macro-assembler-s390.h revision 537ba893e2530051ec7f296e769fdd37bb4ae4a0
1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
6#define V8_S390_MACRO_ASSEMBLER_S390_H_
7
8#include "src/assembler.h"
9#include "src/bailout-reason.h"
10#include "src/frames.h"
11#include "src/globals.h"
12
13namespace v8 {
14namespace internal {
15
16// Give alias names to registers for calling conventions.
17const Register kReturnRegister0 = {Register::kCode_r2};
18const Register kReturnRegister1 = {Register::kCode_r3};
19const Register kReturnRegister2 = {Register::kCode_r4};
20const Register kJSFunctionRegister = {Register::kCode_r3};
21const Register kContextRegister = {Register::kCode_r13};
22const Register kAllocateSizeRegister = {Register::kCode_r3};
23const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
24const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6};
25const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7};
26const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
27const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
28const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
29const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
30const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
31
32// ----------------------------------------------------------------------------
33// Static helper functions
34
35// Generate a MemOperand for loading a field from an object.
36inline MemOperand FieldMemOperand(Register object, int offset) {
37  return MemOperand(object, offset - kHeapObjectTag);
38}
39
40// Generate a MemOperand for loading a field from an object.
41inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
42  return MemOperand(object, index, offset - kHeapObjectTag);
43}
44
45// Generate a MemOperand for loading a field from Root register
46inline MemOperand RootMemOperand(Heap::RootListIndex index) {
47  return MemOperand(kRootRegister, index << kPointerSizeLog2);
48}
49
50// Flags used for AllocateHeapNumber
51enum TaggingMode {
52  // Tag the result.
53  TAG_RESULT,
54  // Don't tag
55  DONT_TAG_RESULT
56};
57
58enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
59enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
60enum PointersToHereCheck {
61  kPointersToHereMaybeInteresting,
62  kPointersToHereAreAlwaysInteresting
63};
64enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
65
66Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
67                                   Register reg3 = no_reg,
68                                   Register reg4 = no_reg,
69                                   Register reg5 = no_reg,
70                                   Register reg6 = no_reg);
71
72#ifdef DEBUG
73bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
74                Register reg4 = no_reg, Register reg5 = no_reg,
75                Register reg6 = no_reg, Register reg7 = no_reg,
76                Register reg8 = no_reg, Register reg9 = no_reg,
77                Register reg10 = no_reg);
78#endif
79
80// These exist to provide portability between 32 and 64bit
81#if V8_TARGET_ARCH_S390X
82#define Div divd
83
84// The length of the arithmetic operation is the length
85// of the register.
86
87// Length:
88// H = halfword
89// W = word
90
91// arithmetics and bitwise
92#define AddMI agsi
93#define AddRR agr
94#define SubRR sgr
95#define AndRR ngr
96#define OrRR ogr
97#define XorRR xgr
98#define LoadComplementRR lcgr
99#define LoadNegativeRR lngr
100
101// Distinct Operands
102#define AddP_RRR agrk
103#define AddPImm_RRI aghik
104#define AddLogicalP_RRR algrk
105#define SubP_RRR sgrk
106#define SubLogicalP_RRR slgrk
107#define AndP_RRR ngrk
108#define OrP_RRR ogrk
109#define XorP_RRR xgrk
110
111// Load / Store
112#define LoadRR lgr
113#define LoadAndTestRR ltgr
114#define LoadImmP lghi
115#define LoadLogicalHalfWordP llgh
116
117// Compare
118#define CmpPH cghi
119#define CmpLogicalPW clgfi
120
121// Shifts
122#define ShiftLeftP sllg
123#define ShiftRightP srlg
124#define ShiftLeftArithP slag
125#define ShiftRightArithP srag
126#else
127
128// arithmetics and bitwise
129// Reg2Reg
130#define AddMI asi
131#define AddRR ar
132#define SubRR sr
133#define AndRR nr
134#define OrRR or_z
135#define XorRR xr
136#define LoadComplementRR lcr
137#define LoadNegativeRR lnr
138
139// Distinct Operands
140#define AddP_RRR ark
141#define AddPImm_RRI ahik
142#define AddLogicalP_RRR alrk
143#define SubP_RRR srk
144#define SubLogicalP_RRR slrk
145#define AndP_RRR nrk
146#define OrP_RRR ork
147#define XorP_RRR xrk
148
149// Load / Store
150#define LoadRR lr
151#define LoadAndTestRR ltr
152#define LoadImmP lhi
153#define LoadLogicalHalfWordP llh
154
155// Compare
156#define CmpPH chi
157#define CmpLogicalPW clfi
158
159// Shifts
160#define ShiftLeftP ShiftLeft
161#define ShiftRightP ShiftRight
162#define ShiftLeftArithP ShiftLeftArith
163#define ShiftRightArithP ShiftRightArith
164
165#endif
166
167// MacroAssembler implements a collection of frequently used macros.
168class MacroAssembler : public Assembler {
169 public:
170  MacroAssembler(Isolate* isolate, void* buffer, int size,
171                 CodeObjectRequired create_code_object);
172
173  // Returns the size of a call in instructions.
174  static int CallSize(Register target);
175  int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
176  static int CallSizeNotPredictableCodeSize(Address target,
177                                            RelocInfo::Mode rmode,
178                                            Condition cond = al);
179
180  // Jump, Call, and Ret pseudo instructions implementing inter-working.
181  void Jump(Register target);
182  void JumpToJSEntry(Register target);
183  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
184            CRegister cr = cr7);
185  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
186  void Call(Register target);
187  void CallJSEntry(Register target);
188  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
189  int CallSize(Handle<Code> code,
190               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
191               TypeFeedbackId ast_id = TypeFeedbackId::None(),
192               Condition cond = al);
193  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
194            TypeFeedbackId ast_id = TypeFeedbackId::None(),
195            Condition cond = al);
196  void Ret() { b(r14); }
197  void Ret(Condition cond) { b(cond, r14); }
198
199  // Emit code to discard a non-negative number of pointer-sized elements
200  // from the stack, clobbering only the sp register.
201  void Drop(int count);
202  void Drop(Register count, Register scratch = r0);
203
204  void Ret(int drop) {
205    Drop(drop);
206    Ret();
207  }
208
209  void Call(Label* target);
210
211  // Register move. May do nothing if the registers are identical.
212  void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
213  void Move(Register dst, Handle<Object> value);
214  void Move(Register dst, Register src, Condition cond = al);
215  void Move(DoubleRegister dst, DoubleRegister src);
216
217  void MultiPush(RegList regs, Register location = sp);
218  void MultiPop(RegList regs, Register location = sp);
219
220  void MultiPushDoubles(RegList dregs, Register location = sp);
221  void MultiPopDoubles(RegList dregs, Register location = sp);
222
223  // Load an object from the root table.
224  void LoadRoot(Register destination, Heap::RootListIndex index,
225                Condition cond = al);
226  // Store an object to the root table.
227  void StoreRoot(Register source, Heap::RootListIndex index,
228                 Condition cond = al);
229
230  //--------------------------------------------------------------------------
231  // S390 Macro Assemblers for Instructions
232  //--------------------------------------------------------------------------
233
234  // Arithmetic Operations
235
236  // Add (Register - Immediate)
237  void Add32(Register dst, const Operand& imm);
238  void AddP(Register dst, const Operand& imm);
239  void Add32(Register dst, Register src, const Operand& imm);
240  void AddP(Register dst, Register src, const Operand& imm);
241
242  // Add (Register - Register)
243  void Add32(Register dst, Register src);
244  void AddP(Register dst, Register src);
245  void AddP_ExtendSrc(Register dst, Register src);
246  void Add32(Register dst, Register src1, Register src2);
247  void AddP(Register dst, Register src1, Register src2);
248  void AddP_ExtendSrc(Register dst, Register src1, Register src2);
249
250  // Add (Register - Mem)
251  void Add32(Register dst, const MemOperand& opnd);
252  void AddP(Register dst, const MemOperand& opnd);
253  void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
254
255  // Add (Mem - Immediate)
256  void Add32(const MemOperand& opnd, const Operand& imm);
257  void AddP(const MemOperand& opnd, const Operand& imm);
258
259  // Add Logical (Register - Register)
260  void AddLogical32(Register dst, Register src1, Register src2);
261
262  // Add Logical With Carry (Register - Register)
263  void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
264
265  // Add Logical (Register - Immediate)
266  void AddLogical(Register dst, const Operand& imm);
267  void AddLogicalP(Register dst, const Operand& imm);
268
269  // Add Logical (Register - Mem)
270  void AddLogical(Register dst, const MemOperand& opnd);
271  void AddLogicalP(Register dst, const MemOperand& opnd);
272
273  // Subtract (Register - Immediate)
274  void Sub32(Register dst, const Operand& imm);
275  void SubP(Register dst, const Operand& imm);
276  void Sub32(Register dst, Register src, const Operand& imm);
277  void SubP(Register dst, Register src, const Operand& imm);
278
279  // Subtract (Register - Register)
280  void Sub32(Register dst, Register src);
281  void SubP(Register dst, Register src);
282  void SubP_ExtendSrc(Register dst, Register src);
283  void Sub32(Register dst, Register src1, Register src2);
284  void SubP(Register dst, Register src1, Register src2);
285  void SubP_ExtendSrc(Register dst, Register src1, Register src2);
286
287  // Subtract (Register - Mem)
288  void Sub32(Register dst, const MemOperand& opnd);
289  void SubP(Register dst, const MemOperand& opnd);
290  void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
291
292  // Subtract Logical (Register - Mem)
293  void SubLogical(Register dst, const MemOperand& opnd);
294  void SubLogicalP(Register dst, const MemOperand& opnd);
295  void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
296  // Subtract Logical 32-bit
297  void SubLogical32(Register dst, Register src1, Register src2);
298  // Subtract Logical With Borrow 32-bit
299  void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
300
301  // Multiply
302  void MulP(Register dst, const Operand& opnd);
303  void MulP(Register dst, Register src);
304  void MulP(Register dst, const MemOperand& opnd);
305  void Mul(Register dst, Register src1, Register src2);
306
307  // Divide
308  void DivP(Register dividend, Register divider);
309
310  // Compare
311  void Cmp32(Register src1, Register src2);
312  void CmpP(Register src1, Register src2);
313  void Cmp32(Register dst, const Operand& opnd);
314  void CmpP(Register dst, const Operand& opnd);
315  void Cmp32(Register dst, const MemOperand& opnd);
316  void CmpP(Register dst, const MemOperand& opnd);
317
318  // Compare Logical
319  void CmpLogical32(Register src1, Register src2);
320  void CmpLogicalP(Register src1, Register src2);
321  void CmpLogical32(Register src1, const Operand& opnd);
322  void CmpLogicalP(Register src1, const Operand& opnd);
323  void CmpLogical32(Register dst, const MemOperand& opnd);
324  void CmpLogicalP(Register dst, const MemOperand& opnd);
325
326  // Compare Logical Byte (CLI/CLIY)
327  void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
328
329  // Load 32bit
330  void Load(Register dst, const MemOperand& opnd);
331  void Load(Register dst, const Operand& opnd);
332  void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
333  void LoadW(Register dst, Register src);
334  void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
335  void LoadlW(Register dst, Register src);
336  void LoadB(Register dst, const MemOperand& opnd);
337  void LoadB(Register dst, Register src);
338  void LoadlB(Register dst, const MemOperand& opnd);
339
340  // Load And Test
341  void LoadAndTest32(Register dst, Register src);
342  void LoadAndTestP_ExtendSrc(Register dst, Register src);
343  void LoadAndTestP(Register dst, Register src);
344
345  void LoadAndTest32(Register dst, const MemOperand& opnd);
346  void LoadAndTestP(Register dst, const MemOperand& opnd);
347
348  // Load Floating Point
349  void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
350  void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
351  void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
352
353  // Store Floating Point
354  void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
355  void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
356  void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
357                            DoubleRegister scratch);
358
359  void Branch(Condition c, const Operand& opnd);
360  void BranchOnCount(Register r1, Label* l);
361
362  // Shifts
363  void ShiftLeft(Register dst, Register src, Register val);
364  void ShiftLeft(Register dst, Register src, const Operand& val);
365  void ShiftRight(Register dst, Register src, Register val);
366  void ShiftRight(Register dst, Register src, const Operand& val);
367  void ShiftLeftArith(Register dst, Register src, Register shift);
368  void ShiftLeftArith(Register dst, Register src, const Operand& val);
369  void ShiftRightArith(Register dst, Register src, Register shift);
370  void ShiftRightArith(Register dst, Register src, const Operand& val);
371
372  void ClearRightImm(Register dst, Register src, const Operand& val);
373
374  // Bitwise operations
375  void And(Register dst, Register src);
376  void AndP(Register dst, Register src);
377  void And(Register dst, Register src1, Register src2);
378  void AndP(Register dst, Register src1, Register src2);
379  void And(Register dst, const MemOperand& opnd);
380  void AndP(Register dst, const MemOperand& opnd);
381  void And(Register dst, const Operand& opnd);
382  void AndP(Register dst, const Operand& opnd);
383  void And(Register dst, Register src, const Operand& opnd);
384  void AndP(Register dst, Register src, const Operand& opnd);
385  void Or(Register dst, Register src);
386  void OrP(Register dst, Register src);
387  void Or(Register dst, Register src1, Register src2);
388  void OrP(Register dst, Register src1, Register src2);
389  void Or(Register dst, const MemOperand& opnd);
390  void OrP(Register dst, const MemOperand& opnd);
391  void Or(Register dst, const Operand& opnd);
392  void OrP(Register dst, const Operand& opnd);
393  void Or(Register dst, Register src, const Operand& opnd);
394  void OrP(Register dst, Register src, const Operand& opnd);
395  void Xor(Register dst, Register src);
396  void XorP(Register dst, Register src);
397  void Xor(Register dst, Register src1, Register src2);
398  void XorP(Register dst, Register src1, Register src2);
399  void Xor(Register dst, const MemOperand& opnd);
400  void XorP(Register dst, const MemOperand& opnd);
401  void Xor(Register dst, const Operand& opnd);
402  void XorP(Register dst, const Operand& opnd);
403  void Xor(Register dst, Register src, const Operand& opnd);
404  void XorP(Register dst, Register src, const Operand& opnd);
405  void Popcnt32(Register dst, Register src);
406
407#ifdef V8_TARGET_ARCH_S390X
408  void Popcnt64(Register dst, Register src);
409#endif
410
411  void NotP(Register dst);
412
413  void mov(Register dst, const Operand& src);
414
415  void CleanUInt32(Register x) {
416#ifdef V8_TARGET_ARCH_S390X
417    llgfr(x, x);
418#endif
419  }
420
421  // ---------------------------------------------------------------------------
422  // GC Support
423
424  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
425                                           Register address);
426
427  enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
428
429  // Record in the remembered set the fact that we have a pointer to new space
430  // at the address pointed to by the addr register.  Only works if addr is not
431  // in new space.
432  void RememberedSetHelper(Register object,  // Used for debug code.
433                           Register addr, Register scratch,
434                           SaveFPRegsMode save_fp,
435                           RememberedSetFinalAction and_then);
436
437  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
438                     Label* condition_met);
439
440  // Check if object is in new space.  Jumps if the object is not in new space.
441  // The register scratch can be object itself, but scratch will be clobbered.
442  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
443    InNewSpace(object, scratch, eq, branch);
444  }
445
446  // Check if object is in new space.  Jumps if the object is in new space.
447  // The register scratch can be object itself, but it will be clobbered.
448  void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
449    InNewSpace(object, scratch, ne, branch);
450  }
451
452  // Check if an object has a given incremental marking color.
453  void HasColor(Register object, Register scratch0, Register scratch1,
454                Label* has_color, int first_bit, int second_bit);
455
456  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
457                   Label* on_black);
458
459  // Checks the color of an object.  If the object is white we jump to the
460  // incremental marker.
461  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
462                   Register scratch3, Label* value_is_white);
463
464  // Notify the garbage collector that we wrote a pointer into an object.
465  // |object| is the object being stored into, |value| is the object being
466  // stored.  value and scratch registers are clobbered by the operation.
467  // The offset is the offset from the start of the object, not the offset from
468  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
469  void RecordWriteField(
470      Register object, int offset, Register value, Register scratch,
471      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
472      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
473      SmiCheck smi_check = INLINE_SMI_CHECK,
474      PointersToHereCheck pointers_to_here_check_for_value =
475          kPointersToHereMaybeInteresting);
476
477  // As above, but the offset has the tag presubtracted.  For use with
478  // MemOperand(reg, off).
479  inline void RecordWriteContextSlot(
480      Register context, int offset, Register value, Register scratch,
481      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
482      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
483      SmiCheck smi_check = INLINE_SMI_CHECK,
484      PointersToHereCheck pointers_to_here_check_for_value =
485          kPointersToHereMaybeInteresting) {
486    RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
487                     lr_status, save_fp, remembered_set_action, smi_check,
488                     pointers_to_here_check_for_value);
489  }
490
491  // Notify the garbage collector that we wrote a code entry into a
492  // JSFunction. Only scratch is clobbered by the operation.
493  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
494                                 Register scratch);
495
496  void RecordWriteForMap(Register object, Register map, Register dst,
497                         LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
498
499  // For a given |object| notify the garbage collector that the slot |address|
500  // has been written.  |value| is the object being stored. The value and
501  // address registers are clobbered by the operation.
502  void RecordWrite(
503      Register object, Register address, Register value,
504      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
505      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
506      SmiCheck smi_check = INLINE_SMI_CHECK,
507      PointersToHereCheck pointers_to_here_check_for_value =
508          kPointersToHereMaybeInteresting);
509
510  void push(Register src) {
511    lay(sp, MemOperand(sp, -kPointerSize));
512    StoreP(src, MemOperand(sp));
513  }
514
515  void pop(Register dst) {
516    LoadP(dst, MemOperand(sp));
517    la(sp, MemOperand(sp, kPointerSize));
518  }
519
520  void pop() { la(sp, MemOperand(sp, kPointerSize)); }
521
522  void Push(Register src) { push(src); }
523
524  // Push a handle.
525  void Push(Handle<Object> handle);
526  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
527
528  // Push two registers.  Pushes leftmost register first (to highest address).
529  void Push(Register src1, Register src2) {
530    lay(sp, MemOperand(sp, -kPointerSize * 2));
531    StoreP(src1, MemOperand(sp, kPointerSize));
532    StoreP(src2, MemOperand(sp, 0));
533  }
534
535  // Push three registers.  Pushes leftmost register first (to highest address).
536  void Push(Register src1, Register src2, Register src3) {
537    lay(sp, MemOperand(sp, -kPointerSize * 3));
538    StoreP(src1, MemOperand(sp, kPointerSize * 2));
539    StoreP(src2, MemOperand(sp, kPointerSize));
540    StoreP(src3, MemOperand(sp, 0));
541  }
542
543  // Push four registers.  Pushes leftmost register first (to highest address).
544  void Push(Register src1, Register src2, Register src3, Register src4) {
545    lay(sp, MemOperand(sp, -kPointerSize * 4));
546    StoreP(src1, MemOperand(sp, kPointerSize * 3));
547    StoreP(src2, MemOperand(sp, kPointerSize * 2));
548    StoreP(src3, MemOperand(sp, kPointerSize));
549    StoreP(src4, MemOperand(sp, 0));
550  }
551
552  // Push five registers.  Pushes leftmost register first (to highest address).
553  void Push(Register src1, Register src2, Register src3, Register src4,
554            Register src5) {
555    DCHECK(!src1.is(src2));
556    DCHECK(!src1.is(src3));
557    DCHECK(!src2.is(src3));
558    DCHECK(!src1.is(src4));
559    DCHECK(!src2.is(src4));
560    DCHECK(!src3.is(src4));
561    DCHECK(!src1.is(src5));
562    DCHECK(!src2.is(src5));
563    DCHECK(!src3.is(src5));
564    DCHECK(!src4.is(src5));
565
566    lay(sp, MemOperand(sp, -kPointerSize * 5));
567    StoreP(src1, MemOperand(sp, kPointerSize * 4));
568    StoreP(src2, MemOperand(sp, kPointerSize * 3));
569    StoreP(src3, MemOperand(sp, kPointerSize * 2));
570    StoreP(src4, MemOperand(sp, kPointerSize));
571    StoreP(src5, MemOperand(sp, 0));
572  }
573
574  void Pop(Register dst) { pop(dst); }
575
576  // Pop two registers. Pops rightmost register first (from lower address).
577  void Pop(Register src1, Register src2) {
578    LoadP(src2, MemOperand(sp, 0));
579    LoadP(src1, MemOperand(sp, kPointerSize));
580    la(sp, MemOperand(sp, 2 * kPointerSize));
581  }
582
583  // Pop three registers.  Pops rightmost register first (from lower address).
584  void Pop(Register src1, Register src2, Register src3) {
585    LoadP(src3, MemOperand(sp, 0));
586    LoadP(src2, MemOperand(sp, kPointerSize));
587    LoadP(src1, MemOperand(sp, 2 * kPointerSize));
588    la(sp, MemOperand(sp, 3 * kPointerSize));
589  }
590
591  // Pop four registers.  Pops rightmost register first (from lower address).
592  void Pop(Register src1, Register src2, Register src3, Register src4) {
593    LoadP(src4, MemOperand(sp, 0));
594    LoadP(src3, MemOperand(sp, kPointerSize));
595    LoadP(src2, MemOperand(sp, 2 * kPointerSize));
596    LoadP(src1, MemOperand(sp, 3 * kPointerSize));
597    la(sp, MemOperand(sp, 4 * kPointerSize));
598  }
599
600  // Pop five registers.  Pops rightmost register first (from lower address).
601  void Pop(Register src1, Register src2, Register src3, Register src4,
602           Register src5) {
603    LoadP(src5, MemOperand(sp, 0));
604    LoadP(src4, MemOperand(sp, kPointerSize));
605    LoadP(src3, MemOperand(sp, 2 * kPointerSize));
606    LoadP(src2, MemOperand(sp, 3 * kPointerSize));
607    LoadP(src1, MemOperand(sp, 4 * kPointerSize));
608    la(sp, MemOperand(sp, 5 * kPointerSize));
609  }
610
611  // Push a fixed frame, consisting of lr, fp, constant pool.
612  void PushCommonFrame(Register marker_reg = no_reg);
613
614  // Push a standard frame, consisting of lr, fp, constant pool,
615  // context and JS function
616  void PushStandardFrame(Register function_reg);
617
618  void PopCommonFrame(Register marker_reg = no_reg);
619
620  // Restore caller's frame pointer and return address prior to being
621  // overwritten by tail call stack preparation.
622  void RestoreFrameStateForTailCall();
623
624  // Push and pop the registers that can hold pointers, as defined by the
625  // RegList constant kSafepointSavedRegisters.
626  void PushSafepointRegisters();
627  void PopSafepointRegisters();
628  // Store value in register src in the safepoint stack slot for
629  // register dst.
630  void StoreToSafepointRegisterSlot(Register src, Register dst);
631  // Load the value of the src register from its safepoint stack slot
632  // into register dst.
633  void LoadFromSafepointRegisterSlot(Register dst, Register src);
634
635  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
636  // from C.
637  // Does not handle errors.
638  void FlushICache(Register address, size_t size, Register scratch);
639
640  // If the value is a NaN, canonicalize the value else, do nothing.
641  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
642  void CanonicalizeNaN(const DoubleRegister value) {
643    CanonicalizeNaN(value, value);
644  }
645
646  // Converts the integer (untagged smi) in |src| to a double, storing
647  // the result to |dst|
648  void ConvertIntToDouble(Register src, DoubleRegister dst);
649
650  // Converts the unsigned integer (untagged smi) in |src| to
651  // a double, storing the result to |dst|
652  void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
653
654  // Converts the integer (untagged smi) in |src| to
655  // a float, storing the result in |dst|
656  void ConvertIntToFloat(Register src, DoubleRegister dst);
657
658  // Converts the unsigned integer (untagged smi) in |src| to
659  // a float, storing the result in |dst|
660  void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
661
662#if V8_TARGET_ARCH_S390X
663  void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
664  void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
665  void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
666  void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
667#endif
668
669  void MovIntToFloat(DoubleRegister dst, Register src);
670  void MovFloatToInt(Register dst, DoubleRegister src);
671  void MovDoubleToInt64(Register dst, DoubleRegister src);
672  void MovInt64ToDouble(DoubleRegister dst, Register src);
673  // Converts the double_input to an integer.  Note that, upon return,
674  // the contents of double_dst will also hold the fixed point representation.
675  void ConvertFloat32ToInt64(const DoubleRegister double_input,
676#if !V8_TARGET_ARCH_S390X
677                             const Register dst_hi,
678#endif
679                             const Register dst,
680                             const DoubleRegister double_dst,
681                             FPRoundingMode rounding_mode = kRoundToZero);
682
683  // Converts the double_input to an integer.  Note that, upon return,
684  // the contents of double_dst will also hold the fixed point representation.
685  void ConvertDoubleToInt64(const DoubleRegister double_input,
686#if !V8_TARGET_ARCH_S390X
687                            const Register dst_hi,
688#endif
689                            const Register dst, const DoubleRegister double_dst,
690                            FPRoundingMode rounding_mode = kRoundToZero);
691
692  void ConvertFloat32ToInt32(const DoubleRegister double_input,
693                             const Register dst,
694                             const DoubleRegister double_dst,
695                             FPRoundingMode rounding_mode = kRoundToZero);
696  void ConvertFloat32ToUnsignedInt32(
697      const DoubleRegister double_input, const Register dst,
698      const DoubleRegister double_dst,
699      FPRoundingMode rounding_mode = kRoundToZero);
700#if V8_TARGET_ARCH_S390X
701  // Converts the double_input to an unsigned integer.  Note that, upon return,
702  // the contents of double_dst will also hold the fixed point representation.
703  void ConvertDoubleToUnsignedInt64(
704      const DoubleRegister double_input, const Register dst,
705      const DoubleRegister double_dst,
706      FPRoundingMode rounding_mode = kRoundToZero);
707  void ConvertFloat32ToUnsignedInt64(
708      const DoubleRegister double_input, const Register dst,
709      const DoubleRegister double_dst,
710      FPRoundingMode rounding_mode = kRoundToZero);
711#endif
712
713#if !V8_TARGET_ARCH_S390X
714  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
715                     Register src_high, Register scratch, Register shift);
716  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
717                     Register src_high, uint32_t shift);
718  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
719                      Register src_high, Register scratch, Register shift);
720  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
721                      Register src_high, uint32_t shift);
722  void ShiftRightArithPair(Register dst_low, Register dst_high,
723                           Register src_low, Register src_high,
724                           Register scratch, Register shift);
725  void ShiftRightArithPair(Register dst_low, Register dst_high,
726                           Register src_low, Register src_high, uint32_t shift);
727#endif
728
729  // Generates function and stub prologue code.
730  void StubPrologue(StackFrame::Type type, Register base = no_reg,
731                    int prologue_offset = 0);
732  void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
733
734  // Enter exit frame.
735  // stack_space - extra stack space, used for parameters before call to C.
736  // At least one slot (for the return address) should be provided.
737  void EnterExitFrame(bool save_doubles, int stack_space = 1);
738
739  // Leave the current exit frame. Expects the return value in r0.
740  // Expect the number of values, pushed prior to the exit frame, to
741  // remove in a register (or no_reg, if there is nothing to remove).
742  void LeaveExitFrame(bool save_doubles, Register argument_count,
743                      bool restore_context,
744                      bool argument_count_is_length = false);
745
746  // Get the actual activation frame alignment for target environment.
747  static int ActivationFrameAlignment();
748
749  void LoadContext(Register dst, int context_chain_length);
750
751  // Load the global object from the current context.
752  void LoadGlobalObject(Register dst) {
753    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
754  }
755
756  // Load the global proxy from the current context.
757  void LoadGlobalProxy(Register dst) {
758    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
759  }
760
761  // Conditionally load the cached Array transitioned map of type
762  // transitioned_kind from the native context if the map in register
763  // map_in_out is the cached Array map in the native context of
764  // expected_kind.
765  void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
766                                           ElementsKind transitioned_kind,
767                                           Register map_in_out,
768                                           Register scratch,
769                                           Label* no_map_match);
770
771  void LoadNativeContextSlot(int index, Register dst);
772
773  // Load the initial map from the global function. The registers
774  // function and map can be the same, function is then overwritten.
775  void LoadGlobalFunctionInitialMap(Register function, Register map,
776                                    Register scratch);
777
778  void InitializeRootRegister() {
779    ExternalReference roots_array_start =
780        ExternalReference::roots_array_start(isolate());
781    mov(kRootRegister, Operand(roots_array_start));
782  }
783
784  // ----------------------------------------------------------------
785  // new S390 macro-assembler interfaces that are slightly higher level
786  // than assembler-s390 and may generate variable length sequences
787
788  // load a literal signed int value <value> to GPR <dst>
789  void LoadIntLiteral(Register dst, int value);
790
791  // load an SMI value <value> to GPR <dst>
792  void LoadSmiLiteral(Register dst, Smi* smi);
793
794  // load a literal double value <value> to FPR <result>
795  void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
796  void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
797                         Register scratch);
798
799  void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
800
801  void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
802
803  void LoadHalfWordP(Register dst, const MemOperand& mem,
804                     Register scratch = no_reg);
805
806  void StoreHalfWord(Register src, const MemOperand& mem,
807                     Register scratch = r0);
808  void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
809
810  void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
811                          Register scratch = no_reg);
812  void StoreRepresentation(Register src, const MemOperand& mem,
813                           Representation r, Register scratch = no_reg);
814
815  void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
816  void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
817  void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
818  void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
819  void AndSmiLiteral(Register dst, Register src, Smi* smi);
820
821  // Set new rounding mode RN to FPSCR
822  void SetRoundingMode(FPRoundingMode RN);
823
824  // reset rounding mode to default (kRoundToNearest)
825  void ResetRoundingMode();
826
827  // These exist to provide portability between 32 and 64bit
828  void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
829  void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
830  void StoreP(const MemOperand& mem, const Operand& opnd,
831              Register scratch = no_reg);
832  void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
833  void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
834  void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
835  void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
836
837  // Cleanse pointer address on 31bit by zero out top  bit.
838  // This is a NOP on 64-bit.
839  void CleanseP(Register src) {
840#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
841    nilh(src, Operand(0x7FFF));
842#endif
843  }
844
845  // ---------------------------------------------------------------------------
846  // JavaScript invokes
847
848  // Set up call kind marking in ecx. The method takes ecx as an
849  // explicit first parameter to make the code more readable at the
850  // call sites.
851  // void SetCallKind(Register dst, CallKind kind);
852
853  // Removes current frame and its arguments from the stack preserving
854  // the arguments and a return address pushed to the stack for the next call.
855  // Both |callee_args_count| and |caller_args_count_reg| do not include
856  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
857  // is trashed.
858  void PrepareForTailCall(const ParameterCount& callee_args_count,
859                          Register caller_args_count_reg, Register scratch0,
860                          Register scratch1);
861
862  // Invoke the JavaScript function code by either calling or jumping.
863  void InvokeFunctionCode(Register function, Register new_target,
864                          const ParameterCount& expected,
865                          const ParameterCount& actual, InvokeFlag flag,
866                          const CallWrapper& call_wrapper);
867
868  void FloodFunctionIfStepping(Register fun, Register new_target,
869                               const ParameterCount& expected,
870                               const ParameterCount& actual);
871
872  // Invoke the JavaScript function in the given register. Changes the
873  // current context to the context in the function before invoking.
874  void InvokeFunction(Register function, Register new_target,
875                      const ParameterCount& actual, InvokeFlag flag,
876                      const CallWrapper& call_wrapper);
877
878  void InvokeFunction(Register function, const ParameterCount& expected,
879                      const ParameterCount& actual, InvokeFlag flag,
880                      const CallWrapper& call_wrapper);
881
882  void InvokeFunction(Handle<JSFunction> function,
883                      const ParameterCount& expected,
884                      const ParameterCount& actual, InvokeFlag flag,
885                      const CallWrapper& call_wrapper);
886
887  void IsObjectJSStringType(Register object, Register scratch, Label* fail);
888
889  void IsObjectNameType(Register object, Register scratch, Label* fail);
890
891  // ---------------------------------------------------------------------------
892  // Debugger Support
893
894  void DebugBreak();
895
896  // ---------------------------------------------------------------------------
897  // Exception handling
898
899  // Push a new stack handler and link into stack handler chain.
900  void PushStackHandler();
901
902  // Unlink the stack handler on top of the stack from the stack handler chain.
903  // Must preserve the result register.
904  void PopStackHandler();
905
906  // ---------------------------------------------------------------------------
907  // Inline caching support
908
909  // Generate code for checking access rights - used for security checks
910  // on access to global objects across environments. The holder register
911  // is left untouched, whereas both scratch registers are clobbered.
912  void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
913                              Label* miss);
914
915  void GetNumberHash(Register t0, Register scratch);
916
917  void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
918                                Register result, Register t0, Register t1,
919                                Register t2);
920
921  inline void MarkCode(NopMarkerTypes type) { nop(type); }
922
923  // Check if the given instruction is a 'type' marker.
924  // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
925  // These instructions are generated to mark special location in the code,
926  // like some special IC code.
927  static inline bool IsMarkedCode(Instr instr, int type) {
928    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
929    return IsNop(instr, type);
930  }
931
932  static inline int GetCodeMarker(Instr instr) {
933    int dst_reg_offset = 12;
934    int dst_mask = 0xf << dst_reg_offset;
935    int src_mask = 0xf;
936    int dst_reg = (instr & dst_mask) >> dst_reg_offset;
937    int src_reg = instr & src_mask;
938    uint32_t non_register_mask = ~(dst_mask | src_mask);
939    uint32_t mov_mask = al | 13 << 21;
940
941    // Return <n> if we have a mov rn rn, else return -1.
942    int type = ((instr & non_register_mask) == mov_mask) &&
943                       (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
944                       (dst_reg < LAST_CODE_MARKER)
945                   ? src_reg
946                   : -1;
947    DCHECK((type == -1) ||
948           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
949    return type;
950  }
951
952  // ---------------------------------------------------------------------------
953  // Allocation support
954
955  // Allocate an object in new space or old pointer space. The object_size is
956  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
957  // is passed. If the space is exhausted control continues at the gc_required
958  // label. The allocated object is returned in result. If the flag
959  // tag_allocated_object is true the result is tagged as as a heap object.
960  // All registers are clobbered also when control continues at the gc_required
961  // label.
962  void Allocate(int object_size, Register result, Register scratch1,
963                Register scratch2, Label* gc_required, AllocationFlags flags);
964
965  void Allocate(Register object_size, Register result, Register result_end,
966                Register scratch, Label* gc_required, AllocationFlags flags);
967
968  // FastAllocate is right now only used for folded allocations. It just
969  // increments the top pointer without checking against limit. This can only
970  // be done if it was proved earlier that the allocation will succeed.
971  void FastAllocate(int object_size, Register result, Register scratch1,
972                    Register scratch2, AllocationFlags flags);
973
974  void FastAllocate(Register object_size, Register result, Register result_end,
975                    Register scratch, AllocationFlags flags);
976
977  void AllocateTwoByteString(Register result, Register length,
978                             Register scratch1, Register scratch2,
979                             Register scratch3, Label* gc_required);
980  void AllocateOneByteString(Register result, Register length,
981                             Register scratch1, Register scratch2,
982                             Register scratch3, Label* gc_required);
983  void AllocateTwoByteConsString(Register result, Register length,
984                                 Register scratch1, Register scratch2,
985                                 Label* gc_required);
986  void AllocateOneByteConsString(Register result, Register length,
987                                 Register scratch1, Register scratch2,
988                                 Label* gc_required);
989  void AllocateTwoByteSlicedString(Register result, Register length,
990                                   Register scratch1, Register scratch2,
991                                   Label* gc_required);
992  void AllocateOneByteSlicedString(Register result, Register length,
993                                   Register scratch1, Register scratch2,
994                                   Label* gc_required);
995
996  // Allocates a heap number or jumps to the gc_required label if the young
997  // space is full and a scavenge is needed. All registers are clobbered also
998  // when control continues at the gc_required label.
999  void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
1000                          Register heap_number_map, Label* gc_required,
1001                          MutableMode mode = IMMUTABLE);
1002  void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
1003                                   Register scratch1, Register scratch2,
1004                                   Register heap_number_map,
1005                                   Label* gc_required);
1006
1007  // Allocate and initialize a JSValue wrapper with the specified {constructor}
1008  // and {value}.
1009  void AllocateJSValue(Register result, Register constructor, Register value,
1010                       Register scratch1, Register scratch2,
1011                       Label* gc_required);
1012
1013  // Copies a number of bytes from src to dst. All registers are clobbered. On
1014  // exit src and dst will point to the place just after where the last byte was
1015  // read or written and length will be zero.
1016  void CopyBytes(Register src, Register dst, Register length, Register scratch);
1017
1018  // Initialize fields with filler values.  |count| fields starting at
1019  // |current_address| are overwritten with the value in |filler|.  At the end
1020  // the loop, |current_address| points at the next uninitialized field.
1021  // |count| is assumed to be non-zero.
1022  void InitializeNFieldsWithFiller(Register current_address, Register count,
1023                                   Register filler);
1024
1025  // Initialize fields with filler values.  Fields starting at |current_address|
1026  // not including |end_address| are overwritten with the value in |filler|.  At
1027  // the end the loop, |current_address| takes the value of |end_address|.
1028  void InitializeFieldsWithFiller(Register current_address,
1029                                  Register end_address, Register filler);
1030
1031  // ---------------------------------------------------------------------------
1032  // Support functions.
1033
1034  // Machine code version of Map::GetConstructor().
1035  // |temp| holds |result|'s map when done, and |temp2| its instance type.
1036  void GetMapConstructor(Register result, Register map, Register temp,
1037                         Register temp2);
1038
1039  // Try to get function prototype of a function and puts the value in
1040  // the result register. Checks that the function really is a
1041  // function and jumps to the miss label if the fast checks fail. The
1042  // function register will be untouched; the other registers may be
1043  // clobbered.
1044  void TryGetFunctionPrototype(Register function, Register result,
1045                               Register scratch, Label* miss);
1046
1047  // Compare object type for heap object.  heap_object contains a non-Smi
1048  // whose object type should be compared with the given type.  This both
1049  // sets the flags and leaves the object type in the type_reg register.
1050  // It leaves the map in the map register (unless the type_reg and map register
1051  // are the same register).  It leaves the heap object in the heap_object
1052  // register unless the heap_object register is the same register as one of the
1053  // other registers.
1054  // Type_reg can be no_reg. In that case ip is used.
1055  void CompareObjectType(Register heap_object, Register map, Register type_reg,
1056                         InstanceType type);
1057
1058  // Compare instance type in a map.  map contains a valid map object whose
1059  // object type should be compared with the given type.  This both
1060  // sets the flags and leaves the object type in the type_reg register.
1061  void CompareInstanceType(Register map, Register type_reg, InstanceType type);
1062
1063  // Check if a map for a JSObject indicates that the object has fast elements.
1064  // Jump to the specified label if it does not.
1065  void CheckFastElements(Register map, Register scratch, Label* fail);
1066
1067  // Check if a map for a JSObject indicates that the object can have both smi
1068  // and HeapObject elements.  Jump to the specified label if it does not.
1069  void CheckFastObjectElements(Register map, Register scratch, Label* fail);
1070
1071  // Check if a map for a JSObject indicates that the object has fast smi only
1072  // elements.  Jump to the specified label if it does not.
1073  void CheckFastSmiElements(Register map, Register scratch, Label* fail);
1074
1075  // Check to see if maybe_number can be stored as a double in
1076  // FastDoubleElements. If it can, store it at the index specified by key in
1077  // the FastDoubleElements array elements. Otherwise jump to fail.
1078  void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
1079                                   Register elements_reg, Register scratch1,
1080                                   DoubleRegister double_scratch, Label* fail,
1081                                   int elements_offset = 0);
1082
1083  // Compare an object's map with the specified map and its transitioned
1084  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
1085  // set with result of map compare. If multiple map compares are required, the
1086  // compare sequences branches to early_success.
1087  void CompareMap(Register obj, Register scratch, Handle<Map> map,
1088                  Label* early_success);
1089
1090  // As above, but the map of the object is already loaded into the register
1091  // which is preserved by the code generated.
1092  void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
1093
1094  // Check if the map of an object is equal to a specified map and branch to
1095  // label if not. Skip the smi check if not required (object is known to be a
1096  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1097  // against maps that are ElementsKind transition maps of the specified map.
1098  void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
1099                SmiCheckType smi_check_type);
1100
1101  void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
1102                Label* fail, SmiCheckType smi_check_type);
1103
1104  // Check if the map of an object is equal to a specified weak map and branch
1105  // to a specified target if equal. Skip the smi check if not required
1106  // (object is known to be a heap object)
1107  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1108                       Handle<WeakCell> cell, Handle<Code> success,
1109                       SmiCheckType smi_check_type);
1110
1111  // Compare the given value and the value of weak cell.
1112  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
1113                    CRegister cr = cr7);
1114
1115  void GetWeakValue(Register value, Handle<WeakCell> cell);
1116
1117  // Load the value of the weak cell in the value register. Branch to the given
1118  // miss label if the weak cell was cleared.
1119  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1120
1121  // Compare the object in a register to a value from the root list.
1122  // Uses the ip register as scratch.
1123  void CompareRoot(Register obj, Heap::RootListIndex index);
1124  void PushRoot(Heap::RootListIndex index) {
1125    LoadRoot(r0, index);
1126    Push(r0);
1127  }
1128
1129  // Compare the object in a register to a value and jump if they are equal.
1130  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
1131    CompareRoot(with, index);
1132    beq(if_equal);
1133  }
1134
1135  // Compare the object in a register to a value and jump if they are not equal.
1136  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
1137                     Label* if_not_equal) {
1138    CompareRoot(with, index);
1139    bne(if_not_equal);
1140  }
1141
1142  // Load and check the instance type of an object for being a string.
1143  // Loads the type into the second argument register.
1144  // Returns a condition that will be enabled if the object was a string.
1145  Condition IsObjectStringType(Register obj, Register type) {
1146    LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1147    LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1148    mov(r0, Operand(kIsNotStringMask));
1149    AndP(r0, type);
1150    DCHECK_EQ(0u, kStringTag);
1151    return eq;
1152  }
1153
1154  // Picks out an array index from the hash field.
1155  // Register use:
1156  //   hash - holds the index's hash. Clobbered.
1157  //   index - holds the overwritten index on exit.
1158  void IndexFromHash(Register hash, Register index);
1159
1160  // Get the number of least significant bits from a register
1161  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1162  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1163
1164  // Load the value of a smi object into a FP double register. The register
1165  // scratch1 can be the same register as smi in which case smi will hold the
1166  // untagged value afterwards.
1167  void SmiToDouble(DoubleRegister value, Register smi);
1168
1169  // Check if a double can be exactly represented as a signed 32-bit integer.
1170  // CR_EQ in cr7 is set if true.
1171  void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
1172                         Register scratch2, DoubleRegister double_scratch);
1173
1174  // Check if a double is equal to -0.0.
1175  // CR_EQ in cr7 holds the result.
1176  void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
1177                             Register scratch2);
1178
1179  // Check the sign of a double.
1180  // CR_LT in cr7 holds the result.
1181  void TestDoubleSign(DoubleRegister input, Register scratch);
1182  void TestHeapNumberSign(Register input, Register scratch);
1183
1184  // Try to convert a double to a signed 32-bit integer.
1185  // CR_EQ in cr7 is set and result assigned if the conversion is exact.
1186  void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
1187                             Register scratch, DoubleRegister double_scratch);
1188
1189  // Floor a double and writes the value to the result register.
1190  // Go to exact if the conversion is exact (to be able to test -0),
1191  // fall through calling code if an overflow occurred, else go to done.
1192  // In return, input_high is loaded with high bits of input.
1193  void TryInt32Floor(Register result, DoubleRegister double_input,
1194                     Register input_high, Register scratch,
1195                     DoubleRegister double_scratch, Label* done, Label* exact);
1196
1197  // Performs a truncating conversion of a floating point number as used by
1198  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1199  // succeeds, otherwise falls through if result is saturated. On return
1200  // 'result' either holds answer, or is clobbered on fall through.
1201  //
1202  // Only public for the test code in test-code-stubs-arm.cc.
1203  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
1204                                  Label* done);
1205
1206  // Performs a truncating conversion of a floating point number as used by
1207  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1208  // Exits with 'result' holding the answer.
1209  void TruncateDoubleToI(Register result, DoubleRegister double_input);
1210
1211  // Performs a truncating conversion of a heap number as used by
1212  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1213  // must be different registers.  Exits with 'result' holding the answer.
1214  void TruncateHeapNumberToI(Register result, Register object);
1215
1216  // Converts the smi or heap number in object to an int32 using the rules
1217  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1218  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1219  // different registers.
1220  void TruncateNumberToI(Register object, Register result,
1221                         Register heap_number_map, Register scratch1,
1222                         Label* not_int32);
1223
1224  // Overflow handling functions.
1225  // Usage: call the appropriate arithmetic function and then call one of the
1226  // flow control functions with the corresponding label.
1227
1228  // Compute dst = left + right, setting condition codes. dst may be same as
1229  // either left or right (or a unique register). left and right must not be
1230  // the same register.
1231  void AddAndCheckForOverflow(Register dst, Register left, Register right,
1232                              Register overflow_dst, Register scratch = r0);
1233  void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
1234                              Register overflow_dst, Register scratch = r0);
1235
1236  // Compute dst = left - right, setting condition codes. dst may be same as
1237  // either left or right (or a unique register). left and right must not be
1238  // the same register.
1239  void SubAndCheckForOverflow(Register dst, Register left, Register right,
1240                              Register overflow_dst, Register scratch = r0);
1241
1242  void BranchOnOverflow(Label* label) { blt(label /*, cr0*/); }
1243
1244  void BranchOnNoOverflow(Label* label) { bge(label /*, cr0*/); }
1245
1246  void RetOnOverflow(void) {
1247    Label label;
1248
1249    blt(&label /*, cr0*/);
1250    Ret();
1251    bind(&label);
1252  }
1253
1254  void RetOnNoOverflow(void) {
1255    Label label;
1256
1257    bge(&label /*, cr0*/);
1258    Ret();
1259    bind(&label);
1260  }
1261
1262  // ---------------------------------------------------------------------------
1263  // Runtime calls
1264
1265  // Call a code stub.
1266  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
1267                Condition cond = al);
1268
1269  // Call a code stub.
1270  void TailCallStub(CodeStub* stub, Condition cond = al);
1271
1272  // Call a runtime routine.
1273  void CallRuntime(const Runtime::Function* f, int num_arguments,
1274                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1275  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1276    const Runtime::Function* function = Runtime::FunctionForId(fid);
1277    CallRuntime(function, function->nargs, kSaveFPRegs);
1278  }
1279
1280  // Convenience function: Same as above, but takes the fid instead.
1281  void CallRuntime(Runtime::FunctionId fid,
1282                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1283    const Runtime::Function* function = Runtime::FunctionForId(fid);
1284    CallRuntime(function, function->nargs, save_doubles);
1285  }
1286
1287  // Convenience function: Same as above, but takes the fid instead.
1288  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1289                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1290    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1291  }
1292
1293  // Convenience function: call an external reference.
1294  void CallExternalReference(const ExternalReference& ext, int num_arguments);
1295
1296  // Convenience function: tail call a runtime routine (jump).
1297  void TailCallRuntime(Runtime::FunctionId fid);
1298
1299  int CalculateStackPassedWords(int num_reg_arguments,
1300                                int num_double_arguments);
1301
1302  // Before calling a C-function from generated code, align arguments on stack.
1303  // After aligning the frame, non-register arguments must be stored in
1304  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1305  // are word sized. If double arguments are used, this function assumes that
1306  // all double arguments are stored before core registers; otherwise the
1307  // correct alignment of the double values is not guaranteed.
1308  // Some compilers/platforms require the stack to be aligned when calling
1309  // C++ code.
1310  // Needs a scratch register to do some arithmetic. This register will be
1311  // trashed.
1312  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
1313                            Register scratch);
1314  void PrepareCallCFunction(int num_reg_arguments, Register scratch);
1315
1316  // There are two ways of passing double arguments on ARM, depending on
1317  // whether soft or hard floating point ABI is used. These functions
1318  // abstract parameter passing for the three different ways we call
1319  // C functions from generated code.
1320  void MovToFloatParameter(DoubleRegister src);
1321  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1322  void MovToFloatResult(DoubleRegister src);
1323
1324  // Calls a C function and cleans up the space for arguments allocated
1325  // by PrepareCallCFunction. The called function is not allowed to trigger a
1326  // garbage collection, since that might move the code and invalidate the
1327  // return address (unless this is somehow accounted for by the called
1328  // function).
1329  void CallCFunction(ExternalReference function, int num_arguments);
1330  void CallCFunction(Register function, int num_arguments);
1331  void CallCFunction(ExternalReference function, int num_reg_arguments,
1332                     int num_double_arguments);
1333  void CallCFunction(Register function, int num_reg_arguments,
1334                     int num_double_arguments);
1335
1336  void MovFromFloatParameter(DoubleRegister dst);
1337  void MovFromFloatResult(DoubleRegister dst);
1338
1339  // Jump to a runtime routine.
1340  void JumpToExternalReference(const ExternalReference& builtin);
1341
1342  Handle<Object> CodeObject() {
1343    DCHECK(!code_object_.is_null());
1344    return code_object_;
1345  }
1346
1347  // Emit code for a truncating division by a constant. The dividend register is
1348  // unchanged and ip gets clobbered. Dividend and result must be different.
1349  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1350
1351  // ---------------------------------------------------------------------------
1352  // StatsCounter support
1353
1354  void SetCounter(StatsCounter* counter, int value, Register scratch1,
1355                  Register scratch2);
1356  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1357                        Register scratch2);
1358  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1359                        Register scratch2);
1360
1361  // ---------------------------------------------------------------------------
1362  // Debugging
1363
1364  // Calls Abort(msg) if the condition cond is not satisfied.
1365  // Use --debug_code to enable.
1366  void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
1367  void AssertFastElements(Register elements);
1368
1369  // Like Assert(), but always enabled.
1370  void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
1371
1372  // Print a message to stdout and abort execution.
1373  void Abort(BailoutReason reason);
1374
1375  // Verify restrictions about code generated in stubs.
1376  void set_generating_stub(bool value) { generating_stub_ = value; }
1377  bool generating_stub() { return generating_stub_; }
1378  void set_has_frame(bool value) { has_frame_ = value; }
1379  bool has_frame() { return has_frame_; }
1380  inline bool AllowThisStubCall(CodeStub* stub);
1381
1382  // ---------------------------------------------------------------------------
1383  // Number utilities
1384
1385  // Check whether the value of reg is a power of two and not zero. If not
1386  // control continues at the label not_power_of_two. If reg is a power of two
1387  // the register scratch contains the value of (reg - 1) when control falls
1388  // through.
1389  void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
1390                                 Label* not_power_of_two_or_zero);
1391  // Check whether the value of reg is a power of two and not zero.
1392  // Control falls through if it is, with scratch containing the mask
1393  // value (reg - 1).
1394  // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1395  // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1396  // strictly positive but not a power of two.
1397  void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
1398                                       Label* zero_and_neg,
1399                                       Label* not_power_of_two);
1400
1401  // ---------------------------------------------------------------------------
1402  // Bit testing/extraction
1403  //
1404  // Bit numbering is such that the least significant bit is bit 0
1405  // (for consistency between 32/64-bit).
1406
1407  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
1408  // and place them into the least significant bits of dst.
1409  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
1410                              int rangeEnd) {
1411    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
1412
1413    // Try to use RISBG if possible.
1414    if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1415      int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
1416      int endBit = 63;  // End is always LSB after shifting.
1417      int startBit = 63 - rangeStart + rangeEnd;
1418      risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
1419            true);
1420    } else {
1421      if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
1422        ShiftRightP(dst, src, Operand(rangeEnd));
1423      else if (!dst.is(src))  // If we didn't shift, we might need to copy
1424        LoadRR(dst, src);
1425      int width = rangeStart - rangeEnd + 1;
1426#if V8_TARGET_ARCH_S390X
1427      uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
1428      nihf(dst, Operand(mask >> 32));
1429      nilf(dst, Operand(mask & 0xFFFFFFFF));
1430      ltgr(dst, dst);
1431#else
1432      uint32_t mask = (1 << width) - 1;
1433      AndP(dst, Operand(mask));
1434#endif
1435    }
1436  }
1437
1438  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
1439    ExtractBitRange(dst, src, bitNumber, bitNumber);
1440  }
1441
1442  // Extract consecutive bits (defined by mask) from src and place them
1443  // into the least significant bits of dst.
1444  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
1445                             RCBit rc = LeaveRC) {
1446    int start = kBitsPerPointer - 1;
1447    int end;
1448    uintptr_t bit = (1L << start);
1449
1450    while (bit && (mask & bit) == 0) {
1451      start--;
1452      bit >>= 1;
1453    }
1454    end = start;
1455    bit >>= 1;
1456
1457    while (bit && (mask & bit)) {
1458      end--;
1459      bit >>= 1;
1460    }
1461
1462    // 1-bits in mask must be contiguous
1463    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
1464
1465    ExtractBitRange(dst, src, start, end);
1466  }
1467
1468  // Test single bit in value.
1469  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
1470    ExtractBitRange(scratch, value, bitNumber, bitNumber);
1471  }
1472
1473  // Test consecutive bit range in value.  Range is defined by
1474  // rangeStart - rangeEnd.
1475  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
1476                           Register scratch = r0) {
1477    ExtractBitRange(scratch, value, rangeStart, rangeEnd);
1478  }
1479
1480  // Test consecutive bit range in value.  Range is defined by mask.
1481  inline void TestBitMask(Register value, uintptr_t mask,
1482                          Register scratch = r0) {
1483    ExtractBitMask(scratch, value, mask, SetRC);
1484  }
1485
1486  // ---------------------------------------------------------------------------
1487  // Smi utilities
1488
1489  // Shift left by kSmiShift
1490  void SmiTag(Register reg) { SmiTag(reg, reg); }
1491  void SmiTag(Register dst, Register src) {
1492    ShiftLeftP(dst, src, Operand(kSmiShift));
1493  }
1494
1495#if !V8_TARGET_ARCH_S390X
1496  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1497  void SmiTagCheckOverflow(Register reg, Register overflow);
1498  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1499
1500  inline void JumpIfNotSmiCandidate(Register value, Register scratch,
1501                                    Label* not_smi_label) {
1502    // High bits must be identical to fit into an Smi
1503    STATIC_ASSERT(kSmiShift == 1);
1504    AddP(scratch, value, Operand(0x40000000u));
1505    CmpP(scratch, Operand::Zero());
1506    blt(not_smi_label);
1507  }
1508#endif
1509  inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
1510    // The test is different for unsigned int values. Since we need
1511    // the value to be in the range of a positive smi, we can't
1512    // handle any of the high bits being set in the value.
1513    TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
1514                 scratch);
1515  }
1516  inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
1517                                            Label* not_smi_label) {
1518    TestUnsignedSmiCandidate(value, scratch);
1519    bne(not_smi_label /*, cr0*/);
1520  }
1521
1522  void SmiUntag(Register reg) { SmiUntag(reg, reg); }
1523
1524  void SmiUntag(Register dst, Register src) {
1525    ShiftRightArithP(dst, src, Operand(kSmiShift));
1526  }
1527
1528  void SmiToPtrArrayOffset(Register dst, Register src) {
1529#if V8_TARGET_ARCH_S390X
1530    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1531    ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
1532#else
1533    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1534    ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1535#endif
1536  }
1537
1538  void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
1539
1540  void SmiToShortArrayOffset(Register dst, Register src) {
1541#if V8_TARGET_ARCH_S390X
1542    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
1543    ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
1544#else
1545    STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
1546    if (!dst.is(src)) {
1547      LoadRR(dst, src);
1548    }
1549#endif
1550  }
1551
1552  void SmiToIntArrayOffset(Register dst, Register src) {
1553#if V8_TARGET_ARCH_S390X
1554    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
1555    ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
1556#else
1557    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
1558    ShiftLeftP(dst, src, Operand(2 - kSmiShift));
1559#endif
1560  }
1561
1562#define SmiToFloatArrayOffset SmiToIntArrayOffset
1563
1564  void SmiToDoubleArrayOffset(Register dst, Register src) {
1565#if V8_TARGET_ARCH_S390X
1566    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
1567    ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
1568#else
1569    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
1570    ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
1571#endif
1572  }
1573
1574  void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
1575    if (kSmiShift < elementSizeLog2) {
1576      ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
1577    } else if (kSmiShift > elementSizeLog2) {
1578      ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
1579    } else if (!dst.is(src)) {
1580      LoadRR(dst, src);
1581    }
1582  }
1583
1584  void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
1585                          bool isSmi) {
1586    if (isSmi) {
1587      SmiToArrayOffset(dst, src, elementSizeLog2);
1588    } else {
1589#if V8_TARGET_ARCH_S390X
1590      // src (key) is a 32-bit integer.  Sign extension ensures
1591      // upper 32-bit does not contain garbage before being used to
1592      // reference memory.
1593      lgfr(src, src);
1594#endif
1595      ShiftLeftP(dst, src, Operand(elementSizeLog2));
1596    }
1597  }
1598
1599  // Untag the source value into destination and jump if source is a smi.
1600  // Souce and destination can be the same register.
1601  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1602
1603  // Untag the source value into destination and jump if source is not a smi.
1604  // Souce and destination can be the same register.
1605  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1606
1607  inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
1608
1609  inline void TestIfPositiveSmi(Register value, Register scratch) {
1610    STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
1611                  (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
1612    mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
1613    AndP(scratch, value);
1614  }
1615
1616  // Jump the register contains a smi.
1617  inline void JumpIfSmi(Register value, Label* smi_label) {
1618    TestIfSmi(value);
1619    beq(smi_label /*, cr0*/);  // branch if SMI
1620  }
1621  // Jump if either of the registers contain a non-smi.
1622  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1623    TestIfSmi(value);
1624    bne(not_smi_label /*, cr0*/);
1625  }
1626  // Jump if either of the registers contain a non-smi.
1627  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1628  // Jump if either of the registers contain a smi.
1629  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1630
1631  // Abort execution if argument is a number, enabled via --debug-code.
1632  void AssertNotNumber(Register object);
1633
1634  // Abort execution if argument is a smi, enabled via --debug-code.
1635  void AssertNotSmi(Register object);
1636  void AssertSmi(Register object);
1637
1638#if V8_TARGET_ARCH_S390X
1639  inline void TestIfInt32(Register value, Register scratch) {
1640    // High bits must be identical to fit into an 32-bit integer
1641    lgfr(scratch, value);
1642    CmpP(scratch, value);
1643  }
1644#else
1645  inline void TestIfInt32(Register hi_word, Register lo_word,
1646                          Register scratch) {
1647    // High bits must be identical to fit into an 32-bit integer
1648    ShiftRightArith(scratch, lo_word, Operand(31));
1649    CmpP(scratch, hi_word);
1650  }
1651#endif
1652
1653#if V8_TARGET_ARCH_S390X
1654  // Ensure it is permissable to read/write int value directly from
1655  // upper half of the smi.
1656  STATIC_ASSERT(kSmiTag == 0);
1657  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
1658#endif
1659#if V8_TARGET_LITTLE_ENDIAN
1660#define SmiWordOffset(offset) (offset + kPointerSize / 2)
1661#else
1662#define SmiWordOffset(offset) offset
1663#endif
1664
1665  // Abort execution if argument is not a string, enabled via --debug-code.
1666  void AssertString(Register object);
1667
1668  // Abort execution if argument is not a name, enabled via --debug-code.
1669  void AssertName(Register object);
1670
1671  void AssertFunction(Register object);
1672
1673  // Abort execution if argument is not a JSBoundFunction,
1674  // enabled via --debug-code.
1675  void AssertBoundFunction(Register object);
1676
1677  // Abort execution if argument is not a JSGeneratorObject,
1678  // enabled via --debug-code.
1679  void AssertGeneratorObject(Register object);
1680
1681  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1682  void AssertReceiver(Register object);
1683
1684  // Abort execution if argument is not undefined or an AllocationSite, enabled
1685  // via --debug-code.
1686  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1687
1688  // Abort execution if reg is not the root value with the given index,
1689  // enabled via --debug-code.
1690  void AssertIsRoot(Register reg, Heap::RootListIndex index);
1691
1692  // ---------------------------------------------------------------------------
1693  // HeapNumber utilities
1694
1695  void JumpIfNotHeapNumber(Register object, Register heap_number_map,
1696                           Register scratch, Label* on_not_heap_number);
1697
1698  // ---------------------------------------------------------------------------
1699  // String utilities
1700
1701  // Checks if both objects are sequential one-byte strings and jumps to label
1702  // if either is not. Assumes that neither object is a smi.
1703  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1704                                                    Register object2,
1705                                                    Register scratch1,
1706                                                    Register scratch2,
1707                                                    Label* failure);
1708
1709  // Checks if both objects are sequential one-byte strings and jumps to label
1710  // if either is not.
1711  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1712                                             Register scratch1,
1713                                             Register scratch2,
1714                                             Label* not_flat_one_byte_strings);
1715
1716  // Checks if both instance types are sequential one-byte strings and jumps to
1717  // label if either is not.
1718  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1719      Register first_object_instance_type, Register second_object_instance_type,
1720      Register scratch1, Register scratch2, Label* failure);
1721
1722  // Check if instance type is sequential one-byte string and jump to label if
1723  // it is not.
1724  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1725                                                Label* failure);
1726
1727  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1728
1729  void EmitSeqStringSetCharCheck(Register string, Register index,
1730                                 Register value, uint32_t encoding_mask);
1731
1732  // ---------------------------------------------------------------------------
1733  // Patching helpers.
1734
1735  void ClampUint8(Register output_reg, Register input_reg);
1736
1737  // Saturate a value into 8-bit unsigned integer
1738  //   if input_value < 0, output_value is 0
1739  //   if input_value > 255, output_value is 255
1740  //   otherwise output_value is the (int)input_value (round to nearest)
1741  void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
1742                          DoubleRegister temp_double_reg);
1743
1744  void LoadInstanceDescriptors(Register map, Register descriptors);
1745  void EnumLength(Register dst, Register map);
1746  void NumberOfOwnDescriptors(Register dst, Register map);
1747  void LoadAccessor(Register dst, Register holder, int accessor_index,
1748                    AccessorComponent accessor);
1749
1750  template <typename Field>
1751  void DecodeField(Register dst, Register src) {
1752    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
1753  }
1754
1755  template <typename Field>
1756  void DecodeField(Register reg) {
1757    DecodeField<Field>(reg, reg);
1758  }
1759
1760  template <typename Field>
1761  void DecodeFieldToSmi(Register dst, Register src) {
1762    // TODO(joransiu): Optimize into single instruction
1763    DecodeField<Field>(dst, src);
1764    SmiTag(dst);
1765  }
1766
1767  template <typename Field>
1768  void DecodeFieldToSmi(Register reg) {
1769    DecodeFieldToSmi<Field>(reg, reg);
1770  }
1771
1772  // Load the type feedback vector from a JavaScript frame.
1773  void EmitLoadTypeFeedbackVector(Register vector);
1774
1775  // Activation support.
1776  void EnterFrame(StackFrame::Type type,
1777                  bool load_constant_pool_pointer_reg = false);
1778  // Returns the pc offset at which the frame ends.
1779  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1780
1781  // Expects object in r2 and returns map with validated enum cache
1782  // in r2.  Assumes that any other register can be used as a scratch.
1783  void CheckEnumCache(Label* call_runtime);
1784
1785  // AllocationMemento support. Arrays may have an associated
1786  // AllocationMemento object that can be checked for in order to pretransition
1787  // to another type.
1788  // On entry, receiver_reg should point to the array object.
1789  // scratch_reg gets clobbered.
1790  // If allocation info is present, condition flags are set to eq.
1791  void TestJSArrayForAllocationMemento(Register receiver_reg,
1792                                       Register scratch_reg,
1793                                       Register scratch2_reg,
1794                                       Label* no_memento_found);
1795
1796  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1797                                         Register scratch_reg,
1798                                         Register scratch2_reg,
1799                                         Label* memento_found) {
1800    Label no_memento_found;
1801    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg,
1802                                    &no_memento_found);
1803    beq(memento_found);
1804    bind(&no_memento_found);
1805  }
1806
1807  // Jumps to found label if a prototype map has dictionary elements.
1808  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1809                                        Register scratch1, Label* found);
1810
1811 private:
1812  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1813
1814  void CallCFunctionHelper(Register function, int num_reg_arguments,
1815                           int num_double_arguments);
1816
1817  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
1818            CRegister cr = cr7);
1819
1820  // Helper functions for generating invokes.
1821  void InvokePrologue(const ParameterCount& expected,
1822                      const ParameterCount& actual, Label* done,
1823                      bool* definitely_mismatches, InvokeFlag flag,
1824                      const CallWrapper& call_wrapper);
1825
1826  void InitializeNewString(Register string, Register length,
1827                           Heap::RootListIndex map_index, Register scratch1,
1828                           Register scratch2);
1829
1830  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1831  void InNewSpace(Register object, Register scratch,
1832                  Condition cond,  // eq for new space, ne otherwise.
1833                  Label* branch);
1834
1835  // Helper for finding the mark bits for an address.  Afterwards, the
1836  // bitmap register points at the word with the mark bits and the mask
1837  // the position of the first bit.  Leaves addr_reg unchanged.
1838  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
1839                          Register mask_reg);
1840
1841  static const RegList kSafepointSavedRegisters;
1842  static const int kNumSafepointSavedRegisters;
1843
1844  // Compute memory operands for safepoint stack slots.
1845  static int SafepointRegisterStackIndex(int reg_code);
1846  MemOperand SafepointRegisterSlot(Register reg);
1847  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1848
1849  bool generating_stub_;
1850  bool has_frame_;
1851  // This handle will be patched with the code object on installation.
1852  Handle<Object> code_object_;
1853
1854  // Needs access to SafepointRegisterStackIndex for compiled frame
1855  // traversal.
1856  friend class StandardFrame;
1857};
1858
1859// The code patcher is used to patch (typically) small parts of code e.g. for
1860// debugging and other types of instrumentation. When using the code patcher
1861// the exact number of bytes specified must be emitted. It is not legal to emit
1862// relocation information. If any of these constraints are violated it causes
1863// an assertion to fail.
1864class CodePatcher {
1865 public:
1866  enum FlushICache { FLUSH, DONT_FLUSH };
1867
1868  CodePatcher(Isolate* isolate, byte* address, int instructions,
1869              FlushICache flush_cache = FLUSH);
1870  ~CodePatcher();
1871
1872  // Macro assembler to emit code.
1873  MacroAssembler* masm() { return &masm_; }
1874
1875 private:
1876  byte* address_;            // The address of the code being patched.
1877  int size_;                 // Number of bytes of the expected patch size.
1878  MacroAssembler masm_;      // Macro assembler used to generate the code.
1879  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1880};
1881
1882// -----------------------------------------------------------------------------
1883// Static helper functions.
1884
1885inline MemOperand ContextMemOperand(Register context, int index = 0) {
1886  return MemOperand(context, Context::SlotOffset(index));
1887}
1888
1889inline MemOperand NativeContextMemOperand() {
1890  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1891}
1892
1893#ifdef GENERATED_CODE_COVERAGE
1894#define CODE_COVERAGE_STRINGIFY(x) #x
1895#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1896#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1897#define ACCESS_MASM(masm)    \
1898  masm->stop(__FILE_LINE__); \
1899  masm->
1900#else
1901#define ACCESS_MASM(masm) masm->
1902#endif
1903}  // namespace internal
1904}  // namespace v8
1905
1906#endif  // V8_S390_MACRO_ASSEMBLER_S390_H_
1907