1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7
8#include "src/assembler.h"
9#include "src/globals.h"
10#include "src/mips64/assembler-mips64.h"
11
12namespace v8 {
13namespace internal {
14
15// Give alias names to registers for calling conventions.
16const Register kReturnRegister0 = {Register::kCode_v0};
17const Register kReturnRegister1 = {Register::kCode_v1};
18const Register kReturnRegister2 = {Register::kCode_a0};
19const Register kJSFunctionRegister = {Register::kCode_a1};
20const Register kContextRegister = {Register::kCpRegister};
21const Register kAllocateSizeRegister = {Register::kCode_a0};
22const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0};
24const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1};
25const Register kInterpreterDispatchTableRegister = {Register::kCode_t2};
26const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30
31// Forward declaration.
32class JumpTarget;
33
34// Reserved Register Usage Summary.
35//
36// Registers t8, t9, and at are reserved for use by the MacroAssembler.
37//
38// The programmer should know that the MacroAssembler may clobber these three,
39// but won't touch other registers except in special cases.
40//
41// Per the MIPS ABI, register t9 must be used for indirect function call
42// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43// trying to update gp register for position-independent-code. Whenever
44// MIPS generated code calls C code, it must be via t9 register.
45
46
47// Flags used for LeaveExitFrame function.
48enum LeaveExitFrameMode {
49  EMIT_RETURN = true,
50  NO_EMIT_RETURN = false
51};
52
53// Flags used for AllocateHeapNumber
54enum TaggingMode {
55  // Tag the result.
56  TAG_RESULT,
57  // Don't tag
58  DONT_TAG_RESULT
59};
60
61// Flags used for the ObjectToDoubleFPURegister function.
62enum ObjectToDoubleFlags {
63  // No special flags.
64  NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65  // Object is known to be a non smi.
66  OBJECT_NOT_SMI = 1 << 0,
67  // Don't load NaNs or infinities, branch to the non number case instead.
68  AVOID_NANS_AND_INFINITIES = 1 << 1
69};
70
71// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72enum BranchDelaySlot {
73  USE_DELAY_SLOT,
74  PROTECT
75};
76
77// Flags used for the li macro-assembler function.
78enum LiFlags {
79  // If the constant value can be represented in just 16 bits, then
80  // optimize the li to use a single instruction, rather than lui/ori/dsll
81  // sequence.
82  OPTIMIZE_SIZE = 0,
83  // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
84  // could be loaded with just one, so that this value is patchable later.
85  CONSTANT_SIZE = 1,
86  // For address loads only 4 instruction are required. Used to mark
87  // constant load that will be used as address without relocation
88  // information. It ensures predictable code size, so specific sites
89  // in code are patchable.
90  ADDRESS_LOAD  = 2
91};
92
93
94enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
95enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
96enum PointersToHereCheck {
97  kPointersToHereMaybeInteresting,
98  kPointersToHereAreAlwaysInteresting
99};
100enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
101
102Register GetRegisterThatIsNotOneOf(Register reg1,
103                                   Register reg2 = no_reg,
104                                   Register reg3 = no_reg,
105                                   Register reg4 = no_reg,
106                                   Register reg5 = no_reg,
107                                   Register reg6 = no_reg);
108
109bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
110                Register reg4 = no_reg, Register reg5 = no_reg,
111                Register reg6 = no_reg, Register reg7 = no_reg,
112                Register reg8 = no_reg, Register reg9 = no_reg,
113                Register reg10 = no_reg);
114
115
116// -----------------------------------------------------------------------------
117// Static helper functions.
118
119#if defined(V8_TARGET_LITTLE_ENDIAN)
120#define SmiWordOffset(offset) (offset + kPointerSize / 2)
121#else
122#define SmiWordOffset(offset) offset
123#endif
124
125
126inline MemOperand ContextMemOperand(Register context, int index) {
127  return MemOperand(context, Context::SlotOffset(index));
128}
129
130
131inline MemOperand NativeContextMemOperand() {
132  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
133}
134
135
136// Generate a MemOperand for loading a field from an object.
137inline MemOperand FieldMemOperand(Register object, int offset) {
138  return MemOperand(object, offset - kHeapObjectTag);
139}
140
141
142inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
143  // Assumes that Smis are shifted by 32 bits.
144  STATIC_ASSERT(kSmiShift == 32);
145  return MemOperand(rm, SmiWordOffset(offset));
146}
147
148
149inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
150  return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
151}
152
153
154// Generate a MemOperand for storing arguments 5..N on the stack
155// when calling CallCFunction().
156// TODO(plind): Currently ONLY used for O32. Should be fixed for
157//              n64, and used in RegExp code, and other places
158//              with more than 8 arguments.
159inline MemOperand CFunctionArgumentOperand(int index) {
160  DCHECK(index > kCArgSlotCount);
161  // Argument 5 takes the slot just past the four Arg-slots.
162  int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
163  return MemOperand(sp, offset);
164}
165
166
167// MacroAssembler implements a collection of frequently used macros.
168class MacroAssembler: public Assembler {
169 public:
170  MacroAssembler(Isolate* isolate, void* buffer, int size,
171                 CodeObjectRequired create_code_object);
172
173  // Arguments macros.
174#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
175#define COND_ARGS cond, r1, r2
176
177  // Cases when relocation is not needed.
178#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
179  void Name(target_type target, BranchDelaySlot bd = PROTECT); \
180  inline void Name(BranchDelaySlot bd, target_type target) { \
181    Name(target, bd); \
182  } \
183  void Name(target_type target, \
184            COND_TYPED_ARGS, \
185            BranchDelaySlot bd = PROTECT); \
186  inline void Name(BranchDelaySlot bd, \
187                   target_type target, \
188                   COND_TYPED_ARGS) { \
189    Name(target, COND_ARGS, bd); \
190  }
191
192#define DECLARE_BRANCH_PROTOTYPES(Name)   \
193  DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
194  DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
195
196  DECLARE_BRANCH_PROTOTYPES(Branch)
197  DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
198  DECLARE_BRANCH_PROTOTYPES(BranchShort)
199
200#undef DECLARE_BRANCH_PROTOTYPES
201#undef COND_TYPED_ARGS
202#undef COND_ARGS
203
204
205  // Jump, Call, and Ret pseudo instructions implementing inter-working.
206#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
207  const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
208
209  void Jump(Register target, COND_ARGS);
210  void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
211  void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
212  void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
213  static int CallSize(Register target, COND_ARGS);
214  void Call(Register target, COND_ARGS);
215  static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
216  void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
217  int CallSize(Handle<Code> code,
218               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
219               TypeFeedbackId ast_id = TypeFeedbackId::None(),
220               COND_ARGS);
221  void Call(Handle<Code> code,
222            RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
223            TypeFeedbackId ast_id = TypeFeedbackId::None(),
224            COND_ARGS);
225  void Ret(COND_ARGS);
226  inline void Ret(BranchDelaySlot bd, Condition cond = al,
227    Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
228    Ret(cond, rs, rt, bd);
229  }
230
231  bool IsNear(Label* L, Condition cond, int rs_reg);
232
233  void Branch(Label* L,
234              Condition cond,
235              Register rs,
236              Heap::RootListIndex index,
237              BranchDelaySlot bdslot = PROTECT);
238
239  // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
240  // functor/function with 'Label *func(size_t index)' declaration.
241  template <typename Func>
242  void GenerateSwitchTable(Register index, size_t case_count,
243                           Func GetLabelFunction);
244#undef COND_ARGS
245
246  // Emit code to discard a non-negative number of pointer-sized elements
247  // from the stack, clobbering only the sp register.
248  void Drop(int count,
249            Condition cond = cc_always,
250            Register reg = no_reg,
251            const Operand& op = Operand(no_reg));
252
253  // Trivial case of DropAndRet that utilizes the delay slot and only emits
254  // 2 instructions.
255  void DropAndRet(int drop);
256
257  void DropAndRet(int drop,
258                  Condition cond,
259                  Register reg,
260                  const Operand& op);
261
262  // Swap two registers.  If the scratch register is omitted then a slightly
263  // less efficient form using xor instead of mov is emitted.
264  void Swap(Register reg1, Register reg2, Register scratch = no_reg);
265
266  void Call(Label* target);
267
268  inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
269  inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
270
271  inline void Move(Register dst, Register src) {
272    if (!dst.is(src)) {
273      mov(dst, src);
274    }
275  }
276
277  inline void Move_d(FPURegister dst, FPURegister src) {
278    if (!dst.is(src)) {
279      mov_d(dst, src);
280    }
281  }
282
283  inline void Move_s(FPURegister dst, FPURegister src) {
284    if (!dst.is(src)) {
285      mov_s(dst, src);
286    }
287  }
288
289  inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
290
291  inline void Move(Register dst_low, Register dst_high, FPURegister src) {
292    mfc1(dst_low, src);
293    mfhc1(dst_high, src);
294  }
295
296  inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
297
298  inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
299
300  inline void FmoveHigh(Register dst_high, FPURegister src) {
301    mfhc1(dst_high, src);
302  }
303
304  inline void FmoveHigh(FPURegister dst, Register src_high) {
305    mthc1(src_high, dst);
306  }
307
308  inline void FmoveLow(Register dst_low, FPURegister src) {
309    mfc1(dst_low, src);
310  }
311
312  void FmoveLow(FPURegister dst, Register src_low);
313
314  inline void Move(FPURegister dst, Register src_low, Register src_high) {
315    mtc1(src_low, dst);
316    mthc1(src_high, dst);
317  }
318
319  void Move(FPURegister dst, float imm);
320  void Move(FPURegister dst, double imm);
321
322  // Conditional move.
323  void Movz(Register rd, Register rs, Register rt);
324  void Movn(Register rd, Register rs, Register rt);
325  void Movt(Register rd, Register rs, uint16_t cc = 0);
326  void Movf(Register rd, Register rs, uint16_t cc = 0);
327
328  // Min, Max macros.
329  // On pre-r6 these functions may modify at and t8 registers.
330  void MinNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
331                     Label* nan = nullptr);
332  void MaxNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
333                     Label* nan = nullptr);
334  void MinNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
335                     Label* nan = nullptr);
336  void MaxNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
337                     Label* nan = nullptr);
338
339  void Clz(Register rd, Register rs);
340
341  // Jump unconditionally to given label.
342  // We NEED a nop in the branch delay slot, as it used by v8, for example in
343  // CodeGenerator::ProcessDeferred().
344  // Currently the branch delay slot is filled by the MacroAssembler.
345  // Use rather b(Label) for code generation.
346  void jmp(Label* L) {
347    Branch(L);
348  }
349
350  void Load(Register dst, const MemOperand& src, Representation r);
351  void Store(Register src, const MemOperand& dst, Representation r);
352
353  void PushRoot(Heap::RootListIndex index) {
354    LoadRoot(at, index);
355    Push(at);
356  }
357
358  // Compare the object in a register to a value and jump if they are equal.
359  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
360    LoadRoot(at, index);
361    Branch(if_equal, eq, with, Operand(at));
362  }
363
364  // Compare the object in a register to a value and jump if they are not equal.
365  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
366                     Label* if_not_equal) {
367    LoadRoot(at, index);
368    Branch(if_not_equal, ne, with, Operand(at));
369  }
370
371  // Load an object from the root table.
372  void LoadRoot(Register destination,
373                Heap::RootListIndex index);
374  void LoadRoot(Register destination,
375                Heap::RootListIndex index,
376                Condition cond, Register src1, const Operand& src2);
377
378  // Store an object to the root table.
379  void StoreRoot(Register source,
380                 Heap::RootListIndex index);
381  void StoreRoot(Register source,
382                 Heap::RootListIndex index,
383                 Condition cond, Register src1, const Operand& src2);
384
385  // ---------------------------------------------------------------------------
386  // GC Support
387
388  void IncrementalMarkingRecordWriteHelper(Register object,
389                                           Register value,
390                                           Register address);
391
392  enum RememberedSetFinalAction {
393    kReturnAtEnd,
394    kFallThroughAtEnd
395  };
396
397
398  // Record in the remembered set the fact that we have a pointer to new space
399  // at the address pointed to by the addr register.  Only works if addr is not
400  // in new space.
401  void RememberedSetHelper(Register object,  // Used for debug code.
402                           Register addr,
403                           Register scratch,
404                           SaveFPRegsMode save_fp,
405                           RememberedSetFinalAction and_then);
406
407  void CheckPageFlag(Register object,
408                     Register scratch,
409                     int mask,
410                     Condition cc,
411                     Label* condition_met);
412
413  // Check if object is in new space.  Jumps if the object is not in new space.
414  // The register scratch can be object itself, but it will be clobbered.
415  void JumpIfNotInNewSpace(Register object,
416                           Register scratch,
417                           Label* branch) {
418    InNewSpace(object, scratch, eq, branch);
419  }
420
421  // Check if object is in new space.  Jumps if the object is in new space.
422  // The register scratch can be object itself, but scratch will be clobbered.
423  void JumpIfInNewSpace(Register object,
424                        Register scratch,
425                        Label* branch) {
426    InNewSpace(object, scratch, ne, branch);
427  }
428
429  // Check if an object has a given incremental marking color.
430  void HasColor(Register object,
431                Register scratch0,
432                Register scratch1,
433                Label* has_color,
434                int first_bit,
435                int second_bit);
436
437  void JumpIfBlack(Register object,
438                   Register scratch0,
439                   Register scratch1,
440                   Label* on_black);
441
442  // Checks the color of an object.  If the object is white we jump to the
443  // incremental marker.
444  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
445                   Register scratch3, Label* value_is_white);
446
447  // Notify the garbage collector that we wrote a pointer into an object.
448  // |object| is the object being stored into, |value| is the object being
449  // stored.  value and scratch registers are clobbered by the operation.
450  // The offset is the offset from the start of the object, not the offset from
451  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
452  void RecordWriteField(
453      Register object,
454      int offset,
455      Register value,
456      Register scratch,
457      RAStatus ra_status,
458      SaveFPRegsMode save_fp,
459      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
460      SmiCheck smi_check = INLINE_SMI_CHECK,
461      PointersToHereCheck pointers_to_here_check_for_value =
462          kPointersToHereMaybeInteresting);
463
464  // As above, but the offset has the tag presubtracted.  For use with
465  // MemOperand(reg, off).
466  inline void RecordWriteContextSlot(
467      Register context,
468      int offset,
469      Register value,
470      Register scratch,
471      RAStatus ra_status,
472      SaveFPRegsMode save_fp,
473      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
474      SmiCheck smi_check = INLINE_SMI_CHECK,
475      PointersToHereCheck pointers_to_here_check_for_value =
476          kPointersToHereMaybeInteresting) {
477    RecordWriteField(context,
478                     offset + kHeapObjectTag,
479                     value,
480                     scratch,
481                     ra_status,
482                     save_fp,
483                     remembered_set_action,
484                     smi_check,
485                     pointers_to_here_check_for_value);
486  }
487
488  // Notify the garbage collector that we wrote a code entry into a
489  // JSFunction. Only scratch is clobbered by the operation.
490  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
491                                 Register scratch);
492
493  void RecordWriteForMap(
494      Register object,
495      Register map,
496      Register dst,
497      RAStatus ra_status,
498      SaveFPRegsMode save_fp);
499
500  // For a given |object| notify the garbage collector that the slot |address|
501  // has been written.  |value| is the object being stored. The value and
502  // address registers are clobbered by the operation.
503  void RecordWrite(
504      Register object,
505      Register address,
506      Register value,
507      RAStatus ra_status,
508      SaveFPRegsMode save_fp,
509      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
510      SmiCheck smi_check = INLINE_SMI_CHECK,
511      PointersToHereCheck pointers_to_here_check_for_value =
512          kPointersToHereMaybeInteresting);
513
514
515  // ---------------------------------------------------------------------------
516  // Inline caching support.
517
518  // Generate code for checking access rights - used for security checks
519  // on access to global objects across environments. The holder register
520  // is left untouched, whereas both scratch registers are clobbered.
521  void CheckAccessGlobalProxy(Register holder_reg,
522                              Register scratch,
523                              Label* miss);
524
525  void GetNumberHash(Register reg0, Register scratch);
526
527  void LoadFromNumberDictionary(Label* miss,
528                                Register elements,
529                                Register key,
530                                Register result,
531                                Register reg0,
532                                Register reg1,
533                                Register reg2);
534
535
536  inline void MarkCode(NopMarkerTypes type) {
537    nop(type);
538  }
539
540  // Check if the given instruction is a 'type' marker.
541  // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
542  // nop(type)). These instructions are generated to mark special location in
543  // the code, like some special IC code.
544  static inline bool IsMarkedCode(Instr instr, int type) {
545    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
546    return IsNop(instr, type);
547  }
548
549
550  static inline int GetCodeMarker(Instr instr) {
551    uint32_t opcode = ((instr & kOpcodeMask));
552    uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
553    uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
554    uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
555
556    // Return <n> if we have a sll zero_reg, zero_reg, n
557    // else return -1.
558    bool sllzz = (opcode == SLL &&
559                  rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
560                  rs == static_cast<uint32_t>(ToNumber(zero_reg)));
561    int type =
562        (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
563    DCHECK((type == -1) ||
564           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
565    return type;
566  }
567
568
569
570  // ---------------------------------------------------------------------------
571  // Allocation support.
572
573  // Allocate an object in new space or old space. The object_size is
574  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
575  // is passed. If the space is exhausted control continues at the gc_required
576  // label. The allocated object is returned in result. If the flag
577  // tag_allocated_object is true the result is tagged as as a heap object.
578  // All registers are clobbered also when control continues at the gc_required
579  // label.
580  void Allocate(int object_size,
581                Register result,
582                Register scratch1,
583                Register scratch2,
584                Label* gc_required,
585                AllocationFlags flags);
586
587  void Allocate(Register object_size, Register result, Register result_end,
588                Register scratch, Label* gc_required, AllocationFlags flags);
589
590  // FastAllocate is right now only used for folded allocations. It just
591  // increments the top pointer without checking against limit. This can only
592  // be done if it was proved earlier that the allocation will succeed.
593  void FastAllocate(int object_size, Register result, Register scratch1,
594                    Register scratch2, AllocationFlags flags);
595
596  void FastAllocate(Register object_size, Register result, Register result_new,
597                    Register scratch, AllocationFlags flags);
598
599  void AllocateTwoByteString(Register result,
600                             Register length,
601                             Register scratch1,
602                             Register scratch2,
603                             Register scratch3,
604                             Label* gc_required);
605  void AllocateOneByteString(Register result, Register length,
606                             Register scratch1, Register scratch2,
607                             Register scratch3, Label* gc_required);
608  void AllocateTwoByteConsString(Register result,
609                                 Register length,
610                                 Register scratch1,
611                                 Register scratch2,
612                                 Label* gc_required);
613  void AllocateOneByteConsString(Register result, Register length,
614                                 Register scratch1, Register scratch2,
615                                 Label* gc_required);
616  void AllocateTwoByteSlicedString(Register result,
617                                   Register length,
618                                   Register scratch1,
619                                   Register scratch2,
620                                   Label* gc_required);
621  void AllocateOneByteSlicedString(Register result, Register length,
622                                   Register scratch1, Register scratch2,
623                                   Label* gc_required);
624
625  // Allocates a heap number or jumps to the gc_required label if the young
626  // space is full and a scavenge is needed. All registers are clobbered also
627  // when control continues at the gc_required label.
628  void AllocateHeapNumber(Register result,
629                          Register scratch1,
630                          Register scratch2,
631                          Register heap_number_map,
632                          Label* gc_required,
633                          MutableMode mode = IMMUTABLE);
634
635  void AllocateHeapNumberWithValue(Register result,
636                                   FPURegister value,
637                                   Register scratch1,
638                                   Register scratch2,
639                                   Label* gc_required);
640
641  // Allocate and initialize a JSValue wrapper with the specified {constructor}
642  // and {value}.
643  void AllocateJSValue(Register result, Register constructor, Register value,
644                       Register scratch1, Register scratch2,
645                       Label* gc_required);
646
647  // ---------------------------------------------------------------------------
648  // Instruction macros.
649
650#define DEFINE_INSTRUCTION(instr)                                              \
651  void instr(Register rd, Register rs, const Operand& rt);                     \
652  void instr(Register rd, Register rs, Register rt) {                          \
653    instr(rd, rs, Operand(rt));                                                \
654  }                                                                            \
655  void instr(Register rs, Register rt, int32_t j) {                            \
656    instr(rs, rt, Operand(j));                                                 \
657  }
658
659#define DEFINE_INSTRUCTION2(instr)                                             \
660  void instr(Register rs, const Operand& rt);                                  \
661  void instr(Register rs, Register rt) {                                       \
662    instr(rs, Operand(rt));                                                    \
663  }                                                                            \
664  void instr(Register rs, int32_t j) {                                         \
665    instr(rs, Operand(j));                                                     \
666  }
667
668  DEFINE_INSTRUCTION(Addu);
669  DEFINE_INSTRUCTION(Daddu);
670  DEFINE_INSTRUCTION(Div);
671  DEFINE_INSTRUCTION(Divu);
672  DEFINE_INSTRUCTION(Ddivu);
673  DEFINE_INSTRUCTION(Mod);
674  DEFINE_INSTRUCTION(Modu);
675  DEFINE_INSTRUCTION(Ddiv);
676  DEFINE_INSTRUCTION(Subu);
677  DEFINE_INSTRUCTION(Dsubu);
678  DEFINE_INSTRUCTION(Dmod);
679  DEFINE_INSTRUCTION(Dmodu);
680  DEFINE_INSTRUCTION(Mul);
681  DEFINE_INSTRUCTION(Mulh);
682  DEFINE_INSTRUCTION(Mulhu);
683  DEFINE_INSTRUCTION(Dmul);
684  DEFINE_INSTRUCTION(Dmulh);
685  DEFINE_INSTRUCTION2(Mult);
686  DEFINE_INSTRUCTION2(Dmult);
687  DEFINE_INSTRUCTION2(Multu);
688  DEFINE_INSTRUCTION2(Dmultu);
689  DEFINE_INSTRUCTION2(Div);
690  DEFINE_INSTRUCTION2(Ddiv);
691  DEFINE_INSTRUCTION2(Divu);
692  DEFINE_INSTRUCTION2(Ddivu);
693
694  DEFINE_INSTRUCTION(And);
695  DEFINE_INSTRUCTION(Or);
696  DEFINE_INSTRUCTION(Xor);
697  DEFINE_INSTRUCTION(Nor);
698  DEFINE_INSTRUCTION2(Neg);
699
700  DEFINE_INSTRUCTION(Slt);
701  DEFINE_INSTRUCTION(Sltu);
702
703  // MIPS32 R2 instruction macro.
704  DEFINE_INSTRUCTION(Ror);
705  DEFINE_INSTRUCTION(Dror);
706
707#undef DEFINE_INSTRUCTION
708#undef DEFINE_INSTRUCTION2
709#undef DEFINE_INSTRUCTION3
710
711  // Load Scaled Address instructions. Parameter sa (shift argument) must be
712  // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
713  // may be clobbered.
714  void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
715           Register scratch = at);
716  void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
717            Register scratch = at);
718
719  void Pref(int32_t hint, const MemOperand& rs);
720
721
722  // ---------------------------------------------------------------------------
723  // Pseudo-instructions.
724
725  // Change endianness
726  void ByteSwapSigned(Register reg, int operand_size);
727  void ByteSwapUnsigned(Register reg, int operand_size);
728
729  void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
730
731  void Ulh(Register rd, const MemOperand& rs);
732  void Ulhu(Register rd, const MemOperand& rs);
733  void Ush(Register rd, const MemOperand& rs, Register scratch);
734
735  void Ulw(Register rd, const MemOperand& rs);
736  void Ulwu(Register rd, const MemOperand& rs);
737  void Usw(Register rd, const MemOperand& rs);
738
739  void Uld(Register rd, const MemOperand& rs);
740  void Usd(Register rd, const MemOperand& rs);
741
742  void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
743  void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
744
745  void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
746  void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
747
748  void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
749  void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
750
751  // Load int32 in the rd register.
752  void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
753  inline bool LiLower32BitHelper(Register rd, Operand j);
754  inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
755    li(rd, Operand(j), mode);
756  }
757  void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
758
759  // Push multiple registers on the stack.
760  // Registers are saved in numerical order, with higher numbered registers
761  // saved in higher memory addresses.
762  void MultiPush(RegList regs);
763  void MultiPushReversed(RegList regs);
764
765  void MultiPushFPU(RegList regs);
766  void MultiPushReversedFPU(RegList regs);
767
768  void push(Register src) {
769    Daddu(sp, sp, Operand(-kPointerSize));
770    sd(src, MemOperand(sp, 0));
771  }
772  void Push(Register src) { push(src); }
773
774  // Push a handle.
775  void Push(Handle<Object> handle);
776  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
777
778  // Push two registers. Pushes leftmost register first (to highest address).
779  void Push(Register src1, Register src2) {
780    Dsubu(sp, sp, Operand(2 * kPointerSize));
781    sd(src1, MemOperand(sp, 1 * kPointerSize));
782    sd(src2, MemOperand(sp, 0 * kPointerSize));
783  }
784
785  // Push three registers. Pushes leftmost register first (to highest address).
786  void Push(Register src1, Register src2, Register src3) {
787    Dsubu(sp, sp, Operand(3 * kPointerSize));
788    sd(src1, MemOperand(sp, 2 * kPointerSize));
789    sd(src2, MemOperand(sp, 1 * kPointerSize));
790    sd(src3, MemOperand(sp, 0 * kPointerSize));
791  }
792
793  // Push four registers. Pushes leftmost register first (to highest address).
794  void Push(Register src1, Register src2, Register src3, Register src4) {
795    Dsubu(sp, sp, Operand(4 * kPointerSize));
796    sd(src1, MemOperand(sp, 3 * kPointerSize));
797    sd(src2, MemOperand(sp, 2 * kPointerSize));
798    sd(src3, MemOperand(sp, 1 * kPointerSize));
799    sd(src4, MemOperand(sp, 0 * kPointerSize));
800  }
801
802  // Push five registers. Pushes leftmost register first (to highest address).
803  void Push(Register src1, Register src2, Register src3, Register src4,
804            Register src5) {
805    Dsubu(sp, sp, Operand(5 * kPointerSize));
806    sd(src1, MemOperand(sp, 4 * kPointerSize));
807    sd(src2, MemOperand(sp, 3 * kPointerSize));
808    sd(src3, MemOperand(sp, 2 * kPointerSize));
809    sd(src4, MemOperand(sp, 1 * kPointerSize));
810    sd(src5, MemOperand(sp, 0 * kPointerSize));
811  }
812
813  void Push(Register src, Condition cond, Register tst1, Register tst2) {
814    // Since we don't have conditional execution we use a Branch.
815    Branch(3, cond, tst1, Operand(tst2));
816    Dsubu(sp, sp, Operand(kPointerSize));
817    sd(src, MemOperand(sp, 0));
818  }
819
820  void PushRegisterAsTwoSmis(Register src, Register scratch = at);
821  void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
822
823  // Pops multiple values from the stack and load them in the
824  // registers specified in regs. Pop order is the opposite as in MultiPush.
825  void MultiPop(RegList regs);
826  void MultiPopReversed(RegList regs);
827
828  void MultiPopFPU(RegList regs);
829  void MultiPopReversedFPU(RegList regs);
830
831  void pop(Register dst) {
832    ld(dst, MemOperand(sp, 0));
833    Daddu(sp, sp, Operand(kPointerSize));
834  }
835  void Pop(Register dst) { pop(dst); }
836
837  // Pop two registers. Pops rightmost register first (from lower address).
838  void Pop(Register src1, Register src2) {
839    DCHECK(!src1.is(src2));
840    ld(src2, MemOperand(sp, 0 * kPointerSize));
841    ld(src1, MemOperand(sp, 1 * kPointerSize));
842    Daddu(sp, sp, 2 * kPointerSize);
843  }
844
845  // Pop three registers. Pops rightmost register first (from lower address).
846  void Pop(Register src1, Register src2, Register src3) {
847    ld(src3, MemOperand(sp, 0 * kPointerSize));
848    ld(src2, MemOperand(sp, 1 * kPointerSize));
849    ld(src1, MemOperand(sp, 2 * kPointerSize));
850    Daddu(sp, sp, 3 * kPointerSize);
851  }
852
853  void Pop(uint32_t count = 1) {
854    Daddu(sp, sp, Operand(count * kPointerSize));
855  }
856
857  // Push a fixed frame, consisting of ra, fp.
858  void PushCommonFrame(Register marker_reg = no_reg);
859
860  // Push a standard frame, consisting of ra, fp, context and JS function.
861  void PushStandardFrame(Register function_reg);
862
863  void PopCommonFrame(Register marker_reg = no_reg);
864
865  // Push and pop the registers that can hold pointers, as defined by the
866  // RegList constant kSafepointSavedRegisters.
867  void PushSafepointRegisters();
868  void PopSafepointRegisters();
869  // Store value in register src in the safepoint stack slot for
870  // register dst.
871  void StoreToSafepointRegisterSlot(Register src, Register dst);
872  // Load the value of the src register from its safepoint stack slot
873  // into register dst.
874  void LoadFromSafepointRegisterSlot(Register dst, Register src);
875
876  // MIPS64 R2 instruction macro.
877  void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
878  void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
879  void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
880  void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
881  void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
882  void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
883
884  // ---------------------------------------------------------------------------
885  // FPU macros. These do not handle special cases like NaN or +- inf.
886
887  // Convert unsigned word to double.
888  void Cvt_d_uw(FPURegister fd, FPURegister fs);
889  void Cvt_d_uw(FPURegister fd, Register rs);
890
891  // Convert unsigned long to double.
892  void Cvt_d_ul(FPURegister fd, FPURegister fs);
893  void Cvt_d_ul(FPURegister fd, Register rs);
894
895  // Convert unsigned word to float.
896  void Cvt_s_uw(FPURegister fd, FPURegister fs);
897  void Cvt_s_uw(FPURegister fd, Register rs);
898
899  // Convert unsigned long to float.
900  void Cvt_s_ul(FPURegister fd, FPURegister fs);
901  void Cvt_s_ul(FPURegister fd, Register rs);
902
903  // Convert double to unsigned long.
904  void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
905
906  void Trunc_l_d(FPURegister fd, FPURegister fs);
907  void Round_l_d(FPURegister fd, FPURegister fs);
908  void Floor_l_d(FPURegister fd, FPURegister fs);
909  void Ceil_l_d(FPURegister fd, FPURegister fs);
910
911  // Convert double to unsigned word.
912  void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
913  void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
914
915  // Convert single to unsigned word.
916  void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
917  void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
918
919  // Convert double to unsigned long.
920  void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
921                  Register result = no_reg);
922  void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch,
923                  Register result = no_reg);
924
925  // Convert single to unsigned long.
926  void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
927                  Register result = no_reg);
928  void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch,
929                  Register result = no_reg);
930
931  void Trunc_w_d(FPURegister fd, FPURegister fs);
932  void Round_w_d(FPURegister fd, FPURegister fs);
933  void Floor_w_d(FPURegister fd, FPURegister fs);
934  void Ceil_w_d(FPURegister fd, FPURegister fs);
935
936  // Preserve value of a NaN operand
937  void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs,
938                                      FPURegister ft);
939  void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs,
940                                      FPURegister ft);
941
942  void Madd_d(FPURegister fd,
943              FPURegister fr,
944              FPURegister fs,
945              FPURegister ft,
946              FPURegister scratch);
947
948  // Wrapper functions for the different cmp/branch types.
949  inline void BranchF32(Label* target, Label* nan, Condition cc,
950                        FPURegister cmp1, FPURegister cmp2,
951                        BranchDelaySlot bd = PROTECT) {
952    BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
953  }
954
955  inline void BranchF64(Label* target, Label* nan, Condition cc,
956                        FPURegister cmp1, FPURegister cmp2,
957                        BranchDelaySlot bd = PROTECT) {
958    BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
959  }
960
961  // Alternate (inline) version for better readability with USE_DELAY_SLOT.
962  inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
963                        Condition cc, FPURegister cmp1, FPURegister cmp2) {
964    BranchF64(target, nan, cc, cmp1, cmp2, bd);
965  }
966
967  inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
968                        Condition cc, FPURegister cmp1, FPURegister cmp2) {
969    BranchF32(target, nan, cc, cmp1, cmp2, bd);
970  }
971
972  // Alias functions for backward compatibility.
973  inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
974                      FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
975    BranchF64(target, nan, cc, cmp1, cmp2, bd);
976  }
977
978  inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
979                      Condition cc, FPURegister cmp1, FPURegister cmp2) {
980    BranchF64(bd, target, nan, cc, cmp1, cmp2);
981  }
982
983  // Truncates a double using a specific rounding mode, and writes the value
984  // to the result register.
985  // The except_flag will contain any exceptions caused by the instruction.
986  // If check_inexact is kDontCheckForInexactConversion, then the inexact
987  // exception is masked.
988  void EmitFPUTruncate(FPURoundingMode rounding_mode,
989                       Register result,
990                       DoubleRegister double_input,
991                       Register scratch,
992                       DoubleRegister double_scratch,
993                       Register except_flag,
994                       CheckForInexactConversion check_inexact
995                           = kDontCheckForInexactConversion);
996
997  // Performs a truncating conversion of a floating point number as used by
998  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
999  // succeeds, otherwise falls through if result is saturated. On return
1000  // 'result' either holds answer, or is clobbered on fall through.
1001  //
1002  // Only public for the test code in test-code-stubs-arm.cc.
1003  void TryInlineTruncateDoubleToI(Register result,
1004                                  DoubleRegister input,
1005                                  Label* done);
1006
1007  // Performs a truncating conversion of a floating point number as used by
1008  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1009  // Exits with 'result' holding the answer.
1010  void TruncateDoubleToI(Register result, DoubleRegister double_input);
1011
1012  // Performs a truncating conversion of a heap number as used by
1013  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1014  // must be different registers. Exits with 'result' holding the answer.
1015  void TruncateHeapNumberToI(Register result, Register object);
1016
1017  // Converts the smi or heap number in object to an int32 using the rules
1018  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1019  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1020  // different registers.
1021  void TruncateNumberToI(Register object,
1022                         Register result,
1023                         Register heap_number_map,
1024                         Register scratch,
1025                         Label* not_int32);
1026
1027  // Loads the number from object into dst register.
1028  // If |object| is neither smi nor heap number, |not_number| is jumped to
1029  // with |object| still intact.
1030  void LoadNumber(Register object,
1031                  FPURegister dst,
1032                  Register heap_number_map,
1033                  Register scratch,
1034                  Label* not_number);
1035
1036  // Loads the number from object into double_dst in the double format.
1037  // Control will jump to not_int32 if the value cannot be exactly represented
1038  // by a 32-bit integer.
1039  // Floating point value in the 32-bit integer range that are not exact integer
1040  // won't be loaded.
1041  void LoadNumberAsInt32Double(Register object,
1042                               DoubleRegister double_dst,
1043                               Register heap_number_map,
1044                               Register scratch1,
1045                               Register scratch2,
1046                               FPURegister double_scratch,
1047                               Label* not_int32);
1048
1049  // Loads the number from object into dst as a 32-bit integer.
1050  // Control will jump to not_int32 if the object cannot be exactly represented
1051  // by a 32-bit integer.
1052  // Floating point value in the 32-bit integer range that are not exact integer
1053  // won't be converted.
1054  void LoadNumberAsInt32(Register object,
1055                         Register dst,
1056                         Register heap_number_map,
1057                         Register scratch1,
1058                         Register scratch2,
1059                         FPURegister double_scratch0,
1060                         FPURegister double_scratch1,
1061                         Label* not_int32);
1062
1063  // Enter exit frame.
1064  // argc - argument count to be dropped by LeaveExitFrame.
1065  // save_doubles - saves FPU registers on stack, currently disabled.
1066  // stack_space - extra stack space.
1067  void EnterExitFrame(bool save_doubles,
1068                      int stack_space = 0);
1069
1070  // Leave the current exit frame.
1071  void LeaveExitFrame(bool save_doubles, Register arg_count,
1072                      bool restore_context, bool do_return = NO_EMIT_RETURN,
1073                      bool argument_count_is_length = false);
1074
1075  // Get the actual activation frame alignment for target environment.
1076  static int ActivationFrameAlignment();
1077
1078  // Make sure the stack is aligned. Only emits code in debug mode.
1079  void AssertStackIsAligned();
1080
1081  void LoadContext(Register dst, int context_chain_length);
1082
1083  // Load the global object from the current context.
1084  void LoadGlobalObject(Register dst) {
1085    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1086  }
1087
1088  // Load the global proxy from the current context.
1089  void LoadGlobalProxy(Register dst) {
1090    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1091  }
1092
1093  // Conditionally load the cached Array transitioned map of type
1094  // transitioned_kind from the native context if the map in register
1095  // map_in_out is the cached Array map in the native context of
1096  // expected_kind.
1097  void LoadTransitionedArrayMapConditional(
1098      ElementsKind expected_kind,
1099      ElementsKind transitioned_kind,
1100      Register map_in_out,
1101      Register scratch,
1102      Label* no_map_match);
1103
1104  void LoadNativeContextSlot(int index, Register dst);
1105
1106  // Load the initial map from the global function. The registers
1107  // function and map can be the same, function is then overwritten.
1108  void LoadGlobalFunctionInitialMap(Register function,
1109                                    Register map,
1110                                    Register scratch);
1111
1112  void InitializeRootRegister() {
1113    ExternalReference roots_array_start =
1114        ExternalReference::roots_array_start(isolate());
1115    li(kRootRegister, Operand(roots_array_start));
1116  }
1117
1118  // -------------------------------------------------------------------------
1119  // JavaScript invokes.
1120
1121  // Removes current frame and its arguments from the stack preserving
1122  // the arguments and a return address pushed to the stack for the next call.
1123  // Both |callee_args_count| and |caller_args_count_reg| do not include
1124  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1125  // is trashed.
1126  void PrepareForTailCall(const ParameterCount& callee_args_count,
1127                          Register caller_args_count_reg, Register scratch0,
1128                          Register scratch1);
1129
1130  // Invoke the JavaScript function code by either calling or jumping.
1131  void InvokeFunctionCode(Register function, Register new_target,
1132                          const ParameterCount& expected,
1133                          const ParameterCount& actual, InvokeFlag flag,
1134                          const CallWrapper& call_wrapper);
1135
1136  void FloodFunctionIfStepping(Register fun, Register new_target,
1137                               const ParameterCount& expected,
1138                               const ParameterCount& actual);
1139
1140  // Invoke the JavaScript function in the given register. Changes the
1141  // current context to the context in the function before invoking.
1142  void InvokeFunction(Register function,
1143                      Register new_target,
1144                      const ParameterCount& actual,
1145                      InvokeFlag flag,
1146                      const CallWrapper& call_wrapper);
1147
1148  void InvokeFunction(Register function,
1149                      const ParameterCount& expected,
1150                      const ParameterCount& actual,
1151                      InvokeFlag flag,
1152                      const CallWrapper& call_wrapper);
1153
1154  void InvokeFunction(Handle<JSFunction> function,
1155                      const ParameterCount& expected,
1156                      const ParameterCount& actual,
1157                      InvokeFlag flag,
1158                      const CallWrapper& call_wrapper);
1159
1160
1161  void IsObjectJSStringType(Register object,
1162                            Register scratch,
1163                            Label* fail);
1164
1165  void IsObjectNameType(Register object,
1166                        Register scratch,
1167                        Label* fail);
1168
1169  // -------------------------------------------------------------------------
1170  // Debugger Support.
1171
1172  void DebugBreak();
1173
1174  // -------------------------------------------------------------------------
1175  // Exception handling.
1176
1177  // Push a new stack handler and link into stack handler chain.
1178  void PushStackHandler();
1179
1180  // Unlink the stack handler on top of the stack from the stack handler chain.
1181  // Must preserve the result register.
1182  void PopStackHandler();
1183
1184  // Copies a number of bytes from src to dst. All registers are clobbered. On
1185  // exit src and dst will point to the place just after where the last byte was
1186  // read or written and length will be zero.
1187  void CopyBytes(Register src,
1188                 Register dst,
1189                 Register length,
1190                 Register scratch);
1191
1192  // Initialize fields with filler values.  Fields starting at |current_address|
1193  // not including |end_address| are overwritten with the value in |filler|.  At
1194  // the end the loop, |current_address| takes the value of |end_address|.
1195  void InitializeFieldsWithFiller(Register current_address,
1196                                  Register end_address, Register filler);
1197
1198  // -------------------------------------------------------------------------
1199  // Support functions.
1200
1201  // Machine code version of Map::GetConstructor().
1202  // |temp| holds |result|'s map when done, and |temp2| its instance type.
1203  void GetMapConstructor(Register result, Register map, Register temp,
1204                         Register temp2);
1205
1206  // Try to get function prototype of a function and puts the value in
1207  // the result register. Checks that the function really is a
1208  // function and jumps to the miss label if the fast checks fail. The
1209  // function register will be untouched; the other registers may be
1210  // clobbered.
1211  void TryGetFunctionPrototype(Register function, Register result,
1212                               Register scratch, Label* miss);
1213
1214  void GetObjectType(Register function,
1215                     Register map,
1216                     Register type_reg);
1217
1218  void GetInstanceType(Register object_map, Register object_instance_type) {
1219    lbu(object_instance_type,
1220        FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1221  }
1222
1223  // Check if a map for a JSObject indicates that the object has fast elements.
1224  // Jump to the specified label if it does not.
1225  void CheckFastElements(Register map,
1226                         Register scratch,
1227                         Label* fail);
1228
1229  // Check if a map for a JSObject indicates that the object can have both smi
1230  // and HeapObject elements.  Jump to the specified label if it does not.
1231  void CheckFastObjectElements(Register map,
1232                               Register scratch,
1233                               Label* fail);
1234
1235  // Check if a map for a JSObject indicates that the object has fast smi only
1236  // elements.  Jump to the specified label if it does not.
1237  void CheckFastSmiElements(Register map,
1238                            Register scratch,
1239                            Label* fail);
1240
1241  // Check to see if maybe_number can be stored as a double in
1242  // FastDoubleElements. If it can, store it at the index specified by key in
1243  // the FastDoubleElements array elements. Otherwise jump to fail.
1244  void StoreNumberToDoubleElements(Register value_reg,
1245                                   Register key_reg,
1246                                   Register elements_reg,
1247                                   Register scratch1,
1248                                   Register scratch2,
1249                                   Label* fail,
1250                                   int elements_offset = 0);
1251
1252  // Compare an object's map with the specified map and its transitioned
1253  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1254  // "branch_to" if the result of the comparison is "cond". If multiple map
1255  // compares are required, the compare sequences branches to early_success.
1256  void CompareMapAndBranch(Register obj,
1257                           Register scratch,
1258                           Handle<Map> map,
1259                           Label* early_success,
1260                           Condition cond,
1261                           Label* branch_to);
1262
1263  // As above, but the map of the object is already loaded into the register
1264  // which is preserved by the code generated.
1265  void CompareMapAndBranch(Register obj_map,
1266                           Handle<Map> map,
1267                           Label* early_success,
1268                           Condition cond,
1269                           Label* branch_to);
1270
1271  // Check if the map of an object is equal to a specified map and branch to
1272  // label if not. Skip the smi check if not required (object is known to be a
1273  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1274  // against maps that are ElementsKind transition maps of the specificed map.
1275  void CheckMap(Register obj,
1276                Register scratch,
1277                Handle<Map> map,
1278                Label* fail,
1279                SmiCheckType smi_check_type);
1280
1281
1282  void CheckMap(Register obj,
1283                Register scratch,
1284                Heap::RootListIndex index,
1285                Label* fail,
1286                SmiCheckType smi_check_type);
1287
1288  // Check if the map of an object is equal to a specified weak map and branch
1289  // to a specified target if equal. Skip the smi check if not required
1290  // (object is known to be a heap object)
1291  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1292                       Handle<WeakCell> cell, Handle<Code> success,
1293                       SmiCheckType smi_check_type);
1294
1295  // If the value is a NaN, canonicalize the value else, do nothing.
1296  void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1297
1298
1299  // Get value of the weak cell.
1300  void GetWeakValue(Register value, Handle<WeakCell> cell);
1301
1302  // Load the value of the weak cell in the value register. Branch to the
1303  // given miss label is the weak cell was cleared.
1304  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1305
1306  // Load and check the instance type of an object for being a string.
1307  // Loads the type into the second argument register.
1308  // Returns a condition that will be enabled if the object was a string.
1309  Condition IsObjectStringType(Register obj,
1310                               Register type,
1311                               Register result) {
1312    ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1313    lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1314    And(type, type, Operand(kIsNotStringMask));
1315    DCHECK_EQ(0u, kStringTag);
1316    return eq;
1317  }
1318
1319
1320  // Picks out an array index from the hash field.
1321  // Register use:
1322  //   hash - holds the index's hash. Clobbered.
1323  //   index - holds the overwritten index on exit.
1324  void IndexFromHash(Register hash, Register index);
1325
1326  // Get the number of least significant bits from a register.
1327  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1328  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1329
1330  // Load the value of a number object into a FPU double register. If the
1331  // object is not a number a jump to the label not_number is performed
1332  // and the FPU double register is unchanged.
1333  void ObjectToDoubleFPURegister(
1334      Register object,
1335      FPURegister value,
1336      Register scratch1,
1337      Register scratch2,
1338      Register heap_number_map,
1339      Label* not_number,
1340      ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1341
1342  // Load the value of a smi object into a FPU double register. The register
1343  // scratch1 can be the same register as smi in which case smi will hold the
1344  // untagged value afterwards.
1345  void SmiToDoubleFPURegister(Register smi,
1346                              FPURegister value,
1347                              Register scratch1);
1348
1349  // -------------------------------------------------------------------------
1350  // Overflow handling functions.
1351  // Usage: first call the appropriate arithmetic function, then call one of the
1352  // jump functions with the overflow_dst register as the second parameter.
1353
1354  inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1355                           Label* overflow_label, Register scratch = at) {
1356    AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1357  }
1358
1359  inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1360                             Label* no_overflow_label, Register scratch = at) {
1361    AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1362  }
1363
1364  void AddBranchOvf(Register dst, Register left, const Operand& right,
1365                    Label* overflow_label, Label* no_overflow_label,
1366                    Register scratch = at);
1367
1368  void AddBranchOvf(Register dst, Register left, Register right,
1369                    Label* overflow_label, Label* no_overflow_label,
1370                    Register scratch = at);
1371
1372  inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1373                           Label* overflow_label, Register scratch = at) {
1374    SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1375  }
1376
1377  inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1378                             Label* no_overflow_label, Register scratch = at) {
1379    SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1380  }
1381
1382  void SubBranchOvf(Register dst, Register left, const Operand& right,
1383                    Label* overflow_label, Label* no_overflow_label,
1384                    Register scratch = at);
1385
1386  void SubBranchOvf(Register dst, Register left, Register right,
1387                    Label* overflow_label, Label* no_overflow_label,
1388                    Register scratch = at);
1389
1390  inline void DaddBranchOvf(Register dst, Register left, const Operand& right,
1391                            Label* overflow_label, Register scratch = at) {
1392    DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1393  }
1394
1395  inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right,
1396                              Label* no_overflow_label, Register scratch = at) {
1397    DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1398  }
1399
1400  void DaddBranchOvf(Register dst, Register left, const Operand& right,
1401                     Label* overflow_label, Label* no_overflow_label,
1402                     Register scratch = at);
1403
1404  void DaddBranchOvf(Register dst, Register left, Register right,
1405                     Label* overflow_label, Label* no_overflow_label,
1406                     Register scratch = at);
1407
1408  inline void DsubBranchOvf(Register dst, Register left, const Operand& right,
1409                            Label* overflow_label, Register scratch = at) {
1410    DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1411  }
1412
1413  inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right,
1414                              Label* no_overflow_label, Register scratch = at) {
1415    DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1416  }
1417
1418  void DsubBranchOvf(Register dst, Register left, const Operand& right,
1419                     Label* overflow_label, Label* no_overflow_label,
1420                     Register scratch = at);
1421
1422  void DsubBranchOvf(Register dst, Register left, Register right,
1423                     Label* overflow_label, Label* no_overflow_label,
1424                     Register scratch = at);
1425
1426  void BranchOnOverflow(Label* label,
1427                        Register overflow_check,
1428                        BranchDelaySlot bd = PROTECT) {
1429    Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1430  }
1431
1432  void BranchOnNoOverflow(Label* label,
1433                          Register overflow_check,
1434                          BranchDelaySlot bd = PROTECT) {
1435    Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1436  }
1437
1438  void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1439    Ret(lt, overflow_check, Operand(zero_reg), bd);
1440  }
1441
1442  void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1443    Ret(ge, overflow_check, Operand(zero_reg), bd);
1444  }
1445
1446  // -------------------------------------------------------------------------
1447  // Runtime calls.
1448
1449  // See comments at the beginning of CEntryStub::Generate.
1450  inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1451
1452  inline void PrepareCEntryFunction(const ExternalReference& ref) {
1453    li(a1, Operand(ref));
1454  }
1455
1456#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1457const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1458
1459  // Call a code stub.
1460  void CallStub(CodeStub* stub,
1461                TypeFeedbackId ast_id = TypeFeedbackId::None(),
1462                COND_ARGS);
1463
1464  // Tail call a code stub (jump).
1465  void TailCallStub(CodeStub* stub, COND_ARGS);
1466
1467#undef COND_ARGS
1468
1469  void CallJSExitStub(CodeStub* stub);
1470
1471  // Call a runtime routine.
1472  void CallRuntime(const Runtime::Function* f, int num_arguments,
1473                   SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1474                   BranchDelaySlot bd = PROTECT);
1475  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1476    const Runtime::Function* function = Runtime::FunctionForId(fid);
1477    CallRuntime(function, function->nargs, kSaveFPRegs);
1478  }
1479
1480  // Convenience function: Same as above, but takes the fid instead.
1481  void CallRuntime(Runtime::FunctionId fid,
1482                   SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1483                   BranchDelaySlot bd = PROTECT) {
1484    const Runtime::Function* function = Runtime::FunctionForId(fid);
1485    CallRuntime(function, function->nargs, save_doubles, bd);
1486  }
1487
1488  // Convenience function: Same as above, but takes the fid instead.
1489  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1490                   SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1491                   BranchDelaySlot bd = PROTECT) {
1492    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd);
1493  }
1494
1495  // Convenience function: call an external reference.
1496  void CallExternalReference(const ExternalReference& ext,
1497                             int num_arguments,
1498                             BranchDelaySlot bd = PROTECT);
1499
1500  // Convenience function: tail call a runtime routine (jump).
1501  void TailCallRuntime(Runtime::FunctionId fid);
1502
1503  int CalculateStackPassedWords(int num_reg_arguments,
1504                                int num_double_arguments);
1505
1506  // Before calling a C-function from generated code, align arguments on stack
1507  // and add space for the four mips argument slots.
1508  // After aligning the frame, non-register arguments must be stored on the
1509  // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1510  // The argument count assumes all arguments are word sized.
1511  // Some compilers/platforms require the stack to be aligned when calling
1512  // C++ code.
1513  // Needs a scratch register to do some arithmetic. This register will be
1514  // trashed.
1515  void PrepareCallCFunction(int num_reg_arguments,
1516                            int num_double_registers,
1517                            Register scratch);
1518  void PrepareCallCFunction(int num_reg_arguments,
1519                            Register scratch);
1520
1521  // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1522  // Arguments 5..n are stored to stack using following:
1523  //  sw(a4, CFunctionArgumentOperand(5));
1524
1525  // Calls a C function and cleans up the space for arguments allocated
1526  // by PrepareCallCFunction. The called function is not allowed to trigger a
1527  // garbage collection, since that might move the code and invalidate the
1528  // return address (unless this is somehow accounted for by the called
1529  // function).
1530  void CallCFunction(ExternalReference function, int num_arguments);
1531  void CallCFunction(Register function, int num_arguments);
1532  void CallCFunction(ExternalReference function,
1533                     int num_reg_arguments,
1534                     int num_double_arguments);
1535  void CallCFunction(Register function,
1536                     int num_reg_arguments,
1537                     int num_double_arguments);
1538  void MovFromFloatResult(DoubleRegister dst);
1539  void MovFromFloatParameter(DoubleRegister dst);
1540
1541  // There are two ways of passing double arguments on MIPS, depending on
1542  // whether soft or hard floating point ABI is used. These functions
1543  // abstract parameter passing for the three different ways we call
1544  // C functions from generated code.
1545  void MovToFloatParameter(DoubleRegister src);
1546  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1547  void MovToFloatResult(DoubleRegister src);
1548
1549  // Jump to the builtin routine.
1550  void JumpToExternalReference(const ExternalReference& builtin,
1551                               BranchDelaySlot bd = PROTECT);
1552
1553  struct Unresolved {
1554    int pc;
1555    uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1556    const char* name;
1557  };
1558
1559  Handle<Object> CodeObject() {
1560    DCHECK(!code_object_.is_null());
1561    return code_object_;
1562  }
1563
1564  // Emit code for a truncating division by a constant. The dividend register is
1565  // unchanged and at gets clobbered. Dividend and result must be different.
1566  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1567
1568  // -------------------------------------------------------------------------
1569  // StatsCounter support.
1570
1571  void SetCounter(StatsCounter* counter, int value,
1572                  Register scratch1, Register scratch2);
1573  void IncrementCounter(StatsCounter* counter, int value,
1574                        Register scratch1, Register scratch2);
1575  void DecrementCounter(StatsCounter* counter, int value,
1576                        Register scratch1, Register scratch2);
1577
1578
1579  // -------------------------------------------------------------------------
1580  // Debugging.
1581
1582  // Calls Abort(msg) if the condition cc is not satisfied.
1583  // Use --debug_code to enable.
1584  void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1585  void AssertFastElements(Register elements);
1586
1587  // Like Assert(), but always enabled.
1588  void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1589
1590  // Print a message to stdout and abort execution.
1591  void Abort(BailoutReason msg);
1592
1593  // Verify restrictions about code generated in stubs.
1594  void set_generating_stub(bool value) { generating_stub_ = value; }
1595  bool generating_stub() { return generating_stub_; }
1596  void set_has_frame(bool value) { has_frame_ = value; }
1597  bool has_frame() { return has_frame_; }
1598  inline bool AllowThisStubCall(CodeStub* stub);
1599
1600  // ---------------------------------------------------------------------------
1601  // Number utilities.
1602
1603  // Check whether the value of reg is a power of two and not zero. If not
1604  // control continues at the label not_power_of_two. If reg is a power of two
1605  // the register scratch contains the value of (reg - 1) when control falls
1606  // through.
1607  void JumpIfNotPowerOfTwoOrZero(Register reg,
1608                                 Register scratch,
1609                                 Label* not_power_of_two_or_zero);
1610
1611  // -------------------------------------------------------------------------
1612  // Smi utilities.
1613
1614  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1615  void SmiTagCheckOverflow(Register reg, Register overflow);
1616  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1617
1618  void SmiTag(Register dst, Register src) {
1619    STATIC_ASSERT(kSmiTag == 0);
1620    if (SmiValuesAre32Bits()) {
1621      STATIC_ASSERT(kSmiShift == 32);
1622      dsll32(dst, src, 0);
1623    } else {
1624      Addu(dst, src, src);
1625    }
1626  }
1627
1628  void SmiTag(Register reg) {
1629    SmiTag(reg, reg);
1630  }
1631
1632  // Try to convert int32 to smi. If the value is to large, preserve
1633  // the original value and jump to not_a_smi. Destroys scratch and
1634  // sets flags.
1635  void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1636    TrySmiTag(reg, reg, scratch, not_a_smi);
1637  }
1638
1639  void TrySmiTag(Register dst,
1640                 Register src,
1641                 Register scratch,
1642                 Label* not_a_smi) {
1643    if (SmiValuesAre32Bits()) {
1644      SmiTag(dst, src);
1645    } else {
1646      SmiTagCheckOverflow(at, src, scratch);
1647      BranchOnOverflow(not_a_smi, scratch);
1648      mov(dst, at);
1649    }
1650  }
1651
1652  void SmiUntag(Register dst, Register src) {
1653    if (SmiValuesAre32Bits()) {
1654      STATIC_ASSERT(kSmiShift == 32);
1655      dsra32(dst, src, 0);
1656    } else {
1657      sra(dst, src, kSmiTagSize);
1658    }
1659  }
1660
1661  void SmiUntag(Register reg) {
1662    SmiUntag(reg, reg);
1663  }
1664
1665  // Left-shifted from int32 equivalent of Smi.
1666  void SmiScale(Register dst, Register src, int scale) {
1667    if (SmiValuesAre32Bits()) {
1668      // The int portion is upper 32-bits of 64-bit word.
1669      dsra(dst, src, kSmiShift - scale);
1670    } else {
1671      DCHECK(scale >= kSmiTagSize);
1672      sll(dst, src, scale - kSmiTagSize);
1673    }
1674  }
1675
1676  // Combine load with untagging or scaling.
1677  void SmiLoadUntag(Register dst, MemOperand src);
1678
1679  void SmiLoadScale(Register dst, MemOperand src, int scale);
1680
1681  // Returns 2 values: the Smi and a scaled version of the int within the Smi.
1682  void SmiLoadWithScale(Register d_smi,
1683                        Register d_scaled,
1684                        MemOperand src,
1685                        int scale);
1686
1687  // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
1688  void SmiLoadUntagWithScale(Register d_int,
1689                             Register d_scaled,
1690                             MemOperand src,
1691                             int scale);
1692
1693
1694  // Test if the register contains a smi.
1695  inline void SmiTst(Register value, Register scratch) {
1696    And(scratch, value, Operand(kSmiTagMask));
1697  }
1698  inline void NonNegativeSmiTst(Register value, Register scratch) {
1699    And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1700  }
1701
1702  // Untag the source value into destination and jump if source is a smi.
1703  // Source and destination can be the same register.
1704  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1705
1706  // Untag the source value into destination and jump if source is not a smi.
1707  // Source and destination can be the same register.
1708  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1709
1710  // Jump the register contains a smi.
1711  void JumpIfSmi(Register value,
1712                 Label* smi_label,
1713                 Register scratch = at,
1714                 BranchDelaySlot bd = PROTECT);
1715
1716  // Jump if the register contains a non-smi.
1717  void JumpIfNotSmi(Register value,
1718                    Label* not_smi_label,
1719                    Register scratch = at,
1720                    BranchDelaySlot bd = PROTECT);
1721
1722  // Jump if either of the registers contain a non-smi.
1723  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1724  // Jump if either of the registers contain a smi.
1725  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1726
1727  // Abort execution if argument is a number, enabled via --debug-code.
1728  void AssertNotNumber(Register object);
1729
1730  // Abort execution if argument is a smi, enabled via --debug-code.
1731  void AssertNotSmi(Register object);
1732  void AssertSmi(Register object);
1733
1734  // Abort execution if argument is not a string, enabled via --debug-code.
1735  void AssertString(Register object);
1736
1737  // Abort execution if argument is not a name, enabled via --debug-code.
1738  void AssertName(Register object);
1739
1740  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1741  void AssertFunction(Register object);
1742
1743  // Abort execution if argument is not a JSBoundFunction,
1744  // enabled via --debug-code.
1745  void AssertBoundFunction(Register object);
1746
1747  // Abort execution if argument is not a JSGeneratorObject,
1748  // enabled via --debug-code.
1749  void AssertGeneratorObject(Register object);
1750
1751  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1752  void AssertReceiver(Register object);
1753
1754  // Abort execution if argument is not undefined or an AllocationSite, enabled
1755  // via --debug-code.
1756  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1757
1758  // Abort execution if reg is not the root value with the given index,
1759  // enabled via --debug-code.
1760  void AssertIsRoot(Register reg, Heap::RootListIndex index);
1761
1762  // ---------------------------------------------------------------------------
1763  // HeapNumber utilities.
1764
1765  void JumpIfNotHeapNumber(Register object,
1766                           Register heap_number_map,
1767                           Register scratch,
1768                           Label* on_not_heap_number);
1769
1770  // -------------------------------------------------------------------------
1771  // String utilities.
1772
1773  // Checks if both instance types are sequential one-byte strings and jumps to
1774  // label if either is not.
1775  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1776      Register first_object_instance_type, Register second_object_instance_type,
1777      Register scratch1, Register scratch2, Label* failure);
1778
1779  // Check if instance type is sequential one-byte string and jump to label if
1780  // it is not.
1781  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1782                                                Label* failure);
1783
1784  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1785
1786  void EmitSeqStringSetCharCheck(Register string,
1787                                 Register index,
1788                                 Register value,
1789                                 Register scratch,
1790                                 uint32_t encoding_mask);
1791
1792  // Checks if both objects are sequential one-byte strings and jumps to label
1793  // if either is not. Assumes that neither object is a smi.
1794  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1795                                                    Register second,
1796                                                    Register scratch1,
1797                                                    Register scratch2,
1798                                                    Label* failure);
1799
1800  // Checks if both objects are sequential one-byte strings and jumps to label
1801  // if either is not.
1802  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1803                                             Register scratch1,
1804                                             Register scratch2,
1805                                             Label* not_flat_one_byte_strings);
1806
1807  void ClampUint8(Register output_reg, Register input_reg);
1808
1809  void ClampDoubleToUint8(Register result_reg,
1810                          DoubleRegister input_reg,
1811                          DoubleRegister temp_double_reg);
1812
1813
1814  void LoadInstanceDescriptors(Register map, Register descriptors);
1815  void EnumLength(Register dst, Register map);
1816  void NumberOfOwnDescriptors(Register dst, Register map);
1817  void LoadAccessor(Register dst, Register holder, int accessor_index,
1818                    AccessorComponent accessor);
1819
1820  template<typename Field>
1821  void DecodeField(Register dst, Register src) {
1822    Ext(dst, src, Field::kShift, Field::kSize);
1823  }
1824
1825  template<typename Field>
1826  void DecodeField(Register reg) {
1827    DecodeField<Field>(reg, reg);
1828  }
1829
1830  template<typename Field>
1831  void DecodeFieldToSmi(Register dst, Register src) {
1832    static const int shift = Field::kShift;
1833    static const int mask = Field::kMask >> shift;
1834    dsrl(dst, src, shift);
1835    And(dst, dst, Operand(mask));
1836    dsll32(dst, dst, 0);
1837  }
1838
1839  template<typename Field>
1840  void DecodeFieldToSmi(Register reg) {
1841    DecodeField<Field>(reg, reg);
1842  }
1843  // Generates function and stub prologue code.
1844  void StubPrologue(StackFrame::Type type);
1845  void Prologue(bool code_pre_aging);
1846
1847  // Load the type feedback vector from a JavaScript frame.
1848  void EmitLoadTypeFeedbackVector(Register vector);
1849
1850  // Activation support.
1851  void EnterFrame(StackFrame::Type type);
1852  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1853  void LeaveFrame(StackFrame::Type type);
1854
1855  // Expects object in a0 and returns map with validated enum cache
1856  // in a0.  Assumes that any other register can be used as a scratch.
1857  void CheckEnumCache(Label* call_runtime);
1858
1859  // AllocationMemento support. Arrays may have an associated AllocationMemento
1860  // object that can be checked for in order to pretransition to another type.
1861  // On entry, receiver_reg should point to the array object. scratch_reg gets
1862  // clobbered. If no info is present jump to no_memento_found, otherwise fall
1863  // through.
1864  void TestJSArrayForAllocationMemento(Register receiver_reg,
1865                                       Register scratch_reg,
1866                                       Label* no_memento_found);
1867
1868  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1869                                         Register scratch_reg,
1870                                         Label* memento_found) {
1871    Label no_memento_found;
1872    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1873                                    &no_memento_found);
1874    Branch(memento_found);
1875    bind(&no_memento_found);
1876  }
1877
1878  // Jumps to found label if a prototype map has dictionary elements.
1879  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1880                                        Register scratch1, Label* found);
1881
1882  bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1883
1884 private:
1885  void CallCFunctionHelper(Register function,
1886                           int num_reg_arguments,
1887                           int num_double_arguments);
1888
1889  inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1890  inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1891  void BranchShortHelperR6(int32_t offset, Label* L);
1892  void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1893  bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1894                           Register rs, const Operand& rt);
1895  bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1896                         const Operand& rt, BranchDelaySlot bdslot);
1897  bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1898                        const Operand& rt, BranchDelaySlot bdslot);
1899
1900  void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1901  void BranchAndLinkShortHelper(int16_t offset, Label* L,
1902                                BranchDelaySlot bdslot);
1903  void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1904  void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1905  bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1906                                  Register rs, const Operand& rt);
1907  bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1908                                Register rs, const Operand& rt,
1909                                BranchDelaySlot bdslot);
1910  bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1911                               Register rs, const Operand& rt,
1912                               BranchDelaySlot bdslot);
1913  void BranchLong(Label* L, BranchDelaySlot bdslot);
1914  void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1915
1916  // Common implementation of BranchF functions for the different formats.
1917  void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1918                     Condition cc, FPURegister cmp1, FPURegister cmp2,
1919                     BranchDelaySlot bd = PROTECT);
1920
1921  void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1922                    FPURegister cmp1, FPURegister cmp2,
1923                    BranchDelaySlot bd = PROTECT);
1924
1925
1926  // Helper functions for generating invokes.
1927  void InvokePrologue(const ParameterCount& expected,
1928                      const ParameterCount& actual,
1929                      Label* done,
1930                      bool* definitely_mismatches,
1931                      InvokeFlag flag,
1932                      const CallWrapper& call_wrapper);
1933
1934  void InitializeNewString(Register string,
1935                           Register length,
1936                           Heap::RootListIndex map_index,
1937                           Register scratch1,
1938                           Register scratch2);
1939
1940  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1941  void InNewSpace(Register object, Register scratch,
1942                  Condition cond,  // ne for new space, eq otherwise.
1943                  Label* branch);
1944
1945  // Helper for finding the mark bits for an address.  Afterwards, the
1946  // bitmap register points at the word with the mark bits and the mask
1947  // the position of the first bit.  Leaves addr_reg unchanged.
1948  inline void GetMarkBits(Register addr_reg,
1949                          Register bitmap_reg,
1950                          Register mask_reg);
1951
1952  // Compute memory operands for safepoint stack slots.
1953  static int SafepointRegisterStackIndex(int reg_code);
1954  MemOperand SafepointRegisterSlot(Register reg);
1955  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1956
1957  bool generating_stub_;
1958  bool has_frame_;
1959  bool has_double_zero_reg_set_;
1960  // This handle will be patched with the code object on installation.
1961  Handle<Object> code_object_;
1962
1963  // Needs access to SafepointRegisterStackIndex for compiled frame
1964  // traversal.
1965  friend class StandardFrame;
1966};
1967
1968
1969// The code patcher is used to patch (typically) small parts of code e.g. for
1970// debugging and other types of instrumentation. When using the code patcher
1971// the exact number of bytes specified must be emitted. It is not legal to emit
1972// relocation information. If any of these constraints are violated it causes
1973// an assertion to fail.
1974class CodePatcher {
1975 public:
1976  enum FlushICache {
1977    FLUSH,
1978    DONT_FLUSH
1979  };
1980
1981  CodePatcher(Isolate* isolate, byte* address, int instructions,
1982              FlushICache flush_cache = FLUSH);
1983  ~CodePatcher();
1984
1985  // Macro assembler to emit code.
1986  MacroAssembler* masm() { return &masm_; }
1987
1988  // Emit an instruction directly.
1989  void Emit(Instr instr);
1990
1991  // Emit an address directly.
1992  void Emit(Address addr);
1993
1994  // Change the condition part of an instruction leaving the rest of the current
1995  // instruction unchanged.
1996  void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1997
1998 private:
1999  byte* address_;  // The address of the code being patched.
2000  int size_;  // Number of bytes of the expected patch size.
2001  MacroAssembler masm_;  // Macro assembler used to generate the code.
2002  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
2003};
2004
2005template <typename Func>
2006void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
2007                                         Func GetLabelFunction) {
2008  // Ensure that dd-ed labels following this instruction use 8 bytes aligned
2009  // addresses.
2010  if (kArchVariant >= kMips64r6) {
2011    BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 6);
2012    // Opposite of Align(8) as we have odd number of instructions in this case.
2013    if ((pc_offset() & 7) == 0) {
2014      nop();
2015    }
2016    addiupc(at, 5);
2017    Dlsa(at, at, index, kPointerSizeLog2);
2018    ld(at, MemOperand(at));
2019  } else {
2020    Label here;
2021    BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 11);
2022    Align(8);
2023    push(ra);
2024    bal(&here);
2025    dsll(at, index, kPointerSizeLog2);  // Branch delay slot.
2026    bind(&here);
2027    daddu(at, at, ra);
2028    pop(ra);
2029    ld(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
2030  }
2031  jr(at);
2032  nop();  // Branch delay slot nop.
2033  for (size_t index = 0; index < case_count; ++index) {
2034    dd(GetLabelFunction(index));
2035  }
2036}
2037
2038#ifdef GENERATED_CODE_COVERAGE
2039#define CODE_COVERAGE_STRINGIFY(x) #x
2040#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
2041#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
2042#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
2043#else
2044#define ACCESS_MASM(masm) masm->
2045#endif
2046
2047}  // namespace internal
2048}  // namespace v8
2049
2050#endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
2051