1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6#define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7
8#include "src/assembler.h"
9#include "src/bailout-reason.h"
10#include "src/frames.h"
11#include "src/globals.h"
12
13namespace v8 {
14namespace internal {
15
16// Give alias names to registers for calling conventions.
17const Register kReturnRegister0 = {Register::kCode_eax};
18const Register kReturnRegister1 = {Register::kCode_edx};
19const Register kReturnRegister2 = {Register::kCode_edi};
20const Register kJSFunctionRegister = {Register::kCode_edi};
21const Register kContextRegister = {Register::kCode_esi};
22const Register kAllocateSizeRegister = {Register::kCode_edx};
23const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
24const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
25const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
26const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
27const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
28const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
29const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
30const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
31
32// Convenience for platform-independent signatures.  We do not normally
33// distinguish memory operands from other operands on ia32.
34typedef Operand MemOperand;
35
36enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
37enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
38enum PointersToHereCheck {
39  kPointersToHereMaybeInteresting,
40  kPointersToHereAreAlwaysInteresting
41};
42
43enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
44
45enum class ReturnAddressState { kOnStack, kNotOnStack };
46
47#ifdef DEBUG
48bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
49                Register reg4 = no_reg, Register reg5 = no_reg,
50                Register reg6 = no_reg, Register reg7 = no_reg,
51                Register reg8 = no_reg);
52#endif
53
54// MacroAssembler implements a collection of frequently used macros.
55class MacroAssembler: public Assembler {
56 public:
57  MacroAssembler(Isolate* isolate, void* buffer, int size,
58                 CodeObjectRequired create_code_object);
59
60  void Load(Register dst, const Operand& src, Representation r);
61  void Store(Register src, const Operand& dst, Representation r);
62
63  // Load a register with a long value as efficiently as possible.
64  void Set(Register dst, int32_t x) {
65    if (x == 0) {
66      xor_(dst, dst);
67    } else {
68      mov(dst, Immediate(x));
69    }
70  }
71  void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
72
73  // Operations on roots in the root-array.
74  void LoadRoot(Register destination, Heap::RootListIndex index);
75  void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
76  void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
77  // These methods can only be used with constant roots (i.e. non-writable
78  // and not in new space).
79  void CompareRoot(Register with, Heap::RootListIndex index);
80  void CompareRoot(const Operand& with, Heap::RootListIndex index);
81  void PushRoot(Heap::RootListIndex index);
82
83  // Compare the object in a register to a value and jump if they are equal.
84  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
85                  Label::Distance if_equal_distance = Label::kFar) {
86    CompareRoot(with, index);
87    j(equal, if_equal, if_equal_distance);
88  }
89  void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
90                  Label* if_equal,
91                  Label::Distance if_equal_distance = Label::kFar) {
92    CompareRoot(with, index);
93    j(equal, if_equal, if_equal_distance);
94  }
95
96  // Compare the object in a register to a value and jump if they are not equal.
97  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
98                     Label* if_not_equal,
99                     Label::Distance if_not_equal_distance = Label::kFar) {
100    CompareRoot(with, index);
101    j(not_equal, if_not_equal, if_not_equal_distance);
102  }
103  void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
104                     Label* if_not_equal,
105                     Label::Distance if_not_equal_distance = Label::kFar) {
106    CompareRoot(with, index);
107    j(not_equal, if_not_equal, if_not_equal_distance);
108  }
109
110  // These functions do not arrange the registers in any particular order so
111  // they are not useful for calls that can cause a GC.  The caller can
112  // exclude up to 3 registers that do not need to be saved and restored.
113  void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
114                       Register exclusion2 = no_reg,
115                       Register exclusion3 = no_reg);
116  void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
117                      Register exclusion2 = no_reg,
118                      Register exclusion3 = no_reg);
119
120  // ---------------------------------------------------------------------------
121  // GC Support
122  enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
123
124  // Record in the remembered set the fact that we have a pointer to new space
125  // at the address pointed to by the addr register.  Only works if addr is not
126  // in new space.
127  void RememberedSetHelper(Register object,  // Used for debug code.
128                           Register addr, Register scratch,
129                           SaveFPRegsMode save_fp,
130                           RememberedSetFinalAction and_then);
131
132  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
133                     Label* condition_met,
134                     Label::Distance condition_met_distance = Label::kFar);
135
136  void CheckPageFlagForMap(
137      Handle<Map> map, int mask, Condition cc, Label* condition_met,
138      Label::Distance condition_met_distance = Label::kFar);
139
140  // Check if object is in new space.  Jumps if the object is not in new space.
141  // The register scratch can be object itself, but scratch will be clobbered.
142  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
143                           Label::Distance distance = Label::kFar) {
144    InNewSpace(object, scratch, zero, branch, distance);
145  }
146
147  // Check if object is in new space.  Jumps if the object is in new space.
148  // The register scratch can be object itself, but it will be clobbered.
149  void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
150                        Label::Distance distance = Label::kFar) {
151    InNewSpace(object, scratch, not_zero, branch, distance);
152  }
153
154  // Check if an object has a given incremental marking color.  Also uses ecx!
155  void HasColor(Register object, Register scratch0, Register scratch1,
156                Label* has_color, Label::Distance has_color_distance,
157                int first_bit, int second_bit);
158
159  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
160                   Label* on_black,
161                   Label::Distance on_black_distance = Label::kFar);
162
163  // Checks the color of an object.  If the object is white we jump to the
164  // incremental marker.
165  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
166                   Label* value_is_white, Label::Distance distance);
167
168  // Notify the garbage collector that we wrote a pointer into an object.
169  // |object| is the object being stored into, |value| is the object being
170  // stored.  value and scratch registers are clobbered by the operation.
171  // The offset is the offset from the start of the object, not the offset from
172  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
173  void RecordWriteField(
174      Register object, int offset, Register value, Register scratch,
175      SaveFPRegsMode save_fp,
176      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
177      SmiCheck smi_check = INLINE_SMI_CHECK,
178      PointersToHereCheck pointers_to_here_check_for_value =
179          kPointersToHereMaybeInteresting);
180
181  // As above, but the offset has the tag presubtracted.  For use with
182  // Operand(reg, off).
183  void RecordWriteContextSlot(
184      Register context, int offset, Register value, Register scratch,
185      SaveFPRegsMode save_fp,
186      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
187      SmiCheck smi_check = INLINE_SMI_CHECK,
188      PointersToHereCheck pointers_to_here_check_for_value =
189          kPointersToHereMaybeInteresting) {
190    RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
191                     remembered_set_action, smi_check,
192                     pointers_to_here_check_for_value);
193  }
194
195  // Notify the garbage collector that we wrote a pointer into a fixed array.
196  // |array| is the array being stored into, |value| is the
197  // object being stored.  |index| is the array index represented as a
198  // Smi. All registers are clobbered by the operation RecordWriteArray
199  // filters out smis so it does not update the write barrier if the
200  // value is a smi.
201  void RecordWriteArray(
202      Register array, Register value, Register index, SaveFPRegsMode save_fp,
203      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
204      SmiCheck smi_check = INLINE_SMI_CHECK,
205      PointersToHereCheck pointers_to_here_check_for_value =
206          kPointersToHereMaybeInteresting);
207
208  // For page containing |object| mark region covering |address|
209  // dirty. |object| is the object being stored into, |value| is the
210  // object being stored. The address and value registers are clobbered by the
211  // operation. RecordWrite filters out smis so it does not update the
212  // write barrier if the value is a smi.
213  void RecordWrite(
214      Register object, Register address, Register value, SaveFPRegsMode save_fp,
215      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
216      SmiCheck smi_check = INLINE_SMI_CHECK,
217      PointersToHereCheck pointers_to_here_check_for_value =
218          kPointersToHereMaybeInteresting);
219
220  // Notify the garbage collector that we wrote a code entry into a
221  // JSFunction. Only scratch is clobbered by the operation.
222  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
223                                 Register scratch);
224
225  // For page containing |object| mark the region covering the object's map
226  // dirty. |object| is the object being stored into, |map| is the Map object
227  // that was stored.
228  void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
229                         Register scratch2, SaveFPRegsMode save_fp);
230
231  // ---------------------------------------------------------------------------
232  // Debugger Support
233
234  void DebugBreak();
235
236  // Generates function and stub prologue code.
237  void StubPrologue(StackFrame::Type type);
238  void Prologue(bool code_pre_aging);
239
240  // Enter specific kind of exit frame. Expects the number of
241  // arguments in register eax and sets up the number of arguments in
242  // register edi and the pointer to the first argument in register
243  // esi.
244  void EnterExitFrame(int argc, bool save_doubles);
245
246  void EnterApiExitFrame(int argc);
247
248  // Leave the current exit frame. Expects the return value in
249  // register eax:edx (untouched) and the pointer to the first
250  // argument in register esi (if pop_arguments == true).
251  void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
252
253  // Leave the current exit frame. Expects the return value in
254  // register eax (untouched).
255  void LeaveApiExitFrame(bool restore_context);
256
257  // Find the function context up the context chain.
258  void LoadContext(Register dst, int context_chain_length);
259
260  // Load the global proxy from the current context.
261  void LoadGlobalProxy(Register dst);
262
263  // Conditionally load the cached Array transitioned map of type
264  // transitioned_kind from the native context if the map in register
265  // map_in_out is the cached Array map in the native context of
266  // expected_kind.
267  void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
268                                           ElementsKind transitioned_kind,
269                                           Register map_in_out,
270                                           Register scratch,
271                                           Label* no_map_match);
272
273  // Load the global function with the given index.
274  void LoadGlobalFunction(int index, Register function);
275
276  // Load the initial map from the global function. The registers
277  // function and map can be the same.
278  void LoadGlobalFunctionInitialMap(Register function, Register map);
279
280  // Push and pop the registers that can hold pointers.
281  void PushSafepointRegisters() { pushad(); }
282  void PopSafepointRegisters() { popad(); }
283  // Store the value in register/immediate src in the safepoint
284  // register stack slot for register dst.
285  void StoreToSafepointRegisterSlot(Register dst, Register src);
286  void StoreToSafepointRegisterSlot(Register dst, Immediate src);
287  void LoadFromSafepointRegisterSlot(Register dst, Register src);
288
289  // Nop, because ia32 does not have a root register.
290  void InitializeRootRegister() {}
291
292  void LoadHeapObject(Register result, Handle<HeapObject> object);
293  void CmpHeapObject(Register reg, Handle<HeapObject> object);
294  void PushHeapObject(Handle<HeapObject> object);
295
296  void LoadObject(Register result, Handle<Object> object) {
297    AllowDeferredHandleDereference heap_object_check;
298    if (object->IsHeapObject()) {
299      LoadHeapObject(result, Handle<HeapObject>::cast(object));
300    } else {
301      Move(result, Immediate(object));
302    }
303  }
304
305  void CmpObject(Register reg, Handle<Object> object) {
306    AllowDeferredHandleDereference heap_object_check;
307    if (object->IsHeapObject()) {
308      CmpHeapObject(reg, Handle<HeapObject>::cast(object));
309    } else {
310      cmp(reg, Immediate(object));
311    }
312  }
313
314  // Compare the given value and the value of weak cell.
315  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
316
317  void GetWeakValue(Register value, Handle<WeakCell> cell);
318
319  // Load the value of the weak cell in the value register. Branch to the given
320  // miss label if the weak cell was cleared.
321  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
322
323  // ---------------------------------------------------------------------------
324  // JavaScript invokes
325
326  // Removes current frame and its arguments from the stack preserving
327  // the arguments and a return address pushed to the stack for the next call.
328  // |ra_state| defines whether return address is already pushed to stack or
329  // not. Both |callee_args_count| and |caller_args_count_reg| do not include
330  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
331  // is trashed. |number_of_temp_values_after_return_address| specifies
332  // the number of words pushed to the stack after the return address. This is
333  // to allow "allocation" of scratch registers that this function requires
334  // by saving their values on the stack.
335  void PrepareForTailCall(const ParameterCount& callee_args_count,
336                          Register caller_args_count_reg, Register scratch0,
337                          Register scratch1, ReturnAddressState ra_state,
338                          int number_of_temp_values_after_return_address);
339
340  // Invoke the JavaScript function code by either calling or jumping.
341
342  void InvokeFunctionCode(Register function, Register new_target,
343                          const ParameterCount& expected,
344                          const ParameterCount& actual, InvokeFlag flag,
345                          const CallWrapper& call_wrapper);
346
347  void FloodFunctionIfStepping(Register fun, Register new_target,
348                               const ParameterCount& expected,
349                               const ParameterCount& actual);
350
351  // Invoke the JavaScript function in the given register. Changes the
352  // current context to the context in the function before invoking.
353  void InvokeFunction(Register function, Register new_target,
354                      const ParameterCount& actual, InvokeFlag flag,
355                      const CallWrapper& call_wrapper);
356
357  void InvokeFunction(Register function, const ParameterCount& expected,
358                      const ParameterCount& actual, InvokeFlag flag,
359                      const CallWrapper& call_wrapper);
360
361  void InvokeFunction(Handle<JSFunction> function,
362                      const ParameterCount& expected,
363                      const ParameterCount& actual, InvokeFlag flag,
364                      const CallWrapper& call_wrapper);
365
366  // Expression support
367  // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
368  // hinders register renaming and makes dependence chains longer. So we use
369  // xorps to clear the dst register before cvtsi2sd to solve this issue.
370  void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
371  void Cvtsi2sd(XMMRegister dst, const Operand& src);
372
373  void Cvtui2ss(XMMRegister dst, Register src, Register tmp);
374
375  void ShlPair(Register high, Register low, uint8_t imm8);
376  void ShlPair_cl(Register high, Register low);
377  void ShrPair(Register high, Register low, uint8_t imm8);
378  void ShrPair_cl(Register high, Register src);
379  void SarPair(Register high, Register low, uint8_t imm8);
380  void SarPair_cl(Register high, Register low);
381
382  // Support for constant splitting.
383  bool IsUnsafeImmediate(const Immediate& x);
384  void SafeMove(Register dst, const Immediate& x);
385  void SafePush(const Immediate& x);
386
387  // Compare object type for heap object.
388  // Incoming register is heap_object and outgoing register is map.
389  void CmpObjectType(Register heap_object, InstanceType type, Register map);
390
391  // Compare instance type for map.
392  void CmpInstanceType(Register map, InstanceType type);
393
394  // Check if a map for a JSObject indicates that the object has fast elements.
395  // Jump to the specified label if it does not.
396  void CheckFastElements(Register map, Label* fail,
397                         Label::Distance distance = Label::kFar);
398
399  // Check if a map for a JSObject indicates that the object can have both smi
400  // and HeapObject elements.  Jump to the specified label if it does not.
401  void CheckFastObjectElements(Register map, Label* fail,
402                               Label::Distance distance = Label::kFar);
403
404  // Check if a map for a JSObject indicates that the object has fast smi only
405  // elements.  Jump to the specified label if it does not.
406  void CheckFastSmiElements(Register map, Label* fail,
407                            Label::Distance distance = Label::kFar);
408
409  // Check to see if maybe_number can be stored as a double in
410  // FastDoubleElements. If it can, store it at the index specified by key in
411  // the FastDoubleElements array elements, otherwise jump to fail.
412  void StoreNumberToDoubleElements(Register maybe_number, Register elements,
413                                   Register key, Register scratch1,
414                                   XMMRegister scratch2, Label* fail,
415                                   int offset = 0);
416
417  // Compare an object's map with the specified map.
418  void CompareMap(Register obj, Handle<Map> map);
419
420  // Check if the map of an object is equal to a specified map and branch to
421  // label if not. Skip the smi check if not required (object is known to be a
422  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
423  // against maps that are ElementsKind transition maps of the specified map.
424  void CheckMap(Register obj, Handle<Map> map, Label* fail,
425                SmiCheckType smi_check_type);
426
427  // Check if the map of an object is equal to a specified weak map and branch
428  // to a specified target if equal. Skip the smi check if not required
429  // (object is known to be a heap object)
430  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
431                       Handle<WeakCell> cell, Handle<Code> success,
432                       SmiCheckType smi_check_type);
433
434  // Check if the object in register heap_object is a string. Afterwards the
435  // register map contains the object map and the register instance_type
436  // contains the instance_type. The registers map and instance_type can be the
437  // same in which case it contains the instance type afterwards. Either of the
438  // registers map and instance_type can be the same as heap_object.
439  Condition IsObjectStringType(Register heap_object, Register map,
440                               Register instance_type);
441
442  // Check if the object in register heap_object is a name. Afterwards the
443  // register map contains the object map and the register instance_type
444  // contains the instance_type. The registers map and instance_type can be the
445  // same in which case it contains the instance type afterwards. Either of the
446  // registers map and instance_type can be the same as heap_object.
447  Condition IsObjectNameType(Register heap_object, Register map,
448                             Register instance_type);
449
450  // FCmp is similar to integer cmp, but requires unsigned
451  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
452  void FCmp();
453
454  void ClampUint8(Register reg);
455
456  void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
457                          Register result_reg);
458
459  void SlowTruncateToI(Register result_reg, Register input_reg,
460      int offset = HeapNumber::kValueOffset - kHeapObjectTag);
461
462  void TruncateHeapNumberToI(Register result_reg, Register input_reg);
463  void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
464
465  void DoubleToI(Register result_reg, XMMRegister input_reg,
466                 XMMRegister scratch, MinusZeroMode minus_zero_mode,
467                 Label* lost_precision, Label* is_nan, Label* minus_zero,
468                 Label::Distance dst = Label::kFar);
469
470  // Smi tagging support.
471  void SmiTag(Register reg) {
472    STATIC_ASSERT(kSmiTag == 0);
473    STATIC_ASSERT(kSmiTagSize == 1);
474    add(reg, reg);
475  }
476  void SmiUntag(Register reg) {
477    sar(reg, kSmiTagSize);
478  }
479
480  // Modifies the register even if it does not contain a Smi!
481  void SmiUntag(Register reg, Label* is_smi) {
482    STATIC_ASSERT(kSmiTagSize == 1);
483    sar(reg, kSmiTagSize);
484    STATIC_ASSERT(kSmiTag == 0);
485    j(not_carry, is_smi);
486  }
487
488  void LoadUint32(XMMRegister dst, Register src) {
489    LoadUint32(dst, Operand(src));
490  }
491  void LoadUint32(XMMRegister dst, const Operand& src);
492
493  // Jump the register contains a smi.
494  inline void JumpIfSmi(Register value, Label* smi_label,
495                        Label::Distance distance = Label::kFar) {
496    test(value, Immediate(kSmiTagMask));
497    j(zero, smi_label, distance);
498  }
499  // Jump if the operand is a smi.
500  inline void JumpIfSmi(Operand value, Label* smi_label,
501                        Label::Distance distance = Label::kFar) {
502    test(value, Immediate(kSmiTagMask));
503    j(zero, smi_label, distance);
504  }
505  // Jump if register contain a non-smi.
506  inline void JumpIfNotSmi(Register value, Label* not_smi_label,
507                           Label::Distance distance = Label::kFar) {
508    test(value, Immediate(kSmiTagMask));
509    j(not_zero, not_smi_label, distance);
510  }
511
512  // Jump if the value cannot be represented by a smi.
513  inline void JumpIfNotValidSmiValue(Register value, Register scratch,
514                                     Label* on_invalid,
515                                     Label::Distance distance = Label::kFar) {
516    mov(scratch, value);
517    add(scratch, Immediate(0x40000000U));
518    j(sign, on_invalid, distance);
519  }
520
521  // Jump if the unsigned integer value cannot be represented by a smi.
522  inline void JumpIfUIntNotValidSmiValue(
523      Register value, Label* on_invalid,
524      Label::Distance distance = Label::kFar) {
525    cmp(value, Immediate(0x40000000U));
526    j(above_equal, on_invalid, distance);
527  }
528
529  void LoadInstanceDescriptors(Register map, Register descriptors);
530  void EnumLength(Register dst, Register map);
531  void NumberOfOwnDescriptors(Register dst, Register map);
532  void LoadAccessor(Register dst, Register holder, int accessor_index,
533                    AccessorComponent accessor);
534
535  template<typename Field>
536  void DecodeField(Register reg) {
537    static const int shift = Field::kShift;
538    static const int mask = Field::kMask >> Field::kShift;
539    if (shift != 0) {
540      sar(reg, shift);
541    }
542    and_(reg, Immediate(mask));
543  }
544
545  template<typename Field>
546  void DecodeFieldToSmi(Register reg) {
547    static const int shift = Field::kShift;
548    static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
549    STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
550    STATIC_ASSERT(kSmiTag == 0);
551    if (shift < kSmiTagSize) {
552      shl(reg, kSmiTagSize - shift);
553    } else if (shift > kSmiTagSize) {
554      sar(reg, shift - kSmiTagSize);
555    }
556    and_(reg, Immediate(mask));
557  }
558
559  void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
560
561  // Abort execution if argument is not a number, enabled via --debug-code.
562  void AssertNumber(Register object);
563  void AssertNotNumber(Register object);
564
565  // Abort execution if argument is not a smi, enabled via --debug-code.
566  void AssertSmi(Register object);
567
568  // Abort execution if argument is a smi, enabled via --debug-code.
569  void AssertNotSmi(Register object);
570
571  // Abort execution if argument is not a string, enabled via --debug-code.
572  void AssertString(Register object);
573
574  // Abort execution if argument is not a name, enabled via --debug-code.
575  void AssertName(Register object);
576
577  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
578  void AssertFunction(Register object);
579
580  // Abort execution if argument is not a JSBoundFunction,
581  // enabled via --debug-code.
582  void AssertBoundFunction(Register object);
583
584  // Abort execution if argument is not a JSGeneratorObject,
585  // enabled via --debug-code.
586  void AssertGeneratorObject(Register object);
587
588  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
589  void AssertReceiver(Register object);
590
591  // Abort execution if argument is not undefined or an AllocationSite, enabled
592  // via --debug-code.
593  void AssertUndefinedOrAllocationSite(Register object);
594
595  // ---------------------------------------------------------------------------
596  // Exception handling
597
598  // Push a new stack handler and link it into stack handler chain.
599  void PushStackHandler();
600
601  // Unlink the stack handler on top of the stack from the stack handler chain.
602  void PopStackHandler();
603
604  // ---------------------------------------------------------------------------
605  // Inline caching support
606
607  // Generate code for checking access rights - used for security checks
608  // on access to global objects across environments. The holder register
609  // is left untouched, but the scratch register is clobbered.
610  void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
611                              Register scratch2, Label* miss);
612
613  void GetNumberHash(Register r0, Register scratch);
614
615  void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
616                                Register r0, Register r1, Register r2,
617                                Register result);
618
619  // ---------------------------------------------------------------------------
620  // Allocation support
621
622  // Allocate an object in new space or old space. If the given space
623  // is exhausted control continues at the gc_required label. The allocated
624  // object is returned in result and end of the new object is returned in
625  // result_end. The register scratch can be passed as no_reg in which case
626  // an additional object reference will be added to the reloc info. The
627  // returned pointers in result and result_end have not yet been tagged as
628  // heap objects. If result_contains_top_on_entry is true the content of
629  // result is known to be the allocation top on entry (could be result_end
630  // from a previous call). If result_contains_top_on_entry is true scratch
631  // should be no_reg as it is never used.
632  void Allocate(int object_size, Register result, Register result_end,
633                Register scratch, Label* gc_required, AllocationFlags flags);
634
635  void Allocate(int header_size, ScaleFactor element_size,
636                Register element_count, RegisterValueType element_count_type,
637                Register result, Register result_end, Register scratch,
638                Label* gc_required, AllocationFlags flags);
639
640  void Allocate(Register object_size, Register result, Register result_end,
641                Register scratch, Label* gc_required, AllocationFlags flags);
642
643  // FastAllocate is right now only used for folded allocations. It just
644  // increments the top pointer without checking against limit. This can only
645  // be done if it was proved earlier that the allocation will succeed.
646  void FastAllocate(int object_size, Register result, Register result_end,
647                    AllocationFlags flags);
648  void FastAllocate(Register object_size, Register result, Register result_end,
649                    AllocationFlags flags);
650
651  // Allocate a heap number in new space with undefined value. The
652  // register scratch2 can be passed as no_reg; the others must be
653  // valid registers. Returns tagged pointer in result register, or
654  // jumps to gc_required if new space is full.
655  void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
656                          Label* gc_required, MutableMode mode = IMMUTABLE);
657
658  // Allocate a sequential string. All the header fields of the string object
659  // are initialized.
660  void AllocateTwoByteString(Register result, Register length,
661                             Register scratch1, Register scratch2,
662                             Register scratch3, Label* gc_required);
663  void AllocateOneByteString(Register result, Register length,
664                             Register scratch1, Register scratch2,
665                             Register scratch3, Label* gc_required);
666  void AllocateOneByteString(Register result, int length, Register scratch1,
667                             Register scratch2, Label* gc_required);
668
669  // Allocate a raw cons string object. Only the map field of the result is
670  // initialized.
671  void AllocateTwoByteConsString(Register result, Register scratch1,
672                                 Register scratch2, Label* gc_required);
673  void AllocateOneByteConsString(Register result, Register scratch1,
674                                 Register scratch2, Label* gc_required);
675
676  // Allocate a raw sliced string object. Only the map field of the result is
677  // initialized.
678  void AllocateTwoByteSlicedString(Register result, Register scratch1,
679                                   Register scratch2, Label* gc_required);
680  void AllocateOneByteSlicedString(Register result, Register scratch1,
681                                   Register scratch2, Label* gc_required);
682
683  // Allocate and initialize a JSValue wrapper with the specified {constructor}
684  // and {value}.
685  void AllocateJSValue(Register result, Register constructor, Register value,
686                       Register scratch, Label* gc_required);
687
688  // Copy memory, byte-by-byte, from source to destination.  Not optimized for
689  // long or aligned copies.
690  // The contents of index and scratch are destroyed.
691  void CopyBytes(Register source, Register destination, Register length,
692                 Register scratch);
693
694  // Initialize fields with filler values.  Fields starting at |current_address|
695  // not including |end_address| are overwritten with the value in |filler|.  At
696  // the end the loop, |current_address| takes the value of |end_address|.
697  void InitializeFieldsWithFiller(Register current_address,
698                                  Register end_address, Register filler);
699
700  // ---------------------------------------------------------------------------
701  // Support functions.
702
703  // Check a boolean-bit of a Smi field.
704  void BooleanBitTest(Register object, int field_offset, int bit_index);
705
706  // Check if result is zero and op is negative.
707  void NegativeZeroTest(Register result, Register op, Label* then_label);
708
709  // Check if result is zero and any of op1 and op2 are negative.
710  // Register scratch is destroyed, and it must be different from op2.
711  void NegativeZeroTest(Register result, Register op1, Register op2,
712                        Register scratch, Label* then_label);
713
714  // Machine code version of Map::GetConstructor().
715  // |temp| holds |result|'s map when done.
716  void GetMapConstructor(Register result, Register map, Register temp);
717
718  // Try to get function prototype of a function and puts the value in
719  // the result register. Checks that the function really is a
720  // function and jumps to the miss label if the fast checks fail. The
721  // function register will be untouched; the other registers may be
722  // clobbered.
723  void TryGetFunctionPrototype(Register function, Register result,
724                               Register scratch, Label* miss);
725
726  // Picks out an array index from the hash field.
727  // Register use:
728  //   hash - holds the index's hash. Clobbered.
729  //   index - holds the overwritten index on exit.
730  void IndexFromHash(Register hash, Register index);
731
732  // ---------------------------------------------------------------------------
733  // Runtime calls
734
735  // Call a code stub.  Generate the code if necessary.
736  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
737
738  // Tail call a code stub (jump).  Generate the code if necessary.
739  void TailCallStub(CodeStub* stub);
740
741  // Return from a code stub after popping its arguments.
742  void StubReturn(int argc);
743
744  // Call a runtime routine.
745  void CallRuntime(const Runtime::Function* f, int num_arguments,
746                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
747  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
748    const Runtime::Function* function = Runtime::FunctionForId(fid);
749    CallRuntime(function, function->nargs, kSaveFPRegs);
750  }
751
752  // Convenience function: Same as above, but takes the fid instead.
753  void CallRuntime(Runtime::FunctionId fid,
754                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
755    const Runtime::Function* function = Runtime::FunctionForId(fid);
756    CallRuntime(function, function->nargs, save_doubles);
757  }
758
759  // Convenience function: Same as above, but takes the fid instead.
760  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
761                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
762    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
763  }
764
765  // Convenience function: call an external reference.
766  void CallExternalReference(ExternalReference ref, int num_arguments);
767
768  // Convenience function: tail call a runtime routine (jump).
769  void TailCallRuntime(Runtime::FunctionId fid);
770
771  // Before calling a C-function from generated code, align arguments on stack.
772  // After aligning the frame, arguments must be stored in esp[0], esp[4],
773  // etc., not pushed. The argument count assumes all arguments are word sized.
774  // Some compilers/platforms require the stack to be aligned when calling
775  // C++ code.
776  // Needs a scratch register to do some arithmetic. This register will be
777  // trashed.
778  void PrepareCallCFunction(int num_arguments, Register scratch);
779
780  // Calls a C function and cleans up the space for arguments allocated
781  // by PrepareCallCFunction. The called function is not allowed to trigger a
782  // garbage collection, since that might move the code and invalidate the
783  // return address (unless this is somehow accounted for by the called
784  // function).
785  void CallCFunction(ExternalReference function, int num_arguments);
786  void CallCFunction(Register function, int num_arguments);
787
788  // Jump to a runtime routine.
789  void JumpToExternalReference(const ExternalReference& ext);
790
791  // ---------------------------------------------------------------------------
792  // Utilities
793
794  void Ret();
795
796  // Return and drop arguments from stack, where the number of arguments
797  // may be bigger than 2^16 - 1.  Requires a scratch register.
798  void Ret(int bytes_dropped, Register scratch);
799
800  // Emit code to discard a non-negative number of pointer-sized elements
801  // from the stack, clobbering only the esp register.
802  void Drop(int element_count);
803
804  void Call(Label* target) { call(target); }
805  void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
806  void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
807  void Push(Register src) { push(src); }
808  void Push(const Operand& src) { push(src); }
809  void Push(Immediate value) { push(value); }
810  void Pop(Register dst) { pop(dst); }
811  void Pop(const Operand& dst) { pop(dst); }
812  void PushReturnAddressFrom(Register src) { push(src); }
813  void PopReturnAddressTo(Register dst) { pop(dst); }
814
815  // Non-SSE2 instructions.
816  void Pextrd(Register dst, XMMRegister src, int8_t imm8);
817  void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
818    Pinsrd(dst, Operand(src), imm8);
819  }
820  void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
821
822  void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
823  void Lzcnt(Register dst, const Operand& src);
824
825  void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
826  void Tzcnt(Register dst, const Operand& src);
827
828  void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
829  void Popcnt(Register dst, const Operand& src);
830
831  // Move if the registers are not identical.
832  void Move(Register target, Register source);
833
834  // Move a constant into a destination using the most efficient encoding.
835  void Move(Register dst, const Immediate& x);
836  void Move(const Operand& dst, const Immediate& x);
837
838  // Move an immediate into an XMM register.
839  void Move(XMMRegister dst, uint32_t src);
840  void Move(XMMRegister dst, uint64_t src);
841  void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
842  void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
843
844  void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
845  void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
846
847  // Push a handle value.
848  void Push(Handle<Object> handle) { push(Immediate(handle)); }
849  void Push(Smi* smi) { Push(Immediate(smi)); }
850
851  Handle<Object> CodeObject() {
852    DCHECK(!code_object_.is_null());
853    return code_object_;
854  }
855
856  // Emit code for a truncating division by a constant. The dividend register is
857  // unchanged, the result is in edx, and eax gets clobbered.
858  void TruncatingDiv(Register dividend, int32_t divisor);
859
860  // ---------------------------------------------------------------------------
861  // StatsCounter support
862
863  void SetCounter(StatsCounter* counter, int value);
864  void IncrementCounter(StatsCounter* counter, int value);
865  void DecrementCounter(StatsCounter* counter, int value);
866  void IncrementCounter(Condition cc, StatsCounter* counter, int value);
867  void DecrementCounter(Condition cc, StatsCounter* counter, int value);
868
869  // ---------------------------------------------------------------------------
870  // Debugging
871
872  // Calls Abort(msg) if the condition cc is not satisfied.
873  // Use --debug_code to enable.
874  void Assert(Condition cc, BailoutReason reason);
875
876  void AssertFastElements(Register elements);
877
878  // Like Assert(), but always enabled.
879  void Check(Condition cc, BailoutReason reason);
880
881  // Print a message to stdout and abort execution.
882  void Abort(BailoutReason reason);
883
884  // Check that the stack is aligned.
885  void CheckStackAlignment();
886
887  // Verify restrictions about code generated in stubs.
888  void set_generating_stub(bool value) { generating_stub_ = value; }
889  bool generating_stub() { return generating_stub_; }
890  void set_has_frame(bool value) { has_frame_ = value; }
891  bool has_frame() { return has_frame_; }
892  inline bool AllowThisStubCall(CodeStub* stub);
893
894  // ---------------------------------------------------------------------------
895  // String utilities.
896
897  // Check whether the instance type represents a flat one-byte string. Jump to
898  // the label if not. If the instance type can be scratched specify same
899  // register for both instance type and scratch.
900  void JumpIfInstanceTypeIsNotSequentialOneByte(
901      Register instance_type, Register scratch,
902      Label* on_not_flat_one_byte_string);
903
904  // Checks if both objects are sequential one-byte strings, and jumps to label
905  // if either is not.
906  void JumpIfNotBothSequentialOneByteStrings(
907      Register object1, Register object2, Register scratch1, Register scratch2,
908      Label* on_not_flat_one_byte_strings);
909
910  // Checks if the given register or operand is a unique name
911  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
912                                       Label::Distance distance = Label::kFar) {
913    JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
914  }
915
916  void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
917                                       Label::Distance distance = Label::kFar);
918
919  void EmitSeqStringSetCharCheck(Register string, Register index,
920                                 Register value, uint32_t encoding_mask);
921
922  static int SafepointRegisterStackIndex(Register reg) {
923    return SafepointRegisterStackIndex(reg.code());
924  }
925
926  // Load the type feedback vector from a JavaScript frame.
927  void EmitLoadTypeFeedbackVector(Register vector);
928
929  // Activation support.
930  void EnterFrame(StackFrame::Type type);
931  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
932  void LeaveFrame(StackFrame::Type type);
933
934  // Expects object in eax and returns map with validated enum cache
935  // in eax.  Assumes that any other register can be used as a scratch.
936  void CheckEnumCache(Label* call_runtime);
937
938  // AllocationMemento support. Arrays may have an associated
939  // AllocationMemento object that can be checked for in order to pretransition
940  // to another type.
941  // On entry, receiver_reg should point to the array object.
942  // scratch_reg gets clobbered.
943  // If allocation info is present, conditional code is set to equal.
944  void TestJSArrayForAllocationMemento(Register receiver_reg,
945                                       Register scratch_reg,
946                                       Label* no_memento_found);
947
948  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
949                                         Register scratch_reg,
950                                         Label* memento_found) {
951    Label no_memento_found;
952    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
953                                    &no_memento_found);
954    j(equal, memento_found);
955    bind(&no_memento_found);
956  }
957
958  // Jumps to found label if a prototype map has dictionary elements.
959  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
960                                        Register scratch1, Label* found);
961
962 private:
963  bool generating_stub_;
964  bool has_frame_;
965  // This handle will be patched with the code object on installation.
966  Handle<Object> code_object_;
967
968  // Helper functions for generating invokes.
969  void InvokePrologue(const ParameterCount& expected,
970                      const ParameterCount& actual, Label* done,
971                      bool* definitely_mismatches, InvokeFlag flag,
972                      Label::Distance done_distance,
973                      const CallWrapper& call_wrapper);
974
975  void EnterExitFramePrologue();
976  void EnterExitFrameEpilogue(int argc, bool save_doubles);
977
978  void LeaveExitFrameEpilogue(bool restore_context);
979
980  // Allocation support helpers.
981  void LoadAllocationTopHelper(Register result, Register scratch,
982                               AllocationFlags flags);
983
984  void UpdateAllocationTopHelper(Register result_end, Register scratch,
985                                 AllocationFlags flags);
986
987  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
988  void InNewSpace(Register object, Register scratch, Condition cc,
989                  Label* condition_met,
990                  Label::Distance condition_met_distance = Label::kFar);
991
992  // Helper for finding the mark bits for an address.  Afterwards, the
993  // bitmap register points at the word with the mark bits and the mask
994  // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
995  // unchanged.
996  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
997                          Register mask_reg);
998
999  // Compute memory operands for safepoint stack slots.
1000  Operand SafepointRegisterSlot(Register reg);
1001  static int SafepointRegisterStackIndex(int reg_code);
1002
1003  // Needs access to SafepointRegisterStackIndex for compiled frame
1004  // traversal.
1005  friend class StandardFrame;
1006};
1007
1008// The code patcher is used to patch (typically) small parts of code e.g. for
1009// debugging and other types of instrumentation. When using the code patcher
1010// the exact number of bytes specified must be emitted. Is not legal to emit
1011// relocation information. If any of these constraints are violated it causes
1012// an assertion.
1013class CodePatcher {
1014 public:
1015  CodePatcher(Isolate* isolate, byte* address, int size);
1016  ~CodePatcher();
1017
1018  // Macro assembler to emit code.
1019  MacroAssembler* masm() { return &masm_; }
1020
1021 private:
1022  byte* address_;        // The address of the code being patched.
1023  int size_;             // Number of bytes of the expected patch size.
1024  MacroAssembler masm_;  // Macro assembler used to generate the code.
1025};
1026
1027// -----------------------------------------------------------------------------
1028// Static helper functions.
1029
1030// Generate an Operand for loading a field from an object.
1031inline Operand FieldOperand(Register object, int offset) {
1032  return Operand(object, offset - kHeapObjectTag);
1033}
1034
1035// Generate an Operand for loading an indexed field from an object.
1036inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
1037                            int offset) {
1038  return Operand(object, index, scale, offset - kHeapObjectTag);
1039}
1040
1041inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
1042                                        int additional_offset = 0) {
1043  int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1044  return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1045}
1046
1047inline Operand ContextOperand(Register context, int index) {
1048  return Operand(context, Context::SlotOffset(index));
1049}
1050
1051inline Operand ContextOperand(Register context, Register index) {
1052  return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
1053}
1054
1055inline Operand NativeContextOperand() {
1056  return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
1057}
1058
1059#ifdef GENERATED_CODE_COVERAGE
1060extern void LogGeneratedCodeCoverage(const char* file_line);
1061#define CODE_COVERAGE_STRINGIFY(x) #x
1062#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1063#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1064#define ACCESS_MASM(masm) {                                               \
1065    byte* ia32_coverage_function =                                        \
1066        reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1067    masm->pushfd();                                                       \
1068    masm->pushad();                                                       \
1069    masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
1070    masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
1071    masm->pop(eax);                                                       \
1072    masm->popad();                                                        \
1073    masm->popfd();                                                        \
1074  }                                                                       \
1075  masm->
1076#else
1077#define ACCESS_MASM(masm) masm->
1078#endif
1079
1080}  // namespace internal
1081}  // namespace v8
1082
1083#endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_
1084