1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40
41#include <set>
42
43#include "src/assembler.h"
44#include "src/mips/constants-mips.h"
45
46namespace v8 {
47namespace internal {
48
49// clang-format off
50#define GENERAL_REGISTERS(V)                              \
51  V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52  V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6)  V(t7)  \
53  V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54  V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55
56#define ALLOCATABLE_GENERAL_REGISTERS(V) \
57  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58  V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6) V(s7)
59
60#define DOUBLE_REGISTERS(V)                               \
61  V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62  V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63  V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64  V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65
66#define FLOAT_REGISTERS DOUBLE_REGISTERS
67
68#define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
69  V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
70  V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
71// clang-format on
72
73// CPU Registers.
74//
75// 1) We would prefer to use an enum, but enum values are assignment-
76// compatible with int, which has caused code-generation bugs.
77//
78// 2) We would prefer to use a class instead of a struct but we don't like
79// the register initialization to depend on the particular initialization
80// order (which appears to be different on OS X, Linux, and Windows for the
81// installed versions of C++ we tried). Using a struct permits C-style
82// "initialization". Also, the Register objects cannot be const as this
83// forces initialization stubs in MSVC, making us dependent on initialization
84// order.
85//
86// 3) By not using an enum, we are possibly preventing the compiler from
87// doing certain constant folds, which may significantly reduce the
88// code generated for some assembly instructions (because they boil down
89// to a few constants). If this is a problem, we could change the code
90// such that we use an enum in optimized mode, and the struct in debug
91// mode. This way we get the compile-time error checking in debug mode
92// and best performance in optimized code.
93
94
95// -----------------------------------------------------------------------------
96// Implementation of Register and FPURegister.
97
98struct Register {
99  static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
100
101  enum Code {
102#define REGISTER_CODE(R) kCode_##R,
103    GENERAL_REGISTERS(REGISTER_CODE)
104#undef REGISTER_CODE
105        kAfterLast,
106    kCode_no_reg = -1
107  };
108
109  static const int kNumRegisters = Code::kAfterLast;
110
111#if defined(V8_TARGET_LITTLE_ENDIAN)
112  static const int kMantissaOffset = 0;
113  static const int kExponentOffset = 4;
114#elif defined(V8_TARGET_BIG_ENDIAN)
115  static const int kMantissaOffset = 4;
116  static const int kExponentOffset = 0;
117#else
118#error Unknown endianness
119#endif
120
121
122  static Register from_code(int code) {
123    DCHECK(code >= 0);
124    DCHECK(code < kNumRegisters);
125    Register r = {code};
126    return r;
127  }
128  bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
129  bool is(Register reg) const { return reg_code == reg.reg_code; }
130  int code() const {
131    DCHECK(is_valid());
132    return reg_code;
133  }
134  int bit() const {
135    DCHECK(is_valid());
136    return 1 << reg_code;
137  }
138
139  // Unfortunately we can't make this private in a struct.
140  int reg_code;
141};
142
143// s7: context register
144// s3: lithium scratch
145// s4: lithium scratch2
146#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
147GENERAL_REGISTERS(DECLARE_REGISTER)
148#undef DECLARE_REGISTER
149const Register no_reg = {Register::kCode_no_reg};
150
151
152int ToNumber(Register reg);
153
154Register ToRegister(int num);
155
156static const bool kSimpleFPAliasing = true;
157
158// Coprocessor register.
159struct FPURegister {
160  enum Code {
161#define REGISTER_CODE(R) kCode_##R,
162    DOUBLE_REGISTERS(REGISTER_CODE)
163#undef REGISTER_CODE
164        kAfterLast,
165    kCode_no_reg = -1
166  };
167
168  static const int kMaxNumRegisters = Code::kAfterLast;
169
170  inline static int NumRegisters();
171
172  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
173  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
174  // number of Double regs (64-bit regs, or FPU-reg-pairs).
175
176  bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
177  bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
178  FPURegister low() const {
179    // Find low reg of a Double-reg pair, which is the reg itself.
180    DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
181    FPURegister reg;
182    reg.reg_code = reg_code;
183    DCHECK(reg.is_valid());
184    return reg;
185  }
186  FPURegister high() const {
187    // Find high reg of a Doubel-reg pair, which is reg + 1.
188    DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
189    FPURegister reg;
190    reg.reg_code = reg_code + 1;
191    DCHECK(reg.is_valid());
192    return reg;
193  }
194
195  int code() const {
196    DCHECK(is_valid());
197    return reg_code;
198  }
199  int bit() const {
200    DCHECK(is_valid());
201    return 1 << reg_code;
202  }
203
204  static FPURegister from_code(int code) {
205    FPURegister r = {code};
206    return r;
207  }
208  void setcode(int f) {
209    reg_code = f;
210    DCHECK(is_valid());
211  }
212  // Unfortunately we can't make this private in a struct.
213  int reg_code;
214};
215
216// A few double registers are reserved: one as a scratch register and one to
217// hold 0.0.
218//  f28: 0.0
219//  f30: scratch register.
220
221// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
222// 32-bit registers, f0 through f31. When used as 'double' they are used
223// in pairs, starting with the even numbered register. So a double operation
224// on f0 really uses f0 and f1.
225// (Modern mips hardware also supports 32 64-bit registers, via setting
226// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
227// but it is not in common use. Someday we will want to support this in v8.)
228
229// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
230typedef FPURegister FloatRegister;
231
232typedef FPURegister DoubleRegister;
233
234// TODO(mips) Define SIMD registers.
235typedef FPURegister Simd128Register;
236
237const DoubleRegister no_freg = {-1};
238
239const DoubleRegister f0 = {0};  // Return value in hard float mode.
240const DoubleRegister f1 = {1};
241const DoubleRegister f2 = {2};
242const DoubleRegister f3 = {3};
243const DoubleRegister f4 = {4};
244const DoubleRegister f5 = {5};
245const DoubleRegister f6 = {6};
246const DoubleRegister f7 = {7};
247const DoubleRegister f8 = {8};
248const DoubleRegister f9 = {9};
249const DoubleRegister f10 = {10};
250const DoubleRegister f11 = {11};
251const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
252const DoubleRegister f13 = {13};
253const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
254const DoubleRegister f15 = {15};
255const DoubleRegister f16 = {16};
256const DoubleRegister f17 = {17};
257const DoubleRegister f18 = {18};
258const DoubleRegister f19 = {19};
259const DoubleRegister f20 = {20};
260const DoubleRegister f21 = {21};
261const DoubleRegister f22 = {22};
262const DoubleRegister f23 = {23};
263const DoubleRegister f24 = {24};
264const DoubleRegister f25 = {25};
265const DoubleRegister f26 = {26};
266const DoubleRegister f27 = {27};
267const DoubleRegister f28 = {28};
268const DoubleRegister f29 = {29};
269const DoubleRegister f30 = {30};
270const DoubleRegister f31 = {31};
271
272// Register aliases.
273// cp is assumed to be a callee saved register.
274// Defined using #define instead of "static const Register&" because Clang
275// complains otherwise when a compilation unit that includes this header
276// doesn't use the variables.
277#define kRootRegister s6
278#define cp s7
279#define kLithiumScratchReg s3
280#define kLithiumScratchReg2 s4
281#define kLithiumScratchDouble f30
282#define kDoubleRegZero f28
283// Used on mips32r6 for compare operations.
284// We use the last non-callee saved odd register for O32 ABI
285#define kDoubleCompareReg f19
286
287// FPU (coprocessor 1) control registers.
288// Currently only FCSR (#31) is implemented.
289struct FPUControlRegister {
290  bool is_valid() const { return reg_code == kFCSRRegister; }
291  bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
292  int code() const {
293    DCHECK(is_valid());
294    return reg_code;
295  }
296  int bit() const {
297    DCHECK(is_valid());
298    return 1 << reg_code;
299  }
300  void setcode(int f) {
301    reg_code = f;
302    DCHECK(is_valid());
303  }
304  // Unfortunately we can't make this private in a struct.
305  int reg_code;
306};
307
308const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
309const FPUControlRegister FCSR = { kFCSRRegister };
310
311// -----------------------------------------------------------------------------
312// Machine instruction Operands.
313
314// Class Operand represents a shifter operand in data processing instructions.
315class Operand BASE_EMBEDDED {
316 public:
317  // Immediate.
318  INLINE(explicit Operand(int32_t immediate,
319         RelocInfo::Mode rmode = RelocInfo::NONE32));
320  INLINE(explicit Operand(const ExternalReference& f));
321  INLINE(explicit Operand(const char* s));
322  INLINE(explicit Operand(Object** opp));
323  INLINE(explicit Operand(Context** cpp));
324  explicit Operand(Handle<Object> handle);
325  INLINE(explicit Operand(Smi* value));
326
327  // Register.
328  INLINE(explicit Operand(Register rm));
329
330  // Return true if this is a register operand.
331  INLINE(bool is_reg() const);
332
333  inline int32_t immediate() const {
334    DCHECK(!is_reg());
335    return imm32_;
336  }
337
338  Register rm() const { return rm_; }
339
340 private:
341  Register rm_;
342  int32_t imm32_;  // Valid if rm_ == no_reg.
343  RelocInfo::Mode rmode_;
344
345  friend class Assembler;
346  friend class MacroAssembler;
347};
348
349
350// On MIPS we have only one adressing mode with base_reg + offset.
351// Class MemOperand represents a memory operand in load and store instructions.
352class MemOperand : public Operand {
353 public:
354  // Immediate value attached to offset.
355  enum OffsetAddend {
356    offset_minus_one = -1,
357    offset_zero = 0
358  };
359
360  explicit MemOperand(Register rn, int32_t offset = 0);
361  explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
362                      OffsetAddend offset_addend = offset_zero);
363  int32_t offset() const { return offset_; }
364
365  bool OffsetIsInt16Encodable() const {
366    return is_int16(offset_);
367  }
368
369 private:
370  int32_t offset_;
371
372  friend class Assembler;
373};
374
375
376class Assembler : public AssemblerBase {
377 public:
378  // Create an assembler. Instructions and relocation information are emitted
379  // into a buffer, with the instructions starting from the beginning and the
380  // relocation information starting from the end of the buffer. See CodeDesc
381  // for a detailed comment on the layout (globals.h).
382  //
383  // If the provided buffer is NULL, the assembler allocates and grows its own
384  // buffer, and buffer_size determines the initial buffer size. The buffer is
385  // owned by the assembler and deallocated upon destruction of the assembler.
386  //
387  // If the provided buffer is not NULL, the assembler uses the provided buffer
388  // for code generation and assumes its size to be buffer_size. If the buffer
389  // is too small, a fatal error occurs. No deallocation of the buffer is done
390  // upon destruction of the assembler.
391  Assembler(Isolate* isolate, void* buffer, int buffer_size);
392  virtual ~Assembler() { }
393
394  // GetCode emits any pending (non-emitted) code and fills the descriptor
395  // desc. GetCode() is idempotent; it returns the same result if no other
396  // Assembler functions are invoked in between GetCode() calls.
397  void GetCode(CodeDesc* desc);
398
399  // Label operations & relative jumps (PPUM Appendix D).
400  //
401  // Takes a branch opcode (cc) and a label (L) and generates
402  // either a backward branch or a forward branch and links it
403  // to the label fixup chain. Usage:
404  //
405  // Label L;    // unbound label
406  // j(cc, &L);  // forward branch to unbound label
407  // bind(&L);   // bind label to the current pc
408  // j(cc, &L);  // backward branch to bound label
409  // bind(&L);   // illegal: a label may be bound only once
410  //
411  // Note: The same Label can be used for forward and backward branches
412  // but it may be bound only once.
413  void bind(Label* L);  // Binds an unbound label L to current code position.
414
415  enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
416
417  // Determines if Label is bound and near enough so that branch instruction
418  // can be used to reach it, instead of jump instruction.
419  bool is_near(Label* L);
420  bool is_near(Label* L, OffsetSize bits);
421  bool is_near_branch(Label* L);
422  inline bool is_near_pre_r6(Label* L) {
423    DCHECK(!IsMipsArchVariant(kMips32r6));
424    return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
425  }
426  inline bool is_near_r6(Label* L) {
427    DCHECK(IsMipsArchVariant(kMips32r6));
428    return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
429  }
430
431  int BranchOffset(Instr instr);
432
433  // Returns the branch offset to the given label from the current code
434  // position. Links the label to the current position if it is still unbound.
435  // Manages the jump elimination optimization if the second parameter is true.
436  int32_t branch_offset_helper(Label* L, OffsetSize bits);
437  inline int32_t branch_offset(Label* L) {
438    return branch_offset_helper(L, OffsetSize::kOffset16);
439  }
440  inline int32_t branch_offset21(Label* L) {
441    return branch_offset_helper(L, OffsetSize::kOffset21);
442  }
443  inline int32_t branch_offset26(Label* L) {
444    return branch_offset_helper(L, OffsetSize::kOffset26);
445  }
446  inline int32_t shifted_branch_offset(Label* L) {
447    return branch_offset(L) >> 2;
448  }
449  inline int32_t shifted_branch_offset21(Label* L) {
450    return branch_offset21(L) >> 2;
451  }
452  inline int32_t shifted_branch_offset26(Label* L) {
453    return branch_offset26(L) >> 2;
454  }
455  uint32_t jump_address(Label* L);
456
457  // Puts a labels target address at the given position.
458  // The high 8 bits are set to zero.
459  void label_at_put(Label* L, int at_offset);
460
461  // Read/Modify the code target address in the branch/call instruction at pc.
462  static Address target_address_at(Address pc);
463  static void set_target_address_at(
464      Isolate* isolate, Address pc, Address target,
465      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
466  // On MIPS there is no Constant Pool so we skip that parameter.
467  INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
468    return target_address_at(pc);
469  }
470  INLINE(static void set_target_address_at(
471      Isolate* isolate, Address pc, Address constant_pool, Address target,
472      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
473    set_target_address_at(isolate, pc, target, icache_flush_mode);
474  }
475  INLINE(static Address target_address_at(Address pc, Code* code)) {
476    Address constant_pool = code ? code->constant_pool() : NULL;
477    return target_address_at(pc, constant_pool);
478  }
479  INLINE(static void set_target_address_at(
480      Isolate* isolate, Address pc, Code* code, Address target,
481      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
482    Address constant_pool = code ? code->constant_pool() : NULL;
483    set_target_address_at(isolate, pc, constant_pool, target,
484                          icache_flush_mode);
485  }
486
487  // Return the code target address at a call site from the return address
488  // of that call in the instruction stream.
489  inline static Address target_address_from_return_address(Address pc);
490
491  static void QuietNaN(HeapObject* nan);
492
493  // This sets the branch destination (which gets loaded at the call address).
494  // This is for calls and branches within generated code.  The serializer
495  // has already deserialized the lui/ori instructions etc.
496  inline static void deserialization_set_special_target_at(
497      Isolate* isolate, Address instruction_payload, Code* code,
498      Address target) {
499    set_target_address_at(
500        isolate,
501        instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code,
502        target);
503  }
504
505  // This sets the internal reference at the pc.
506  inline static void deserialization_set_target_internal_reference_at(
507      Isolate* isolate, Address pc, Address target,
508      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
509
510  // Size of an instruction.
511  static const int kInstrSize = sizeof(Instr);
512
513  // Difference between address of current opcode and target address offset.
514  static const int kBranchPCOffset = 4;
515
516  // Here we are patching the address in the LUI/ORI instruction pair.
517  // These values are used in the serialization process and must be zero for
518  // MIPS platform, as Code, Embedded Object or External-reference pointers
519  // are split across two consecutive instructions and don't exist separately
520  // in the code, so the serializer should not step forwards in memory after
521  // a target is resolved and written.
522  static const int kSpecialTargetSize = 0;
523
524  // Number of consecutive instructions used to store 32bit constant. This
525  // constant is used in RelocInfo::target_address_address() function to tell
526  // serializer address of the instruction that follows LUI/ORI instruction
527  // pair.
528  static const int kInstructionsFor32BitConstant = 2;
529
530  // Distance between the instruction referring to the address of the call
531  // target and the return address.
532#ifdef _MIPS_ARCH_MIPS32R6
533  static const int kCallTargetAddressOffset = 3 * kInstrSize;
534#else
535  static const int kCallTargetAddressOffset = 4 * kInstrSize;
536#endif
537
538  // Distance between start of patched debug break slot and the emitted address
539  // to jump to.
540  static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize;
541
542  // Difference between address of current opcode and value read from pc
543  // register.
544  static const int kPcLoadDelta = 4;
545
546#ifdef _MIPS_ARCH_MIPS32R6
547  static const int kDebugBreakSlotInstructions = 3;
548#else
549  static const int kDebugBreakSlotInstructions = 4;
550#endif
551  static const int kDebugBreakSlotLength =
552      kDebugBreakSlotInstructions * kInstrSize;
553
554
555  // ---------------------------------------------------------------------------
556  // Code generation.
557
558  // Insert the smallest number of nop instructions
559  // possible to align the pc offset to a multiple
560  // of m. m must be a power of 2 (>= 4).
561  void Align(int m);
562  // Insert the smallest number of zero bytes possible to align the pc offset
563  // to a mulitple of m. m must be a power of 2 (>= 2).
564  void DataAlign(int m);
565  // Aligns code to something that's optimal for a jump target for the platform.
566  void CodeTargetAlign();
567
568  // Different nop operations are used by the code generator to detect certain
569  // states of the generated code.
570  enum NopMarkerTypes {
571    NON_MARKING_NOP = 0,
572    DEBUG_BREAK_NOP,
573    // IC markers.
574    PROPERTY_ACCESS_INLINED,
575    PROPERTY_ACCESS_INLINED_CONTEXT,
576    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
577    // Helper values.
578    LAST_CODE_MARKER,
579    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
580    // Code aging
581    CODE_AGE_MARKER_NOP = 6,
582    CODE_AGE_SEQUENCE_NOP
583  };
584
585  // Type == 0 is the default non-marking nop. For mips this is a
586  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
587  // marking, to avoid conflict with ssnop and ehb instructions.
588  void nop(unsigned int type = 0) {
589    DCHECK(type < 32);
590    Register nop_rt_reg = (type == 0) ? zero_reg : at;
591    sll(zero_reg, nop_rt_reg, type, true);
592  }
593
594
595  // --------Branch-and-jump-instructions----------
596  // We don't use likely variant of instructions.
597  void b(int16_t offset);
598  inline void b(Label* L) { b(shifted_branch_offset(L)); }
599  void bal(int16_t offset);
600  inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
601  void bc(int32_t offset);
602  inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
603  void balc(int32_t offset);
604  inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
605
606  void beq(Register rs, Register rt, int16_t offset);
607  inline void beq(Register rs, Register rt, Label* L) {
608    beq(rs, rt, shifted_branch_offset(L));
609  }
610  void bgez(Register rs, int16_t offset);
611  void bgezc(Register rt, int16_t offset);
612  inline void bgezc(Register rt, Label* L) {
613    bgezc(rt, shifted_branch_offset(L));
614  }
615  void bgeuc(Register rs, Register rt, int16_t offset);
616  inline void bgeuc(Register rs, Register rt, Label* L) {
617    bgeuc(rs, rt, shifted_branch_offset(L));
618  }
619  void bgec(Register rs, Register rt, int16_t offset);
620  inline void bgec(Register rs, Register rt, Label* L) {
621    bgec(rs, rt, shifted_branch_offset(L));
622  }
623  void bgezal(Register rs, int16_t offset);
624  void bgezalc(Register rt, int16_t offset);
625  inline void bgezalc(Register rt, Label* L) {
626    bgezalc(rt, shifted_branch_offset(L));
627  }
628  void bgezall(Register rs, int16_t offset);
629  inline void bgezall(Register rs, Label* L) {
630    bgezall(rs, branch_offset(L) >> 2);
631  }
632  void bgtz(Register rs, int16_t offset);
633  void bgtzc(Register rt, int16_t offset);
634  inline void bgtzc(Register rt, Label* L) {
635    bgtzc(rt, shifted_branch_offset(L));
636  }
637  void blez(Register rs, int16_t offset);
638  void blezc(Register rt, int16_t offset);
639  inline void blezc(Register rt, Label* L) {
640    blezc(rt, shifted_branch_offset(L));
641  }
642  void bltz(Register rs, int16_t offset);
643  void bltzc(Register rt, int16_t offset);
644  inline void bltzc(Register rt, Label* L) {
645    bltzc(rt, shifted_branch_offset(L));
646  }
647  void bltuc(Register rs, Register rt, int16_t offset);
648  inline void bltuc(Register rs, Register rt, Label* L) {
649    bltuc(rs, rt, shifted_branch_offset(L));
650  }
651  void bltc(Register rs, Register rt, int16_t offset);
652  inline void bltc(Register rs, Register rt, Label* L) {
653    bltc(rs, rt, shifted_branch_offset(L));
654  }
655  void bltzal(Register rs, int16_t offset);
656  void blezalc(Register rt, int16_t offset);
657  inline void blezalc(Register rt, Label* L) {
658    blezalc(rt, shifted_branch_offset(L));
659  }
660  void bltzalc(Register rt, int16_t offset);
661  inline void bltzalc(Register rt, Label* L) {
662    bltzalc(rt, shifted_branch_offset(L));
663  }
664  void bgtzalc(Register rt, int16_t offset);
665  inline void bgtzalc(Register rt, Label* L) {
666    bgtzalc(rt, shifted_branch_offset(L));
667  }
668  void beqzalc(Register rt, int16_t offset);
669  inline void beqzalc(Register rt, Label* L) {
670    beqzalc(rt, shifted_branch_offset(L));
671  }
672  void beqc(Register rs, Register rt, int16_t offset);
673  inline void beqc(Register rs, Register rt, Label* L) {
674    beqc(rs, rt, shifted_branch_offset(L));
675  }
676  void beqzc(Register rs, int32_t offset);
677  inline void beqzc(Register rs, Label* L) {
678    beqzc(rs, shifted_branch_offset21(L));
679  }
680  void bnezalc(Register rt, int16_t offset);
681  inline void bnezalc(Register rt, Label* L) {
682    bnezalc(rt, shifted_branch_offset(L));
683  }
684  void bnec(Register rs, Register rt, int16_t offset);
685  inline void bnec(Register rs, Register rt, Label* L) {
686    bnec(rs, rt, shifted_branch_offset(L));
687  }
688  void bnezc(Register rt, int32_t offset);
689  inline void bnezc(Register rt, Label* L) {
690    bnezc(rt, shifted_branch_offset21(L));
691  }
692  void bne(Register rs, Register rt, int16_t offset);
693  inline void bne(Register rs, Register rt, Label* L) {
694    bne(rs, rt, shifted_branch_offset(L));
695  }
696  void bovc(Register rs, Register rt, int16_t offset);
697  inline void bovc(Register rs, Register rt, Label* L) {
698    bovc(rs, rt, shifted_branch_offset(L));
699  }
700  void bnvc(Register rs, Register rt, int16_t offset);
701  inline void bnvc(Register rs, Register rt, Label* L) {
702    bnvc(rs, rt, shifted_branch_offset(L));
703  }
704
705  // Never use the int16_t b(l)cond version with a branch offset
706  // instead of using the Label* version.
707
708  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
709  void j(int32_t target);
710  void jal(int32_t target);
711  void jalr(Register rs, Register rd = ra);
712  void jr(Register target);
713  void jic(Register rt, int16_t offset);
714  void jialc(Register rt, int16_t offset);
715
716
717  // -------Data-processing-instructions---------
718
719  // Arithmetic.
720  void addu(Register rd, Register rs, Register rt);
721  void subu(Register rd, Register rs, Register rt);
722  void mult(Register rs, Register rt);
723  void multu(Register rs, Register rt);
724  void div(Register rs, Register rt);
725  void divu(Register rs, Register rt);
726  void div(Register rd, Register rs, Register rt);
727  void divu(Register rd, Register rs, Register rt);
728  void mod(Register rd, Register rs, Register rt);
729  void modu(Register rd, Register rs, Register rt);
730  void mul(Register rd, Register rs, Register rt);
731  void muh(Register rd, Register rs, Register rt);
732  void mulu(Register rd, Register rs, Register rt);
733  void muhu(Register rd, Register rs, Register rt);
734
735  void addiu(Register rd, Register rs, int32_t j);
736
737  // Logical.
738  void and_(Register rd, Register rs, Register rt);
739  void or_(Register rd, Register rs, Register rt);
740  void xor_(Register rd, Register rs, Register rt);
741  void nor(Register rd, Register rs, Register rt);
742
743  void andi(Register rd, Register rs, int32_t j);
744  void ori(Register rd, Register rs, int32_t j);
745  void xori(Register rd, Register rs, int32_t j);
746  void lui(Register rd, int32_t j);
747  void aui(Register rs, Register rt, int32_t j);
748
749  // Shifts.
750  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
751  // and may cause problems in normal code. coming_from_nop makes sure this
752  // doesn't happen.
753  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
754  void sllv(Register rd, Register rt, Register rs);
755  void srl(Register rd, Register rt, uint16_t sa);
756  void srlv(Register rd, Register rt, Register rs);
757  void sra(Register rt, Register rd, uint16_t sa);
758  void srav(Register rt, Register rd, Register rs);
759  void rotr(Register rd, Register rt, uint16_t sa);
760  void rotrv(Register rd, Register rt, Register rs);
761
762  // ------------Memory-instructions-------------
763
764  void lb(Register rd, const MemOperand& rs);
765  void lbu(Register rd, const MemOperand& rs);
766  void lh(Register rd, const MemOperand& rs);
767  void lhu(Register rd, const MemOperand& rs);
768  void lw(Register rd, const MemOperand& rs);
769  void lwl(Register rd, const MemOperand& rs);
770  void lwr(Register rd, const MemOperand& rs);
771  void sb(Register rd, const MemOperand& rs);
772  void sh(Register rd, const MemOperand& rs);
773  void sw(Register rd, const MemOperand& rs);
774  void swl(Register rd, const MemOperand& rs);
775  void swr(Register rd, const MemOperand& rs);
776
777
778  // ---------PC-Relative-instructions-----------
779
780  void addiupc(Register rs, int32_t imm19);
781  void lwpc(Register rs, int32_t offset19);
782  void auipc(Register rs, int16_t imm16);
783  void aluipc(Register rs, int16_t imm16);
784
785
786  // ----------------Prefetch--------------------
787
788  void pref(int32_t hint, const MemOperand& rs);
789
790
791  // -------------Misc-instructions--------------
792
793  // Break / Trap instructions.
794  void break_(uint32_t code, bool break_as_stop = false);
795  void stop(const char* msg, uint32_t code = kMaxStopCode);
796  void tge(Register rs, Register rt, uint16_t code);
797  void tgeu(Register rs, Register rt, uint16_t code);
798  void tlt(Register rs, Register rt, uint16_t code);
799  void tltu(Register rs, Register rt, uint16_t code);
800  void teq(Register rs, Register rt, uint16_t code);
801  void tne(Register rs, Register rt, uint16_t code);
802
803  // Memory barrier instruction.
804  void sync();
805
806  // Move from HI/LO register.
807  void mfhi(Register rd);
808  void mflo(Register rd);
809
810  // Set on less than.
811  void slt(Register rd, Register rs, Register rt);
812  void sltu(Register rd, Register rs, Register rt);
813  void slti(Register rd, Register rs, int32_t j);
814  void sltiu(Register rd, Register rs, int32_t j);
815
816  // Conditional move.
817  void movz(Register rd, Register rs, Register rt);
818  void movn(Register rd, Register rs, Register rt);
819  void movt(Register rd, Register rs, uint16_t cc = 0);
820  void movf(Register rd, Register rs, uint16_t cc = 0);
821
822  void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
823  void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
824  void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
825  void seleqz(Register rd, Register rs, Register rt);
826  void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
827              FPURegister ft);
828  void selnez(Register rd, Register rs, Register rt);
829  void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
830              FPURegister ft);
831  void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
832  void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
833  void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
834  void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
835
836  void movz_s(FPURegister fd, FPURegister fs, Register rt);
837  void movz_d(FPURegister fd, FPURegister fs, Register rt);
838  void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
839  void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
840  void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
841  void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
842  void movn_s(FPURegister fd, FPURegister fs, Register rt);
843  void movn_d(FPURegister fd, FPURegister fs, Register rt);
844  // Bit twiddling.
845  void clz(Register rd, Register rs);
846  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
847  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
848  void bitswap(Register rd, Register rt);
849  void align(Register rd, Register rs, Register rt, uint8_t bp);
850
851  void wsbh(Register rd, Register rt);
852  void seh(Register rd, Register rt);
853  void seb(Register rd, Register rt);
854
855  // --------Coprocessor-instructions----------------
856
857  // Load, store, and move.
858  void lwc1(FPURegister fd, const MemOperand& src);
859  void ldc1(FPURegister fd, const MemOperand& src);
860
861  void swc1(FPURegister fs, const MemOperand& dst);
862  void sdc1(FPURegister fs, const MemOperand& dst);
863
864  void mtc1(Register rt, FPURegister fs);
865  void mthc1(Register rt, FPURegister fs);
866
867  void mfc1(Register rt, FPURegister fs);
868  void mfhc1(Register rt, FPURegister fs);
869
870  void ctc1(Register rt, FPUControlRegister fs);
871  void cfc1(Register rt, FPUControlRegister fs);
872
873  // Arithmetic.
874  void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
875  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
876  void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
877  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
878  void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
879  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
880  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
881  void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
882  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
883  void abs_s(FPURegister fd, FPURegister fs);
884  void abs_d(FPURegister fd, FPURegister fs);
885  void mov_d(FPURegister fd, FPURegister fs);
886  void mov_s(FPURegister fd, FPURegister fs);
887  void neg_s(FPURegister fd, FPURegister fs);
888  void neg_d(FPURegister fd, FPURegister fs);
889  void sqrt_s(FPURegister fd, FPURegister fs);
890  void sqrt_d(FPURegister fd, FPURegister fs);
891  void rsqrt_s(FPURegister fd, FPURegister fs);
892  void rsqrt_d(FPURegister fd, FPURegister fs);
893  void recip_d(FPURegister fd, FPURegister fs);
894  void recip_s(FPURegister fd, FPURegister fs);
895
896  // Conversion.
897  void cvt_w_s(FPURegister fd, FPURegister fs);
898  void cvt_w_d(FPURegister fd, FPURegister fs);
899  void trunc_w_s(FPURegister fd, FPURegister fs);
900  void trunc_w_d(FPURegister fd, FPURegister fs);
901  void round_w_s(FPURegister fd, FPURegister fs);
902  void round_w_d(FPURegister fd, FPURegister fs);
903  void floor_w_s(FPURegister fd, FPURegister fs);
904  void floor_w_d(FPURegister fd, FPURegister fs);
905  void ceil_w_s(FPURegister fd, FPURegister fs);
906  void ceil_w_d(FPURegister fd, FPURegister fs);
907  void rint_s(FPURegister fd, FPURegister fs);
908  void rint_d(FPURegister fd, FPURegister fs);
909  void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
910
911  void cvt_l_s(FPURegister fd, FPURegister fs);
912  void cvt_l_d(FPURegister fd, FPURegister fs);
913  void trunc_l_s(FPURegister fd, FPURegister fs);
914  void trunc_l_d(FPURegister fd, FPURegister fs);
915  void round_l_s(FPURegister fd, FPURegister fs);
916  void round_l_d(FPURegister fd, FPURegister fs);
917  void floor_l_s(FPURegister fd, FPURegister fs);
918  void floor_l_d(FPURegister fd, FPURegister fs);
919  void ceil_l_s(FPURegister fd, FPURegister fs);
920  void ceil_l_d(FPURegister fd, FPURegister fs);
921
922  void class_s(FPURegister fd, FPURegister fs);
923  void class_d(FPURegister fd, FPURegister fs);
924
925  void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
926  void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
927  void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
928  void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
929  void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
930  void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
931  void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
932  void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
933  void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
934  void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
935  void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
936  void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
937
938  void cvt_s_w(FPURegister fd, FPURegister fs);
939  void cvt_s_l(FPURegister fd, FPURegister fs);
940  void cvt_s_d(FPURegister fd, FPURegister fs);
941
942  void cvt_d_w(FPURegister fd, FPURegister fs);
943  void cvt_d_l(FPURegister fd, FPURegister fs);
944  void cvt_d_s(FPURegister fd, FPURegister fs);
945
946  // Conditions and branches for MIPSr6.
947  void cmp(FPUCondition cond, SecondaryField fmt,
948         FPURegister fd, FPURegister ft, FPURegister fs);
949  void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
950  void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
951
952  void bc1eqz(int16_t offset, FPURegister ft);
953  inline void bc1eqz(Label* L, FPURegister ft) {
954    bc1eqz(shifted_branch_offset(L), ft);
955  }
956  void bc1nez(int16_t offset, FPURegister ft);
957  inline void bc1nez(Label* L, FPURegister ft) {
958    bc1nez(shifted_branch_offset(L), ft);
959  }
960
961  // Conditions and branches for non MIPSr6.
962  void c(FPUCondition cond, SecondaryField fmt,
963         FPURegister ft, FPURegister fs, uint16_t cc = 0);
964  void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
965  void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
966
967  void bc1f(int16_t offset, uint16_t cc = 0);
968  inline void bc1f(Label* L, uint16_t cc = 0) {
969    bc1f(shifted_branch_offset(L), cc);
970  }
971  void bc1t(int16_t offset, uint16_t cc = 0);
972  inline void bc1t(Label* L, uint16_t cc = 0) {
973    bc1t(shifted_branch_offset(L), cc);
974  }
975  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
976
977  // Check the code size generated from label to here.
978  int SizeOfCodeGeneratedSince(Label* label) {
979    return pc_offset() - label->pos();
980  }
981
982  // Check the number of instructions generated from label to here.
983  int InstructionsGeneratedSince(Label* label) {
984    return SizeOfCodeGeneratedSince(label) / kInstrSize;
985  }
986
987  // Class for scoping postponing the trampoline pool generation.
988  class BlockTrampolinePoolScope {
989   public:
990    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
991      assem_->StartBlockTrampolinePool();
992    }
993    ~BlockTrampolinePoolScope() {
994      assem_->EndBlockTrampolinePool();
995    }
996
997   private:
998    Assembler* assem_;
999
1000    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1001  };
1002
1003  // Class for postponing the assembly buffer growth. Typically used for
1004  // sequences of instructions that must be emitted as a unit, before
1005  // buffer growth (and relocation) can occur.
1006  // This blocking scope is not nestable.
1007  class BlockGrowBufferScope {
1008   public:
1009    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1010      assem_->StartBlockGrowBuffer();
1011    }
1012    ~BlockGrowBufferScope() {
1013      assem_->EndBlockGrowBuffer();
1014    }
1015
1016   private:
1017    Assembler* assem_;
1018
1019    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1020  };
1021
1022  // Debugging.
1023
1024  // Mark generator continuation.
1025  void RecordGeneratorContinuation();
1026
1027  // Mark address of a debug break slot.
1028  void RecordDebugBreakSlot(RelocInfo::Mode mode);
1029
1030  // Record the AST id of the CallIC being compiled, so that it can be placed
1031  // in the relocation information.
1032  void SetRecordedAstId(TypeFeedbackId ast_id) {
1033    DCHECK(recorded_ast_id_.IsNone());
1034    recorded_ast_id_ = ast_id;
1035  }
1036
1037  TypeFeedbackId RecordedAstId() {
1038    DCHECK(!recorded_ast_id_.IsNone());
1039    return recorded_ast_id_;
1040  }
1041
1042  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1043
1044  // Record a comment relocation entry that can be used by a disassembler.
1045  // Use --code-comments to enable.
1046  void RecordComment(const char* msg);
1047
1048  // Record a deoptimization reason that can be used by a log or cpu profiler.
1049  // Use --trace-deopt to enable.
1050  void RecordDeoptReason(const int reason, int raw_position, int id);
1051
1052  static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1053                                       intptr_t pc_delta);
1054
1055  // Writes a single byte or word of data in the code stream.  Used for
1056  // inline tables, e.g., jump-tables.
1057  void db(uint8_t data);
1058  void dd(uint32_t data);
1059  void dq(uint64_t data);
1060  void dp(uintptr_t data) { dd(data); }
1061  void dd(Label* label);
1062
1063  AssemblerPositionsRecorder* positions_recorder() {
1064    return &positions_recorder_;
1065  }
1066
1067  // Postpone the generation of the trampoline pool for the specified number of
1068  // instructions.
1069  void BlockTrampolinePoolFor(int instructions);
1070
1071  // Check if there is less than kGap bytes available in the buffer.
1072  // If this is the case, we need to grow the buffer before emitting
1073  // an instruction or relocation information.
1074  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1075
1076  // Get the number of bytes available in the buffer.
1077  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1078
1079  // Read/patch instructions.
1080  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1081  static void instr_at_put(byte* pc, Instr instr) {
1082    *reinterpret_cast<Instr*>(pc) = instr;
1083  }
1084  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1085  void instr_at_put(int pos, Instr instr) {
1086    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1087  }
1088
1089  // Check if an instruction is a branch of some kind.
1090  static bool IsBranch(Instr instr);
1091  static bool IsBc(Instr instr);
1092  static bool IsBzc(Instr instr);
1093  static bool IsBeq(Instr instr);
1094  static bool IsBne(Instr instr);
1095  static bool IsBeqzc(Instr instr);
1096  static bool IsBnezc(Instr instr);
1097  static bool IsBeqc(Instr instr);
1098  static bool IsBnec(Instr instr);
1099  static bool IsJicOrJialc(Instr instr);
1100
1101  static bool IsJump(Instr instr);
1102  static bool IsJ(Instr instr);
1103  static bool IsLui(Instr instr);
1104  static bool IsOri(Instr instr);
1105
1106  static bool IsJal(Instr instr);
1107  static bool IsJr(Instr instr);
1108  static bool IsJalr(Instr instr);
1109
1110  static bool IsNop(Instr instr, unsigned int type);
1111  static bool IsPop(Instr instr);
1112  static bool IsPush(Instr instr);
1113  static bool IsLwRegFpOffset(Instr instr);
1114  static bool IsSwRegFpOffset(Instr instr);
1115  static bool IsLwRegFpNegOffset(Instr instr);
1116  static bool IsSwRegFpNegOffset(Instr instr);
1117
1118  static Register GetRtReg(Instr instr);
1119  static Register GetRsReg(Instr instr);
1120  static Register GetRdReg(Instr instr);
1121
1122  static uint32_t GetRt(Instr instr);
1123  static uint32_t GetRtField(Instr instr);
1124  static uint32_t GetRs(Instr instr);
1125  static uint32_t GetRsField(Instr instr);
1126  static uint32_t GetRd(Instr instr);
1127  static uint32_t GetRdField(Instr instr);
1128  static uint32_t GetSa(Instr instr);
1129  static uint32_t GetSaField(Instr instr);
1130  static uint32_t GetOpcodeField(Instr instr);
1131  static uint32_t GetFunction(Instr instr);
1132  static uint32_t GetFunctionField(Instr instr);
1133  static uint32_t GetImmediate16(Instr instr);
1134  static uint32_t GetLabelConst(Instr instr);
1135
1136  static int32_t GetBranchOffset(Instr instr);
1137  static bool IsLw(Instr instr);
1138  static int16_t GetLwOffset(Instr instr);
1139  static int16_t GetJicOrJialcOffset(Instr instr);
1140  static int16_t GetLuiOffset(Instr instr);
1141  static Instr SetLwOffset(Instr instr, int16_t offset);
1142
1143  static bool IsSw(Instr instr);
1144  static Instr SetSwOffset(Instr instr, int16_t offset);
1145  static bool IsAddImmediate(Instr instr);
1146  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1147  static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic);
1148  static void UnpackTargetAddress(uint32_t address, int16_t& lui_offset,
1149                                  int16_t& jic_offset);
1150  static void UnpackTargetAddressUnsigned(uint32_t address,
1151                                          uint32_t& lui_offset,
1152                                          uint32_t& jic_offset);
1153
1154  static bool IsAndImmediate(Instr instr);
1155  static bool IsEmittedConstant(Instr instr);
1156
1157  void CheckTrampolinePool();
1158
1159  void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1160                                          ConstantPoolEntry::Access access,
1161                                          ConstantPoolEntry::Type type) {
1162    // No embedded constant pool support.
1163    UNREACHABLE();
1164  }
1165
1166  bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
1167
1168  inline int UnboundLabelsCount() { return unbound_labels_count_; }
1169
1170 protected:
1171  // Load Scaled Address instruction.
1172  void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1173
1174  // Helpers.
1175  void LoadRegPlusOffsetToAt(const MemOperand& src);
1176
1177  // Relocation for a type-recording IC has the AST id added to it.  This
1178  // member variable is a way to pass the information from the call site to
1179  // the relocation info.
1180  TypeFeedbackId recorded_ast_id_;
1181
1182  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1183
1184  // Decode branch instruction at pos and return branch target pos.
1185  int target_at(int pos, bool is_internal);
1186
1187  // Patch branch instruction at pos to branch to given branch target pos.
1188  void target_at_put(int pos, int target_pos, bool is_internal);
1189
1190  // Say if we need to relocate with this mode.
1191  bool MustUseReg(RelocInfo::Mode rmode);
1192
1193  // Record reloc info for current pc_.
1194  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1195
1196  // Block the emission of the trampoline pool before pc_offset.
1197  void BlockTrampolinePoolBefore(int pc_offset) {
1198    if (no_trampoline_pool_before_ < pc_offset)
1199      no_trampoline_pool_before_ = pc_offset;
1200  }
1201
1202  void StartBlockTrampolinePool() {
1203    trampoline_pool_blocked_nesting_++;
1204  }
1205
1206  void EndBlockTrampolinePool() {
1207    trampoline_pool_blocked_nesting_--;
1208  }
1209
1210  bool is_trampoline_pool_blocked() const {
1211    return trampoline_pool_blocked_nesting_ > 0;
1212  }
1213
1214  bool has_exception() const {
1215    return internal_trampoline_exception_;
1216  }
1217
1218  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1219
1220  bool is_trampoline_emitted() const {
1221    return trampoline_emitted_;
1222  }
1223
1224  // Temporarily block automatic assembly buffer growth.
1225  void StartBlockGrowBuffer() {
1226    DCHECK(!block_buffer_growth_);
1227    block_buffer_growth_ = true;
1228  }
1229
1230  void EndBlockGrowBuffer() {
1231    DCHECK(block_buffer_growth_);
1232    block_buffer_growth_ = false;
1233  }
1234
1235  bool is_buffer_growth_blocked() const {
1236    return block_buffer_growth_;
1237  }
1238
1239  void EmitForbiddenSlotInstruction() {
1240    if (IsPrevInstrCompactBranch()) {
1241      nop();
1242    }
1243  }
1244
1245  inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1246
1247  inline void CheckBuffer();
1248
1249 private:
1250  inline static void set_target_internal_reference_encoded_at(Address pc,
1251                                                              Address target);
1252
1253  // Buffer size and constant pool distance are checked together at regular
1254  // intervals of kBufferCheckInterval emitted bytes.
1255  static const int kBufferCheckInterval = 1*KB/2;
1256
1257  // Code generation.
1258  // The relocation writer's position is at least kGap bytes below the end of
1259  // the generated instructions. This is so that multi-instruction sequences do
1260  // not have to check for overflow. The same is true for writes of large
1261  // relocation info entries.
1262  static const int kGap = 32;
1263
1264
1265  // Repeated checking whether the trampoline pool should be emitted is rather
1266  // expensive. By default we only check again once a number of instructions
1267  // has been generated.
1268  static const int kCheckConstIntervalInst = 32;
1269  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1270
1271  int next_buffer_check_;  // pc offset of next buffer check.
1272
1273  // Emission of the trampoline pool may be blocked in some code sequences.
1274  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1275  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1276
1277  // Keep track of the last emitted pool to guarantee a maximal distance.
1278  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1279
1280  // Automatic growth of the assembly buffer may be blocked for some sequences.
1281  bool block_buffer_growth_;  // Block growth when true.
1282
1283  // Relocation information generation.
1284  // Each relocation is encoded as a variable size value.
1285  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1286  RelocInfoWriter reloc_info_writer;
1287
1288  // The bound position, before this we cannot do instruction elimination.
1289  int last_bound_pos_;
1290
1291  // Readable constants for compact branch handling in emit()
1292  enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1293
1294  // Code emission.
1295  void GrowBuffer();
1296  inline void emit(Instr x,
1297                   CompactBranchType is_compact_branch = CompactBranchType::NO);
1298  inline void emit(uint64_t x);
1299  inline void CheckForEmitInForbiddenSlot();
1300  template <typename T>
1301  inline void EmitHelper(T x);
1302  inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1303
1304  // Instruction generation.
1305  // We have 3 different kind of encoding layout on MIPS.
1306  // However due to many different types of objects encoded in the same fields
1307  // we have quite a few aliases for each mode.
1308  // Using the same structure to refer to Register and FPURegister would spare a
1309  // few aliases, but mixing both does not look clean to me.
1310  // Anyway we could surely implement this differently.
1311
1312  void GenInstrRegister(Opcode opcode,
1313                        Register rs,
1314                        Register rt,
1315                        Register rd,
1316                        uint16_t sa = 0,
1317                        SecondaryField func = NULLSF);
1318
1319  void GenInstrRegister(Opcode opcode,
1320                        Register rs,
1321                        Register rt,
1322                        uint16_t msb,
1323                        uint16_t lsb,
1324                        SecondaryField func);
1325
1326  void GenInstrRegister(Opcode opcode,
1327                        SecondaryField fmt,
1328                        FPURegister ft,
1329                        FPURegister fs,
1330                        FPURegister fd,
1331                        SecondaryField func = NULLSF);
1332
1333  void GenInstrRegister(Opcode opcode,
1334                        FPURegister fr,
1335                        FPURegister ft,
1336                        FPURegister fs,
1337                        FPURegister fd,
1338                        SecondaryField func = NULLSF);
1339
1340  void GenInstrRegister(Opcode opcode,
1341                        SecondaryField fmt,
1342                        Register rt,
1343                        FPURegister fs,
1344                        FPURegister fd,
1345                        SecondaryField func = NULLSF);
1346
1347  void GenInstrRegister(Opcode opcode,
1348                        SecondaryField fmt,
1349                        Register rt,
1350                        FPUControlRegister fs,
1351                        SecondaryField func = NULLSF);
1352
1353  void GenInstrImmediate(
1354      Opcode opcode, Register rs, Register rt, int32_t j,
1355      CompactBranchType is_compact_branch = CompactBranchType::NO);
1356  void GenInstrImmediate(
1357      Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1358      CompactBranchType is_compact_branch = CompactBranchType::NO);
1359  void GenInstrImmediate(
1360      Opcode opcode, Register r1, FPURegister r2, int32_t j,
1361      CompactBranchType is_compact_branch = CompactBranchType::NO);
1362  void GenInstrImmediate(
1363      Opcode opcode, Register rs, int32_t offset21,
1364      CompactBranchType is_compact_branch = CompactBranchType::NO);
1365  void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1366  void GenInstrImmediate(
1367      Opcode opcode, int32_t offset26,
1368      CompactBranchType is_compact_branch = CompactBranchType::NO);
1369
1370
1371  void GenInstrJump(Opcode opcode,
1372                     uint32_t address);
1373
1374
1375  // Labels.
1376  void print(Label* L);
1377  void bind_to(Label* L, int pos);
1378  void next(Label* L, bool is_internal);
1379
1380  // One trampoline consists of:
1381  // - space for trampoline slots,
1382  // - space for labels.
1383  //
1384  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1385  // Space for trampoline slots preceeds space for labels. Each label is of one
1386  // instruction size, so total amount for labels is equal to
1387  // label_count *  kInstrSize.
1388  class Trampoline {
1389   public:
1390    Trampoline() {
1391      start_ = 0;
1392      next_slot_ = 0;
1393      free_slot_count_ = 0;
1394      end_ = 0;
1395    }
1396    Trampoline(int start, int slot_count) {
1397      start_ = start;
1398      next_slot_ = start;
1399      free_slot_count_ = slot_count;
1400      end_ = start + slot_count * kTrampolineSlotsSize;
1401    }
1402    int start() {
1403      return start_;
1404    }
1405    int end() {
1406      return end_;
1407    }
1408    int take_slot() {
1409      int trampoline_slot = kInvalidSlotPos;
1410      if (free_slot_count_ <= 0) {
1411        // We have run out of space on trampolines.
1412        // Make sure we fail in debug mode, so we become aware of each case
1413        // when this happens.
1414        DCHECK(0);
1415        // Internal exception will be caught.
1416      } else {
1417        trampoline_slot = next_slot_;
1418        free_slot_count_--;
1419        next_slot_ += kTrampolineSlotsSize;
1420      }
1421      return trampoline_slot;
1422    }
1423
1424   private:
1425    int start_;
1426    int end_;
1427    int next_slot_;
1428    int free_slot_count_;
1429  };
1430
1431  int32_t get_trampoline_entry(int32_t pos);
1432  int unbound_labels_count_;
1433  // If trampoline is emitted, generated code is becoming large. As this is
1434  // already a slow case which can possibly break our code generation for the
1435  // extreme case, we use this information to trigger different mode of
1436  // branch instruction generation, where we use jump instructions rather
1437  // than regular branch instructions.
1438  bool trampoline_emitted_;
1439#ifdef _MIPS_ARCH_MIPS32R6
1440  static const int kTrampolineSlotsSize = 2 * kInstrSize;
1441#else
1442  static const int kTrampolineSlotsSize = 4 * kInstrSize;
1443#endif
1444  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1445  static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
1446  static const int kInvalidSlotPos = -1;
1447
1448  // Internal reference positions, required for unbounded internal reference
1449  // labels.
1450  std::set<int> internal_reference_positions_;
1451
1452  void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
1453  void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1454  bool prev_instr_compact_branch_ = false;
1455
1456  Trampoline trampoline_;
1457  bool internal_trampoline_exception_;
1458
1459  friend class RegExpMacroAssemblerMIPS;
1460  friend class RelocInfo;
1461  friend class CodePatcher;
1462  friend class BlockTrampolinePoolScope;
1463
1464  AssemblerPositionsRecorder positions_recorder_;
1465  friend class AssemblerPositionsRecorder;
1466  friend class EnsureSpace;
1467};
1468
1469
1470class EnsureSpace BASE_EMBEDDED {
1471 public:
1472  explicit EnsureSpace(Assembler* assembler) {
1473    assembler->CheckBuffer();
1474  }
1475};
1476
1477}  // namespace internal
1478}  // namespace v8
1479
1480#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1481