macro-assembler-s390.h revision 537ba893e2530051ec7f296e769fdd37bb4ae4a0
1// Copyright 2014 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5#ifndef V8_S390_MACRO_ASSEMBLER_S390_H_ 6#define V8_S390_MACRO_ASSEMBLER_S390_H_ 7 8#include "src/assembler.h" 9#include "src/bailout-reason.h" 10#include "src/frames.h" 11#include "src/globals.h" 12 13namespace v8 { 14namespace internal { 15 16// Give alias names to registers for calling conventions. 17const Register kReturnRegister0 = {Register::kCode_r2}; 18const Register kReturnRegister1 = {Register::kCode_r3}; 19const Register kReturnRegister2 = {Register::kCode_r4}; 20const Register kJSFunctionRegister = {Register::kCode_r3}; 21const Register kContextRegister = {Register::kCode_r13}; 22const Register kAllocateSizeRegister = {Register::kCode_r3}; 23const Register kInterpreterAccumulatorRegister = {Register::kCode_r2}; 24const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6}; 25const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7}; 26const Register kInterpreterDispatchTableRegister = {Register::kCode_r8}; 27const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2}; 28const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5}; 29const Register kRuntimeCallFunctionRegister = {Register::kCode_r3}; 30const Register kRuntimeCallArgCountRegister = {Register::kCode_r2}; 31 32// ---------------------------------------------------------------------------- 33// Static helper functions 34 35// Generate a MemOperand for loading a field from an object. 36inline MemOperand FieldMemOperand(Register object, int offset) { 37 return MemOperand(object, offset - kHeapObjectTag); 38} 39 40// Generate a MemOperand for loading a field from an object. 41inline MemOperand FieldMemOperand(Register object, Register index, int offset) { 42 return MemOperand(object, index, offset - kHeapObjectTag); 43} 44 45// Generate a MemOperand for loading a field from Root register 46inline MemOperand RootMemOperand(Heap::RootListIndex index) { 47 return MemOperand(kRootRegister, index << kPointerSizeLog2); 48} 49 50// Flags used for AllocateHeapNumber 51enum TaggingMode { 52 // Tag the result. 53 TAG_RESULT, 54 // Don't tag 55 DONT_TAG_RESULT 56}; 57 58enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; 59enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; 60enum PointersToHereCheck { 61 kPointersToHereMaybeInteresting, 62 kPointersToHereAreAlwaysInteresting 63}; 64enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved }; 65 66Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, 67 Register reg3 = no_reg, 68 Register reg4 = no_reg, 69 Register reg5 = no_reg, 70 Register reg6 = no_reg); 71 72#ifdef DEBUG 73bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, 74 Register reg4 = no_reg, Register reg5 = no_reg, 75 Register reg6 = no_reg, Register reg7 = no_reg, 76 Register reg8 = no_reg, Register reg9 = no_reg, 77 Register reg10 = no_reg); 78#endif 79 80// These exist to provide portability between 32 and 64bit 81#if V8_TARGET_ARCH_S390X 82#define Div divd 83 84// The length of the arithmetic operation is the length 85// of the register. 86 87// Length: 88// H = halfword 89// W = word 90 91// arithmetics and bitwise 92#define AddMI agsi 93#define AddRR agr 94#define SubRR sgr 95#define AndRR ngr 96#define OrRR ogr 97#define XorRR xgr 98#define LoadComplementRR lcgr 99#define LoadNegativeRR lngr 100 101// Distinct Operands 102#define AddP_RRR agrk 103#define AddPImm_RRI aghik 104#define AddLogicalP_RRR algrk 105#define SubP_RRR sgrk 106#define SubLogicalP_RRR slgrk 107#define AndP_RRR ngrk 108#define OrP_RRR ogrk 109#define XorP_RRR xgrk 110 111// Load / Store 112#define LoadRR lgr 113#define LoadAndTestRR ltgr 114#define LoadImmP lghi 115#define LoadLogicalHalfWordP llgh 116 117// Compare 118#define CmpPH cghi 119#define CmpLogicalPW clgfi 120 121// Shifts 122#define ShiftLeftP sllg 123#define ShiftRightP srlg 124#define ShiftLeftArithP slag 125#define ShiftRightArithP srag 126#else 127 128// arithmetics and bitwise 129// Reg2Reg 130#define AddMI asi 131#define AddRR ar 132#define SubRR sr 133#define AndRR nr 134#define OrRR or_z 135#define XorRR xr 136#define LoadComplementRR lcr 137#define LoadNegativeRR lnr 138 139// Distinct Operands 140#define AddP_RRR ark 141#define AddPImm_RRI ahik 142#define AddLogicalP_RRR alrk 143#define SubP_RRR srk 144#define SubLogicalP_RRR slrk 145#define AndP_RRR nrk 146#define OrP_RRR ork 147#define XorP_RRR xrk 148 149// Load / Store 150#define LoadRR lr 151#define LoadAndTestRR ltr 152#define LoadImmP lhi 153#define LoadLogicalHalfWordP llh 154 155// Compare 156#define CmpPH chi 157#define CmpLogicalPW clfi 158 159// Shifts 160#define ShiftLeftP ShiftLeft 161#define ShiftRightP ShiftRight 162#define ShiftLeftArithP ShiftLeftArith 163#define ShiftRightArithP ShiftRightArith 164 165#endif 166 167// MacroAssembler implements a collection of frequently used macros. 168class MacroAssembler : public Assembler { 169 public: 170 MacroAssembler(Isolate* isolate, void* buffer, int size, 171 CodeObjectRequired create_code_object); 172 173 // Returns the size of a call in instructions. 174 static int CallSize(Register target); 175 int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al); 176 static int CallSizeNotPredictableCodeSize(Address target, 177 RelocInfo::Mode rmode, 178 Condition cond = al); 179 180 // Jump, Call, and Ret pseudo instructions implementing inter-working. 181 void Jump(Register target); 182 void JumpToJSEntry(Register target); 183 void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al, 184 CRegister cr = cr7); 185 void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); 186 void Call(Register target); 187 void CallJSEntry(Register target); 188 void Call(Address target, RelocInfo::Mode rmode, Condition cond = al); 189 int CallSize(Handle<Code> code, 190 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, 191 TypeFeedbackId ast_id = TypeFeedbackId::None(), 192 Condition cond = al); 193 void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, 194 TypeFeedbackId ast_id = TypeFeedbackId::None(), 195 Condition cond = al); 196 void Ret() { b(r14); } 197 void Ret(Condition cond) { b(cond, r14); } 198 199 // Emit code to discard a non-negative number of pointer-sized elements 200 // from the stack, clobbering only the sp register. 201 void Drop(int count); 202 void Drop(Register count, Register scratch = r0); 203 204 void Ret(int drop) { 205 Drop(drop); 206 Ret(); 207 } 208 209 void Call(Label* target); 210 211 // Register move. May do nothing if the registers are identical. 212 void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); } 213 void Move(Register dst, Handle<Object> value); 214 void Move(Register dst, Register src, Condition cond = al); 215 void Move(DoubleRegister dst, DoubleRegister src); 216 217 void MultiPush(RegList regs, Register location = sp); 218 void MultiPop(RegList regs, Register location = sp); 219 220 void MultiPushDoubles(RegList dregs, Register location = sp); 221 void MultiPopDoubles(RegList dregs, Register location = sp); 222 223 // Load an object from the root table. 224 void LoadRoot(Register destination, Heap::RootListIndex index, 225 Condition cond = al); 226 // Store an object to the root table. 227 void StoreRoot(Register source, Heap::RootListIndex index, 228 Condition cond = al); 229 230 //-------------------------------------------------------------------------- 231 // S390 Macro Assemblers for Instructions 232 //-------------------------------------------------------------------------- 233 234 // Arithmetic Operations 235 236 // Add (Register - Immediate) 237 void Add32(Register dst, const Operand& imm); 238 void AddP(Register dst, const Operand& imm); 239 void Add32(Register dst, Register src, const Operand& imm); 240 void AddP(Register dst, Register src, const Operand& imm); 241 242 // Add (Register - Register) 243 void Add32(Register dst, Register src); 244 void AddP(Register dst, Register src); 245 void AddP_ExtendSrc(Register dst, Register src); 246 void Add32(Register dst, Register src1, Register src2); 247 void AddP(Register dst, Register src1, Register src2); 248 void AddP_ExtendSrc(Register dst, Register src1, Register src2); 249 250 // Add (Register - Mem) 251 void Add32(Register dst, const MemOperand& opnd); 252 void AddP(Register dst, const MemOperand& opnd); 253 void AddP_ExtendSrc(Register dst, const MemOperand& opnd); 254 255 // Add (Mem - Immediate) 256 void Add32(const MemOperand& opnd, const Operand& imm); 257 void AddP(const MemOperand& opnd, const Operand& imm); 258 259 // Add Logical (Register - Register) 260 void AddLogical32(Register dst, Register src1, Register src2); 261 262 // Add Logical With Carry (Register - Register) 263 void AddLogicalWithCarry32(Register dst, Register src1, Register src2); 264 265 // Add Logical (Register - Immediate) 266 void AddLogical(Register dst, const Operand& imm); 267 void AddLogicalP(Register dst, const Operand& imm); 268 269 // Add Logical (Register - Mem) 270 void AddLogical(Register dst, const MemOperand& opnd); 271 void AddLogicalP(Register dst, const MemOperand& opnd); 272 273 // Subtract (Register - Immediate) 274 void Sub32(Register dst, const Operand& imm); 275 void SubP(Register dst, const Operand& imm); 276 void Sub32(Register dst, Register src, const Operand& imm); 277 void SubP(Register dst, Register src, const Operand& imm); 278 279 // Subtract (Register - Register) 280 void Sub32(Register dst, Register src); 281 void SubP(Register dst, Register src); 282 void SubP_ExtendSrc(Register dst, Register src); 283 void Sub32(Register dst, Register src1, Register src2); 284 void SubP(Register dst, Register src1, Register src2); 285 void SubP_ExtendSrc(Register dst, Register src1, Register src2); 286 287 // Subtract (Register - Mem) 288 void Sub32(Register dst, const MemOperand& opnd); 289 void SubP(Register dst, const MemOperand& opnd); 290 void SubP_ExtendSrc(Register dst, const MemOperand& opnd); 291 292 // Subtract Logical (Register - Mem) 293 void SubLogical(Register dst, const MemOperand& opnd); 294 void SubLogicalP(Register dst, const MemOperand& opnd); 295 void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd); 296 // Subtract Logical 32-bit 297 void SubLogical32(Register dst, Register src1, Register src2); 298 // Subtract Logical With Borrow 32-bit 299 void SubLogicalWithBorrow32(Register dst, Register src1, Register src2); 300 301 // Multiply 302 void MulP(Register dst, const Operand& opnd); 303 void MulP(Register dst, Register src); 304 void MulP(Register dst, const MemOperand& opnd); 305 void Mul(Register dst, Register src1, Register src2); 306 307 // Divide 308 void DivP(Register dividend, Register divider); 309 310 // Compare 311 void Cmp32(Register src1, Register src2); 312 void CmpP(Register src1, Register src2); 313 void Cmp32(Register dst, const Operand& opnd); 314 void CmpP(Register dst, const Operand& opnd); 315 void Cmp32(Register dst, const MemOperand& opnd); 316 void CmpP(Register dst, const MemOperand& opnd); 317 318 // Compare Logical 319 void CmpLogical32(Register src1, Register src2); 320 void CmpLogicalP(Register src1, Register src2); 321 void CmpLogical32(Register src1, const Operand& opnd); 322 void CmpLogicalP(Register src1, const Operand& opnd); 323 void CmpLogical32(Register dst, const MemOperand& opnd); 324 void CmpLogicalP(Register dst, const MemOperand& opnd); 325 326 // Compare Logical Byte (CLI/CLIY) 327 void CmpLogicalByte(const MemOperand& mem, const Operand& imm); 328 329 // Load 32bit 330 void Load(Register dst, const MemOperand& opnd); 331 void Load(Register dst, const Operand& opnd); 332 void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg); 333 void LoadW(Register dst, Register src); 334 void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg); 335 void LoadlW(Register dst, Register src); 336 void LoadB(Register dst, const MemOperand& opnd); 337 void LoadB(Register dst, Register src); 338 void LoadlB(Register dst, const MemOperand& opnd); 339 340 // Load And Test 341 void LoadAndTest32(Register dst, Register src); 342 void LoadAndTestP_ExtendSrc(Register dst, Register src); 343 void LoadAndTestP(Register dst, Register src); 344 345 void LoadAndTest32(Register dst, const MemOperand& opnd); 346 void LoadAndTestP(Register dst, const MemOperand& opnd); 347 348 // Load Floating Point 349 void LoadDouble(DoubleRegister dst, const MemOperand& opnd); 350 void LoadFloat32(DoubleRegister dst, const MemOperand& opnd); 351 void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem); 352 353 // Store Floating Point 354 void StoreDouble(DoubleRegister dst, const MemOperand& opnd); 355 void StoreFloat32(DoubleRegister dst, const MemOperand& opnd); 356 void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem, 357 DoubleRegister scratch); 358 359 void Branch(Condition c, const Operand& opnd); 360 void BranchOnCount(Register r1, Label* l); 361 362 // Shifts 363 void ShiftLeft(Register dst, Register src, Register val); 364 void ShiftLeft(Register dst, Register src, const Operand& val); 365 void ShiftRight(Register dst, Register src, Register val); 366 void ShiftRight(Register dst, Register src, const Operand& val); 367 void ShiftLeftArith(Register dst, Register src, Register shift); 368 void ShiftLeftArith(Register dst, Register src, const Operand& val); 369 void ShiftRightArith(Register dst, Register src, Register shift); 370 void ShiftRightArith(Register dst, Register src, const Operand& val); 371 372 void ClearRightImm(Register dst, Register src, const Operand& val); 373 374 // Bitwise operations 375 void And(Register dst, Register src); 376 void AndP(Register dst, Register src); 377 void And(Register dst, Register src1, Register src2); 378 void AndP(Register dst, Register src1, Register src2); 379 void And(Register dst, const MemOperand& opnd); 380 void AndP(Register dst, const MemOperand& opnd); 381 void And(Register dst, const Operand& opnd); 382 void AndP(Register dst, const Operand& opnd); 383 void And(Register dst, Register src, const Operand& opnd); 384 void AndP(Register dst, Register src, const Operand& opnd); 385 void Or(Register dst, Register src); 386 void OrP(Register dst, Register src); 387 void Or(Register dst, Register src1, Register src2); 388 void OrP(Register dst, Register src1, Register src2); 389 void Or(Register dst, const MemOperand& opnd); 390 void OrP(Register dst, const MemOperand& opnd); 391 void Or(Register dst, const Operand& opnd); 392 void OrP(Register dst, const Operand& opnd); 393 void Or(Register dst, Register src, const Operand& opnd); 394 void OrP(Register dst, Register src, const Operand& opnd); 395 void Xor(Register dst, Register src); 396 void XorP(Register dst, Register src); 397 void Xor(Register dst, Register src1, Register src2); 398 void XorP(Register dst, Register src1, Register src2); 399 void Xor(Register dst, const MemOperand& opnd); 400 void XorP(Register dst, const MemOperand& opnd); 401 void Xor(Register dst, const Operand& opnd); 402 void XorP(Register dst, const Operand& opnd); 403 void Xor(Register dst, Register src, const Operand& opnd); 404 void XorP(Register dst, Register src, const Operand& opnd); 405 void Popcnt32(Register dst, Register src); 406 407#ifdef V8_TARGET_ARCH_S390X 408 void Popcnt64(Register dst, Register src); 409#endif 410 411 void NotP(Register dst); 412 413 void mov(Register dst, const Operand& src); 414 415 void CleanUInt32(Register x) { 416#ifdef V8_TARGET_ARCH_S390X 417 llgfr(x, x); 418#endif 419 } 420 421 // --------------------------------------------------------------------------- 422 // GC Support 423 424 void IncrementalMarkingRecordWriteHelper(Register object, Register value, 425 Register address); 426 427 enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd }; 428 429 // Record in the remembered set the fact that we have a pointer to new space 430 // at the address pointed to by the addr register. Only works if addr is not 431 // in new space. 432 void RememberedSetHelper(Register object, // Used for debug code. 433 Register addr, Register scratch, 434 SaveFPRegsMode save_fp, 435 RememberedSetFinalAction and_then); 436 437 void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, 438 Label* condition_met); 439 440 // Check if object is in new space. Jumps if the object is not in new space. 441 // The register scratch can be object itself, but scratch will be clobbered. 442 void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) { 443 InNewSpace(object, scratch, eq, branch); 444 } 445 446 // Check if object is in new space. Jumps if the object is in new space. 447 // The register scratch can be object itself, but it will be clobbered. 448 void JumpIfInNewSpace(Register object, Register scratch, Label* branch) { 449 InNewSpace(object, scratch, ne, branch); 450 } 451 452 // Check if an object has a given incremental marking color. 453 void HasColor(Register object, Register scratch0, Register scratch1, 454 Label* has_color, int first_bit, int second_bit); 455 456 void JumpIfBlack(Register object, Register scratch0, Register scratch1, 457 Label* on_black); 458 459 // Checks the color of an object. If the object is white we jump to the 460 // incremental marker. 461 void JumpIfWhite(Register value, Register scratch1, Register scratch2, 462 Register scratch3, Label* value_is_white); 463 464 // Notify the garbage collector that we wrote a pointer into an object. 465 // |object| is the object being stored into, |value| is the object being 466 // stored. value and scratch registers are clobbered by the operation. 467 // The offset is the offset from the start of the object, not the offset from 468 // the tagged HeapObject pointer. For use with FieldMemOperand(reg, off). 469 void RecordWriteField( 470 Register object, int offset, Register value, Register scratch, 471 LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, 472 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 473 SmiCheck smi_check = INLINE_SMI_CHECK, 474 PointersToHereCheck pointers_to_here_check_for_value = 475 kPointersToHereMaybeInteresting); 476 477 // As above, but the offset has the tag presubtracted. For use with 478 // MemOperand(reg, off). 479 inline void RecordWriteContextSlot( 480 Register context, int offset, Register value, Register scratch, 481 LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, 482 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 483 SmiCheck smi_check = INLINE_SMI_CHECK, 484 PointersToHereCheck pointers_to_here_check_for_value = 485 kPointersToHereMaybeInteresting) { 486 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, 487 lr_status, save_fp, remembered_set_action, smi_check, 488 pointers_to_here_check_for_value); 489 } 490 491 // Notify the garbage collector that we wrote a code entry into a 492 // JSFunction. Only scratch is clobbered by the operation. 493 void RecordWriteCodeEntryField(Register js_function, Register code_entry, 494 Register scratch); 495 496 void RecordWriteForMap(Register object, Register map, Register dst, 497 LinkRegisterStatus lr_status, SaveFPRegsMode save_fp); 498 499 // For a given |object| notify the garbage collector that the slot |address| 500 // has been written. |value| is the object being stored. The value and 501 // address registers are clobbered by the operation. 502 void RecordWrite( 503 Register object, Register address, Register value, 504 LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, 505 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 506 SmiCheck smi_check = INLINE_SMI_CHECK, 507 PointersToHereCheck pointers_to_here_check_for_value = 508 kPointersToHereMaybeInteresting); 509 510 void push(Register src) { 511 lay(sp, MemOperand(sp, -kPointerSize)); 512 StoreP(src, MemOperand(sp)); 513 } 514 515 void pop(Register dst) { 516 LoadP(dst, MemOperand(sp)); 517 la(sp, MemOperand(sp, kPointerSize)); 518 } 519 520 void pop() { la(sp, MemOperand(sp, kPointerSize)); } 521 522 void Push(Register src) { push(src); } 523 524 // Push a handle. 525 void Push(Handle<Object> handle); 526 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } 527 528 // Push two registers. Pushes leftmost register first (to highest address). 529 void Push(Register src1, Register src2) { 530 lay(sp, MemOperand(sp, -kPointerSize * 2)); 531 StoreP(src1, MemOperand(sp, kPointerSize)); 532 StoreP(src2, MemOperand(sp, 0)); 533 } 534 535 // Push three registers. Pushes leftmost register first (to highest address). 536 void Push(Register src1, Register src2, Register src3) { 537 lay(sp, MemOperand(sp, -kPointerSize * 3)); 538 StoreP(src1, MemOperand(sp, kPointerSize * 2)); 539 StoreP(src2, MemOperand(sp, kPointerSize)); 540 StoreP(src3, MemOperand(sp, 0)); 541 } 542 543 // Push four registers. Pushes leftmost register first (to highest address). 544 void Push(Register src1, Register src2, Register src3, Register src4) { 545 lay(sp, MemOperand(sp, -kPointerSize * 4)); 546 StoreP(src1, MemOperand(sp, kPointerSize * 3)); 547 StoreP(src2, MemOperand(sp, kPointerSize * 2)); 548 StoreP(src3, MemOperand(sp, kPointerSize)); 549 StoreP(src4, MemOperand(sp, 0)); 550 } 551 552 // Push five registers. Pushes leftmost register first (to highest address). 553 void Push(Register src1, Register src2, Register src3, Register src4, 554 Register src5) { 555 DCHECK(!src1.is(src2)); 556 DCHECK(!src1.is(src3)); 557 DCHECK(!src2.is(src3)); 558 DCHECK(!src1.is(src4)); 559 DCHECK(!src2.is(src4)); 560 DCHECK(!src3.is(src4)); 561 DCHECK(!src1.is(src5)); 562 DCHECK(!src2.is(src5)); 563 DCHECK(!src3.is(src5)); 564 DCHECK(!src4.is(src5)); 565 566 lay(sp, MemOperand(sp, -kPointerSize * 5)); 567 StoreP(src1, MemOperand(sp, kPointerSize * 4)); 568 StoreP(src2, MemOperand(sp, kPointerSize * 3)); 569 StoreP(src3, MemOperand(sp, kPointerSize * 2)); 570 StoreP(src4, MemOperand(sp, kPointerSize)); 571 StoreP(src5, MemOperand(sp, 0)); 572 } 573 574 void Pop(Register dst) { pop(dst); } 575 576 // Pop two registers. Pops rightmost register first (from lower address). 577 void Pop(Register src1, Register src2) { 578 LoadP(src2, MemOperand(sp, 0)); 579 LoadP(src1, MemOperand(sp, kPointerSize)); 580 la(sp, MemOperand(sp, 2 * kPointerSize)); 581 } 582 583 // Pop three registers. Pops rightmost register first (from lower address). 584 void Pop(Register src1, Register src2, Register src3) { 585 LoadP(src3, MemOperand(sp, 0)); 586 LoadP(src2, MemOperand(sp, kPointerSize)); 587 LoadP(src1, MemOperand(sp, 2 * kPointerSize)); 588 la(sp, MemOperand(sp, 3 * kPointerSize)); 589 } 590 591 // Pop four registers. Pops rightmost register first (from lower address). 592 void Pop(Register src1, Register src2, Register src3, Register src4) { 593 LoadP(src4, MemOperand(sp, 0)); 594 LoadP(src3, MemOperand(sp, kPointerSize)); 595 LoadP(src2, MemOperand(sp, 2 * kPointerSize)); 596 LoadP(src1, MemOperand(sp, 3 * kPointerSize)); 597 la(sp, MemOperand(sp, 4 * kPointerSize)); 598 } 599 600 // Pop five registers. Pops rightmost register first (from lower address). 601 void Pop(Register src1, Register src2, Register src3, Register src4, 602 Register src5) { 603 LoadP(src5, MemOperand(sp, 0)); 604 LoadP(src4, MemOperand(sp, kPointerSize)); 605 LoadP(src3, MemOperand(sp, 2 * kPointerSize)); 606 LoadP(src2, MemOperand(sp, 3 * kPointerSize)); 607 LoadP(src1, MemOperand(sp, 4 * kPointerSize)); 608 la(sp, MemOperand(sp, 5 * kPointerSize)); 609 } 610 611 // Push a fixed frame, consisting of lr, fp, constant pool. 612 void PushCommonFrame(Register marker_reg = no_reg); 613 614 // Push a standard frame, consisting of lr, fp, constant pool, 615 // context and JS function 616 void PushStandardFrame(Register function_reg); 617 618 void PopCommonFrame(Register marker_reg = no_reg); 619 620 // Restore caller's frame pointer and return address prior to being 621 // overwritten by tail call stack preparation. 622 void RestoreFrameStateForTailCall(); 623 624 // Push and pop the registers that can hold pointers, as defined by the 625 // RegList constant kSafepointSavedRegisters. 626 void PushSafepointRegisters(); 627 void PopSafepointRegisters(); 628 // Store value in register src in the safepoint stack slot for 629 // register dst. 630 void StoreToSafepointRegisterSlot(Register src, Register dst); 631 // Load the value of the src register from its safepoint stack slot 632 // into register dst. 633 void LoadFromSafepointRegisterSlot(Register dst, Register src); 634 635 // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache 636 // from C. 637 // Does not handle errors. 638 void FlushICache(Register address, size_t size, Register scratch); 639 640 // If the value is a NaN, canonicalize the value else, do nothing. 641 void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); 642 void CanonicalizeNaN(const DoubleRegister value) { 643 CanonicalizeNaN(value, value); 644 } 645 646 // Converts the integer (untagged smi) in |src| to a double, storing 647 // the result to |dst| 648 void ConvertIntToDouble(Register src, DoubleRegister dst); 649 650 // Converts the unsigned integer (untagged smi) in |src| to 651 // a double, storing the result to |dst| 652 void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst); 653 654 // Converts the integer (untagged smi) in |src| to 655 // a float, storing the result in |dst| 656 void ConvertIntToFloat(Register src, DoubleRegister dst); 657 658 // Converts the unsigned integer (untagged smi) in |src| to 659 // a float, storing the result in |dst| 660 void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst); 661 662#if V8_TARGET_ARCH_S390X 663 void ConvertInt64ToFloat(Register src, DoubleRegister double_dst); 664 void ConvertInt64ToDouble(Register src, DoubleRegister double_dst); 665 void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst); 666 void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst); 667#endif 668 669 void MovIntToFloat(DoubleRegister dst, Register src); 670 void MovFloatToInt(Register dst, DoubleRegister src); 671 void MovDoubleToInt64(Register dst, DoubleRegister src); 672 void MovInt64ToDouble(DoubleRegister dst, Register src); 673 // Converts the double_input to an integer. Note that, upon return, 674 // the contents of double_dst will also hold the fixed point representation. 675 void ConvertFloat32ToInt64(const DoubleRegister double_input, 676#if !V8_TARGET_ARCH_S390X 677 const Register dst_hi, 678#endif 679 const Register dst, 680 const DoubleRegister double_dst, 681 FPRoundingMode rounding_mode = kRoundToZero); 682 683 // Converts the double_input to an integer. Note that, upon return, 684 // the contents of double_dst will also hold the fixed point representation. 685 void ConvertDoubleToInt64(const DoubleRegister double_input, 686#if !V8_TARGET_ARCH_S390X 687 const Register dst_hi, 688#endif 689 const Register dst, const DoubleRegister double_dst, 690 FPRoundingMode rounding_mode = kRoundToZero); 691 692 void ConvertFloat32ToInt32(const DoubleRegister double_input, 693 const Register dst, 694 const DoubleRegister double_dst, 695 FPRoundingMode rounding_mode = kRoundToZero); 696 void ConvertFloat32ToUnsignedInt32( 697 const DoubleRegister double_input, const Register dst, 698 const DoubleRegister double_dst, 699 FPRoundingMode rounding_mode = kRoundToZero); 700#if V8_TARGET_ARCH_S390X 701 // Converts the double_input to an unsigned integer. Note that, upon return, 702 // the contents of double_dst will also hold the fixed point representation. 703 void ConvertDoubleToUnsignedInt64( 704 const DoubleRegister double_input, const Register dst, 705 const DoubleRegister double_dst, 706 FPRoundingMode rounding_mode = kRoundToZero); 707 void ConvertFloat32ToUnsignedInt64( 708 const DoubleRegister double_input, const Register dst, 709 const DoubleRegister double_dst, 710 FPRoundingMode rounding_mode = kRoundToZero); 711#endif 712 713#if !V8_TARGET_ARCH_S390X 714 void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, 715 Register src_high, Register scratch, Register shift); 716 void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, 717 Register src_high, uint32_t shift); 718 void ShiftRightPair(Register dst_low, Register dst_high, Register src_low, 719 Register src_high, Register scratch, Register shift); 720 void ShiftRightPair(Register dst_low, Register dst_high, Register src_low, 721 Register src_high, uint32_t shift); 722 void ShiftRightArithPair(Register dst_low, Register dst_high, 723 Register src_low, Register src_high, 724 Register scratch, Register shift); 725 void ShiftRightArithPair(Register dst_low, Register dst_high, 726 Register src_low, Register src_high, uint32_t shift); 727#endif 728 729 // Generates function and stub prologue code. 730 void StubPrologue(StackFrame::Type type, Register base = no_reg, 731 int prologue_offset = 0); 732 void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0); 733 734 // Enter exit frame. 735 // stack_space - extra stack space, used for parameters before call to C. 736 // At least one slot (for the return address) should be provided. 737 void EnterExitFrame(bool save_doubles, int stack_space = 1); 738 739 // Leave the current exit frame. Expects the return value in r0. 740 // Expect the number of values, pushed prior to the exit frame, to 741 // remove in a register (or no_reg, if there is nothing to remove). 742 void LeaveExitFrame(bool save_doubles, Register argument_count, 743 bool restore_context, 744 bool argument_count_is_length = false); 745 746 // Get the actual activation frame alignment for target environment. 747 static int ActivationFrameAlignment(); 748 749 void LoadContext(Register dst, int context_chain_length); 750 751 // Load the global object from the current context. 752 void LoadGlobalObject(Register dst) { 753 LoadNativeContextSlot(Context::EXTENSION_INDEX, dst); 754 } 755 756 // Load the global proxy from the current context. 757 void LoadGlobalProxy(Register dst) { 758 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); 759 } 760 761 // Conditionally load the cached Array transitioned map of type 762 // transitioned_kind from the native context if the map in register 763 // map_in_out is the cached Array map in the native context of 764 // expected_kind. 765 void LoadTransitionedArrayMapConditional(ElementsKind expected_kind, 766 ElementsKind transitioned_kind, 767 Register map_in_out, 768 Register scratch, 769 Label* no_map_match); 770 771 void LoadNativeContextSlot(int index, Register dst); 772 773 // Load the initial map from the global function. The registers 774 // function and map can be the same, function is then overwritten. 775 void LoadGlobalFunctionInitialMap(Register function, Register map, 776 Register scratch); 777 778 void InitializeRootRegister() { 779 ExternalReference roots_array_start = 780 ExternalReference::roots_array_start(isolate()); 781 mov(kRootRegister, Operand(roots_array_start)); 782 } 783 784 // ---------------------------------------------------------------- 785 // new S390 macro-assembler interfaces that are slightly higher level 786 // than assembler-s390 and may generate variable length sequences 787 788 // load a literal signed int value <value> to GPR <dst> 789 void LoadIntLiteral(Register dst, int value); 790 791 // load an SMI value <value> to GPR <dst> 792 void LoadSmiLiteral(Register dst, Smi* smi); 793 794 // load a literal double value <value> to FPR <result> 795 void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch); 796 void LoadDoubleLiteral(DoubleRegister result, uint64_t value, 797 Register scratch); 798 799 void LoadFloat32Literal(DoubleRegister result, float value, Register scratch); 800 801 void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg); 802 803 void LoadHalfWordP(Register dst, const MemOperand& mem, 804 Register scratch = no_reg); 805 806 void StoreHalfWord(Register src, const MemOperand& mem, 807 Register scratch = r0); 808 void StoreByte(Register src, const MemOperand& mem, Register scratch = r0); 809 810 void LoadRepresentation(Register dst, const MemOperand& mem, Representation r, 811 Register scratch = no_reg); 812 void StoreRepresentation(Register src, const MemOperand& mem, 813 Representation r, Register scratch = no_reg); 814 815 void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch); 816 void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch); 817 void CmpSmiLiteral(Register src1, Smi* smi, Register scratch); 818 void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch); 819 void AndSmiLiteral(Register dst, Register src, Smi* smi); 820 821 // Set new rounding mode RN to FPSCR 822 void SetRoundingMode(FPRoundingMode RN); 823 824 // reset rounding mode to default (kRoundToNearest) 825 void ResetRoundingMode(); 826 827 // These exist to provide portability between 32 and 64bit 828 void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg); 829 void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg); 830 void StoreP(const MemOperand& mem, const Operand& opnd, 831 Register scratch = no_reg); 832 void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem); 833 void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem); 834 void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem); 835 void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem); 836 837 // Cleanse pointer address on 31bit by zero out top bit. 838 // This is a NOP on 64-bit. 839 void CleanseP(Register src) { 840#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X)) 841 nilh(src, Operand(0x7FFF)); 842#endif 843 } 844 845 // --------------------------------------------------------------------------- 846 // JavaScript invokes 847 848 // Set up call kind marking in ecx. The method takes ecx as an 849 // explicit first parameter to make the code more readable at the 850 // call sites. 851 // void SetCallKind(Register dst, CallKind kind); 852 853 // Removes current frame and its arguments from the stack preserving 854 // the arguments and a return address pushed to the stack for the next call. 855 // Both |callee_args_count| and |caller_args_count_reg| do not include 856 // receiver. |callee_args_count| is not modified, |caller_args_count_reg| 857 // is trashed. 858 void PrepareForTailCall(const ParameterCount& callee_args_count, 859 Register caller_args_count_reg, Register scratch0, 860 Register scratch1); 861 862 // Invoke the JavaScript function code by either calling or jumping. 863 void InvokeFunctionCode(Register function, Register new_target, 864 const ParameterCount& expected, 865 const ParameterCount& actual, InvokeFlag flag, 866 const CallWrapper& call_wrapper); 867 868 void FloodFunctionIfStepping(Register fun, Register new_target, 869 const ParameterCount& expected, 870 const ParameterCount& actual); 871 872 // Invoke the JavaScript function in the given register. Changes the 873 // current context to the context in the function before invoking. 874 void InvokeFunction(Register function, Register new_target, 875 const ParameterCount& actual, InvokeFlag flag, 876 const CallWrapper& call_wrapper); 877 878 void InvokeFunction(Register function, const ParameterCount& expected, 879 const ParameterCount& actual, InvokeFlag flag, 880 const CallWrapper& call_wrapper); 881 882 void InvokeFunction(Handle<JSFunction> function, 883 const ParameterCount& expected, 884 const ParameterCount& actual, InvokeFlag flag, 885 const CallWrapper& call_wrapper); 886 887 void IsObjectJSStringType(Register object, Register scratch, Label* fail); 888 889 void IsObjectNameType(Register object, Register scratch, Label* fail); 890 891 // --------------------------------------------------------------------------- 892 // Debugger Support 893 894 void DebugBreak(); 895 896 // --------------------------------------------------------------------------- 897 // Exception handling 898 899 // Push a new stack handler and link into stack handler chain. 900 void PushStackHandler(); 901 902 // Unlink the stack handler on top of the stack from the stack handler chain. 903 // Must preserve the result register. 904 void PopStackHandler(); 905 906 // --------------------------------------------------------------------------- 907 // Inline caching support 908 909 // Generate code for checking access rights - used for security checks 910 // on access to global objects across environments. The holder register 911 // is left untouched, whereas both scratch registers are clobbered. 912 void CheckAccessGlobalProxy(Register holder_reg, Register scratch, 913 Label* miss); 914 915 void GetNumberHash(Register t0, Register scratch); 916 917 void LoadFromNumberDictionary(Label* miss, Register elements, Register key, 918 Register result, Register t0, Register t1, 919 Register t2); 920 921 inline void MarkCode(NopMarkerTypes type) { nop(type); } 922 923 // Check if the given instruction is a 'type' marker. 924 // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type)) 925 // These instructions are generated to mark special location in the code, 926 // like some special IC code. 927 static inline bool IsMarkedCode(Instr instr, int type) { 928 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)); 929 return IsNop(instr, type); 930 } 931 932 static inline int GetCodeMarker(Instr instr) { 933 int dst_reg_offset = 12; 934 int dst_mask = 0xf << dst_reg_offset; 935 int src_mask = 0xf; 936 int dst_reg = (instr & dst_mask) >> dst_reg_offset; 937 int src_reg = instr & src_mask; 938 uint32_t non_register_mask = ~(dst_mask | src_mask); 939 uint32_t mov_mask = al | 13 << 21; 940 941 // Return <n> if we have a mov rn rn, else return -1. 942 int type = ((instr & non_register_mask) == mov_mask) && 943 (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) && 944 (dst_reg < LAST_CODE_MARKER) 945 ? src_reg 946 : -1; 947 DCHECK((type == -1) || 948 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER))); 949 return type; 950 } 951 952 // --------------------------------------------------------------------------- 953 // Allocation support 954 955 // Allocate an object in new space or old pointer space. The object_size is 956 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS 957 // is passed. If the space is exhausted control continues at the gc_required 958 // label. The allocated object is returned in result. If the flag 959 // tag_allocated_object is true the result is tagged as as a heap object. 960 // All registers are clobbered also when control continues at the gc_required 961 // label. 962 void Allocate(int object_size, Register result, Register scratch1, 963 Register scratch2, Label* gc_required, AllocationFlags flags); 964 965 void Allocate(Register object_size, Register result, Register result_end, 966 Register scratch, Label* gc_required, AllocationFlags flags); 967 968 // FastAllocate is right now only used for folded allocations. It just 969 // increments the top pointer without checking against limit. This can only 970 // be done if it was proved earlier that the allocation will succeed. 971 void FastAllocate(int object_size, Register result, Register scratch1, 972 Register scratch2, AllocationFlags flags); 973 974 void FastAllocate(Register object_size, Register result, Register result_end, 975 Register scratch, AllocationFlags flags); 976 977 void AllocateTwoByteString(Register result, Register length, 978 Register scratch1, Register scratch2, 979 Register scratch3, Label* gc_required); 980 void AllocateOneByteString(Register result, Register length, 981 Register scratch1, Register scratch2, 982 Register scratch3, Label* gc_required); 983 void AllocateTwoByteConsString(Register result, Register length, 984 Register scratch1, Register scratch2, 985 Label* gc_required); 986 void AllocateOneByteConsString(Register result, Register length, 987 Register scratch1, Register scratch2, 988 Label* gc_required); 989 void AllocateTwoByteSlicedString(Register result, Register length, 990 Register scratch1, Register scratch2, 991 Label* gc_required); 992 void AllocateOneByteSlicedString(Register result, Register length, 993 Register scratch1, Register scratch2, 994 Label* gc_required); 995 996 // Allocates a heap number or jumps to the gc_required label if the young 997 // space is full and a scavenge is needed. All registers are clobbered also 998 // when control continues at the gc_required label. 999 void AllocateHeapNumber(Register result, Register scratch1, Register scratch2, 1000 Register heap_number_map, Label* gc_required, 1001 MutableMode mode = IMMUTABLE); 1002 void AllocateHeapNumberWithValue(Register result, DoubleRegister value, 1003 Register scratch1, Register scratch2, 1004 Register heap_number_map, 1005 Label* gc_required); 1006 1007 // Allocate and initialize a JSValue wrapper with the specified {constructor} 1008 // and {value}. 1009 void AllocateJSValue(Register result, Register constructor, Register value, 1010 Register scratch1, Register scratch2, 1011 Label* gc_required); 1012 1013 // Copies a number of bytes from src to dst. All registers are clobbered. On 1014 // exit src and dst will point to the place just after where the last byte was 1015 // read or written and length will be zero. 1016 void CopyBytes(Register src, Register dst, Register length, Register scratch); 1017 1018 // Initialize fields with filler values. |count| fields starting at 1019 // |current_address| are overwritten with the value in |filler|. At the end 1020 // the loop, |current_address| points at the next uninitialized field. 1021 // |count| is assumed to be non-zero. 1022 void InitializeNFieldsWithFiller(Register current_address, Register count, 1023 Register filler); 1024 1025 // Initialize fields with filler values. Fields starting at |current_address| 1026 // not including |end_address| are overwritten with the value in |filler|. At 1027 // the end the loop, |current_address| takes the value of |end_address|. 1028 void InitializeFieldsWithFiller(Register current_address, 1029 Register end_address, Register filler); 1030 1031 // --------------------------------------------------------------------------- 1032 // Support functions. 1033 1034 // Machine code version of Map::GetConstructor(). 1035 // |temp| holds |result|'s map when done, and |temp2| its instance type. 1036 void GetMapConstructor(Register result, Register map, Register temp, 1037 Register temp2); 1038 1039 // Try to get function prototype of a function and puts the value in 1040 // the result register. Checks that the function really is a 1041 // function and jumps to the miss label if the fast checks fail. The 1042 // function register will be untouched; the other registers may be 1043 // clobbered. 1044 void TryGetFunctionPrototype(Register function, Register result, 1045 Register scratch, Label* miss); 1046 1047 // Compare object type for heap object. heap_object contains a non-Smi 1048 // whose object type should be compared with the given type. This both 1049 // sets the flags and leaves the object type in the type_reg register. 1050 // It leaves the map in the map register (unless the type_reg and map register 1051 // are the same register). It leaves the heap object in the heap_object 1052 // register unless the heap_object register is the same register as one of the 1053 // other registers. 1054 // Type_reg can be no_reg. In that case ip is used. 1055 void CompareObjectType(Register heap_object, Register map, Register type_reg, 1056 InstanceType type); 1057 1058 // Compare instance type in a map. map contains a valid map object whose 1059 // object type should be compared with the given type. This both 1060 // sets the flags and leaves the object type in the type_reg register. 1061 void CompareInstanceType(Register map, Register type_reg, InstanceType type); 1062 1063 // Check if a map for a JSObject indicates that the object has fast elements. 1064 // Jump to the specified label if it does not. 1065 void CheckFastElements(Register map, Register scratch, Label* fail); 1066 1067 // Check if a map for a JSObject indicates that the object can have both smi 1068 // and HeapObject elements. Jump to the specified label if it does not. 1069 void CheckFastObjectElements(Register map, Register scratch, Label* fail); 1070 1071 // Check if a map for a JSObject indicates that the object has fast smi only 1072 // elements. Jump to the specified label if it does not. 1073 void CheckFastSmiElements(Register map, Register scratch, Label* fail); 1074 1075 // Check to see if maybe_number can be stored as a double in 1076 // FastDoubleElements. If it can, store it at the index specified by key in 1077 // the FastDoubleElements array elements. Otherwise jump to fail. 1078 void StoreNumberToDoubleElements(Register value_reg, Register key_reg, 1079 Register elements_reg, Register scratch1, 1080 DoubleRegister double_scratch, Label* fail, 1081 int elements_offset = 0); 1082 1083 // Compare an object's map with the specified map and its transitioned 1084 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are 1085 // set with result of map compare. If multiple map compares are required, the 1086 // compare sequences branches to early_success. 1087 void CompareMap(Register obj, Register scratch, Handle<Map> map, 1088 Label* early_success); 1089 1090 // As above, but the map of the object is already loaded into the register 1091 // which is preserved by the code generated. 1092 void CompareMap(Register obj_map, Handle<Map> map, Label* early_success); 1093 1094 // Check if the map of an object is equal to a specified map and branch to 1095 // label if not. Skip the smi check if not required (object is known to be a 1096 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match 1097 // against maps that are ElementsKind transition maps of the specified map. 1098 void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, 1099 SmiCheckType smi_check_type); 1100 1101 void CheckMap(Register obj, Register scratch, Heap::RootListIndex index, 1102 Label* fail, SmiCheckType smi_check_type); 1103 1104 // Check if the map of an object is equal to a specified weak map and branch 1105 // to a specified target if equal. Skip the smi check if not required 1106 // (object is known to be a heap object) 1107 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2, 1108 Handle<WeakCell> cell, Handle<Code> success, 1109 SmiCheckType smi_check_type); 1110 1111 // Compare the given value and the value of weak cell. 1112 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch, 1113 CRegister cr = cr7); 1114 1115 void GetWeakValue(Register value, Handle<WeakCell> cell); 1116 1117 // Load the value of the weak cell in the value register. Branch to the given 1118 // miss label if the weak cell was cleared. 1119 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss); 1120 1121 // Compare the object in a register to a value from the root list. 1122 // Uses the ip register as scratch. 1123 void CompareRoot(Register obj, Heap::RootListIndex index); 1124 void PushRoot(Heap::RootListIndex index) { 1125 LoadRoot(r0, index); 1126 Push(r0); 1127 } 1128 1129 // Compare the object in a register to a value and jump if they are equal. 1130 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) { 1131 CompareRoot(with, index); 1132 beq(if_equal); 1133 } 1134 1135 // Compare the object in a register to a value and jump if they are not equal. 1136 void JumpIfNotRoot(Register with, Heap::RootListIndex index, 1137 Label* if_not_equal) { 1138 CompareRoot(with, index); 1139 bne(if_not_equal); 1140 } 1141 1142 // Load and check the instance type of an object for being a string. 1143 // Loads the type into the second argument register. 1144 // Returns a condition that will be enabled if the object was a string. 1145 Condition IsObjectStringType(Register obj, Register type) { 1146 LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset)); 1147 LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset)); 1148 mov(r0, Operand(kIsNotStringMask)); 1149 AndP(r0, type); 1150 DCHECK_EQ(0u, kStringTag); 1151 return eq; 1152 } 1153 1154 // Picks out an array index from the hash field. 1155 // Register use: 1156 // hash - holds the index's hash. Clobbered. 1157 // index - holds the overwritten index on exit. 1158 void IndexFromHash(Register hash, Register index); 1159 1160 // Get the number of least significant bits from a register 1161 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits); 1162 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits); 1163 1164 // Load the value of a smi object into a FP double register. The register 1165 // scratch1 can be the same register as smi in which case smi will hold the 1166 // untagged value afterwards. 1167 void SmiToDouble(DoubleRegister value, Register smi); 1168 1169 // Check if a double can be exactly represented as a signed 32-bit integer. 1170 // CR_EQ in cr7 is set if true. 1171 void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1, 1172 Register scratch2, DoubleRegister double_scratch); 1173 1174 // Check if a double is equal to -0.0. 1175 // CR_EQ in cr7 holds the result. 1176 void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1, 1177 Register scratch2); 1178 1179 // Check the sign of a double. 1180 // CR_LT in cr7 holds the result. 1181 void TestDoubleSign(DoubleRegister input, Register scratch); 1182 void TestHeapNumberSign(Register input, Register scratch); 1183 1184 // Try to convert a double to a signed 32-bit integer. 1185 // CR_EQ in cr7 is set and result assigned if the conversion is exact. 1186 void TryDoubleToInt32Exact(Register result, DoubleRegister double_input, 1187 Register scratch, DoubleRegister double_scratch); 1188 1189 // Floor a double and writes the value to the result register. 1190 // Go to exact if the conversion is exact (to be able to test -0), 1191 // fall through calling code if an overflow occurred, else go to done. 1192 // In return, input_high is loaded with high bits of input. 1193 void TryInt32Floor(Register result, DoubleRegister double_input, 1194 Register input_high, Register scratch, 1195 DoubleRegister double_scratch, Label* done, Label* exact); 1196 1197 // Performs a truncating conversion of a floating point number as used by 1198 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it 1199 // succeeds, otherwise falls through if result is saturated. On return 1200 // 'result' either holds answer, or is clobbered on fall through. 1201 // 1202 // Only public for the test code in test-code-stubs-arm.cc. 1203 void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, 1204 Label* done); 1205 1206 // Performs a truncating conversion of a floating point number as used by 1207 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 1208 // Exits with 'result' holding the answer. 1209 void TruncateDoubleToI(Register result, DoubleRegister double_input); 1210 1211 // Performs a truncating conversion of a heap number as used by 1212 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input' 1213 // must be different registers. Exits with 'result' holding the answer. 1214 void TruncateHeapNumberToI(Register result, Register object); 1215 1216 // Converts the smi or heap number in object to an int32 using the rules 1217 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated 1218 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be 1219 // different registers. 1220 void TruncateNumberToI(Register object, Register result, 1221 Register heap_number_map, Register scratch1, 1222 Label* not_int32); 1223 1224 // Overflow handling functions. 1225 // Usage: call the appropriate arithmetic function and then call one of the 1226 // flow control functions with the corresponding label. 1227 1228 // Compute dst = left + right, setting condition codes. dst may be same as 1229 // either left or right (or a unique register). left and right must not be 1230 // the same register. 1231 void AddAndCheckForOverflow(Register dst, Register left, Register right, 1232 Register overflow_dst, Register scratch = r0); 1233 void AddAndCheckForOverflow(Register dst, Register left, intptr_t right, 1234 Register overflow_dst, Register scratch = r0); 1235 1236 // Compute dst = left - right, setting condition codes. dst may be same as 1237 // either left or right (or a unique register). left and right must not be 1238 // the same register. 1239 void SubAndCheckForOverflow(Register dst, Register left, Register right, 1240 Register overflow_dst, Register scratch = r0); 1241 1242 void BranchOnOverflow(Label* label) { blt(label /*, cr0*/); } 1243 1244 void BranchOnNoOverflow(Label* label) { bge(label /*, cr0*/); } 1245 1246 void RetOnOverflow(void) { 1247 Label label; 1248 1249 blt(&label /*, cr0*/); 1250 Ret(); 1251 bind(&label); 1252 } 1253 1254 void RetOnNoOverflow(void) { 1255 Label label; 1256 1257 bge(&label /*, cr0*/); 1258 Ret(); 1259 bind(&label); 1260 } 1261 1262 // --------------------------------------------------------------------------- 1263 // Runtime calls 1264 1265 // Call a code stub. 1266 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(), 1267 Condition cond = al); 1268 1269 // Call a code stub. 1270 void TailCallStub(CodeStub* stub, Condition cond = al); 1271 1272 // Call a runtime routine. 1273 void CallRuntime(const Runtime::Function* f, int num_arguments, 1274 SaveFPRegsMode save_doubles = kDontSaveFPRegs); 1275 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) { 1276 const Runtime::Function* function = Runtime::FunctionForId(fid); 1277 CallRuntime(function, function->nargs, kSaveFPRegs); 1278 } 1279 1280 // Convenience function: Same as above, but takes the fid instead. 1281 void CallRuntime(Runtime::FunctionId fid, 1282 SaveFPRegsMode save_doubles = kDontSaveFPRegs) { 1283 const Runtime::Function* function = Runtime::FunctionForId(fid); 1284 CallRuntime(function, function->nargs, save_doubles); 1285 } 1286 1287 // Convenience function: Same as above, but takes the fid instead. 1288 void CallRuntime(Runtime::FunctionId fid, int num_arguments, 1289 SaveFPRegsMode save_doubles = kDontSaveFPRegs) { 1290 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); 1291 } 1292 1293 // Convenience function: call an external reference. 1294 void CallExternalReference(const ExternalReference& ext, int num_arguments); 1295 1296 // Convenience function: tail call a runtime routine (jump). 1297 void TailCallRuntime(Runtime::FunctionId fid); 1298 1299 int CalculateStackPassedWords(int num_reg_arguments, 1300 int num_double_arguments); 1301 1302 // Before calling a C-function from generated code, align arguments on stack. 1303 // After aligning the frame, non-register arguments must be stored in 1304 // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments 1305 // are word sized. If double arguments are used, this function assumes that 1306 // all double arguments are stored before core registers; otherwise the 1307 // correct alignment of the double values is not guaranteed. 1308 // Some compilers/platforms require the stack to be aligned when calling 1309 // C++ code. 1310 // Needs a scratch register to do some arithmetic. This register will be 1311 // trashed. 1312 void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, 1313 Register scratch); 1314 void PrepareCallCFunction(int num_reg_arguments, Register scratch); 1315 1316 // There are two ways of passing double arguments on ARM, depending on 1317 // whether soft or hard floating point ABI is used. These functions 1318 // abstract parameter passing for the three different ways we call 1319 // C functions from generated code. 1320 void MovToFloatParameter(DoubleRegister src); 1321 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); 1322 void MovToFloatResult(DoubleRegister src); 1323 1324 // Calls a C function and cleans up the space for arguments allocated 1325 // by PrepareCallCFunction. The called function is not allowed to trigger a 1326 // garbage collection, since that might move the code and invalidate the 1327 // return address (unless this is somehow accounted for by the called 1328 // function). 1329 void CallCFunction(ExternalReference function, int num_arguments); 1330 void CallCFunction(Register function, int num_arguments); 1331 void CallCFunction(ExternalReference function, int num_reg_arguments, 1332 int num_double_arguments); 1333 void CallCFunction(Register function, int num_reg_arguments, 1334 int num_double_arguments); 1335 1336 void MovFromFloatParameter(DoubleRegister dst); 1337 void MovFromFloatResult(DoubleRegister dst); 1338 1339 // Jump to a runtime routine. 1340 void JumpToExternalReference(const ExternalReference& builtin); 1341 1342 Handle<Object> CodeObject() { 1343 DCHECK(!code_object_.is_null()); 1344 return code_object_; 1345 } 1346 1347 // Emit code for a truncating division by a constant. The dividend register is 1348 // unchanged and ip gets clobbered. Dividend and result must be different. 1349 void TruncatingDiv(Register result, Register dividend, int32_t divisor); 1350 1351 // --------------------------------------------------------------------------- 1352 // StatsCounter support 1353 1354 void SetCounter(StatsCounter* counter, int value, Register scratch1, 1355 Register scratch2); 1356 void IncrementCounter(StatsCounter* counter, int value, Register scratch1, 1357 Register scratch2); 1358 void DecrementCounter(StatsCounter* counter, int value, Register scratch1, 1359 Register scratch2); 1360 1361 // --------------------------------------------------------------------------- 1362 // Debugging 1363 1364 // Calls Abort(msg) if the condition cond is not satisfied. 1365 // Use --debug_code to enable. 1366 void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7); 1367 void AssertFastElements(Register elements); 1368 1369 // Like Assert(), but always enabled. 1370 void Check(Condition cond, BailoutReason reason, CRegister cr = cr7); 1371 1372 // Print a message to stdout and abort execution. 1373 void Abort(BailoutReason reason); 1374 1375 // Verify restrictions about code generated in stubs. 1376 void set_generating_stub(bool value) { generating_stub_ = value; } 1377 bool generating_stub() { return generating_stub_; } 1378 void set_has_frame(bool value) { has_frame_ = value; } 1379 bool has_frame() { return has_frame_; } 1380 inline bool AllowThisStubCall(CodeStub* stub); 1381 1382 // --------------------------------------------------------------------------- 1383 // Number utilities 1384 1385 // Check whether the value of reg is a power of two and not zero. If not 1386 // control continues at the label not_power_of_two. If reg is a power of two 1387 // the register scratch contains the value of (reg - 1) when control falls 1388 // through. 1389 void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch, 1390 Label* not_power_of_two_or_zero); 1391 // Check whether the value of reg is a power of two and not zero. 1392 // Control falls through if it is, with scratch containing the mask 1393 // value (reg - 1). 1394 // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is 1395 // zero or negative, or jumps to the 'not_power_of_two' label if the value is 1396 // strictly positive but not a power of two. 1397 void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch, 1398 Label* zero_and_neg, 1399 Label* not_power_of_two); 1400 1401 // --------------------------------------------------------------------------- 1402 // Bit testing/extraction 1403 // 1404 // Bit numbering is such that the least significant bit is bit 0 1405 // (for consistency between 32/64-bit). 1406 1407 // Extract consecutive bits (defined by rangeStart - rangeEnd) from src 1408 // and place them into the least significant bits of dst. 1409 inline void ExtractBitRange(Register dst, Register src, int rangeStart, 1410 int rangeEnd) { 1411 DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer); 1412 1413 // Try to use RISBG if possible. 1414 if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { 1415 int shiftAmount = (64 - rangeEnd) % 64; // Convert to shift left. 1416 int endBit = 63; // End is always LSB after shifting. 1417 int startBit = 63 - rangeStart + rangeEnd; 1418 risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount), 1419 true); 1420 } else { 1421 if (rangeEnd > 0) // Don't need to shift if rangeEnd is zero. 1422 ShiftRightP(dst, src, Operand(rangeEnd)); 1423 else if (!dst.is(src)) // If we didn't shift, we might need to copy 1424 LoadRR(dst, src); 1425 int width = rangeStart - rangeEnd + 1; 1426#if V8_TARGET_ARCH_S390X 1427 uint64_t mask = (static_cast<uint64_t>(1) << width) - 1; 1428 nihf(dst, Operand(mask >> 32)); 1429 nilf(dst, Operand(mask & 0xFFFFFFFF)); 1430 ltgr(dst, dst); 1431#else 1432 uint32_t mask = (1 << width) - 1; 1433 AndP(dst, Operand(mask)); 1434#endif 1435 } 1436 } 1437 1438 inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) { 1439 ExtractBitRange(dst, src, bitNumber, bitNumber); 1440 } 1441 1442 // Extract consecutive bits (defined by mask) from src and place them 1443 // into the least significant bits of dst. 1444 inline void ExtractBitMask(Register dst, Register src, uintptr_t mask, 1445 RCBit rc = LeaveRC) { 1446 int start = kBitsPerPointer - 1; 1447 int end; 1448 uintptr_t bit = (1L << start); 1449 1450 while (bit && (mask & bit) == 0) { 1451 start--; 1452 bit >>= 1; 1453 } 1454 end = start; 1455 bit >>= 1; 1456 1457 while (bit && (mask & bit)) { 1458 end--; 1459 bit >>= 1; 1460 } 1461 1462 // 1-bits in mask must be contiguous 1463 DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0); 1464 1465 ExtractBitRange(dst, src, start, end); 1466 } 1467 1468 // Test single bit in value. 1469 inline void TestBit(Register value, int bitNumber, Register scratch = r0) { 1470 ExtractBitRange(scratch, value, bitNumber, bitNumber); 1471 } 1472 1473 // Test consecutive bit range in value. Range is defined by 1474 // rangeStart - rangeEnd. 1475 inline void TestBitRange(Register value, int rangeStart, int rangeEnd, 1476 Register scratch = r0) { 1477 ExtractBitRange(scratch, value, rangeStart, rangeEnd); 1478 } 1479 1480 // Test consecutive bit range in value. Range is defined by mask. 1481 inline void TestBitMask(Register value, uintptr_t mask, 1482 Register scratch = r0) { 1483 ExtractBitMask(scratch, value, mask, SetRC); 1484 } 1485 1486 // --------------------------------------------------------------------------- 1487 // Smi utilities 1488 1489 // Shift left by kSmiShift 1490 void SmiTag(Register reg) { SmiTag(reg, reg); } 1491 void SmiTag(Register dst, Register src) { 1492 ShiftLeftP(dst, src, Operand(kSmiShift)); 1493 } 1494 1495#if !V8_TARGET_ARCH_S390X 1496 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow(). 1497 void SmiTagCheckOverflow(Register reg, Register overflow); 1498 void SmiTagCheckOverflow(Register dst, Register src, Register overflow); 1499 1500 inline void JumpIfNotSmiCandidate(Register value, Register scratch, 1501 Label* not_smi_label) { 1502 // High bits must be identical to fit into an Smi 1503 STATIC_ASSERT(kSmiShift == 1); 1504 AddP(scratch, value, Operand(0x40000000u)); 1505 CmpP(scratch, Operand::Zero()); 1506 blt(not_smi_label); 1507 } 1508#endif 1509 inline void TestUnsignedSmiCandidate(Register value, Register scratch) { 1510 // The test is different for unsigned int values. Since we need 1511 // the value to be in the range of a positive smi, we can't 1512 // handle any of the high bits being set in the value. 1513 TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift, 1514 scratch); 1515 } 1516 inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch, 1517 Label* not_smi_label) { 1518 TestUnsignedSmiCandidate(value, scratch); 1519 bne(not_smi_label /*, cr0*/); 1520 } 1521 1522 void SmiUntag(Register reg) { SmiUntag(reg, reg); } 1523 1524 void SmiUntag(Register dst, Register src) { 1525 ShiftRightArithP(dst, src, Operand(kSmiShift)); 1526 } 1527 1528 void SmiToPtrArrayOffset(Register dst, Register src) { 1529#if V8_TARGET_ARCH_S390X 1530 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2); 1531 ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2)); 1532#else 1533 STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2); 1534 ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift)); 1535#endif 1536 } 1537 1538 void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); } 1539 1540 void SmiToShortArrayOffset(Register dst, Register src) { 1541#if V8_TARGET_ARCH_S390X 1542 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1); 1543 ShiftRightArithP(dst, src, Operand(kSmiShift - 1)); 1544#else 1545 STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1); 1546 if (!dst.is(src)) { 1547 LoadRR(dst, src); 1548 } 1549#endif 1550 } 1551 1552 void SmiToIntArrayOffset(Register dst, Register src) { 1553#if V8_TARGET_ARCH_S390X 1554 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2); 1555 ShiftRightArithP(dst, src, Operand(kSmiShift - 2)); 1556#else 1557 STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2); 1558 ShiftLeftP(dst, src, Operand(2 - kSmiShift)); 1559#endif 1560 } 1561 1562#define SmiToFloatArrayOffset SmiToIntArrayOffset 1563 1564 void SmiToDoubleArrayOffset(Register dst, Register src) { 1565#if V8_TARGET_ARCH_S390X 1566 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2); 1567 ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2)); 1568#else 1569 STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2); 1570 ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift)); 1571#endif 1572 } 1573 1574 void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) { 1575 if (kSmiShift < elementSizeLog2) { 1576 ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift)); 1577 } else if (kSmiShift > elementSizeLog2) { 1578 ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2)); 1579 } else if (!dst.is(src)) { 1580 LoadRR(dst, src); 1581 } 1582 } 1583 1584 void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2, 1585 bool isSmi) { 1586 if (isSmi) { 1587 SmiToArrayOffset(dst, src, elementSizeLog2); 1588 } else { 1589#if V8_TARGET_ARCH_S390X 1590 // src (key) is a 32-bit integer. Sign extension ensures 1591 // upper 32-bit does not contain garbage before being used to 1592 // reference memory. 1593 lgfr(src, src); 1594#endif 1595 ShiftLeftP(dst, src, Operand(elementSizeLog2)); 1596 } 1597 } 1598 1599 // Untag the source value into destination and jump if source is a smi. 1600 // Souce and destination can be the same register. 1601 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); 1602 1603 // Untag the source value into destination and jump if source is not a smi. 1604 // Souce and destination can be the same register. 1605 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case); 1606 1607 inline void TestIfSmi(Register value) { tmll(value, Operand(1)); } 1608 1609 inline void TestIfPositiveSmi(Register value, Register scratch) { 1610 STATIC_ASSERT((kSmiTagMask | kSmiSignMask) == 1611 (intptr_t)(1UL << (kBitsPerPointer - 1) | 1)); 1612 mov(scratch, Operand(kIntptrSignBit | kSmiTagMask)); 1613 AndP(scratch, value); 1614 } 1615 1616 // Jump the register contains a smi. 1617 inline void JumpIfSmi(Register value, Label* smi_label) { 1618 TestIfSmi(value); 1619 beq(smi_label /*, cr0*/); // branch if SMI 1620 } 1621 // Jump if either of the registers contain a non-smi. 1622 inline void JumpIfNotSmi(Register value, Label* not_smi_label) { 1623 TestIfSmi(value); 1624 bne(not_smi_label /*, cr0*/); 1625 } 1626 // Jump if either of the registers contain a non-smi. 1627 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi); 1628 // Jump if either of the registers contain a smi. 1629 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); 1630 1631 // Abort execution if argument is a number, enabled via --debug-code. 1632 void AssertNotNumber(Register object); 1633 1634 // Abort execution if argument is a smi, enabled via --debug-code. 1635 void AssertNotSmi(Register object); 1636 void AssertSmi(Register object); 1637 1638#if V8_TARGET_ARCH_S390X 1639 inline void TestIfInt32(Register value, Register scratch) { 1640 // High bits must be identical to fit into an 32-bit integer 1641 lgfr(scratch, value); 1642 CmpP(scratch, value); 1643 } 1644#else 1645 inline void TestIfInt32(Register hi_word, Register lo_word, 1646 Register scratch) { 1647 // High bits must be identical to fit into an 32-bit integer 1648 ShiftRightArith(scratch, lo_word, Operand(31)); 1649 CmpP(scratch, hi_word); 1650 } 1651#endif 1652 1653#if V8_TARGET_ARCH_S390X 1654 // Ensure it is permissable to read/write int value directly from 1655 // upper half of the smi. 1656 STATIC_ASSERT(kSmiTag == 0); 1657 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32); 1658#endif 1659#if V8_TARGET_LITTLE_ENDIAN 1660#define SmiWordOffset(offset) (offset + kPointerSize / 2) 1661#else 1662#define SmiWordOffset(offset) offset 1663#endif 1664 1665 // Abort execution if argument is not a string, enabled via --debug-code. 1666 void AssertString(Register object); 1667 1668 // Abort execution if argument is not a name, enabled via --debug-code. 1669 void AssertName(Register object); 1670 1671 void AssertFunction(Register object); 1672 1673 // Abort execution if argument is not a JSBoundFunction, 1674 // enabled via --debug-code. 1675 void AssertBoundFunction(Register object); 1676 1677 // Abort execution if argument is not a JSGeneratorObject, 1678 // enabled via --debug-code. 1679 void AssertGeneratorObject(Register object); 1680 1681 // Abort execution if argument is not a JSReceiver, enabled via --debug-code. 1682 void AssertReceiver(Register object); 1683 1684 // Abort execution if argument is not undefined or an AllocationSite, enabled 1685 // via --debug-code. 1686 void AssertUndefinedOrAllocationSite(Register object, Register scratch); 1687 1688 // Abort execution if reg is not the root value with the given index, 1689 // enabled via --debug-code. 1690 void AssertIsRoot(Register reg, Heap::RootListIndex index); 1691 1692 // --------------------------------------------------------------------------- 1693 // HeapNumber utilities 1694 1695 void JumpIfNotHeapNumber(Register object, Register heap_number_map, 1696 Register scratch, Label* on_not_heap_number); 1697 1698 // --------------------------------------------------------------------------- 1699 // String utilities 1700 1701 // Checks if both objects are sequential one-byte strings and jumps to label 1702 // if either is not. Assumes that neither object is a smi. 1703 void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1, 1704 Register object2, 1705 Register scratch1, 1706 Register scratch2, 1707 Label* failure); 1708 1709 // Checks if both objects are sequential one-byte strings and jumps to label 1710 // if either is not. 1711 void JumpIfNotBothSequentialOneByteStrings(Register first, Register second, 1712 Register scratch1, 1713 Register scratch2, 1714 Label* not_flat_one_byte_strings); 1715 1716 // Checks if both instance types are sequential one-byte strings and jumps to 1717 // label if either is not. 1718 void JumpIfBothInstanceTypesAreNotSequentialOneByte( 1719 Register first_object_instance_type, Register second_object_instance_type, 1720 Register scratch1, Register scratch2, Label* failure); 1721 1722 // Check if instance type is sequential one-byte string and jump to label if 1723 // it is not. 1724 void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, 1725 Label* failure); 1726 1727 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name); 1728 1729 void EmitSeqStringSetCharCheck(Register string, Register index, 1730 Register value, uint32_t encoding_mask); 1731 1732 // --------------------------------------------------------------------------- 1733 // Patching helpers. 1734 1735 void ClampUint8(Register output_reg, Register input_reg); 1736 1737 // Saturate a value into 8-bit unsigned integer 1738 // if input_value < 0, output_value is 0 1739 // if input_value > 255, output_value is 255 1740 // otherwise output_value is the (int)input_value (round to nearest) 1741 void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, 1742 DoubleRegister temp_double_reg); 1743 1744 void LoadInstanceDescriptors(Register map, Register descriptors); 1745 void EnumLength(Register dst, Register map); 1746 void NumberOfOwnDescriptors(Register dst, Register map); 1747 void LoadAccessor(Register dst, Register holder, int accessor_index, 1748 AccessorComponent accessor); 1749 1750 template <typename Field> 1751 void DecodeField(Register dst, Register src) { 1752 ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift); 1753 } 1754 1755 template <typename Field> 1756 void DecodeField(Register reg) { 1757 DecodeField<Field>(reg, reg); 1758 } 1759 1760 template <typename Field> 1761 void DecodeFieldToSmi(Register dst, Register src) { 1762 // TODO(joransiu): Optimize into single instruction 1763 DecodeField<Field>(dst, src); 1764 SmiTag(dst); 1765 } 1766 1767 template <typename Field> 1768 void DecodeFieldToSmi(Register reg) { 1769 DecodeFieldToSmi<Field>(reg, reg); 1770 } 1771 1772 // Load the type feedback vector from a JavaScript frame. 1773 void EmitLoadTypeFeedbackVector(Register vector); 1774 1775 // Activation support. 1776 void EnterFrame(StackFrame::Type type, 1777 bool load_constant_pool_pointer_reg = false); 1778 // Returns the pc offset at which the frame ends. 1779 int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0); 1780 1781 // Expects object in r2 and returns map with validated enum cache 1782 // in r2. Assumes that any other register can be used as a scratch. 1783 void CheckEnumCache(Label* call_runtime); 1784 1785 // AllocationMemento support. Arrays may have an associated 1786 // AllocationMemento object that can be checked for in order to pretransition 1787 // to another type. 1788 // On entry, receiver_reg should point to the array object. 1789 // scratch_reg gets clobbered. 1790 // If allocation info is present, condition flags are set to eq. 1791 void TestJSArrayForAllocationMemento(Register receiver_reg, 1792 Register scratch_reg, 1793 Register scratch2_reg, 1794 Label* no_memento_found); 1795 1796 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg, 1797 Register scratch_reg, 1798 Register scratch2_reg, 1799 Label* memento_found) { 1800 Label no_memento_found; 1801 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg, 1802 &no_memento_found); 1803 beq(memento_found); 1804 bind(&no_memento_found); 1805 } 1806 1807 // Jumps to found label if a prototype map has dictionary elements. 1808 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, 1809 Register scratch1, Label* found); 1810 1811 private: 1812 static const int kSmiShift = kSmiTagSize + kSmiShiftSize; 1813 1814 void CallCFunctionHelper(Register function, int num_reg_arguments, 1815 int num_double_arguments); 1816 1817 void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al, 1818 CRegister cr = cr7); 1819 1820 // Helper functions for generating invokes. 1821 void InvokePrologue(const ParameterCount& expected, 1822 const ParameterCount& actual, Label* done, 1823 bool* definitely_mismatches, InvokeFlag flag, 1824 const CallWrapper& call_wrapper); 1825 1826 void InitializeNewString(Register string, Register length, 1827 Heap::RootListIndex map_index, Register scratch1, 1828 Register scratch2); 1829 1830 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. 1831 void InNewSpace(Register object, Register scratch, 1832 Condition cond, // eq for new space, ne otherwise. 1833 Label* branch); 1834 1835 // Helper for finding the mark bits for an address. Afterwards, the 1836 // bitmap register points at the word with the mark bits and the mask 1837 // the position of the first bit. Leaves addr_reg unchanged. 1838 inline void GetMarkBits(Register addr_reg, Register bitmap_reg, 1839 Register mask_reg); 1840 1841 static const RegList kSafepointSavedRegisters; 1842 static const int kNumSafepointSavedRegisters; 1843 1844 // Compute memory operands for safepoint stack slots. 1845 static int SafepointRegisterStackIndex(int reg_code); 1846 MemOperand SafepointRegisterSlot(Register reg); 1847 MemOperand SafepointRegistersAndDoublesSlot(Register reg); 1848 1849 bool generating_stub_; 1850 bool has_frame_; 1851 // This handle will be patched with the code object on installation. 1852 Handle<Object> code_object_; 1853 1854 // Needs access to SafepointRegisterStackIndex for compiled frame 1855 // traversal. 1856 friend class StandardFrame; 1857}; 1858 1859// The code patcher is used to patch (typically) small parts of code e.g. for 1860// debugging and other types of instrumentation. When using the code patcher 1861// the exact number of bytes specified must be emitted. It is not legal to emit 1862// relocation information. If any of these constraints are violated it causes 1863// an assertion to fail. 1864class CodePatcher { 1865 public: 1866 enum FlushICache { FLUSH, DONT_FLUSH }; 1867 1868 CodePatcher(Isolate* isolate, byte* address, int instructions, 1869 FlushICache flush_cache = FLUSH); 1870 ~CodePatcher(); 1871 1872 // Macro assembler to emit code. 1873 MacroAssembler* masm() { return &masm_; } 1874 1875 private: 1876 byte* address_; // The address of the code being patched. 1877 int size_; // Number of bytes of the expected patch size. 1878 MacroAssembler masm_; // Macro assembler used to generate the code. 1879 FlushICache flush_cache_; // Whether to flush the I cache after patching. 1880}; 1881 1882// ----------------------------------------------------------------------------- 1883// Static helper functions. 1884 1885inline MemOperand ContextMemOperand(Register context, int index = 0) { 1886 return MemOperand(context, Context::SlotOffset(index)); 1887} 1888 1889inline MemOperand NativeContextMemOperand() { 1890 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); 1891} 1892 1893#ifdef GENERATED_CODE_COVERAGE 1894#define CODE_COVERAGE_STRINGIFY(x) #x 1895#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) 1896#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) 1897#define ACCESS_MASM(masm) \ 1898 masm->stop(__FILE_LINE__); \ 1899 masm-> 1900#else 1901#define ACCESS_MASM(masm) masm-> 1902#endif 1903} // namespace internal 1904} // namespace v8 1905 1906#endif // V8_S390_MACRO_ASSEMBLER_S390_H_ 1907