stack traces are not captured for
701   * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
702   * to change this option.
703   */
704  Handle<StackTrace> GetStackTrace() const;
705
706  /**
707   * Returns the number, 1-based, of the line where the error occurred.
708   */
709  int GetLineNumber() const;
710
711  /**
712   * Returns the index within the script of the first character where
713   * the error occurred.
714   */
715  int GetStartPosition() const;
716
717  /**
718   * Returns the index within the script of the last character where
719   * the error occurred.
720   */
721  int GetEndPosition() const;
722
723  /**
724   * Returns the index within the line of the first character where
725   * the error occurred.
726   */
727  int GetStartColumn() const;
728
729  /**
730   * Returns the index within the line of the last character where
731   * the error occurred.
732   */
733  int GetEndColumn() const;
734
735  // TODO(1245381): Print to a string instead of on a FILE.
736  static void PrintCurrentStackTrace(FILE* out);
737
738  static const int kNoLineNumberInfo = 0;
739  static const int kNoColumnInfo = 0;
740};
741
742
743/**
744 * Representation of a JavaScript stack trace. The information collected is a
745 * snapshot of the execution stack and the information remains valid after
746 * execution continues.
747 */
748class V8EXPORT StackTrace {
749 public:
750  /**
751   * Flags that determine what information is placed captured for each
752   * StackFrame when grabbing the current stack trace.
753   */
754  enum StackTraceOptions {
755    kLineNumber = 1,
756    kColumnOffset = 1 << 1 | kLineNumber,
757    kScriptName = 1 << 2,
758    kFunctionName = 1 << 3,
759    kIsEval = 1 << 4,
760    kIsConstructor = 1 << 5,
761    kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
762    kDetailed = kOverview | kIsEval | kIsConstructor
763  };
764
765  /**
766   * Returns a StackFrame at a particular index.
767   */
768  Local<StackFrame> GetFrame(uint32_t index) const;
769
770  /**
771   * Returns the number of StackFrames.
772   */
773  int GetFrameCount() const;
774
775  /**
776   * Returns StackTrace as a v8::Array that contains StackFrame objects.
777   */
778  Local<Array> AsArray();
779
780  /**
781   * Grab a snapshot of the the current JavaScript execution stack.
782   *
783   * \param frame_limit The maximum number of stack frames we want to capture.
784   * \param options Enumerates the set of things we will capture for each
785   *   StackFrame.
786   */
787  static Local<StackTrace> CurrentStackTrace(
788      int frame_limit,
789      StackTraceOptions options = kOverview);
790};
791
792
793/**
794 * A single JavaScript stack frame.
795 */
796class V8EXPORT StackFrame {
797 public:
798  /**
799   * Returns the number, 1-based, of the line for the associate function call.
800   * This method will return Message::kNoLineNumberInfo if it is unable to
801   * retrieve the line number, or if kLineNumber was not passed as an option
802   * when capturing the StackTrace.
803   */
804  int GetLineNumber() const;
805
806  /**
807   * Returns the 1-based column offset on the line for the associated function
808   * call.
809   * This method will return Message::kNoColumnInfo if it is unable to retrieve
810   * the column number, or if kColumnOffset was not passed as an option when
811   * capturing the StackTrace.
812   */
813  int GetColumn() const;
814
815  /**
816   * Returns the name of the resource that contains the script for the
817   * function for this StackFrame.
818   */
819  Local<String> GetScriptName() const;
820
821  /**
822   * Returns the name of the function associated with this stack frame.
823   */
824  Local<String> GetFunctionName() const;
825
826  /**
827   * Returns whether or not the associated function is compiled via a call to
828   * eval().
829   */
830  bool IsEval() const;
831
832  /**
833   * Returns whther or not the associated function is called as a
834   * constructor via "new".
835   */
836  bool IsConstructor() const;
837};
838
839
840// --- V a l u e ---
841
842
843/**
844 * The superclass of all JavaScript values and objects.
845 */
846class Value : public Data {
847 public:
848
849  /**
850   * Returns true if this value is the undefined value.  See ECMA-262
851   * 4.3.10.
852   */
853  V8EXPORT bool IsUndefined() const;
854
855  /**
856   * Returns true if this value is the null value.  See ECMA-262
857   * 4.3.11.
858   */
859  V8EXPORT bool IsNull() const;
860
861   /**
862   * Returns true if this value is true.
863   */
864  V8EXPORT bool IsTrue() const;
865
866  /**
867   * Returns true if this value is false.
868   */
869  V8EXPORT bool IsFalse() const;
870
871  /**
872   * Returns true if this value is an instance of the String type.
873   * See ECMA-262 8.4.
874   */
875  inline bool IsString() const;
876
877  /**
878   * Returns true if this value is a function.
879   */
880  V8EXPORT bool IsFunction() const;
881
882  /**
883   * Returns true if this value is an array.
884   */
885  V8EXPORT bool IsArray() const;
886
887  /**
888   * Returns true if this value is an object.
889   */
890  V8EXPORT bool IsObject() const;
891
892  /**
893   * Returns true if this value is boolean.
894   */
895  V8EXPORT bool IsBoolean() const;
896
897  /**
898   * Returns true if this value is a number.
899   */
900  V8EXPORT bool IsNumber() const;
901
902  /**
903   * Returns true if this value is external.
904   */
905  V8EXPORT bool IsExternal() const;
906
907  /**
908   * Returns true if this value is a 32-bit signed integer.
909   */
910  V8EXPORT bool IsInt32() const;
911
912  /**
913   * Returns true if this value is a 32-bit unsigned integer.
914   */
915  V8EXPORT bool IsUint32() const;
916
917  /**
918   * Returns true if this value is a Date.
919   */
920  V8EXPORT bool IsDate() const;
921
922  /**
923   * Returns true if this value is a RegExp.
924   */
925  V8EXPORT bool IsRegExp() const;
926
927  V8EXPORT Local<Boolean> ToBoolean() const;
928  V8EXPORT Local<Number> ToNumber() const;
929  V8EXPORT Local<String> ToString() const;
930  V8EXPORT Local<String> ToDetailString() const;
931  V8EXPORT Local<Object> ToObject() const;
932  V8EXPORT Local<Integer> ToInteger() const;
933  V8EXPORT Local<Uint32> ToUint32() const;
934  V8EXPORT Local<Int32> ToInt32() const;
935
936  /**
937   * Attempts to convert a string to an array index.
938   * Returns an empty handle if the conversion fails.
939   */
940  V8EXPORT Local<Uint32> ToArrayIndex() const;
941
942  V8EXPORT bool BooleanValue() const;
943  V8EXPORT double NumberValue() const;
944  V8EXPORT int64_t IntegerValue() const;
945  V8EXPORT uint32_t Uint32Value() const;
946  V8EXPORT int32_t Int32Value() const;
947
948  /** JS == */
949  V8EXPORT bool Equals(Handle<Value> that) const;
950  V8EXPORT bool StrictEquals(Handle<Value> that) const;
951
952 private:
953  inline bool QuickIsString() const;
954  V8EXPORT bool FullIsString() const;
955};
956
957
958/**
959 * The superclass of primitive values.  See ECMA-262 4.3.2.
960 */
961class Primitive : public Value { };
962
963
964/**
965 * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
966 * or false value.
967 */
968class Boolean : public Primitive {
969 public:
970  V8EXPORT bool Value() const;
971  static inline Handle<Boolean> New(bool value);
972};
973
974
975/**
976 * A JavaScript string value (ECMA-262, 4.3.17).
977 */
978class String : public Primitive {
979 public:
980
981  /**
982   * Returns the number of characters in this string.
983   */
984  V8EXPORT int Length() const;
985
986  /**
987   * Returns the number of bytes in the UTF-8 encoded
988   * representation of this string.
989   */
990  V8EXPORT int Utf8Length() const;
991
992  /**
993   * Write the contents of the string to an external buffer.
994   * If no arguments are given, expects the buffer to be large
995   * enough to hold the entire string and NULL terminator. Copies
996   * the contents of the string and the NULL terminator into the
997   * buffer.
998   *
999   * Copies up to length characters into the output buffer.
1000   * Only null-terminates if there is enough space in the buffer.
1001   *
1002   * \param buffer The buffer into which the string will be copied.
1003   * \param start The starting position within the string at which
1004   * copying begins.
1005   * \param length The number of bytes to copy from the string.
1006   * \param nchars_ref The number of characters written, can be NULL.
1007   * \param hints Various hints that might affect performance of this or
1008   *    subsequent operations.
1009   * \return The number of bytes copied to the buffer
1010   * excluding the NULL terminator.
1011   */
1012  enum WriteHints {
1013    NO_HINTS = 0,
1014    HINT_MANY_WRITES_EXPECTED = 1
1015  };
1016
1017  V8EXPORT int Write(uint16_t* buffer,
1018                     int start = 0,
1019                     int length = -1,
1020                     WriteHints hints = NO_HINTS) const;  // UTF-16
1021  V8EXPORT int WriteAscii(char* buffer,
1022                          int start = 0,
1023                          int length = -1,
1024                          WriteHints hints = NO_HINTS) const;  // ASCII
1025  V8EXPORT int WriteUtf8(char* buffer,
1026                         int length = -1,
1027                         int* nchars_ref = NULL,
1028                         WriteHints hints = NO_HINTS) const;  // UTF-8
1029
1030  /**
1031   * A zero length string.
1032   */
1033  V8EXPORT static v8::Local<v8::String> Empty();
1034
1035  /**
1036   * Returns true if the string is external
1037   */
1038  V8EXPORT bool IsExternal() const;
1039
1040  /**
1041   * Returns true if the string is both external and ascii
1042   */
1043  V8EXPORT bool IsExternalAscii() const;
1044
1045  class V8EXPORT ExternalStringResourceBase {
1046   public:
1047    virtual ~ExternalStringResourceBase() {}
1048
1049   protected:
1050    ExternalStringResourceBase() {}
1051
1052    /**
1053     * Internally V8 will call this Dispose method when the external string
1054     * resource is no longer needed. The default implementation will use the
1055     * delete operator. This method can be overridden in subclasses to
1056     * control how allocated external string resources are disposed.
1057     */
1058    virtual void Dispose() { delete this; }
1059
1060   private:
1061    // Disallow copying and assigning.
1062    ExternalStringResourceBase(const ExternalStringResourceBase&);
1063    void operator=(const ExternalStringResourceBase&);
1064
1065    friend class v8::internal::Heap;
1066  };
1067
1068  /**
1069   * An ExternalStringResource is a wrapper around a two-byte string
1070   * buffer that resides outside V8's heap. Implement an
1071   * ExternalStringResource to manage the life cycle of the underlying
1072   * buffer.  Note that the string data must be immutable.
1073   */
1074  class V8EXPORT ExternalStringResource
1075      : public ExternalStringResourceBase {
1076   public:
1077    /**
1078     * Override the destructor to manage the life cycle of the underlying
1079     * buffer.
1080     */
1081    virtual ~ExternalStringResource() {}
1082
1083    /**
1084     * The string data from the underlying buffer.
1085     */
1086    virtual const uint16_t* data() const = 0;
1087
1088    /**
1089     * The length of the string. That is, the number of two-byte characters.
1090     */
1091    virtual size_t length() const = 0;
1092
1093   protected:
1094    ExternalStringResource() {}
1095  };
1096
1097  /**
1098   * An ExternalAsciiStringResource is a wrapper around an ascii
1099   * string buffer that resides outside V8's heap. Implement an
1100   * ExternalAsciiStringResource to manage the life cycle of the
1101   * underlying buffer.  Note that the string data must be immutable
1102   * and that the data must be strict 7-bit ASCII, not Latin1 or
1103   * UTF-8, which would require special treatment internally in the
1104   * engine and, in the case of UTF-8, do not allow efficient indexing.
1105   * Use String::New or convert to 16 bit data for non-ASCII.
1106   */
1107
1108  class V8EXPORT ExternalAsciiStringResource
1109      : public ExternalStringResourceBase {
1110   public:
1111    /**
1112     * Override the destructor to manage the life cycle of the underlying
1113     * buffer.
1114     */
1115    virtual ~ExternalAsciiStringResource() {}
1116    /** The string data from the underlying buffer.*/
1117    virtual const char* data() const = 0;
1118    /** The number of ascii characters in the string.*/
1119    virtual size_t length() const = 0;
1120   protected:
1121    ExternalAsciiStringResource() {}
1122  };
1123
1124  /**
1125   * Get the ExternalStringResource for an external string.  Returns
1126   * NULL if IsExternal() doesn't return true.
1127   */
1128  inline ExternalStringResource* GetExternalStringResource() const;
1129
1130  /**
1131   * Get the ExternalAsciiStringResource for an external ascii string.
1132   * Returns NULL if IsExternalAscii() doesn't return true.
1133   */
1134  V8EXPORT ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
1135
1136  static inline String* Cast(v8::Value* obj);
1137
1138  /**
1139   * Allocates a new string from either utf-8 encoded or ascii data.
1140   * The second parameter 'length' gives the buffer length.
1141   * If the data is utf-8 encoded, the caller must
1142   * be careful to supply the length parameter.
1143   * If it is not given, the function calls
1144   * 'strlen' to determine the buffer length, it might be
1145   * wrong if 'data' contains a null character.
1146   */
1147  V8EXPORT static Local<String> New(const char* data, int length = -1);
1148
1149  /** Allocates a new string from utf16 data.*/
1150  V8EXPORT static Local<String> New(const uint16_t* data, int length = -1);
1151
1152  /** Creates a symbol. Returns one if it exists already.*/
1153  V8EXPORT static Local<String> NewSymbol(const char* data, int length = -1);
1154
1155  /**
1156   * Creates a new string by concatenating the left and the right strings
1157   * passed in as parameters.
1158   */
1159  V8EXPORT static Local<String> Concat(Handle<String> left,
1160                                       Handle<String>right);
1161
1162  /**
1163   * Creates a new external string using the data defined in the given
1164   * resource. When the external string is no longer live on V8's heap the
1165   * resource will be disposed by calling its Dispose method. The caller of
1166   * this function should not otherwise delete or modify the resource. Neither
1167   * should the underlying buffer be deallocated or modified except through the
1168   * destructor of the external string resource.
1169   */
1170  V8EXPORT static Local<String> NewExternal(ExternalStringResource* resource);
1171
1172  /**
1173   * Associate an external string resource with this string by transforming it
1174   * in place so that existing references to this string in the JavaScript heap
1175   * will use the external string resource. The external string resource's
1176   * character contents needs to be equivalent to this string.
1177   * Returns true if the string has been changed to be an external string.
1178   * The string is not modified if the operation fails. See NewExternal for
1179   * information on the lifetime of the resource.
1180   */
1181  V8EXPORT bool MakeExternal(ExternalStringResource* resource);
1182
1183  /**
1184   * Creates a new external string using the ascii data defined in the given
1185   * resource. When the external string is no longer live on V8's heap the
1186   * resource will be disposed by calling its Dispose method. The caller of
1187   * this function should not otherwise delete or modify the resource. Neither
1188   * should the underlying buffer be deallocated or modified except through the
1189   * destructor of the external string resource.
1190   */
1191  V8EXPORT static Local<String> NewExternal(
1192      ExternalAsciiStringResource* resource);
1193
1194  /**
1195   * Associate an external string resource with this string by transforming it
1196   * in place so that existing references to this string in the JavaScript heap
1197   * will use the external string resource. The external string resource's
1198   * character contents needs to be equivalent to this string.
1199   * Returns true if the string has been changed to be an external string.
1200   * The string is not modified if the operation fails. See NewExternal for
1201   * information on the lifetime of the resource.
1202   */
1203  V8EXPORT bool MakeExternal(ExternalAsciiStringResource* resource);
1204
1205  /**
1206   * Returns true if this string can be made external.
1207   */
1208  V8EXPORT bool CanMakeExternal();
1209
1210  /** Creates an undetectable string from the supplied ascii or utf-8 data.*/
1211  V8EXPORT static Local<String> NewUndetectable(const char* data,
1212                                                int length = -1);
1213
1214  /** Creates an undetectable string from the supplied utf-16 data.*/
1215  V8EXPORT static Local<String> NewUndetectable(const uint16_t* data,
1216                                                int length = -1);
1217
1218  /**
1219   * Converts an object to a utf8-encoded character array.  Useful if
1220   * you want to print the object.  If conversion to a string fails
1221   * (eg. due to an exception in the toString() method of the object)
1222   * then the length() method returns 0 and the * operator returns
1223   * NULL.
1224   */
1225  class V8EXPORT Utf8Value {
1226   public:
1227    explicit Utf8Value(Handle<v8::Value> obj);
1228    ~Utf8Value();
1229    char* operator*() { return str_; }
1230    const char* operator*() const { return str_; }
1231    int length() const { return length_; }
1232   private:
1233    char* str_;
1234    int length_;
1235
1236    // Disallow copying and assigning.
1237    Utf8Value(const Utf8Value&);
1238    void operator=(const Utf8Value&);
1239  };
1240
1241  /**
1242   * Converts an object to an ascii string.
1243   * Useful if you want to print the object.
1244   * If conversion to a string fails (eg. due to an exception in the toString()
1245   * method of the object) then the length() method returns 0 and the * operator
1246   * returns NULL.
1247   */
1248  class V8EXPORT AsciiValue {
1249   public:
1250    explicit AsciiValue(Handle<v8::Value> obj);
1251    ~AsciiValue();
1252    char* operator*() { return str_; }
1253    const char* operator*() const { return str_; }
1254    int length() const { return length_; }
1255   private:
1256    char* str_;
1257    int length_;
1258
1259    // Disallow copying and assigning.
1260    AsciiValue(const AsciiValue&);
1261    void operator=(const AsciiValue&);
1262  };
1263
1264  /**
1265   * Converts an object to a two-byte string.
1266   * If conversion to a string fails (eg. due to an exception in the toString()
1267   * method of the object) then the length() method returns 0 and the * operator
1268   * returns NULL.
1269   */
1270  class V8EXPORT Value {
1271   public:
1272    explicit Value(Handle<v8::Value> obj);
1273    ~Value();
1274    uint16_t* operator*() { return str_; }
1275    const uint16_t* operator*() const { return str_; }
1276    int length() const { return length_; }
1277   private:
1278    uint16_t* str_;
1279    int length_;
1280
1281    // Disallow copying and assigning.
1282    Value(const Value&);
1283    void operator=(const Value&);
1284  };
1285
1286 private:
1287  V8EXPORT void VerifyExternalStringResource(ExternalStringResource* val) const;
1288  V8EXPORT static void CheckCast(v8::Value* obj);
1289};
1290
1291
1292/**
1293 * A JavaScript number value (ECMA-262, 4.3.20)
1294 */
1295class Number : public Primitive {
1296 public:
1297  V8EXPORT double Value() const;
1298  V8EXPORT static Local<Number> New(double value);
1299  static inline Number* Cast(v8::Value* obj);
1300 private:
1301  V8EXPORT Number();
1302  static void CheckCast(v8::Value* obj);
1303};
1304
1305
1306/**
1307 * A JavaScript value representing a signed integer.
1308 */
1309class Integer : public Number {
1310 public:
1311  V8EXPORT static Local<Integer> New(int32_t value);
1312  V8EXPORT static Local<Integer> NewFromUnsigned(uint32_t value);
1313  V8EXPORT int64_t Value() const;
1314  static inline Integer* Cast(v8::Value* obj);
1315 private:
1316  V8EXPORT Integer();
1317  V8EXPORT static void CheckCast(v8::Value* obj);
1318};
1319
1320
1321/**
1322 * A JavaScript value representing a 32-bit signed integer.
1323 */
1324class Int32 : public Integer {
1325 public:
1326  V8EXPORT int32_t Value() const;
1327 private:
1328  V8EXPORT Int32();
1329};
1330
1331
1332/**
1333 * A JavaScript value representing a 32-bit unsigned integer.
1334 */
1335class Uint32 : public Integer {
1336 public:
1337  V8EXPORT uint32_t Value() const;
1338 private:
1339  V8EXPORT Uint32();
1340};
1341
1342
1343/**
1344 * An instance of the built-in Date constructor (ECMA-262, 15.9).
1345 */
1346class Date : public Value {
1347 public:
1348  V8EXPORT static Local<Value> New(double time);
1349
1350  /**
1351   * A specialization of Value::NumberValue that is more efficient
1352   * because we know the structure of this object.
1353   */
1354  V8EXPORT double NumberValue() const;
1355
1356  static inline Date* Cast(v8::Value* obj);
1357 private:
1358  V8EXPORT static void CheckCast(v8::Value* obj);
1359};
1360
1361
1362enum PropertyAttribute {
1363  None       = 0,
1364  ReadOnly   = 1 << 0,
1365  DontEnum   = 1 << 1,
1366  DontDelete = 1 << 2
1367};
1368
1369enum ExternalArrayType {
1370  kExternalByteArray = 1,
1371  kExternalUnsignedByteArray,
1372  kExternalShortArray,
1373  kExternalUnsignedShortArray,
1374  kExternalIntArray,
1375  kExternalUnsignedIntArray,
1376  kExternalFloatArray
1377};
1378
1379/**
1380 * Accessor[Getter|Setter] are used as callback functions when
1381 * setting|getting a particular property. See Object and ObjectTemplate's
1382 * method SetAccessor.
1383 */
1384typedef Handle<Value> (*AccessorGetter)(Local<String> property,
1385                                        const AccessorInfo& info);
1386
1387
1388typedef void (*AccessorSetter)(Local<String> property,
1389                               Local<Value> value,
1390                               const AccessorInfo& info);
1391
1392
1393/**
1394 * Access control specifications.
1395 *
1396 * Some accessors should be accessible across contexts.  These
1397 * accessors have an explicit access control parameter which specifies
1398 * the kind of cross-context access that should be allowed.
1399 *
1400 * Additionally, for security, accessors can prohibit overwriting by
1401 * accessors defined in JavaScript.  For objects that have such
1402 * accessors either locally or in their prototype chain it is not
1403 * possible to overwrite the accessor by using __defineGetter__ or
1404 * __defineSetter__ from JavaScript code.
1405 */
1406enum AccessControl {
1407  DEFAULT               = 0,
1408  ALL_CAN_READ          = 1,
1409  ALL_CAN_WRITE         = 1 << 1,
1410  PROHIBITS_OVERWRITING = 1 << 2
1411};
1412
1413
1414/**
1415 * A JavaScript object (ECMA-262, 4.3.3)
1416 */
1417class Object : public Value {
1418 public:
1419  V8EXPORT bool Set(Handle<Value> key,
1420                    Handle<Value> value,
1421                    PropertyAttribute attribs = None);
1422
1423  V8EXPORT bool Set(uint32_t index,
1424                    Handle<Value> value);
1425
1426  // Sets a local property on this object bypassing interceptors and
1427  // overriding accessors or read-only properties.
1428  //
1429  // Note that if the object has an interceptor the property will be set
1430  // locally, but since the interceptor takes precedence the local property
1431  // will only be returned if the interceptor doesn't return a value.
1432  //
1433  // Note also that this only works for named properties.
1434  V8EXPORT bool ForceSet(Handle<Value> key,
1435                         Handle<Value> value,
1436                         PropertyAttribute attribs = None);
1437
1438  V8EXPORT Local<Value> Get(Handle<Value> key);
1439
1440  V8EXPORT Local<Value> Get(uint32_t index);
1441
1442  // TODO(1245389): Replace the type-specific versions of these
1443  // functions with generic ones that accept a Handle<Value> key.
1444  V8EXPORT bool Has(Handle<String> key);
1445
1446  V8EXPORT bool Delete(Handle<String> key);
1447
1448  // Delete a property on this object bypassing interceptors and
1449  // ignoring dont-delete attributes.
1450  V8EXPORT bool ForceDelete(Handle<Value> key);
1451
1452  V8EXPORT bool Has(uint32_t index);
1453
1454  V8EXPORT bool Delete(uint32_t index);
1455
1456  V8EXPORT bool SetAccessor(Handle<String> name,
1457                            AccessorGetter getter,
1458                            AccessorSetter setter = 0,
1459                            Handle<Value> data = Handle<Value>(),
1460                            AccessControl settings = DEFAULT,
1461                            PropertyAttribute attribute = None);
1462
1463  /**
1464   * Returns an array containing the names of the enumerable properties
1465   * of this object, including properties from prototype objects.  The
1466   * array returned by this method contains the same values as would
1467   * be enumerated by a for-in statement over this object.
1468   */
1469  V8EXPORT Local<Array> GetPropertyNames();
1470
1471  /**
1472   * Get the prototype object.  This does not skip objects marked to
1473   * be skipped by __proto__ and it does not consult the security
1474   * handler.
1475   */
1476  V8EXPORT Local<Value> GetPrototype();
1477
1478  /**
1479   * Set the prototype object.  This does not skip objects marked to
1480   * be skipped by __proto__ and it does not consult the security
1481   * handler.
1482   */
1483  V8EXPORT bool SetPrototype(Handle<Value> prototype);
1484
1485  /**
1486   * Finds an instance of the given function template in the prototype
1487   * chain.
1488   */
1489  V8EXPORT Local<Object> FindInstanceInPrototypeChain(
1490      Handle<FunctionTemplate> tmpl);
1491
1492  /**
1493   * Call builtin Object.prototype.toString on this object.
1494   * This is different from Value::ToString() that may call
1495   * user-defined toString function. This one does not.
1496   */
1497  V8EXPORT Local<String> ObjectProtoToString();
1498
1499  /** Gets the number of internal fields for this Object. */
1500  V8EXPORT int InternalFieldCount();
1501  /** Gets the value in an internal field. */
1502  inline Local<Value> GetInternalField(int index);
1503  /** Sets the value in an internal field. */
1504  V8EXPORT void SetInternalField(int index, Handle<Value> value);
1505
1506  /** Gets a native pointer from an internal field. */
1507  inline void* GetPointerFromInternalField(int index);
1508
1509  /** Sets a native pointer in an internal field. */
1510  V8EXPORT void SetPointerInInternalField(int index, void* value);
1511
1512  // Testers for local properties.
1513  V8EXPORT bool HasRealNamedProperty(Handle<String> key);
1514  V8EXPORT bool HasRealIndexedProperty(uint32_t index);
1515  V8EXPORT bool HasRealNamedCallbackProperty(Handle<String> key);
1516
1517  /**
1518   * If result.IsEmpty() no real property was located in the prototype chain.
1519   * This means interceptors in the prototype chain are not called.
1520   */
1521  V8EXPORT Local<Value> GetRealNamedPropertyInPrototypeChain(
1522      Handle<String> key);
1523
1524  /**
1525   * If result.IsEmpty() no real property was located on the object or
1526   * in the prototype chain.
1527   * This means interceptors in the prototype chain are not called.
1528   */
1529  V8EXPORT Local<Value> GetRealNamedProperty(Handle<String> key);
1530
1531  /** Tests for a named lookup interceptor.*/
1532  V8EXPORT bool HasNamedLookupInterceptor();
1533
1534  /** Tests for an index lookup interceptor.*/
1535  V8EXPORT bool HasIndexedLookupInterceptor();
1536
1537  /**
1538   * Turns on access check on the object if the object is an instance of
1539   * a template that has access check callbacks. If an object has no
1540   * access check info, the object cannot be accessed by anyone.
1541   */
1542  V8EXPORT void TurnOnAccessCheck();
1543
1544  /**
1545   * Returns the identity hash for this object. The current implemenation uses
1546   * a hidden property on the object to store the identity hash.
1547   *
1548   * The return value will never be 0. Also, it is not guaranteed to be
1549   * unique.
1550   */
1551  V8EXPORT int GetIdentityHash();
1552
1553  /**
1554   * Access hidden properties on JavaScript objects. These properties are
1555   * hidden from the executing JavaScript and only accessible through the V8
1556   * C++ API. Hidden properties introduced by V8 internally (for example the
1557   * identity hash) are prefixed with "v8::".
1558   */
1559  V8EXPORT bool SetHiddenValue(Handle<String> key, Handle<Value> value);
1560  V8EXPORT Local<Value> GetHiddenValue(Handle<String> key);
1561  V8EXPORT bool DeleteHiddenValue(Handle<String> key);
1562
1563  /**
1564   * Returns true if this is an instance of an api function (one
1565   * created from a function created from a function template) and has
1566   * been modified since it was created.  Note that this method is
1567   * conservative and may return true for objects that haven't actually
1568   * been modified.
1569   */
1570  V8EXPORT bool IsDirty();
1571
1572  /**
1573   * Clone this object with a fast but shallow copy.  Values will point
1574   * to the same values as the original object.
1575   */
1576  V8EXPORT Local<Object> Clone();
1577
1578  /**
1579   * Set the backing store of the indexed properties to be managed by the
1580   * embedding layer. Access to the indexed properties will follow the rules
1581   * spelled out in CanvasPixelArray.
1582   * Note: The embedding program still owns the data and needs to ensure that
1583   *       the backing store is preserved while V8 has a reference.
1584   */
1585  V8EXPORT void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
1586  bool HasIndexedPropertiesInPixelData();
1587  uint8_t* GetIndexedPropertiesPixelData();
1588  int GetIndexedPropertiesPixelDataLength();
1589
1590  /**
1591   * Set the backing store of the indexed properties to be managed by the
1592   * embedding layer. Access to the indexed properties will follow the rules
1593   * spelled out for the CanvasArray subtypes in the WebGL specification.
1594   * Note: The embedding program still owns the data and needs to ensure that
1595   *       the backing store is preserved while V8 has a reference.
1596   */
1597  V8EXPORT void SetIndexedPropertiesToExternalArrayData(
1598      void* data,
1599      ExternalArrayType array_type,
1600      int number_of_elements);
1601  bool HasIndexedPropertiesInExternalArrayData();
1602  void* GetIndexedPropertiesExternalArrayData();
1603  ExternalArrayType GetIndexedPropertiesExternalArrayDataType();
1604  int GetIndexedPropertiesExternalArrayDataLength();
1605
1606  V8EXPORT static Local<Object> New();
1607  static inline Object* Cast(Value* obj);
1608 private:
1609  V8EXPORT Object();
1610  V8EXPORT static void CheckCast(Value* obj);
1611  V8EXPORT Local<Value> CheckedGetInternalField(int index);
1612  V8EXPORT void* SlowGetPointerFromInternalField(int index);
1613
1614  /**
1615   * If quick access to the internal field is possible this method
1616   * returns the value.  Otherwise an empty handle is returned.
1617   */
1618  inline Local<Value> UncheckedGetInternalField(int index);
1619};
1620
1621
1622/**
1623 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
1624 */
1625class Array : public Object {
1626 public:
1627  V8EXPORT uint32_t Length() const;
1628
1629  /**
1630   * Clones an element at index |index|.  Returns an empty
1631   * handle if cloning fails (for any reason).
1632   */
1633  V8EXPORT Local<Object> CloneElementAt(uint32_t index);
1634
1635  V8EXPORT static Local<Array> New(int length = 0);
1636  static inline Array* Cast(Value* obj);
1637 private:
1638  V8EXPORT Array();
1639  static void CheckCast(Value* obj);
1640};
1641
1642
1643/**
1644 * A JavaScript function object (ECMA-262, 15.3).
1645 */
1646class Function : public Object {
1647 public:
1648  V8EXPORT Local<Object> NewInstance() const;
1649  V8EXPORT Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
1650  V8EXPORT Local<Value> Call(Handle<Object> recv,
1651                             int argc,
1652                             Handle<Value> argv[]);
1653  V8EXPORT void SetName(Handle<String> name);
1654  V8EXPORT Handle<Value> GetName() const;
1655
1656  /**
1657   * Returns zero based line number of function body and
1658   * kLineOffsetNotFound if no information available.
1659   */
1660  V8EXPORT int GetScriptLineNumber() const;
1661  V8EXPORT ScriptOrigin GetScriptOrigin() const;
1662  static inline Function* Cast(Value* obj);
1663  V8EXPORT static const int kLineOffsetNotFound;
1664 private:
1665  V8EXPORT Function();
1666  V8EXPORT static void CheckCast(Value* obj);
1667};
1668
1669
1670/**
1671 * A JavaScript value that wraps a C++ void*.  This type of value is
1672 * mainly used to associate C++ data structures with JavaScript
1673 * objects.
1674 *
1675 * The Wrap function V8 will return the most optimal Value object wrapping the
1676 * C++ void*. The type of the value is not guaranteed to be an External object
1677 * and no assumptions about its type should be made. To access the wrapped
1678 * value Unwrap should be used, all other operations on that object will lead
1679 * to unpredictable results.
1680 */
1681class External : public Value {
1682 public:
1683  V8EXPORT static Local<Value> Wrap(void* data);
1684  static inline void* Unwrap(Handle<Value> obj);
1685
1686  V8EXPORT static Local<External> New(void* value);
1687  static inline External* Cast(Value* obj);
1688  V8EXPORT void* Value() const;
1689 private:
1690  V8EXPORT External();
1691  V8EXPORT static void CheckCast(v8::Value* obj);
1692  static inline void* QuickUnwrap(Handle<v8::Value> obj);
1693  V8EXPORT static void* FullUnwrap(Handle<v8::Value> obj);
1694};
1695
1696
1697// --- T e m p l a t e s ---
1698
1699
1700/**
1701 * The superclass of object and function templates.
1702 */
1703class V8EXPORT Template : public Data {
1704 public:
1705  /** Adds a property to each instance created by this template.*/
1706  void Set(Handle<String> name, Handle<Data> value,
1707           PropertyAttribute attributes = None);
1708  inline void Set(const char* name, Handle<Data> value);
1709 private:
1710  Template();
1711
1712  friend class ObjectTemplate;
1713  friend class FunctionTemplate;
1714};
1715
1716
1717/**
1718 * The argument information given to function call callbacks.  This
1719 * class provides access to information about the context of the call,
1720 * including the receiver, the number and values of arguments, and
1721 * the holder of the function.
1722 */
1723class Arguments {
1724 public:
1725  inline int Length() const;
1726  inline Local<Value> operator[](int i) const;
1727  inline Local<Function> Callee() const;
1728  inline Local<Object> This() const;
1729  inline Local<Object> Holder() const;
1730  inline bool IsConstructCall() const;
1731  inline Local<Value> Data() const;
1732 private:
1733  friend class ImplementationUtilities;
1734  inline Arguments(Local<Value> data,
1735                   Local<Object> holder,
1736                   Local<Function> callee,
1737                   bool is_construct_call,
1738                   void** values, int length);
1739  Local<Value> data_;
1740  Local<Object> holder_;
1741  Local<Function> callee_;
1742  bool is_construct_call_;
1743  void** values_;
1744  int length_;
1745};
1746
1747
1748/**
1749 * The information passed to an accessor callback about the context
1750 * of the property access.
1751 */
1752class V8EXPORT AccessorInfo {
1753 public:
1754  inline AccessorInfo(internal::Object** args)
1755      : args_(args) { }
1756  inline Local<Value> Data() const;
1757  inline Local<Object> This() const;
1758  inline Local<Object> Holder() const;
1759 private:
1760  internal::Object** args_;
1761};
1762
1763
1764typedef Handle<Value> (*InvocationCallback)(const Arguments& args);
1765
1766/**
1767 * NamedProperty[Getter|Setter] are used as interceptors on object.
1768 * See ObjectTemplate::SetNamedPropertyHandler.
1769 */
1770typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property,
1771                                             const AccessorInfo& info);
1772
1773
1774/**
1775 * Returns the value if the setter intercepts the request.
1776 * Otherwise, returns an empty handle.
1777 */
1778typedef Handle<Value> (*NamedPropertySetter)(Local<String> property,
1779                                             Local<Value> value,
1780                                             const AccessorInfo& info);
1781
1782/**
1783 * Returns a non-empty handle if the interceptor intercepts the request.
1784 * The result is an integer encoding property attributes (like v8::None,
1785 * v8::DontEnum, etc.)
1786 */
1787typedef Handle<Integer> (*NamedPropertyQuery)(Local<String> property,
1788                                              const AccessorInfo& info);
1789
1790
1791/**
1792 * Returns a non-empty handle if the deleter intercepts the request.
1793 * The return value is true if the property could be deleted and false
1794 * otherwise.
1795 */
1796typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property,
1797                                                const AccessorInfo& info);
1798
1799/**
1800 * Returns an array containing the names of the properties the named
1801 * property getter intercepts.
1802 */
1803typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info);
1804
1805
1806/**
1807 * Returns the value of the property if the getter intercepts the
1808 * request.  Otherwise, returns an empty handle.
1809 */
1810typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index,
1811                                               const AccessorInfo& info);
1812
1813
1814/**
1815 * Returns the value if the setter intercepts the request.
1816 * Otherwise, returns an empty handle.
1817 */
1818typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index,
1819                                               Local<Value> value,
1820                                               const AccessorInfo& info);
1821
1822
1823/**
1824 * Returns a non-empty handle if the interceptor intercepts the request.
1825 * The result is an integer encoding property attributes.
1826 */
1827typedef Handle<Integer> (*IndexedPropertyQuery)(uint32_t index,
1828                                                const AccessorInfo& info);
1829
1830/**
1831 * Returns a non-empty handle if the deleter intercepts the request.
1832 * The return value is true if the property could be deleted and false
1833 * otherwise.
1834 */
1835typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index,
1836                                                  const AccessorInfo& info);
1837
1838/**
1839 * Returns an array containing the indices of the properties the
1840 * indexed property getter intercepts.
1841 */
1842typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info);
1843
1844
1845/**
1846 * Access type specification.
1847 */
1848enum AccessType {
1849  ACCESS_GET,
1850  ACCESS_SET,
1851  ACCESS_HAS,
1852  ACCESS_DELETE,
1853  ACCESS_KEYS
1854};
1855
1856
1857/**
1858 * Returns true if cross-context access should be allowed to the named
1859 * property with the given key on the host object.
1860 */
1861typedef bool (*NamedSecurityCallback)(Local<Object> host,
1862                                      Local<Value> key,
1863                                      AccessType type,
1864                                      Local<Value> data);
1865
1866
1867/**
1868 * Returns true if cross-context access should be allowed to the indexed
1869 * property with the given index on the host object.
1870 */
1871typedef bool (*IndexedSecurityCallback)(Local<Object> host,
1872                                        uint32_t index,
1873                                        AccessType type,
1874                                        Local<Value> data);
1875
1876
1877/**
1878 * A FunctionTemplate is used to create functions at runtime. There
1879 * can only be one function created from a FunctionTemplate in a
1880 * context.  The lifetime of the created function is equal to the
1881 * lifetime of the context.  So in case the embedder needs to create
1882 * temporary functions that can be collected using Scripts is
1883 * preferred.
1884 *
1885 * A FunctionTemplate can have properties, these properties are added to the
1886 * function object when it is created.
1887 *
1888 * A FunctionTemplate has a corresponding instance template which is
1889 * used to create object instances when the function is used as a
1890 * constructor. Properties added to the instance template are added to
1891 * each object instance.
1892 *
1893 * A FunctionTemplate can have a prototype template. The prototype template
1894 * is used to create the prototype object of the function.
1895 *
1896 * The following example shows how to use a FunctionTemplate:
1897 *
1898 * \code
1899 *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
1900 *    t->Set("func_property", v8::Number::New(1));
1901 *
1902 *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
1903 *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
1904 *    proto_t->Set("proto_const", v8::Number::New(2));
1905 *
1906 *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
1907 *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
1908 *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
1909 *    instance_t->Set("instance_property", Number::New(3));
1910 *
1911 *    v8::Local<v8::Function> function = t->GetFunction();
1912 *    v8::Local<v8::Object> instance = function->NewInstance();
1913 * \endcode
1914 *
1915 * Let's use "function" as the JS variable name of the function object
1916 * and "instance" for the instance object created above.  The function
1917 * and the instance will have the following properties:
1918 *
1919 * \code
1920 *   func_property in function == true;
1921 *   function.func_property == 1;
1922 *
1923 *   function.prototype.proto_method() invokes 'InvokeCallback'
1924 *   function.prototype.proto_const == 2;
1925 *
1926 *   instance instanceof function == true;
1927 *   instance.instance_accessor calls 'InstanceAccessorCallback'
1928 *   instance.instance_property == 3;
1929 * \endcode
1930 *
1931 * A FunctionTemplate can inherit from another one by calling the
1932 * FunctionTemplate::Inherit method.  The following graph illustrates
1933 * the semantics of inheritance:
1934 *
1935 * \code
1936 *   FunctionTemplate Parent  -> Parent() . prototype -> { }
1937 *     ^                                                  ^
1938 *     | Inherit(Parent)                                  | .__proto__
1939 *     |                                                  |
1940 *   FunctionTemplate Child   -> Child()  . prototype -> { }
1941 * \endcode
1942 *
1943 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
1944 * object of the Child() function has __proto__ pointing to the
1945 * Parent() function's prototype object. An instance of the Child
1946 * function has all properties on Parent's instance templates.
1947 *
1948 * Let Parent be the FunctionTemplate initialized in the previous
1949 * section and create a Child FunctionTemplate by:
1950 *
1951 * \code
1952 *   Local<FunctionTemplate> parent = t;
1953 *   Local<FunctionTemplate> child = FunctionTemplate::New();
1954 *   child->Inherit(parent);
1955 *
1956 *   Local<Function> child_function = child->GetFunction();
1957 *   Local<Object> child_instance = child_function->NewInstance();
1958 * \endcode
1959 *
1960 * The Child function and Child instance will have the following
1961 * properties:
1962 *
1963 * \code
1964 *   child_func.prototype.__proto__ == function.prototype;
1965 *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
1966 *   child_instance.instance_property == 3;
1967 * \endcode
1968 */
1969class V8EXPORT FunctionTemplate : public Template {
1970 public:
1971  /** Creates a function template.*/
1972  static Local<FunctionTemplate> New(
1973      InvocationCallback callback = 0,
1974      Handle<Value> data = Handle<Value>(),
1975      Handle<Signature> signature = Handle<Signature>());
1976  /** Returns the unique function instance in the current execution context.*/
1977  Local<Function> GetFunction();
1978
1979  /**
1980   * Set the call-handler callback for a FunctionTemplate.  This
1981   * callback is called whenever the function created from this
1982   * FunctionTemplate is called.
1983   */
1984  void SetCallHandler(InvocationCallback callback,
1985                      Handle<Value> data = Handle<Value>());
1986
1987  /** Get the InstanceTemplate. */
1988  Local<ObjectTemplate> InstanceTemplate();
1989
1990  /** Causes the function template to inherit from a parent function template.*/
1991  void Inherit(Handle<FunctionTemplate> parent);
1992
1993  /**
1994   * A PrototypeTemplate is the template used to create the prototype object
1995   * of the function created by this template.
1996   */
1997  Local<ObjectTemplate> PrototypeTemplate();
1998
1999
2000  /**
2001   * Set the class name of the FunctionTemplate.  This is used for
2002   * printing objects created with the function created from the
2003   * FunctionTemplate as its constructor.
2004   */
2005  void SetClassName(Handle<String> name);
2006
2007  /**
2008   * Determines whether the __proto__ accessor ignores instances of
2009   * the function template.  If instances of the function template are
2010   * ignored, __proto__ skips all instances and instead returns the
2011   * next object in the prototype chain.
2012   *
2013   * Call with a value of true to make the __proto__ accessor ignore
2014   * instances of the function template.  Call with a value of false
2015   * to make the __proto__ accessor not ignore instances of the
2016   * function template.  By default, instances of a function template
2017   * are not ignored.
2018   */
2019  void SetHiddenPrototype(bool value);
2020
2021  /**
2022   * Returns true if the given object is an instance of this function
2023   * template.
2024   */
2025  bool HasInstance(Handle<Value> object);
2026
2027 private:
2028  FunctionTemplate();
2029  void AddInstancePropertyAccessor(Handle<String> name,
2030                                   AccessorGetter getter,
2031                                   AccessorSetter setter,
2032                                   Handle<Value> data,
2033                                   AccessControl settings,
2034                                   PropertyAttribute attributes);
2035  void SetNamedInstancePropertyHandler(NamedPropertyGetter getter,
2036                                       NamedPropertySetter setter,
2037                                       NamedPropertyQuery query,
2038                                       NamedPropertyDeleter remover,
2039                                       NamedPropertyEnumerator enumerator,
2040                                       Handle<Value> data);
2041  void SetIndexedInstancePropertyHandler(IndexedPropertyGetter getter,
2042                                         IndexedPropertySetter setter,
2043                                         IndexedPropertyQuery query,
2044                                         IndexedPropertyDeleter remover,
2045                                         IndexedPropertyEnumerator enumerator,
2046                                         Handle<Value> data);
2047  void SetInstanceCallAsFunctionHandler(InvocationCallback callback,
2048                                        Handle<Value> data);
2049
2050  friend class Context;
2051  friend class ObjectTemplate;
2052};
2053
2054
2055/**
2056 * An ObjectTemplate is used to create objects at runtime.
2057 *
2058 * Properties added to an ObjectTemplate are added to each object
2059 * created from the ObjectTemplate.
2060 */
2061class V8EXPORT ObjectTemplate : public Template {
2062 public:
2063  /** Creates an ObjectTemplate. */
2064  static Local<ObjectTemplate> New();
2065
2066  /** Creates a new instance of this template.*/
2067  Local<Object> NewInstance();
2068
2069  /**
2070   * Sets an accessor on the object template.
2071   *
2072   * Whenever the property with the given name is accessed on objects
2073   * created from this ObjectTemplate the getter and setter callbacks
2074   * are called instead of getting and setting the property directly
2075   * on the JavaScript object.
2076   *
2077   * \param name The name of the property for which an accessor is added.
2078   * \param getter The callback to invoke when getting the property.
2079   * \param setter The callback to invoke when setting the property.
2080   * \param data A piece of data that will be passed to the getter and setter
2081   *   callbacks whenever they are invoked.
2082   * \param settings Access control settings for the accessor. This is a bit
2083   *   field consisting of one of more of
2084   *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
2085   *   The default is to not allow cross-context access.
2086   *   ALL_CAN_READ means that all cross-context reads are allowed.
2087   *   ALL_CAN_WRITE means that all cross-context writes are allowed.
2088   *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
2089   *   cross-context access.
2090   * \param attribute The attributes of the property for which an accessor
2091   *   is added.
2092   */
2093  void SetAccessor(Handle<String> name,
2094                   AccessorGetter getter,
2095                   AccessorSetter setter = 0,
2096                   Handle<Value> data = Handle<Value>(),
2097                   AccessControl settings = DEFAULT,
2098                   PropertyAttribute attribute = None);
2099
2100  /**
2101   * Sets a named property handler on the object template.
2102   *
2103   * Whenever a named property is accessed on objects created from
2104   * this object template, the provided callback is invoked instead of
2105   * accessing the property directly on the JavaScript object.
2106   *
2107   * \param getter The callback to invoke when getting a property.
2108   * \param setter The callback to invoke when setting a property.
2109   * \param query The callback to invoke to check if a property is present,
2110   *   and if present, get its attributes.
2111   * \param deleter The callback to invoke when deleting a property.
2112   * \param enumerator The callback to invoke to enumerate all the named
2113   *   properties of an object.
2114   * \param data A piece of data that will be passed to the callbacks
2115   *   whenever they are invoked.
2116   */
2117  void SetNamedPropertyHandler(NamedPropertyGetter getter,
2118                               NamedPropertySetter setter = 0,
2119                               NamedPropertyQuery query = 0,
2120                               NamedPropertyDeleter deleter = 0,
2121                               NamedPropertyEnumerator enumerator = 0,
2122                               Handle<Value> data = Handle<Value>());
2123
2124  /**
2125   * Sets an indexed property handler on the object template.
2126   *
2127   * Whenever an indexed property is accessed on objects created from
2128   * this object template, the provided callback is invoked instead of
2129   * accessing the property directly on the JavaScript object.
2130   *
2131   * \param getter The callback to invoke when getting a property.
2132   * \param setter The callback to invoke when setting a property.
2133   * \param query The callback to invoke to check is an object has a property.
2134   * \param deleter The callback to invoke when deleting a property.
2135   * \param enumerator The callback to invoke to enumerate all the indexed
2136   *   properties of an object.
2137   * \param data A piece of data that will be passed to the callbacks
2138   *   whenever they are invoked.
2139   */
2140  void SetIndexedPropertyHandler(IndexedPropertyGetter getter,
2141                                 IndexedPropertySetter setter = 0,
2142                                 IndexedPropertyQuery query = 0,
2143                                 IndexedPropertyDeleter deleter = 0,
2144                                 IndexedPropertyEnumerator enumerator = 0,
2145                                 Handle<Value> data = Handle<Value>());
2146
2147  /**
2148   * Sets the callback to be used when calling instances created from
2149   * this template as a function.  If no callback is set, instances
2150   * behave like normal JavaScript objects that cannot be called as a
2151   * function.
2152   */
2153  void SetCallAsFunctionHandler(InvocationCallback callback,
2154                                Handle<Value> data = Handle<Value>());
2155
2156  /**
2157   * Mark object instances of the template as undetectable.
2158   *
2159   * In many ways, undetectable objects behave as though they are not
2160   * there.  They behave like 'undefined' in conditionals and when
2161   * printed.  However, properties can be accessed and called as on
2162   * normal objects.
2163   */
2164  void MarkAsUndetectable();
2165
2166  /**
2167   * Sets access check callbacks on the object template.
2168   *
2169   * When accessing properties on instances of this object template,
2170   * the access check callback will be called to determine whether or
2171   * not to allow cross-context access to the properties.
2172   * The last parameter specifies whether access checks are turned
2173   * on by default on instances. If access checks are off by default,
2174   * they can be turned on on individual instances by calling
2175   * Object::TurnOnAccessCheck().
2176   */
2177  void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
2178                               IndexedSecurityCallback indexed_handler,
2179                               Handle<Value> data = Handle<Value>(),
2180                               bool turned_on_by_default = true);
2181
2182  /**
2183   * Gets the number of internal fields for objects generated from
2184   * this template.
2185   */
2186  int InternalFieldCount();
2187
2188  /**
2189   * Sets the number of internal fields for objects generated from
2190   * this template.
2191   */
2192  void SetInternalFieldCount(int value);
2193
2194 private:
2195  ObjectTemplate();
2196  static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor);
2197  friend class FunctionTemplate;
2198};
2199
2200
2201/**
2202 * A Signature specifies which receivers and arguments a function can
2203 * legally be called with.
2204 */
2205class V8EXPORT Signature : public Data {
2206 public:
2207  static Local<Signature> New(Handle<FunctionTemplate> receiver =
2208                                  Handle<FunctionTemplate>(),
2209                              int argc = 0,
2210                              Handle<FunctionTemplate> argv[] = 0);
2211 private:
2212  Signature();
2213};
2214
2215
2216/**
2217 * A utility for determining the type of objects based on the template
2218 * they were constructed from.
2219 */
2220class V8EXPORT TypeSwitch : public Data {
2221 public:
2222  static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
2223  static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
2224  int match(Handle<Value> value);
2225 private:
2226  TypeSwitch();
2227};
2228
2229
2230// --- E x t e n s i o n s ---
2231
2232
2233/**
2234 * Ignore
2235 */
2236class V8EXPORT Extension {  // NOLINT
2237 public:
2238  Extension(const char* name,
2239            const char* source = 0,
2240            int dep_count = 0,
2241            const char** deps = 0);
2242  virtual ~Extension() { }
2243  virtual v8::Handle<v8::FunctionTemplate>
2244      GetNativeFunction(v8::Handle<v8::String> name) {
2245    return v8::Handle<v8::FunctionTemplate>();
2246  }
2247
2248  const char* name() { return name_; }
2249  const char* source() { return source_; }
2250  int dependency_count() { return dep_count_; }
2251  const char** dependencies() { return deps_; }
2252  void set_auto_enable(bool value) { auto_enable_ = value; }
2253  bool auto_enable() { return auto_enable_; }
2254
2255 private:
2256  const char* name_;
2257  const char* source_;
2258  int dep_count_;
2259  const char** deps_;
2260  bool auto_enable_;
2261
2262  // Disallow copying and assigning.
2263  Extension(const Extension&);
2264  void operator=(const Extension&);
2265};
2266
2267
2268void V8EXPORT RegisterExtension(Extension* extension);
2269
2270
2271/**
2272 * Ignore
2273 */
2274class V8EXPORT DeclareExtension {
2275 public:
2276  inline DeclareExtension(Extension* extension) {
2277    RegisterExtension(extension);
2278  }
2279};
2280
2281
2282// --- S t a t i c s ---
2283
2284
2285Handle<Primitive> V8EXPORT Undefined();
2286Handle<Primitive> V8EXPORT Null();
2287Handle<Boolean> V8EXPORT True();
2288Handle<Boolean> V8EXPORT False();
2289
2290
2291/**
2292 * A set of constraints that specifies the limits of the runtime's memory use.
2293 * You must set the heap size before initializing the VM - the size cannot be
2294 * adjusted after the VM is initialized.
2295 *
2296 * If you are using threads then you should hold the V8::Locker lock while
2297 * setting the stack limit and you must set a non-default stack limit separately
2298 * for each thread.
2299 */
2300class V8EXPORT ResourceConstraints {
2301 public:
2302  ResourceConstraints();
2303  int max_young_space_size() const { return max_young_space_size_; }
2304  void set_max_young_space_size(int value) { max_young_space_size_ = value; }
2305  int max_old_space_size() const { return max_old_space_size_; }
2306  void set_max_old_space_size(int value) { max_old_space_size_ = value; }
2307  uint32_t* stack_limit() const { return stack_limit_; }
2308  // Sets an address beyond which the VM's stack may not grow.
2309  void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
2310 private:
2311  int max_young_space_size_;
2312  int max_old_space_size_;
2313  uint32_t* stack_limit_;
2314};
2315
2316
2317bool V8EXPORT SetResourceConstraints(ResourceConstraints* constraints);
2318
2319
2320// --- E x c e p t i o n s ---
2321
2322
2323typedef void (*FatalErrorCallback)(const char* location, const char* message);
2324
2325
2326typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> data);
2327
2328
2329/**
2330 * Schedules an exception to be thrown when returning to JavaScript.  When an
2331 * exception has been scheduled it is illegal to invoke any JavaScript
2332 * operation; the caller must return immediately and only after the exception
2333 * has been handled does it become legal to invoke JavaScript operations.
2334 */
2335Handle<Value> V8EXPORT ThrowException(Handle<Value> exception);
2336
2337/**
2338 * Create new error objects by calling the corresponding error object
2339 * constructor with the message.
2340 */
2341class V8EXPORT Exception {
2342 public:
2343  static Local<Value> RangeError(Handle<String> message);
2344  static Local<Value> ReferenceError(Handle<String> message);
2345  static Local<Value> SyntaxError(Handle<String> message);
2346  static Local<Value> TypeError(Handle<String> message);
2347  static Local<Value> Error(Handle<String> message);
2348};
2349
2350
2351// --- C o u n t e r s  C a l l b a c k s ---
2352
2353typedef int* (*CounterLookupCallback)(const char* name);
2354
2355typedef void* (*CreateHistogramCallback)(const char* name,
2356                                         int min,
2357                                         int max,
2358                                         size_t buckets);
2359
2360typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
2361
2362// --- M e m o r y  A l l o c a t i o n   C a l l b a c k ---
2363  enum ObjectSpace {
2364    kObjectSpaceNewSpace = 1 << 0,
2365    kObjectSpaceOldPointerSpace = 1 << 1,
2366    kObjectSpaceOldDataSpace = 1 << 2,
2367    kObjectSpaceCodeSpace = 1 << 3,
2368    kObjectSpaceMapSpace = 1 << 4,
2369    kObjectSpaceLoSpace = 1 << 5,
2370
2371    kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace |
2372      kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
2373      kObjectSpaceLoSpace
2374  };
2375
2376  enum AllocationAction {
2377    kAllocationActionAllocate = 1 << 0,
2378    kAllocationActionFree = 1 << 1,
2379    kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
2380  };
2381
2382typedef void (*MemoryAllocationCallback)(ObjectSpace space,
2383                                         AllocationAction action,
2384                                         int size);
2385
2386// --- F a i l e d A c c e s s C h e c k C a l l b a c k ---
2387typedef void (*FailedAccessCheckCallback)(Local<Object> target,
2388                                          AccessType type,
2389                                          Local<Value> data);
2390
2391// --- G a r b a g e C o l l e c t i o n  C a l l b a c k s
2392
2393/**
2394 * Applications can register callback functions which will be called
2395 * before and after a garbage collection.  Allocations are not
2396 * allowed in the callback functions, you therefore cannot manipulate
2397 * objects (set or delete properties for example) since it is possible
2398 * such operations will result in the allocation of objects.
2399 */
2400enum GCType {
2401  kGCTypeScavenge = 1 << 0,
2402  kGCTypeMarkSweepCompact = 1 << 1,
2403  kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
2404};
2405
2406enum GCCallbackFlags {
2407  kNoGCCallbackFlags = 0,
2408  kGCCallbackFlagCompacted = 1 << 0
2409};
2410
2411typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
2412typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
2413
2414typedef void (*GCCallback)();
2415
2416
2417/**
2418 * Profiler modules.
2419 *
2420 * In V8, profiler consists of several modules: CPU profiler, and different
2421 * kinds of heap profiling. Each can be turned on / off independently.
2422 * When PROFILER_MODULE_HEAP_SNAPSHOT flag is passed to ResumeProfilerEx,
2423 * modules are enabled only temporarily for making a snapshot of the heap.
2424 */
2425enum ProfilerModules {
2426  PROFILER_MODULE_NONE            = 0,
2427  PROFILER_MODULE_CPU             = 1,
2428  PROFILER_MODULE_HEAP_STATS      = 1 << 1,
2429  PROFILER_MODULE_JS_CONSTRUCTORS = 1 << 2,
2430  PROFILER_MODULE_HEAP_SNAPSHOT   = 1 << 16
2431};
2432
2433
2434/**
2435 * Collection of V8 heap information.
2436 *
2437 * Instances of this class can be passed to v8::V8::HeapStatistics to
2438 * get heap statistics from V8.
2439 */
2440class V8EXPORT HeapStatistics {
2441 public:
2442  HeapStatistics();
2443  size_t total_heap_size() { return total_heap_size_; }
2444  size_t used_heap_size() { return used_heap_size_; }
2445
2446 private:
2447  void set_total_heap_size(size_t size) { total_heap_size_ = size; }
2448  void set_used_heap_size(size_t size) { used_heap_size_ = size; }
2449
2450  size_t total_heap_size_;
2451  size_t used_heap_size_;
2452
2453  friend class V8;
2454};
2455
2456
2457/**
2458 * Container class for static utility functions.
2459 */
2460class V8EXPORT V8 {
2461 public:
2462  /** Set the callback to invoke in case of fatal errors. */
2463  static void SetFatalErrorHandler(FatalErrorCallback that);
2464
2465  /**
2466   * Ignore out-of-memory exceptions.
2467   *
2468   * V8 running out of memory is treated as a fatal error by default.
2469   * This means that the fatal error handler is called and that V8 is
2470   * terminated.
2471   *
2472   * IgnoreOutOfMemoryException can be used to not treat a
2473   * out-of-memory situation as a fatal error.  This way, the contexts
2474   * that did not cause the out of memory problem might be able to
2475   * continue execution.
2476   */
2477  static void IgnoreOutOfMemoryException();
2478
2479  /**
2480   * Check if V8 is dead and therefore unusable.  This is the case after
2481   * fatal errors such as out-of-memory situations.
2482   */
2483  static bool IsDead();
2484
2485  /**
2486   * Adds a message listener.
2487   *
2488   * The same message listener can be added more than once and it that
2489   * case it will be called more than once for each message.
2490   */
2491  static bool AddMessageListener(MessageCallback that,
2492                                 Handle<Value> data = Handle<Value>());
2493
2494  /**
2495   * Remove all message listeners from the specified callback function.
2496   */
2497  static void RemoveMessageListeners(MessageCallback that);
2498
2499  /**
2500   * Tells V8 to capture current stack trace when uncaught exception occurs
2501   * and report it to the message listeners. The option is off by default.
2502   */
2503  static void SetCaptureStackTraceForUncaughtExceptions(
2504      bool capture,
2505      int frame_limit = 10,
2506      StackTrace::StackTraceOptions options = StackTrace::kOverview);
2507
2508  /**
2509   * Sets V8 flags from a string.
2510   */
2511  static void SetFlagsFromString(const char* str, int length);
2512
2513  /**
2514   * Sets V8 flags from the command line.
2515   */
2516  static void SetFlagsFromCommandLine(int* argc,
2517                                      char** argv,
2518                                      bool remove_flags);
2519
2520  /** Get the version string. */
2521  static const char* GetVersion();
2522
2523  /**
2524   * Enables the host application to provide a mechanism for recording
2525   * statistics counters.
2526   */
2527  static void SetCounterFunction(CounterLookupCallback);
2528
2529  /**
2530   * Enables the host application to provide a mechanism for recording
2531   * histograms. The CreateHistogram function returns a
2532   * histogram which will later be passed to the AddHistogramSample
2533   * function.
2534   */
2535  static void SetCreateHistogramFunction(CreateHistogramCallback);
2536  static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
2537
2538  /**
2539   * Enables the computation of a sliding window of states. The sliding
2540   * window information is recorded in statistics counters.
2541   */
2542  static void EnableSlidingStateWindow();
2543
2544  /** Callback function for reporting failed access checks.*/
2545  static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
2546
2547  /**
2548   * Enables the host application to receive a notification before a
2549   * garbage collection.  Allocations are not allowed in the
2550   * callback function, you therefore cannot manipulate objects (set
2551   * or delete properties for example) since it is possible such
2552   * operations will result in the allocation of objects. It is possible
2553   * to specify the GCType filter for your callback. But it is not possible to
2554   * register the same callback function two times with different
2555   * GCType filters.
2556   */
2557  static void AddGCPrologueCallback(
2558      GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
2559
2560  /**
2561   * This function removes callback which was installed by
2562   * AddGCPrologueCallback function.
2563   */
2564  static void RemoveGCPrologueCallback(GCPrologueCallback callback);
2565
2566  /**
2567   * The function is deprecated. Please use AddGCPrologueCallback instead.
2568   * Enables the host application to receive a notification before a
2569   * garbage collection.  Allocations are not allowed in the
2570   * callback function, you therefore cannot manipulate objects (set
2571   * or delete properties for example) since it is possible such
2572   * operations will result in the allocation of objects.
2573   */
2574  static void SetGlobalGCPrologueCallback(GCCallback);
2575
2576  /**
2577   * Enables the host application to receive a notification after a
2578   * garbage collection.  Allocations are not allowed in the
2579   * callback function, you therefore cannot manipulate objects (set
2580   * or delete properties for example) since it is possible such
2581   * operations will result in the allocation of objects. It is possible
2582   * to specify the GCType filter for your callback. But it is not possible to
2583   * register the same callback function two times with different
2584   * GCType filters.
2585   */
2586  static void AddGCEpilogueCallback(
2587      GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
2588
2589  /**
2590   * This function removes callback which was installed by
2591   * AddGCEpilogueCallback function.
2592   */
2593  static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
2594
2595  /**
2596   * The function is deprecated. Please use AddGCEpilogueCallback instead.
2597   * Enables the host application to receive a notification after a
2598   * major garbage collection.  Allocations are not allowed in the
2599   * callback function, you therefore cannot manipulate objects (set
2600   * or delete properties for example) since it is possible such
2601   * operations will result in the allocation of objects.
2602   */
2603  static void SetGlobalGCEpilogueCallback(GCCallback);
2604
2605  /**
2606   * Enables the host application to provide a mechanism to be notified
2607   * and perform custom logging when V8 Allocates Executable Memory.
2608   */
2609  static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
2610                                          ObjectSpace space,
2611                                          AllocationAction action);
2612
2613  /**
2614   * This function removes callback which was installed by
2615   * AddMemoryAllocationCallback function.
2616   */
2617  static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
2618
2619  /**
2620   * Allows the host application to group objects together. If one
2621   * object in the group is alive, all objects in the group are alive.
2622   * After each garbage collection, object groups are removed. It is
2623   * intended to be used in the before-garbage-collection callback
2624   * function, for instance to simulate DOM tree connections among JS
2625   * wrapper objects.
2626   */
2627  static void AddObjectGroup(Persistent<Value>* objects, size_t length);
2628
2629  /**
2630   * Initializes from snapshot if possible. Otherwise, attempts to
2631   * initialize from scratch.  This function is called implicitly if
2632   * you use the API without calling it first.
2633   */
2634  static bool Initialize();
2635
2636  /**
2637   * Adjusts the amount of registered external memory.  Used to give
2638   * V8 an indication of the amount of externally allocated memory
2639   * that is kept alive by JavaScript objects.  V8 uses this to decide
2640   * when to perform global garbage collections.  Registering
2641   * externally allocated memory will trigger global garbage
2642   * collections more often than otherwise in an attempt to garbage
2643   * collect the JavaScript objects keeping the externally allocated
2644   * memory alive.
2645   *
2646   * \param change_in_bytes the change in externally allocated memory
2647   *   that is kept alive by JavaScript objects.
2648   * \returns the adjusted value.
2649   */
2650  static int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes);
2651
2652  /**
2653   * Suspends recording of tick samples in the profiler.
2654   * When the V8 profiling mode is enabled (usually via command line
2655   * switches) this function suspends recording of tick samples.
2656   * Profiling ticks are discarded until ResumeProfiler() is called.
2657   *
2658   * See also the --prof and --prof_auto command line switches to
2659   * enable V8 profiling.
2660   */
2661  static void PauseProfiler();
2662
2663  /**
2664   * Resumes recording of tick samples in the profiler.
2665   * See also PauseProfiler().
2666   */
2667  static void ResumeProfiler();
2668
2669  /**
2670   * Return whether profiler is currently paused.
2671   */
2672  static bool IsProfilerPaused();
2673
2674  /**
2675   * Resumes specified profiler modules. Can be called several times to
2676   * mark the opening of a profiler events block with the given tag.
2677   *
2678   * "ResumeProfiler" is equivalent to "ResumeProfilerEx(PROFILER_MODULE_CPU)".
2679   * See ProfilerModules enum.
2680   *
2681   * \param flags Flags specifying profiler modules.
2682   * \param tag Profile tag.
2683   */
2684  static void ResumeProfilerEx(int flags, int tag = 0);
2685
2686  /**
2687   * Pauses specified profiler modules. Each call to "PauseProfilerEx" closes
2688   * a block of profiler events opened by a call to "ResumeProfilerEx" with the
2689   * same tag value. There is no need for blocks to be properly nested.
2690   * The profiler is paused when the last opened block is closed.
2691   *
2692   * "PauseProfiler" is equivalent to "PauseProfilerEx(PROFILER_MODULE_CPU)".
2693   * See ProfilerModules enum.
2694   *
2695   * \param flags Flags specifying profiler modules.
2696   * \param tag Profile tag.
2697   */
2698  static void PauseProfilerEx(int flags, int tag = 0);
2699
2700  /**
2701   * Returns active (resumed) profiler modules.
2702   * See ProfilerModules enum.
2703   *
2704   * \returns active profiler modules.
2705   */
2706  static int GetActiveProfilerModules();
2707
2708  /**
2709   * If logging is performed into a memory buffer (via --logfile=*), allows to
2710   * retrieve previously written messages. This can be used for retrieving
2711   * profiler log data in the application. This function is thread-safe.
2712   *
2713   * Caller provides a destination buffer that must exist during GetLogLines
2714   * call. Only whole log lines are copied into the buffer.
2715   *
2716   * \param from_pos specified a point in a buffer to read from, 0 is the
2717   *   beginning of a buffer. It is assumed that caller updates its current
2718   *   position using returned size value from the previous call.
2719   * \param dest_buf destination buffer for log data.
2720   * \param max_size size of the destination buffer.
2721   * \returns actual size of log data copied into buffer.
2722   */
2723  static int GetLogLines(int from_pos, char* dest_buf, int max_size);
2724
2725  /**
2726   * The minimum allowed size for a log lines buffer.  If the size of
2727   * the buffer given will not be enough to hold a line of the maximum
2728   * length, an attempt to find a log line end in GetLogLines will
2729   * fail, and an empty result will be returned.
2730   */
2731  static const int kMinimumSizeForLogLinesBuffer = 2048;
2732
2733  /**
2734   * Retrieve the V8 thread id of the calling thread.
2735   *
2736   * The thread id for a thread should only be retrieved after the V8
2737   * lock has been acquired with a Locker object with that thread.
2738   */
2739  static int GetCurrentThreadId();
2740
2741  /**
2742   * Forcefully terminate execution of a JavaScript thread.  This can
2743   * be used to terminate long-running scripts.
2744   *
2745   * TerminateExecution should only be called when then V8 lock has
2746   * been acquired with a Locker object.  Therefore, in order to be
2747   * able to terminate long-running threads, preemption must be
2748   * enabled to allow the user of TerminateExecution to acquire the
2749   * lock.
2750   *
2751   * The termination is achieved by throwing an exception that is
2752   * uncatchable by JavaScript exception handlers.  Termination
2753   * exceptions act as if they were caught by a C++ TryCatch exception
2754   * handlers.  If forceful termination is used, any C++ TryCatch
2755   * exception handler that catches an exception should check if that
2756   * exception is a termination exception and immediately return if
2757   * that is the case.  Returning immediately in that case will
2758   * continue the propagation of the termination exception if needed.
2759   *
2760   * The thread id passed to TerminateExecution must have been
2761   * obtained by calling GetCurrentThreadId on the thread in question.
2762   *
2763   * \param thread_id The thread id of the thread to terminate.
2764   */
2765  static void TerminateExecution(int thread_id);
2766
2767  /**
2768   * Forcefully terminate the current thread of JavaScript execution.
2769   *
2770   * This method can be used by any thread even if that thread has not
2771   * acquired the V8 lock with a Locker object.
2772   */
2773  static void TerminateExecution();
2774
2775  /**
2776   * Is V8 terminating JavaScript execution.
2777   *
2778   * Returns true if JavaScript execution is currently terminating
2779   * because of a call to TerminateExecution.  In that case there are
2780   * still JavaScript frames on the stack and the termination
2781   * exception is still active.
2782   */
2783  static bool IsExecutionTerminating();
2784
2785  /**
2786   * Releases any resources used by v8 and stops any utility threads
2787   * that may be running.  Note that disposing v8 is permanent, it
2788   * cannot be reinitialized.
2789   *
2790   * It should generally not be necessary to dispose v8 before exiting
2791   * a process, this should happen automatically.  It is only necessary
2792   * to use if the process needs the resources taken up by v8.
2793   */
2794  static bool Dispose();
2795
2796  /**
2797   * Get statistics about the heap memory usage.
2798   */
2799  static void GetHeapStatistics(HeapStatistics* heap_statistics);
2800
2801  /**
2802   * Optional notification that the embedder is idle.
2803   * V8 uses the notification to reduce memory footprint.
2804   * This call can be used repeatedly if the embedder remains idle.
2805   * Returns true if the embedder should stop calling IdleNotification
2806   * until real work has been done.  This indicates that V8 has done
2807   * as much cleanup as it will be able to do.
2808   */
2809  static bool IdleNotification();
2810
2811  /**
2812   * Optional notification that the system is running low on memory.
2813   * V8 uses these notifications to attempt to free memory.
2814   */
2815  static void LowMemoryNotification();
2816
2817  /**
2818   * Optional notification that a context has been disposed. V8 uses
2819   * these notifications to guide the GC heuristic. Returns the number
2820   * of context disposals - including this one - since the last time
2821   * V8 had a chance to clean up.
2822   */
2823  static int ContextDisposedNotification();
2824
2825 private:
2826  V8();
2827
2828  static internal::Object** GlobalizeReference(internal::Object** handle);
2829  static void DisposeGlobal(internal::Object** global_handle);
2830  static void MakeWeak(internal::Object** global_handle,
2831                       void* data,
2832                       WeakReferenceCallback);
2833  static void ClearWeak(internal::Object** global_handle);
2834  static bool IsGlobalNearDeath(internal::Object** global_handle);
2835  static bool IsGlobalWeak(internal::Object** global_handle);
2836
2837  template <class T> friend class Handle;
2838  template <class T> friend class Local;
2839  template <class T> friend class Persistent;
2840  friend class Context;
2841};
2842
2843
2844/**
2845 * An external exception handler.
2846 */
2847class V8EXPORT TryCatch {
2848 public:
2849
2850  /**
2851   * Creates a new try/catch block and registers it with v8.
2852   */
2853  TryCatch();
2854
2855  /**
2856   * Unregisters and deletes this try/catch block.
2857   */
2858  ~TryCatch();
2859
2860  /**
2861   * Returns true if an exception has been caught by this try/catch block.
2862   */
2863  bool HasCaught() const;
2864
2865  /**
2866   * For certain types of exceptions, it makes no sense to continue
2867   * execution.
2868   *
2869   * Currently, the only type of exception that can be caught by a
2870   * TryCatch handler and for which it does not make sense to continue
2871   * is termination exception.  Such exceptions are thrown when the
2872   * TerminateExecution methods are called to terminate a long-running
2873   * script.
2874   *
2875   * If CanContinue returns false, the correct action is to perform
2876   * any C++ cleanup needed and then return.
2877   */
2878  bool CanContinue() const;
2879
2880  /**
2881   * Throws the exception caught by this TryCatch in a way that avoids
2882   * it being caught again by this same TryCatch.  As with ThrowException
2883   * it is illegal to execute any JavaScript operations after calling
2884   * ReThrow; the caller must return immediately to where the exception
2885   * is caught.
2886   */
2887  Handle<Value> ReThrow();
2888
2889  /**
2890   * Returns the exception caught by this try/catch block.  If no exception has
2891   * been caught an empty handle is returned.
2892   *
2893   * The returned handle is valid until this TryCatch block has been destroyed.
2894   */
2895  Local<Value> Exception() const;
2896
2897  /**
2898   * Returns the .stack property of the thrown object.  If no .stack
2899   * property is present an empty handle is returned.
2900   */
2901  Local<Value> StackTrace() const;
2902
2903  /**
2904   * Returns the message associated with this exception.  If there is
2905   * no message associated an empty handle is returned.
2906   *
2907   * The returned handle is valid until this TryCatch block has been
2908   * destroyed.
2909   */
2910  Local<v8::Message> Message() const;
2911
2912  /**
2913   * Clears any exceptions that may have been caught by this try/catch block.
2914   * After this method has been called, HasCaught() will return false.
2915   *
2916   * It is not necessary to clear a try/catch block before using it again; if
2917   * another exception is thrown the previously caught exception will just be
2918   * overwritten.  However, it is often a good idea since it makes it easier
2919   * to determine which operation threw a given exception.
2920   */
2921  void Reset();
2922
2923  /**
2924   * Set verbosity of the external exception handler.
2925   *
2926   * By default, exceptions that are caught by an external exception
2927   * handler are not reported.  Call SetVerbose with true on an
2928   * external exception handler to have exceptions caught by the
2929   * handler reported as if they were not caught.
2930   */
2931  void SetVerbose(bool value);
2932
2933  /**
2934   * Set whether or not this TryCatch should capture a Message object
2935   * which holds source information about where the exception
2936   * occurred.  True by default.
2937   */
2938  void SetCaptureMessage(bool value);
2939
2940 private:
2941  void* next_;
2942  void* exception_;
2943  void* message_;
2944  bool is_verbose_ : 1;
2945  bool can_continue_ : 1;
2946  bool capture_message_ : 1;
2947  bool rethrow_ : 1;
2948
2949  friend class v8::internal::Top;
2950};
2951
2952
2953// --- C o n t e x t ---
2954
2955
2956/**
2957 * Ignore
2958 */
2959class V8EXPORT ExtensionConfiguration {
2960 public:
2961  ExtensionConfiguration(int name_count, const char* names[])
2962      : name_count_(name_count), names_(names) { }
2963 private:
2964  friend class ImplementationUtilities;
2965  int name_count_;
2966  const char** names_;
2967};
2968
2969
2970/**
2971 * A sandboxed execution context with its own set of built-in objects
2972 * and functions.
2973 */
2974class V8EXPORT Context {
2975 public:
2976  /** Returns the global object of the context. */
2977  Local<Object> Global();
2978
2979  /**
2980   * Detaches the global object from its context before
2981   * the global object can be reused to create a new context.
2982   */
2983  void DetachGlobal();
2984
2985  /**
2986   * Reattaches a global object to a context.  This can be used to
2987   * restore the connection between a global object and a context
2988   * after DetachGlobal has been called.
2989   *
2990   * \param global_object The global object to reattach to the
2991   *   context.  For this to work, the global object must be the global
2992   *   object that was associated with this context before a call to
2993   *   DetachGlobal.
2994   */
2995  void ReattachGlobal(Handle<Object> global_object);
2996
2997  /** Creates a new context.
2998   *
2999   * Returns a persistent handle to the newly allocated context. This
3000   * persistent handle has to be disposed when the context is no
3001   * longer used so the context can be garbage collected.
3002   */
3003  static Persistent<Context> New(
3004      ExtensionConfiguration* extensions = NULL,
3005      Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
3006      Handle<Value> global_object = Handle<Value>());
3007
3008  /** Returns the last entered context. */
3009  static Local<Context> GetEntered();
3010
3011  /** Returns the context that is on the top of the stack. */
3012  static Local<Context> GetCurrent();
3013
3014  /**
3015   * Returns the context of the calling JavaScript code.  That is the
3016   * context of the top-most JavaScript frame.  If there are no
3017   * JavaScript frames an empty handle is returned.
3018   */
3019  static Local<Context> GetCalling();
3020
3021  /**
3022   * Sets the security token for the context.  To access an object in
3023   * another context, the security tokens must match.
3024   */
3025  void SetSecurityToken(Handle<Value> token);
3026
3027  /** Restores the security token to the default value. */
3028  void UseDefaultSecurityToken();
3029
3030  /** Returns the security token of this context.*/
3031  Handle<Value> GetSecurityToken();
3032
3033  /**
3034   * Enter this context.  After entering a context, all code compiled
3035   * and run is compiled and run in this context.  If another context
3036   * is already entered, this old context is saved so it can be
3037   * restored when the new context is exited.
3038   */
3039  void Enter();
3040
3041  /**
3042   * Exit this context.  Exiting the current context restores the
3043   * context that was in place when entering the current context.
3044   */
3045  void Exit();
3046
3047  /** Returns true if the context has experienced an out of memory situation. */
3048  bool HasOutOfMemoryException();
3049
3050  /** Returns true if V8 has a current context. */
3051  static bool InContext();
3052
3053  /**
3054   * Associate an additional data object with the context. This is mainly used
3055   * with the debugger to provide additional information on the context through
3056   * the debugger API.
3057   */
3058  void SetData(Handle<String> data);
3059  Local<Value> GetData();
3060
3061  /**
3062   * Stack-allocated class which sets the execution context for all
3063   * operations executed within a local scope.
3064   */
3065  class Scope {
3066   public:
3067    inline Scope(Handle<Context> context) : context_(context) {
3068      context_->Enter();
3069    }
3070    inline ~Scope() { context_->Exit(); }
3071   private:
3072    Handle<Context> context_;
3073  };
3074
3075 private:
3076  friend class Value;
3077  friend class Script;
3078  friend class Object;
3079  friend class Function;
3080};
3081
3082
3083/**
3084 * Multiple threads in V8 are allowed, but only one thread at a time
3085 * is allowed to use V8.  The definition of 'using V8' includes
3086 * accessing handles or holding onto object pointers obtained from V8
3087 * handles.  It is up to the user of V8 to ensure (perhaps with
3088 * locking) that this constraint is not violated.
3089 *
3090 * If you wish to start using V8 in a thread you can do this by constructing
3091 * a v8::Locker object.  After the code using V8 has completed for the
3092 * current thread you can call the destructor.  This can be combined
3093 * with C++ scope-based construction as follows:
3094 *
3095 * \code
3096 * ...
3097 * {
3098 *   v8::Locker locker;
3099 *   ...
3100 *   // Code using V8 goes here.
3101 *   ...
3102 * } // Destructor called here
3103 * \endcode
3104 *
3105 * If you wish to stop using V8 in a thread A you can do this by either
3106 * by destroying the v8::Locker object as above or by constructing a
3107 * v8::Unlocker object:
3108 *
3109 * \code
3110 * {
3111 *   v8::Unlocker unlocker;
3112 *   ...
3113 *   // Code not using V8 goes here while V8 can run in another thread.
3114 *   ...
3115 * } // Destructor called here.
3116 * \endcode
3117 *
3118 * The Unlocker object is intended for use in a long-running callback
3119 * from V8, where you want to release the V8 lock for other threads to
3120 * use.
3121 *
3122 * The v8::Locker is a recursive lock.  That is, you can lock more than
3123 * once in a given thread.  This can be useful if you have code that can
3124 * be called either from code that holds the lock or from code that does
3125 * not.  The Unlocker is not recursive so you can not have several
3126 * Unlockers on the stack at once, and you can not use an Unlocker in a
3127 * thread that is not inside a Locker's scope.
3128 *
3129 * An unlocker will unlock several lockers if it has to and reinstate
3130 * the correct depth of locking on its destruction. eg.:
3131 *
3132 * \code
3133 * // V8 not locked.
3134 * {
3135 *   v8::Locker locker;
3136 *   // V8 locked.
3137 *   {
3138 *     v8::Locker another_locker;
3139 *     // V8 still locked (2 levels).
3140 *     {
3141 *       v8::Unlocker unlocker;
3142 *       // V8 not locked.
3143 *     }
3144 *     // V8 locked again (2 levels).
3145 *   }
3146 *   // V8 still locked (1 level).
3147 * }
3148 * // V8 Now no longer locked.
3149 * \endcode
3150 */
3151class V8EXPORT Unlocker {
3152 public:
3153  Unlocker();
3154  ~Unlocker();
3155};
3156
3157
3158class V8EXPORT Locker {
3159 public:
3160  Locker();
3161  ~Locker();
3162
3163  /**
3164   * Start preemption.
3165   *
3166   * When preemption is started, a timer is fired every n milli seconds
3167   * that will switch between multiple threads that are in contention
3168   * for the V8 lock.
3169   */
3170  static void StartPreemption(int every_n_ms);
3171
3172  /**
3173   * Stop preemption.
3174   */
3175  static void StopPreemption();
3176
3177  /**
3178   * Returns whether or not the locker is locked by the current thread.
3179   */
3180  static bool IsLocked();
3181
3182  /**
3183   * Returns whether v8::Locker is being used by this V8 instance.
3184   */
3185  static bool IsActive() { return active_; }
3186
3187 private:
3188  bool has_lock_;
3189  bool top_level_;
3190
3191  static bool active_;
3192
3193  // Disallow copying and assigning.
3194  Locker(const Locker&);
3195  void operator=(const Locker&);
3196};
3197
3198
3199
3200// --- I m p l e m e n t a t i o n ---
3201
3202
3203namespace internal {
3204
3205
3206// Tag information for HeapObject.
3207const int kHeapObjectTag = 1;
3208const int kHeapObjectTagSize = 2;
3209const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
3210
3211// Tag information for Smi.
3212const int kSmiTag = 0;
3213const int kSmiTagSize = 1;
3214const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
3215
3216template <size_t ptr_size> struct SmiConstants;
3217
3218// Smi constants for 32-bit systems.
3219template <> struct SmiConstants<4> {
3220  static const int kSmiShiftSize = 0;
3221  static const int kSmiValueSize = 31;
3222  static inline int SmiToInt(internal::Object* value) {
3223    int shift_bits = kSmiTagSize + kSmiShiftSize;
3224    // Throw away top 32 bits and shift down (requires >> to be sign extending).
3225    return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
3226  }
3227};
3228
3229// Smi constants for 64-bit systems.
3230template <> struct SmiConstants<8> {
3231  static const int kSmiShiftSize = 31;
3232  static const int kSmiValueSize = 32;
3233  static inline int SmiToInt(internal::Object* value) {
3234    int shift_bits = kSmiTagSize + kSmiShiftSize;
3235    // Shift down and throw away top 32 bits.
3236    return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
3237  }
3238};
3239
3240const int kSmiShiftSize = SmiConstants<sizeof(void*)>::kSmiShiftSize;
3241const int kSmiValueSize = SmiConstants<sizeof(void*)>::kSmiValueSize;
3242
3243template <size_t ptr_size> struct InternalConstants;
3244
3245// Internal constants for 32-bit systems.
3246template <> struct InternalConstants<4> {
3247  static const int kStringResourceOffset = 3 * sizeof(void*);
3248};
3249
3250// Internal constants for 64-bit systems.
3251template <> struct InternalConstants<8> {
3252  static const int kStringResourceOffset = 3 * sizeof(void*);
3253};
3254
3255/**
3256 * This class exports constants and functionality from within v8 that
3257 * is necessary to implement inline functions in the v8 api.  Don't
3258 * depend on functions and constants defined here.
3259 */
3260class Internals {
3261 public:
3262
3263  // These values match non-compiler-dependent values defined within
3264  // the implementation of v8.
3265  static const int kHeapObjectMapOffset = 0;
3266  static const int kMapInstanceTypeOffset = sizeof(void*) + sizeof(int);
3267  static const int kStringResourceOffset =
3268      InternalConstants<sizeof(void*)>::kStringResourceOffset;
3269
3270  static const int kProxyProxyOffset = sizeof(void*);
3271  static const int kJSObjectHeaderSize = 3 * sizeof(void*);
3272  static const int kFullStringRepresentationMask = 0x07;
3273  static const int kExternalTwoByteRepresentationTag = 0x02;
3274
3275  static const int kJSObjectType = 0x9f;
3276  static const int kFirstNonstringType = 0x80;
3277  static const int kProxyType = 0x85;
3278
3279  static inline bool HasHeapObjectTag(internal::Object* value) {
3280    return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
3281            kHeapObjectTag);
3282  }
3283
3284  static inline bool HasSmiTag(internal::Object* value) {
3285    return ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag);
3286  }
3287
3288  static inline int SmiValue(internal::Object* value) {
3289    return SmiConstants<sizeof(void*)>::SmiToInt(value);
3290  }
3291
3292  static inline int GetInstanceType(internal::Object* obj) {
3293    typedef internal::Object O;
3294    O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
3295    return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
3296  }
3297
3298  static inline void* GetExternalPointer(internal::Object* obj) {
3299    if (HasSmiTag(obj)) {
3300      return obj;
3301    } else if (GetInstanceType(obj) == kProxyType) {
3302      return ReadField<void*>(obj, kProxyProxyOffset);
3303    } else {
3304      return NULL;
3305    }
3306  }
3307
3308  static inline bool IsExternalTwoByteString(int instance_type) {
3309    int representation = (instance_type & kFullStringRepresentationMask);
3310    return representation == kExternalTwoByteRepresentationTag;
3311  }
3312
3313  template <typename T>
3314  static inline T ReadField(Object* ptr, int offset) {
3315    uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
3316    return *reinterpret_cast<T*>(addr);
3317  }
3318
3319};
3320
3321}
3322
3323
3324template <class T>
3325Handle<T>::Handle() : val_(0) { }
3326
3327
3328template <class T>
3329Local<T>::Local() : Handle<T>() { }
3330
3331
3332template <class T>
3333Local<T> Local<T>::New(Handle<T> that) {
3334  if (that.IsEmpty()) return Local<T>();
3335  internal::Object** p = reinterpret_cast<internal::Object**>(*that);
3336  return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p)));
3337}
3338
3339
3340template <class T>
3341Persistent<T> Persistent<T>::New(Handle<T> that) {
3342  if (that.IsEmpty()) return Persistent<T>();
3343  internal::Object** p = reinterpret_cast<internal::Object**>(*that);
3344  return Persistent<T>(reinterpret_cast<T*>(V8::GlobalizeReference(p)));
3345}
3346
3347
3348template <class T>
3349bool Persistent<T>::IsNearDeath() const {
3350  if (this->IsEmpty()) return false;
3351  return V8::IsGlobalNearDeath(reinterpret_cast<internal::Object**>(**this));
3352}
3353
3354
3355template <class T>
3356bool Persistent<T>::IsWeak() const {
3357  if (this->IsEmpty()) return false;
3358  return V8::IsGlobalWeak(reinterpret_cast<internal::Object**>(**this));
3359}
3360
3361
3362template <class T>
3363void Persistent<T>::Dispose() {
3364  if (this->IsEmpty()) return;
3365  V8::DisposeGlobal(reinterpret_cast<internal::Object**>(**this));
3366}
3367
3368
3369template <class T>
3370Persistent<T>::Persistent() : Handle<T>() { }
3371
3372template <class T>
3373void Persistent<T>::MakeWeak(void* parameters, WeakReferenceCallback callback) {
3374  V8::MakeWeak(reinterpret_cast<internal::Object**>(**this),
3375               parameters,
3376               callback);
3377}
3378
3379template <class T>
3380void Persistent<T>::ClearWeak() {
3381  V8::ClearWeak(reinterpret_cast<internal::Object**>(**this));
3382}
3383
3384
3385Arguments::Arguments(v8::Local<v8::Value> data,
3386                     v8::Local<v8::Object> holder,
3387                     v8::Local<v8::Function> callee,
3388                     bool is_construct_call,
3389                     void** values, int length)
3390    : data_(data), holder_(holder), callee_(callee),
3391      is_construct_call_(is_construct_call),
3392      values_(values), length_(length) { }
3393
3394
3395Local<Value> Arguments::operator[](int i) const {
3396  if (i < 0 || length_ <= i) return Local<Value>(*Undefined());
3397  return Local<Value>(reinterpret_cast<Value*>(values_ - i));
3398}
3399
3400
3401Local<Function> Arguments::Callee() const {
3402  return callee_;
3403}
3404
3405
3406Local<Object> Arguments::This() const {
3407  return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
3408}
3409
3410
3411Local<Object> Arguments::Holder() const {
3412  return holder_;
3413}
3414
3415
3416Local<Value> Arguments::Data() const {
3417  return data_;
3418}
3419
3420
3421bool Arguments::IsConstructCall() const {
3422  return is_construct_call_;
3423}
3424
3425
3426int Arguments::Length() const {
3427  return length_;
3428}
3429
3430
3431template <class T>
3432Local<T> HandleScope::Close(Handle<T> value) {
3433  internal::Object** before = reinterpret_cast<internal::Object**>(*value);
3434  internal::Object** after = RawClose(before);
3435  return Local<T>(reinterpret_cast<T*>(after));
3436}
3437
3438Handle<Value> ScriptOrigin::ResourceName() const {
3439  return resource_name_;
3440}
3441
3442
3443Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
3444  return resource_line_offset_;
3445}
3446
3447
3448Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
3449  return resource_column_offset_;
3450}
3451
3452
3453Handle<Boolean> Boolean::New(bool value) {
3454  return value ? True() : False();
3455}
3456
3457
3458void Template::Set(const char* name, v8::Handle<Data> value) {
3459  Set(v8::String::New(name), value);
3460}
3461
3462
3463Local<Value> Object::GetInternalField(int index) {
3464#ifndef V8_ENABLE_CHECKS
3465  Local<Value> quick_result = UncheckedGetInternalField(index);
3466  if (!quick_result.IsEmpty()) return quick_result;
3467#endif
3468  return CheckedGetInternalField(index);
3469}
3470
3471
3472Local<Value> Object::UncheckedGetInternalField(int index) {
3473  typedef internal::Object O;
3474  typedef internal::Internals I;
3475  O* obj = *reinterpret_cast<O**>(this);
3476  if (I::GetInstanceType(obj) == I::kJSObjectType) {
3477    // If the object is a plain JSObject, which is the common case,
3478    // we know where to find the internal fields and can return the
3479    // value directly.
3480    int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
3481    O* value = I::ReadField<O*>(obj, offset);
3482    O** result = HandleScope::CreateHandle(value);
3483    return Local<Value>(reinterpret_cast<Value*>(result));
3484  } else {
3485    return Local<Value>();
3486  }
3487}
3488
3489
3490void* External::Unwrap(Handle<v8::Value> obj) {
3491#ifdef V8_ENABLE_CHECKS
3492  return FullUnwrap(obj);
3493#else
3494  return QuickUnwrap(obj);
3495#endif
3496}
3497
3498
3499void* External::QuickUnwrap(Handle<v8::Value> wrapper) {
3500  typedef internal::Object O;
3501  O* obj = *reinterpret_cast<O**>(const_cast<v8::Value*>(*wrapper));
3502  return internal::Internals::GetExternalPointer(obj);
3503}
3504
3505
3506void* Object::GetPointerFromInternalField(int index) {
3507  typedef internal::Object O;
3508  typedef internal::Internals I;
3509
3510  O* obj = *reinterpret_cast<O**>(this);
3511
3512  if (I::GetInstanceType(obj) == I::kJSObjectType) {
3513    // If the object is a plain JSObject, which is the common case,
3514    // we know where to find the internal fields and can return the
3515    // value directly.
3516    int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
3517    O* value = I::ReadField<O*>(obj, offset);
3518    return I::GetExternalPointer(value);
3519  }
3520
3521  return SlowGetPointerFromInternalField(index);
3522}
3523
3524
3525String* String::Cast(v8::Value* value) {
3526#ifdef V8_ENABLE_CHECKS
3527  CheckCast(value);
3528#endif
3529  return static_cast<String*>(value);
3530}
3531
3532
3533String::ExternalStringResource* String::GetExternalStringResource() const {
3534  typedef internal::Object O;
3535  typedef internal::Internals I;
3536  O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
3537  String::ExternalStringResource* result;
3538  if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
3539    void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
3540    result = reinterpret_cast<String::ExternalStringResource*>(value);
3541  } else {
3542    result = NULL;
3543  }
3544#ifdef V8_ENABLE_CHECKS
3545  VerifyExternalStringResource(result);
3546#endif
3547  return result;
3548}
3549
3550
3551bool Value::IsString() const {
3552#ifdef V8_ENABLE_CHECKS
3553  return FullIsString();
3554#else
3555  return QuickIsString();
3556#endif
3557}
3558
3559bool Value::QuickIsString() const {
3560  typedef internal::Object O;
3561  typedef internal::Internals I;
3562  O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
3563  if (!I::HasHeapObjectTag(obj)) return false;
3564  return (I::GetInstanceType(obj) < I::kFirstNonstringType);
3565}
3566
3567
3568Number* Number::Cast(v8::Value* value) {
3569#ifdef V8_ENABLE_CHECKS
3570  CheckCast(value);
3571#endif
3572  return static_cast<Number*>(value);
3573}
3574
3575
3576Integer* Integer::Cast(v8::Value* value) {
3577#ifdef V8_ENABLE_CHECKS
3578  CheckCast(value);
3579#endif
3580  return static_cast<Integer*>(value);
3581}
3582
3583
3584Date* Date::Cast(v8::Value* value) {
3585#ifdef V8_ENABLE_CHECKS
3586  CheckCast(value);
3587#endif
3588  return static_cast<Date*>(value);
3589}
3590
3591
3592Object* Object::Cast(v8::Value* value) {
3593#ifdef V8_ENABLE_CHECKS
3594  CheckCast(value);
3595#endif
3596  return static_cast<Object*>(value);
3597}
3598
3599
3600Array* Array::Cast(v8::Value* value) {
3601#ifdef V8_ENABLE_CHECKS
3602  CheckCast(value);
3603#endif
3604  return static_cast<Array*>(value);
3605}
3606
3607
3608Function* Function::Cast(v8::Value* value) {
3609#ifdef V8_ENABLE_CHECKS
3610  CheckCast(value);
3611#endif
3612  return static_cast<Function*>(value);
3613}
3614
3615
3616External* External::Cast(v8::Value* value) {
3617#ifdef V8_ENABLE_CHECKS
3618  CheckCast(value);
3619#endif
3620  return static_cast<External*>(value);
3621}
3622
3623
3624Local<Value> AccessorInfo::Data() const {
3625  return Local<Value>(reinterpret_cast<Value*>(&args_[-2]));
3626}
3627
3628
3629Local<Object> AccessorInfo::This() const {
3630  return Local<Object>(reinterpret_cast<Object*>(&args_[0]));
3631}
3632
3633
3634Local<Object> AccessorInfo::Holder() const {
3635  return Local<Object>(reinterpret_cast<Object*>(&args_[-1]));
3636}
3637
3638
3639/**
3640 * \example shell.cc
3641 * A simple shell that takes a list of expressions on the
3642 * command-line and executes them.
3643 */
3644
3645
3646/**
3647 * \example process.cc
3648 */
3649
3650
3651}  // namespace v8
3652
3653
3654#undef V8EXPORT
3655#undef TYPE_CHECK
3656
3657
3658#endif  // V8_H_
3659