codegen-x64.h revision 8a31eba00023874d4a1dcdc5f411cc4336776874
1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_X64_CODEGEN_X64_H_
29#define V8_X64_CODEGEN_X64_H_
30
31#include "ast.h"
32#include "ic-inl.h"
33#include "jump-target-heavy.h"
34
35namespace v8 {
36namespace internal {
37
38// Forward declarations
39class CompilationInfo;
40class DeferredCode;
41class RegisterAllocator;
42class RegisterFile;
43
44enum InitState { CONST_INIT, NOT_CONST_INIT };
45enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
46
47
48// -------------------------------------------------------------------------
49// Reference support
50
51// A reference is a C++ stack-allocated object that puts a
52// reference on the virtual frame.  The reference may be consumed
53// by GetValue, TakeValue, SetValue, and Codegen::UnloadReference.
54// When the lifetime (scope) of a valid reference ends, it must have
55// been consumed, and be in state UNLOADED.
56class Reference BASE_EMBEDDED {
57 public:
58  // The values of the types is important, see size().
59  enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
60
61  Reference(CodeGenerator* cgen,
62            Expression* expression,
63            bool persist_after_get = false);
64  ~Reference();
65
66  Expression* expression() const { return expression_; }
67  Type type() const { return type_; }
68  void set_type(Type value) {
69    ASSERT_EQ(ILLEGAL, type_);
70    type_ = value;
71  }
72
73  void set_unloaded() {
74    ASSERT_NE(ILLEGAL, type_);
75    ASSERT_NE(UNLOADED, type_);
76    type_ = UNLOADED;
77  }
78  // The size the reference takes up on the stack.
79  int size() const {
80    return (type_ < SLOT) ? 0 : type_;
81  }
82
83  bool is_illegal() const { return type_ == ILLEGAL; }
84  bool is_slot() const { return type_ == SLOT; }
85  bool is_property() const { return type_ == NAMED || type_ == KEYED; }
86  bool is_unloaded() const { return type_ == UNLOADED; }
87
88  // Return the name.  Only valid for named property references.
89  Handle<String> GetName();
90
91  // Generate code to push the value of the reference on top of the
92  // expression stack.  The reference is expected to be already on top of
93  // the expression stack, and it is consumed by the call unless the
94  // reference is for a compound assignment.
95  // If the reference is not consumed, it is left in place under its value.
96  void GetValue();
97
98  // Like GetValue except that the slot is expected to be written to before
99  // being read from again.  The value of the reference may be invalidated,
100  // causing subsequent attempts to read it to fail.
101  void TakeValue();
102
103  // Generate code to store the value on top of the expression stack in the
104  // reference.  The reference is expected to be immediately below the value
105  // on the expression stack.  The  value is stored in the location specified
106  // by the reference, and is left on top of the stack, after the reference
107  // is popped from beneath it (unloaded).
108  void SetValue(InitState init_state);
109
110 private:
111  CodeGenerator* cgen_;
112  Expression* expression_;
113  Type type_;
114  bool persist_after_get_;
115};
116
117
118// -------------------------------------------------------------------------
119// Control destinations.
120
121// A control destination encapsulates a pair of jump targets and a
122// flag indicating which one is the preferred fall-through.  The
123// preferred fall-through must be unbound, the other may be already
124// bound (ie, a backward target).
125//
126// The true and false targets may be jumped to unconditionally or
127// control may split conditionally.  Unconditional jumping and
128// splitting should be emitted in tail position (as the last thing
129// when compiling an expression) because they can cause either label
130// to be bound or the non-fall through to be jumped to leaving an
131// invalid virtual frame.
132//
133// The labels in the control destination can be extracted and
134// manipulated normally without affecting the state of the
135// destination.
136
137class ControlDestination BASE_EMBEDDED {
138 public:
139  ControlDestination(JumpTarget* true_target,
140                     JumpTarget* false_target,
141                     bool true_is_fall_through)
142      : true_target_(true_target),
143        false_target_(false_target),
144        true_is_fall_through_(true_is_fall_through),
145        is_used_(false) {
146    ASSERT(true_is_fall_through ? !true_target->is_bound()
147                                : !false_target->is_bound());
148  }
149
150  // Accessors for the jump targets.  Directly jumping or branching to
151  // or binding the targets will not update the destination's state.
152  JumpTarget* true_target() const { return true_target_; }
153  JumpTarget* false_target() const { return false_target_; }
154
155  // True if the the destination has been jumped to unconditionally or
156  // control has been split to both targets.  This predicate does not
157  // test whether the targets have been extracted and manipulated as
158  // raw jump targets.
159  bool is_used() const { return is_used_; }
160
161  // True if the destination is used and the true target (respectively
162  // false target) was the fall through.  If the target is backward,
163  // "fall through" included jumping unconditionally to it.
164  bool true_was_fall_through() const {
165    return is_used_ && true_is_fall_through_;
166  }
167
168  bool false_was_fall_through() const {
169    return is_used_ && !true_is_fall_through_;
170  }
171
172  // Emit a branch to one of the true or false targets, and bind the
173  // other target.  Because this binds the fall-through target, it
174  // should be emitted in tail position (as the last thing when
175  // compiling an expression).
176  void Split(Condition cc) {
177    ASSERT(!is_used_);
178    if (true_is_fall_through_) {
179      false_target_->Branch(NegateCondition(cc));
180      true_target_->Bind();
181    } else {
182      true_target_->Branch(cc);
183      false_target_->Bind();
184    }
185    is_used_ = true;
186  }
187
188  // Emit an unconditional jump in tail position, to the true target
189  // (if the argument is true) or the false target.  The "jump" will
190  // actually bind the jump target if it is forward, jump to it if it
191  // is backward.
192  void Goto(bool where) {
193    ASSERT(!is_used_);
194    JumpTarget* target = where ? true_target_ : false_target_;
195    if (target->is_bound()) {
196      target->Jump();
197    } else {
198      target->Bind();
199    }
200    is_used_ = true;
201    true_is_fall_through_ = where;
202  }
203
204  // Mark this jump target as used as if Goto had been called, but
205  // without generating a jump or binding a label (the control effect
206  // should have already happened).  This is used when the left
207  // subexpression of the short-circuit boolean operators are
208  // compiled.
209  void Use(bool where) {
210    ASSERT(!is_used_);
211    ASSERT((where ? true_target_ : false_target_)->is_bound());
212    is_used_ = true;
213    true_is_fall_through_ = where;
214  }
215
216  // Swap the true and false targets but keep the same actual label as
217  // the fall through.  This is used when compiling negated
218  // expressions, where we want to swap the targets but preserve the
219  // state.
220  void Invert() {
221    JumpTarget* temp_target = true_target_;
222    true_target_ = false_target_;
223    false_target_ = temp_target;
224
225    true_is_fall_through_ = !true_is_fall_through_;
226  }
227
228 private:
229  // True and false jump targets.
230  JumpTarget* true_target_;
231  JumpTarget* false_target_;
232
233  // Before using the destination: true if the true target is the
234  // preferred fall through, false if the false target is.  After
235  // using the destination: true if the true target was actually used
236  // as the fall through, false if the false target was.
237  bool true_is_fall_through_;
238
239  // True if the Split or Goto functions have been called.
240  bool is_used_;
241};
242
243
244// -------------------------------------------------------------------------
245// Code generation state
246
247// The state is passed down the AST by the code generator (and back up, in
248// the form of the state of the jump target pair).  It is threaded through
249// the call stack.  Constructing a state implicitly pushes it on the owning
250// code generator's stack of states, and destroying one implicitly pops it.
251//
252// The code generator state is only used for expressions, so statements have
253// the initial state.
254
255class CodeGenState BASE_EMBEDDED {
256 public:
257  // Create an initial code generator state.  Destroying the initial state
258  // leaves the code generator with a NULL state.
259  explicit CodeGenState(CodeGenerator* owner);
260
261  // Create a code generator state based on a code generator's current
262  // state.  The new state has its own control destination.
263  CodeGenState(CodeGenerator* owner, ControlDestination* destination);
264
265  // Destroy a code generator state and restore the owning code generator's
266  // previous state.
267  ~CodeGenState();
268
269  // Accessors for the state.
270  ControlDestination* destination() const { return destination_; }
271
272 private:
273  // The owning code generator.
274  CodeGenerator* owner_;
275
276  // A control destination in case the expression has a control-flow
277  // effect.
278  ControlDestination* destination_;
279
280  // The previous state of the owning code generator, restored when
281  // this state is destroyed.
282  CodeGenState* previous_;
283};
284
285
286// -------------------------------------------------------------------------
287// Arguments allocation mode
288
289enum ArgumentsAllocationMode {
290  NO_ARGUMENTS_ALLOCATION,
291  EAGER_ARGUMENTS_ALLOCATION,
292  LAZY_ARGUMENTS_ALLOCATION
293};
294
295
296// -------------------------------------------------------------------------
297// CodeGenerator
298
299class CodeGenerator: public AstVisitor {
300 public:
301  static bool MakeCode(CompilationInfo* info);
302
303  // Printing of AST, etc. as requested by flags.
304  static void MakeCodePrologue(CompilationInfo* info);
305
306  // Allocate and install the code.
307  static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
308                                       Code::Flags flags,
309                                       CompilationInfo* info);
310
311#ifdef ENABLE_LOGGING_AND_PROFILING
312  static bool ShouldGenerateLog(Expression* type);
313#endif
314
315  static bool RecordPositions(MacroAssembler* masm,
316                              int pos,
317                              bool right_here = false);
318
319  // Accessors
320  MacroAssembler* masm() { return masm_; }
321  VirtualFrame* frame() const { return frame_; }
322  inline Handle<Script> script();
323
324  bool has_valid_frame() const { return frame_ != NULL; }
325
326  // Set the virtual frame to be new_frame, with non-frame register
327  // reference counts given by non_frame_registers.  The non-frame
328  // register reference counts of the old frame are returned in
329  // non_frame_registers.
330  void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
331
332  void DeleteFrame();
333
334  RegisterAllocator* allocator() const { return allocator_; }
335
336  CodeGenState* state() { return state_; }
337  void set_state(CodeGenState* state) { state_ = state; }
338
339  void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
340
341  bool in_spilled_code() const { return in_spilled_code_; }
342  void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }
343
344 private:
345  // Type of a member function that generates inline code for a native function.
346  typedef void (CodeGenerator::*InlineFunctionGenerator)
347      (ZoneList<Expression*>*);
348
349  static const InlineFunctionGenerator kInlineFunctionGenerators[];
350
351  // Construction/Destruction
352  explicit CodeGenerator(MacroAssembler* masm);
353
354  // Accessors
355  inline bool is_eval();
356  inline Scope* scope();
357
358  // Generating deferred code.
359  void ProcessDeferred();
360
361  // State
362  ControlDestination* destination() const { return state_->destination(); }
363
364  // Track loop nesting level.
365  int loop_nesting() const { return loop_nesting_; }
366  void IncrementLoopNesting() { loop_nesting_++; }
367  void DecrementLoopNesting() { loop_nesting_--; }
368
369
370  // Node visitors.
371  void VisitStatements(ZoneList<Statement*>* statements);
372
373#define DEF_VISIT(type) \
374  void Visit##type(type* node);
375  AST_NODE_LIST(DEF_VISIT)
376#undef DEF_VISIT
377
378  // Visit a statement and then spill the virtual frame if control flow can
379  // reach the end of the statement (ie, it does not exit via break,
380  // continue, return, or throw).  This function is used temporarily while
381  // the code generator is being transformed.
382  void VisitAndSpill(Statement* statement);
383
384  // Visit a list of statements and then spill the virtual frame if control
385  // flow can reach the end of the list.
386  void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
387
388  // Main code generation function
389  void Generate(CompilationInfo* info);
390
391  // Generate the return sequence code.  Should be called no more than
392  // once per compiled function, immediately after binding the return
393  // target (which can not be done more than once).
394  void GenerateReturnSequence(Result* return_value);
395
396  // Generate code for a fast smi loop.
397  void GenerateFastSmiLoop(ForStatement* node);
398
399  // Returns the arguments allocation mode.
400  ArgumentsAllocationMode ArgumentsMode();
401
402  // Store the arguments object and allocate it if necessary.
403  Result StoreArgumentsObject(bool initial);
404
405  // The following are used by class Reference.
406  void LoadReference(Reference* ref);
407  void UnloadReference(Reference* ref);
408
409  Operand SlotOperand(Slot* slot, Register tmp);
410
411  Operand ContextSlotOperandCheckExtensions(Slot* slot,
412                                            Result tmp,
413                                            JumpTarget* slow);
414
415  // Expressions
416  void LoadCondition(Expression* x,
417                     ControlDestination* destination,
418                     bool force_control);
419  void Load(Expression* expr);
420  void LoadGlobal();
421  void LoadGlobalReceiver();
422
423  // Generate code to push the value of an expression on top of the frame
424  // and then spill the frame fully to memory.  This function is used
425  // temporarily while the code generator is being transformed.
426  void LoadAndSpill(Expression* expression);
427
428  // Read a value from a slot and leave it on top of the expression stack.
429  void LoadFromSlot(Slot* slot, TypeofState typeof_state);
430  void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state);
431  Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
432                                           TypeofState typeof_state,
433                                           JumpTarget* slow);
434
435  // Support for loading from local/global variables and arguments
436  // whose location is known unless they are shadowed by
437  // eval-introduced bindings. Generates no code for unsupported slot
438  // types and therefore expects to fall through to the slow jump target.
439  void EmitDynamicLoadFromSlotFastCase(Slot* slot,
440                                       TypeofState typeof_state,
441                                       Result* result,
442                                       JumpTarget* slow,
443                                       JumpTarget* done);
444
445  // Store the value on top of the expression stack into a slot, leaving the
446  // value in place.
447  void StoreToSlot(Slot* slot, InitState init_state);
448
449  // Support for compiling assignment expressions.
450  void EmitSlotAssignment(Assignment* node);
451  void EmitNamedPropertyAssignment(Assignment* node);
452  void EmitKeyedPropertyAssignment(Assignment* node);
453
454  // Receiver is passed on the frame and not consumed.
455  Result EmitNamedLoad(Handle<String> name, bool is_contextual);
456
457  // If the store is contextual, value is passed on the frame and consumed.
458  // Otherwise, receiver and value are passed on the frame and consumed.
459  Result EmitNamedStore(Handle<String> name, bool is_contextual);
460
461  // Load a property of an object, returning it in a Result.
462  // The object and the property name are passed on the stack, and
463  // not changed.
464  Result EmitKeyedLoad();
465
466  // Receiver, key, and value are passed on the frame and consumed.
467  Result EmitKeyedStore(StaticType* key_type);
468
469  // Special code for typeof expressions: Unfortunately, we must
470  // be careful when loading the expression in 'typeof'
471  // expressions. We are not allowed to throw reference errors for
472  // non-existing properties of the global object, so we must make it
473  // look like an explicit property access, instead of an access
474  // through the context chain.
475  void LoadTypeofExpression(Expression* x);
476
477  // Translate the value on top of the frame into control flow to the
478  // control destination.
479  void ToBoolean(ControlDestination* destination);
480
481  // Generate code that computes a shortcutting logical operation.
482  void GenerateLogicalBooleanOperation(BinaryOperation* node);
483
484  void GenericBinaryOperation(BinaryOperation* expr,
485                              OverwriteMode overwrite_mode);
486
487  // Generate a stub call from the virtual frame.
488  Result GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub,
489                                         Result* left,
490                                         Result* right);
491
492  // Emits code sequence that jumps to a JumpTarget if the inputs
493  // are both smis.  Cannot be in MacroAssembler because it takes
494  // advantage of TypeInfo to skip unneeded checks.
495  void JumpIfBothSmiUsingTypeInfo(Result* left,
496                                  Result* right,
497                                  JumpTarget* both_smi);
498
499  // Emits code sequence that jumps to deferred code if the input
500  // is not a smi.  Cannot be in MacroAssembler because it takes
501  // advantage of TypeInfo to skip unneeded checks.
502  void JumpIfNotSmiUsingTypeInfo(Register reg,
503                                 TypeInfo type,
504                                 DeferredCode* deferred);
505
506  // Emits code sequence that jumps to deferred code if the inputs
507  // are not both smis.  Cannot be in MacroAssembler because it takes
508  // advantage of TypeInfo to skip unneeded checks.
509  void JumpIfNotBothSmiUsingTypeInfo(Register left,
510                                     Register right,
511                                     TypeInfo left_info,
512                                     TypeInfo right_info,
513                                     DeferredCode* deferred);
514
515  // If possible, combine two constant smi values using op to produce
516  // a smi result, and push it on the virtual frame, all at compile time.
517  // Returns true if it succeeds.  Otherwise it has no effect.
518  bool FoldConstantSmis(Token::Value op, int left, int right);
519
520  // Emit code to perform a binary operation on a constant
521  // smi and a likely smi.  Consumes the Result *operand.
522  Result ConstantSmiBinaryOperation(BinaryOperation* expr,
523                                    Result* operand,
524                                    Handle<Object> constant_operand,
525                                    bool reversed,
526                                    OverwriteMode overwrite_mode);
527
528  // Emit code to perform a binary operation on two likely smis.
529  // The code to handle smi arguments is produced inline.
530  // Consumes the Results *left and *right.
531  Result LikelySmiBinaryOperation(BinaryOperation* expr,
532                                  Result* left,
533                                  Result* right,
534                                  OverwriteMode overwrite_mode);
535
536  void Comparison(AstNode* node,
537                  Condition cc,
538                  bool strict,
539                  ControlDestination* destination);
540
541  // If at least one of the sides is a constant smi, generate optimized code.
542  void ConstantSmiComparison(Condition cc,
543                             bool strict,
544                             ControlDestination* destination,
545                             Result* left_side,
546                             Result* right_side,
547                             bool left_side_constant_smi,
548                             bool right_side_constant_smi,
549                             bool is_loop_condition);
550
551  void GenerateInlineNumberComparison(Result* left_side,
552                                      Result* right_side,
553                                      Condition cc,
554                                      ControlDestination* dest);
555
556  // To prevent long attacker-controlled byte sequences, integer constants
557  // from the JavaScript source are loaded in two parts if they are larger
558  // than 16 bits.
559  static const int kMaxSmiInlinedBits = 16;
560  bool IsUnsafeSmi(Handle<Object> value);
561  // Load an integer constant x into a register target using
562  // at most 16 bits of user-controlled data per assembly operation.
563  void LoadUnsafeSmi(Register target, Handle<Object> value);
564
565  void CallWithArguments(ZoneList<Expression*>* arguments,
566                         CallFunctionFlags flags,
567                         int position);
568
569  // An optimized implementation of expressions of the form
570  // x.apply(y, arguments).  We call x the applicand and y the receiver.
571  // The optimization avoids allocating an arguments object if possible.
572  void CallApplyLazy(Expression* applicand,
573                     Expression* receiver,
574                     VariableProxy* arguments,
575                     int position);
576
577  void CheckStack();
578
579  bool CheckForInlineRuntimeCall(CallRuntime* node);
580
581  void ProcessDeclarations(ZoneList<Declaration*>* declarations);
582
583  // Declare global variables and functions in the given array of
584  // name/value pairs.
585  void DeclareGlobals(Handle<FixedArray> pairs);
586
587  // Instantiate the function based on the shared function info.
588  void InstantiateFunction(Handle<SharedFunctionInfo> function_info,
589                           bool pretenure);
590
591  // Support for type checks.
592  void GenerateIsSmi(ZoneList<Expression*>* args);
593  void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
594  void GenerateIsArray(ZoneList<Expression*>* args);
595  void GenerateIsRegExp(ZoneList<Expression*>* args);
596  void GenerateIsObject(ZoneList<Expression*>* args);
597  void GenerateIsSpecObject(ZoneList<Expression*>* args);
598  void GenerateIsFunction(ZoneList<Expression*>* args);
599  void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
600  void GenerateIsStringWrapperSafeForDefaultValueOf(
601      ZoneList<Expression*>* args);
602
603  // Support for construct call checks.
604  void GenerateIsConstructCall(ZoneList<Expression*>* args);
605
606  // Support for arguments.length and arguments[?].
607  void GenerateArgumentsLength(ZoneList<Expression*>* args);
608  void GenerateArguments(ZoneList<Expression*>* args);
609
610  // Support for accessing the class and value fields of an object.
611  void GenerateClassOf(ZoneList<Expression*>* args);
612  void GenerateValueOf(ZoneList<Expression*>* args);
613  void GenerateSetValueOf(ZoneList<Expression*>* args);
614
615  // Fast support for charCodeAt(n).
616  void GenerateStringCharCodeAt(ZoneList<Expression*>* args);
617
618  // Fast support for string.charAt(n) and string[n].
619  void GenerateStringCharFromCode(ZoneList<Expression*>* args);
620
621  // Fast support for string.charAt(n) and string[n].
622  void GenerateStringCharAt(ZoneList<Expression*>* args);
623
624  // Fast support for object equality testing.
625  void GenerateObjectEquals(ZoneList<Expression*>* args);
626
627  void GenerateLog(ZoneList<Expression*>* args);
628
629  void GenerateGetFramePointer(ZoneList<Expression*>* args);
630
631  // Fast support for Math.random().
632  void GenerateRandomHeapNumber(ZoneList<Expression*>* args);
633
634  // Fast support for StringAdd.
635  void GenerateStringAdd(ZoneList<Expression*>* args);
636
637  // Fast support for SubString.
638  void GenerateSubString(ZoneList<Expression*>* args);
639
640  // Fast support for StringCompare.
641  void GenerateStringCompare(ZoneList<Expression*>* args);
642
643  // Support for direct calls from JavaScript to native RegExp code.
644  void GenerateRegExpExec(ZoneList<Expression*>* args);
645
646  void GenerateRegExpConstructResult(ZoneList<Expression*>* args);
647
648  // Support for fast native caches.
649  void GenerateGetFromCache(ZoneList<Expression*>* args);
650
651  // Fast support for number to string.
652  void GenerateNumberToString(ZoneList<Expression*>* args);
653
654  // Fast swapping of elements. Takes three expressions, the object and two
655  // indices. This should only be used if the indices are known to be
656  // non-negative and within bounds of the elements array at the call site.
657  void GenerateSwapElements(ZoneList<Expression*>* args);
658
659  // Fast call for custom callbacks.
660  void GenerateCallFunction(ZoneList<Expression*>* args);
661
662  // Fast call to math functions.
663  void GenerateMathPow(ZoneList<Expression*>* args);
664  void GenerateMathSin(ZoneList<Expression*>* args);
665  void GenerateMathCos(ZoneList<Expression*>* args);
666  void GenerateMathSqrt(ZoneList<Expression*>* args);
667
668  void GenerateIsRegExpEquivalent(ZoneList<Expression*>* args);
669
670  void GenerateHasCachedArrayIndex(ZoneList<Expression*>* args);
671  void GenerateGetCachedArrayIndex(ZoneList<Expression*>* args);
672  void GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args);
673
674// Simple condition analysis.
675  enum ConditionAnalysis {
676    ALWAYS_TRUE,
677    ALWAYS_FALSE,
678    DONT_KNOW
679  };
680  ConditionAnalysis AnalyzeCondition(Expression* cond);
681
682  // Methods used to indicate which source code is generated for. Source
683  // positions are collected by the assembler and emitted with the relocation
684  // information.
685  void CodeForFunctionPosition(FunctionLiteral* fun);
686  void CodeForReturnPosition(FunctionLiteral* fun);
687  void CodeForStatementPosition(Statement* node);
688  void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
689  void CodeForSourcePosition(int pos);
690
691  void SetTypeForStackSlot(Slot* slot, TypeInfo info);
692
693#ifdef DEBUG
694  // True if the registers are valid for entry to a block.  There should
695  // be no frame-external references to (non-reserved) registers.
696  bool HasValidEntryRegisters();
697#endif
698
699  ZoneList<DeferredCode*> deferred_;
700
701  // Assembler
702  MacroAssembler* masm_;  // to generate code
703
704  CompilationInfo* info_;
705
706  // Code generation state
707  VirtualFrame* frame_;
708  RegisterAllocator* allocator_;
709  CodeGenState* state_;
710  int loop_nesting_;
711
712  // Jump targets.
713  // The target of the return from the function.
714  BreakTarget function_return_;
715
716  // True if the function return is shadowed (ie, jumping to the target
717  // function_return_ does not jump to the true function return, but rather
718  // to some unlinking code).
719  bool function_return_is_shadowed_;
720
721  // True when we are in code that expects the virtual frame to be fully
722  // spilled.  Some virtual frame function are disabled in DEBUG builds when
723  // called from spilled code, because they do not leave the virtual frame
724  // in a spilled state.
725  bool in_spilled_code_;
726
727  friend class VirtualFrame;
728  friend class JumpTarget;
729  friend class Reference;
730  friend class Result;
731  friend class FastCodeGenerator;
732  friend class FullCodeGenerator;
733  friend class FullCodeGenSyntaxChecker;
734
735  friend class CodeGeneratorPatcher;  // Used in test-log-stack-tracer.cc
736
737  DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
738};
739
740
741} }  // namespace v8::internal
742
743#endif  // V8_X64_CODEGEN_X64_H_
744