Threads.cpp revision 062e67a26e0553dd142be622821f493df541f0c6
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/primitives.h>
40#include <audio_utils/format.h>
41#include <audio_utils/minifloat.h>
42
43// NBAIO implementations
44#include <media/nbaio/AudioStreamInSource.h>
45#include <media/nbaio/AudioStreamOutSink.h>
46#include <media/nbaio/MonoPipe.h>
47#include <media/nbaio/MonoPipeReader.h>
48#include <media/nbaio/Pipe.h>
49#include <media/nbaio/PipeReader.h>
50#include <media/nbaio/SourceAudioBufferProvider.h>
51
52#include <powermanager/PowerManager.h>
53
54#include <common_time/cc_helper.h>
55#include <common_time/local_clock.h>
56
57#include "AudioFlinger.h"
58#include "AudioMixer.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74// ----------------------------------------------------------------------------
75
76// Note: the following macro is used for extremely verbose logging message.  In
77// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
78// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
79// are so verbose that we want to suppress them even when we have ALOG_ASSERT
80// turned on.  Do not uncomment the #def below unless you really know what you
81// are doing and want to see all of the extremely verbose messages.
82//#define VERY_VERY_VERBOSE_LOGGING
83#ifdef VERY_VERY_VERBOSE_LOGGING
84#define ALOGVV ALOGV
85#else
86#define ALOGVV(a...) do { } while(0)
87#endif
88
89#define max(a, b) ((a) > (b) ? (a) : (b))
90
91namespace android {
92
93// retry counts for buffer fill timeout
94// 50 * ~20msecs = 1 second
95static const int8_t kMaxTrackRetries = 50;
96static const int8_t kMaxTrackStartupRetries = 50;
97// allow less retry attempts on direct output thread.
98// direct outputs can be a scarce resource in audio hardware and should
99// be released as quickly as possible.
100static const int8_t kMaxTrackRetriesDirect = 2;
101
102// don't warn about blocked writes or record buffer overflows more often than this
103static const nsecs_t kWarningThrottleNs = seconds(5);
104
105// RecordThread loop sleep time upon application overrun or audio HAL read error
106static const int kRecordThreadSleepUs = 5000;
107
108// maximum time to wait in sendConfigEvent_l() for a status to be received
109static const nsecs_t kConfigEventTimeoutNs = seconds(2);
110
111// minimum sleep time for the mixer thread loop when tracks are active but in underrun
112static const uint32_t kMinThreadSleepTimeUs = 5000;
113// maximum divider applied to the active sleep time in the mixer thread loop
114static const uint32_t kMaxThreadSleepTimeShift = 2;
115
116// minimum normal sink buffer size, expressed in milliseconds rather than frames
117static const uint32_t kMinNormalSinkBufferSizeMs = 20;
118// maximum normal sink buffer size
119static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
120
121// Offloaded output thread standby delay: allows track transition without going to standby
122static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
123
124// Whether to use fast mixer
125static const enum {
126    FastMixer_Never,    // never initialize or use: for debugging only
127    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
128                        // normal mixer multiplier is 1
129    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
130                        // multiplier is calculated based on min & max normal mixer buffer size
131    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
132                        // multiplier is calculated based on min & max normal mixer buffer size
133    // FIXME for FastMixer_Dynamic:
134    //  Supporting this option will require fixing HALs that can't handle large writes.
135    //  For example, one HAL implementation returns an error from a large write,
136    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
137    //  We could either fix the HAL implementations, or provide a wrapper that breaks
138    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
139} kUseFastMixer = FastMixer_Static;
140
141// Whether to use fast capture
142static const enum {
143    FastCapture_Never,  // never initialize or use: for debugging only
144    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
145    FastCapture_Static, // initialize if needed, then use all the time if initialized
146} kUseFastCapture = FastCapture_Static;
147
148// Priorities for requestPriority
149static const int kPriorityAudioApp = 2;
150static const int kPriorityFastMixer = 3;
151static const int kPriorityFastCapture = 3;
152
153// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
154// for the track.  The client then sub-divides this into smaller buffers for its use.
155// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
156// So for now we just assume that client is double-buffered for fast tracks.
157// FIXME It would be better for client to tell AudioFlinger the value of N,
158// so AudioFlinger could allocate the right amount of memory.
159// See the client's minBufCount and mNotificationFramesAct calculations for details.
160
161// This is the default value, if not specified by property.
162static const int kFastTrackMultiplier = 2;
163
164// The minimum and maximum allowed values
165static const int kFastTrackMultiplierMin = 1;
166static const int kFastTrackMultiplierMax = 2;
167
168// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
169static int sFastTrackMultiplier = kFastTrackMultiplier;
170
171// See Thread::readOnlyHeap().
172// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
173// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
174// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
175static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
176
177// ----------------------------------------------------------------------------
178
179static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
180
181static void sFastTrackMultiplierInit()
182{
183    char value[PROPERTY_VALUE_MAX];
184    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
185        char *endptr;
186        unsigned long ul = strtoul(value, &endptr, 0);
187        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
188            sFastTrackMultiplier = (int) ul;
189        }
190    }
191}
192
193// ----------------------------------------------------------------------------
194
195#ifdef ADD_BATTERY_DATA
196// To collect the amplifier usage
197static void addBatteryData(uint32_t params) {
198    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
199    if (service == NULL) {
200        // it already logged
201        return;
202    }
203
204    service->addBatteryData(params);
205}
206#endif
207
208
209// ----------------------------------------------------------------------------
210//      CPU Stats
211// ----------------------------------------------------------------------------
212
213class CpuStats {
214public:
215    CpuStats();
216    void sample(const String8 &title);
217#ifdef DEBUG_CPU_USAGE
218private:
219    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
220    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
221
222    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
223
224    int mCpuNum;                        // thread's current CPU number
225    int mCpukHz;                        // frequency of thread's current CPU in kHz
226#endif
227};
228
229CpuStats::CpuStats()
230#ifdef DEBUG_CPU_USAGE
231    : mCpuNum(-1), mCpukHz(-1)
232#endif
233{
234}
235
236void CpuStats::sample(const String8 &title
237#ifndef DEBUG_CPU_USAGE
238                __unused
239#endif
240        ) {
241#ifdef DEBUG_CPU_USAGE
242    // get current thread's delta CPU time in wall clock ns
243    double wcNs;
244    bool valid = mCpuUsage.sampleAndEnable(wcNs);
245
246    // record sample for wall clock statistics
247    if (valid) {
248        mWcStats.sample(wcNs);
249    }
250
251    // get the current CPU number
252    int cpuNum = sched_getcpu();
253
254    // get the current CPU frequency in kHz
255    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
256
257    // check if either CPU number or frequency changed
258    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
259        mCpuNum = cpuNum;
260        mCpukHz = cpukHz;
261        // ignore sample for purposes of cycles
262        valid = false;
263    }
264
265    // if no change in CPU number or frequency, then record sample for cycle statistics
266    if (valid && mCpukHz > 0) {
267        double cycles = wcNs * cpukHz * 0.000001;
268        mHzStats.sample(cycles);
269    }
270
271    unsigned n = mWcStats.n();
272    // mCpuUsage.elapsed() is expensive, so don't call it every loop
273    if ((n & 127) == 1) {
274        long long elapsed = mCpuUsage.elapsed();
275        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
276            double perLoop = elapsed / (double) n;
277            double perLoop100 = perLoop * 0.01;
278            double perLoop1k = perLoop * 0.001;
279            double mean = mWcStats.mean();
280            double stddev = mWcStats.stddev();
281            double minimum = mWcStats.minimum();
282            double maximum = mWcStats.maximum();
283            double meanCycles = mHzStats.mean();
284            double stddevCycles = mHzStats.stddev();
285            double minCycles = mHzStats.minimum();
286            double maxCycles = mHzStats.maximum();
287            mCpuUsage.resetElapsed();
288            mWcStats.reset();
289            mHzStats.reset();
290            ALOGD("CPU usage for %s over past %.1f secs\n"
291                "  (%u mixer loops at %.1f mean ms per loop):\n"
292                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
293                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
294                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
295                    title.string(),
296                    elapsed * .000000001, n, perLoop * .000001,
297                    mean * .001,
298                    stddev * .001,
299                    minimum * .001,
300                    maximum * .001,
301                    mean / perLoop100,
302                    stddev / perLoop100,
303                    minimum / perLoop100,
304                    maximum / perLoop100,
305                    meanCycles / perLoop1k,
306                    stddevCycles / perLoop1k,
307                    minCycles / perLoop1k,
308                    maxCycles / perLoop1k);
309
310        }
311    }
312#endif
313};
314
315// ----------------------------------------------------------------------------
316//      ThreadBase
317// ----------------------------------------------------------------------------
318
319// static
320const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
321{
322    switch (type) {
323    case MIXER:
324        return "MIXER";
325    case DIRECT:
326        return "DIRECT";
327    case DUPLICATING:
328        return "DUPLICATING";
329    case RECORD:
330        return "RECORD";
331    case OFFLOAD:
332        return "OFFLOAD";
333    default:
334        return "unknown";
335    }
336}
337
338String8 devicesToString(audio_devices_t devices)
339{
340    static const struct mapping {
341        audio_devices_t mDevices;
342        const char *    mString;
343    } mappingsOut[] = {
344        AUDIO_DEVICE_OUT_EARPIECE,          "EARPIECE",
345        AUDIO_DEVICE_OUT_SPEAKER,           "SPEAKER",
346        AUDIO_DEVICE_OUT_WIRED_HEADSET,     "WIRED_HEADSET",
347        AUDIO_DEVICE_OUT_WIRED_HEADPHONE,   "WIRED_HEADPHONE",
348        AUDIO_DEVICE_OUT_TELEPHONY_TX,      "TELEPHONY_TX",
349        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
350    }, mappingsIn[] = {
351        AUDIO_DEVICE_IN_BUILTIN_MIC,        "BUILTIN_MIC",
352        AUDIO_DEVICE_IN_WIRED_HEADSET,      "WIRED_HEADSET",
353        AUDIO_DEVICE_IN_VOICE_CALL,         "VOICE_CALL",
354        AUDIO_DEVICE_IN_REMOTE_SUBMIX,      "REMOTE_SUBMIX",
355        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
356    };
357    String8 result;
358    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
359    const mapping *entry;
360    if (devices & AUDIO_DEVICE_BIT_IN) {
361        devices &= ~AUDIO_DEVICE_BIT_IN;
362        entry = mappingsIn;
363    } else {
364        entry = mappingsOut;
365    }
366    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
367        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
368        if (devices & entry->mDevices) {
369            if (!result.isEmpty()) {
370                result.append("|");
371            }
372            result.append(entry->mString);
373        }
374    }
375    if (devices & ~allDevices) {
376        if (!result.isEmpty()) {
377            result.append("|");
378        }
379        result.appendFormat("0x%X", devices & ~allDevices);
380    }
381    if (result.isEmpty()) {
382        result.append(entry->mString);
383    }
384    return result;
385}
386
387String8 inputFlagsToString(audio_input_flags_t flags)
388{
389    static const struct mapping {
390        audio_input_flags_t     mFlag;
391        const char *            mString;
392    } mappings[] = {
393        AUDIO_INPUT_FLAG_FAST,              "FAST",
394        AUDIO_INPUT_FLAG_HW_HOTWORD,        "HW_HOTWORD",
395        AUDIO_INPUT_FLAG_NONE,              "NONE",         // must be last
396    };
397    String8 result;
398    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
399    const mapping *entry;
400    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
401        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
402        if (flags & entry->mFlag) {
403            if (!result.isEmpty()) {
404                result.append("|");
405            }
406            result.append(entry->mString);
407        }
408    }
409    if (flags & ~allFlags) {
410        if (!result.isEmpty()) {
411            result.append("|");
412        }
413        result.appendFormat("0x%X", flags & ~allFlags);
414    }
415    if (result.isEmpty()) {
416        result.append(entry->mString);
417    }
418    return result;
419}
420
421String8 outputFlagsToString(audio_output_flags_t flags)
422{
423    static const struct mapping {
424        audio_output_flags_t    mFlag;
425        const char *            mString;
426    } mappings[] = {
427        AUDIO_OUTPUT_FLAG_DIRECT,           "DIRECT",
428        AUDIO_OUTPUT_FLAG_PRIMARY,          "PRIMARY",
429        AUDIO_OUTPUT_FLAG_FAST,             "FAST",
430        AUDIO_OUTPUT_FLAG_DEEP_BUFFER,      "DEEP_BUFFER",
431        AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
432        AUDIO_OUTPUT_FLAG_NON_BLOCKING,     "NON_BLOCKING",
433        AUDIO_OUTPUT_FLAG_HW_AV_SYNC,       "HW_AV_SYNC",
434        AUDIO_OUTPUT_FLAG_NONE,             "NONE",         // must be last
435    };
436    String8 result;
437    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
438    const mapping *entry;
439    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
440        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
441        if (flags & entry->mFlag) {
442            if (!result.isEmpty()) {
443                result.append("|");
444            }
445            result.append(entry->mString);
446        }
447    }
448    if (flags & ~allFlags) {
449        if (!result.isEmpty()) {
450            result.append("|");
451        }
452        result.appendFormat("0x%X", flags & ~allFlags);
453    }
454    if (result.isEmpty()) {
455        result.append(entry->mString);
456    }
457    return result;
458}
459
460const char *sourceToString(audio_source_t source)
461{
462    switch (source) {
463    case AUDIO_SOURCE_DEFAULT:              return "default";
464    case AUDIO_SOURCE_MIC:                  return "mic";
465    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
466    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
467    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
468    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
469    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
470    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
471    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
472    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
473    case AUDIO_SOURCE_HOTWORD:              return "hotword";
474    default:                                return "unknown";
475    }
476}
477
478AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
479        audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
480    :   Thread(false /*canCallJava*/),
481        mType(type),
482        mAudioFlinger(audioFlinger),
483        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
484        // are set by PlaybackThread::readOutputParameters_l() or
485        // RecordThread::readInputParameters_l()
486        //FIXME: mStandby should be true here. Is this some kind of hack?
487        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
488        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
489        // mName will be set by concrete (non-virtual) subclass
490        mDeathRecipient(new PMDeathRecipient(this))
491{
492}
493
494AudioFlinger::ThreadBase::~ThreadBase()
495{
496    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
497    mConfigEvents.clear();
498
499    // do not lock the mutex in destructor
500    releaseWakeLock_l();
501    if (mPowerManager != 0) {
502        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
503        binder->unlinkToDeath(mDeathRecipient);
504    }
505}
506
507status_t AudioFlinger::ThreadBase::readyToRun()
508{
509    status_t status = initCheck();
510    if (status == NO_ERROR) {
511        ALOGI("AudioFlinger's thread %p ready to run", this);
512    } else {
513        ALOGE("No working audio driver found.");
514    }
515    return status;
516}
517
518void AudioFlinger::ThreadBase::exit()
519{
520    ALOGV("ThreadBase::exit");
521    // do any cleanup required for exit to succeed
522    preExit();
523    {
524        // This lock prevents the following race in thread (uniprocessor for illustration):
525        //  if (!exitPending()) {
526        //      // context switch from here to exit()
527        //      // exit() calls requestExit(), what exitPending() observes
528        //      // exit() calls signal(), which is dropped since no waiters
529        //      // context switch back from exit() to here
530        //      mWaitWorkCV.wait(...);
531        //      // now thread is hung
532        //  }
533        AutoMutex lock(mLock);
534        requestExit();
535        mWaitWorkCV.broadcast();
536    }
537    // When Thread::requestExitAndWait is made virtual and this method is renamed to
538    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
539    requestExitAndWait();
540}
541
542status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
543{
544    status_t status;
545
546    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
547    Mutex::Autolock _l(mLock);
548
549    return sendSetParameterConfigEvent_l(keyValuePairs);
550}
551
552// sendConfigEvent_l() must be called with ThreadBase::mLock held
553// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
554status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
555{
556    status_t status = NO_ERROR;
557
558    mConfigEvents.add(event);
559    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
560    mWaitWorkCV.signal();
561    mLock.unlock();
562    {
563        Mutex::Autolock _l(event->mLock);
564        while (event->mWaitStatus) {
565            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
566                event->mStatus = TIMED_OUT;
567                event->mWaitStatus = false;
568            }
569        }
570        status = event->mStatus;
571    }
572    mLock.lock();
573    return status;
574}
575
576void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
577{
578    Mutex::Autolock _l(mLock);
579    sendIoConfigEvent_l(event, param);
580}
581
582// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
583void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
584{
585    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, param);
586    sendConfigEvent_l(configEvent);
587}
588
589// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
590void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
591{
592    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
593    sendConfigEvent_l(configEvent);
594}
595
596// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
597status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
598{
599    sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
600    return sendConfigEvent_l(configEvent);
601}
602
603status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
604                                                        const struct audio_patch *patch,
605                                                        audio_patch_handle_t *handle)
606{
607    Mutex::Autolock _l(mLock);
608    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
609    status_t status = sendConfigEvent_l(configEvent);
610    if (status == NO_ERROR) {
611        CreateAudioPatchConfigEventData *data =
612                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
613        *handle = data->mHandle;
614    }
615    return status;
616}
617
618status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
619                                                                const audio_patch_handle_t handle)
620{
621    Mutex::Autolock _l(mLock);
622    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
623    return sendConfigEvent_l(configEvent);
624}
625
626
627// post condition: mConfigEvents.isEmpty()
628void AudioFlinger::ThreadBase::processConfigEvents_l()
629{
630    bool configChanged = false;
631
632    while (!mConfigEvents.isEmpty()) {
633        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
634        sp<ConfigEvent> event = mConfigEvents[0];
635        mConfigEvents.removeAt(0);
636        switch (event->mType) {
637        case CFG_EVENT_PRIO: {
638            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
639            // FIXME Need to understand why this has to be done asynchronously
640            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
641                    true /*asynchronous*/);
642            if (err != 0) {
643                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
644                      data->mPrio, data->mPid, data->mTid, err);
645            }
646        } break;
647        case CFG_EVENT_IO: {
648            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
649            audioConfigChanged(data->mEvent, data->mParam);
650        } break;
651        case CFG_EVENT_SET_PARAMETER: {
652            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
653            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
654                configChanged = true;
655            }
656        } break;
657        case CFG_EVENT_CREATE_AUDIO_PATCH: {
658            CreateAudioPatchConfigEventData *data =
659                                            (CreateAudioPatchConfigEventData *)event->mData.get();
660            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
661        } break;
662        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
663            ReleaseAudioPatchConfigEventData *data =
664                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
665            event->mStatus = releaseAudioPatch_l(data->mHandle);
666        } break;
667        default:
668            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
669            break;
670        }
671        {
672            Mutex::Autolock _l(event->mLock);
673            if (event->mWaitStatus) {
674                event->mWaitStatus = false;
675                event->mCond.signal();
676            }
677        }
678        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
679    }
680
681    if (configChanged) {
682        cacheParameters_l();
683    }
684}
685
686String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
687    String8 s;
688    if (output) {
689        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
690        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
691        if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
692        if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
693        if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
694        if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
695        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
696        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
697        if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
698        if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
699        if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
700        if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
701        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
702        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
703        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
704        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
705        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
706        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
707        if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
708    } else {
709        if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
710        if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
711        if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
712        if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
713        if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
714        if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
715        if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
716        if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
717        if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
718        if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
719        if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
720        if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
721        if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
722        if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
723        if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
724    }
725    int len = s.length();
726    if (s.length() > 2) {
727        char *str = s.lockBuffer(len);
728        s.unlockBuffer(len - 2);
729    }
730    return s;
731}
732
733void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
734{
735    const size_t SIZE = 256;
736    char buffer[SIZE];
737    String8 result;
738
739    bool locked = AudioFlinger::dumpTryLock(mLock);
740    if (!locked) {
741        dprintf(fd, "thread %p may be deadlocked\n", this);
742    }
743
744    dprintf(fd, "  Thread name: %s\n", mThreadName);
745    dprintf(fd, "  I/O handle: %d\n", mId);
746    dprintf(fd, "  TID: %d\n", getTid());
747    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
748    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
749    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
750    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
751    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
752    dprintf(fd, "  Channel count: %u\n", mChannelCount);
753    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
754            channelMaskToString(mChannelMask, mType != RECORD).string());
755    dprintf(fd, "  Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
756    dprintf(fd, "  Frame size: %zu bytes\n", mFrameSize);
757    dprintf(fd, "  Pending config events:");
758    size_t numConfig = mConfigEvents.size();
759    if (numConfig) {
760        for (size_t i = 0; i < numConfig; i++) {
761            mConfigEvents[i]->dump(buffer, SIZE);
762            dprintf(fd, "\n    %s", buffer);
763        }
764        dprintf(fd, "\n");
765    } else {
766        dprintf(fd, " none\n");
767    }
768    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
769    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
770    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
771
772    if (locked) {
773        mLock.unlock();
774    }
775}
776
777void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
778{
779    const size_t SIZE = 256;
780    char buffer[SIZE];
781    String8 result;
782
783    size_t numEffectChains = mEffectChains.size();
784    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
785    write(fd, buffer, strlen(buffer));
786
787    for (size_t i = 0; i < numEffectChains; ++i) {
788        sp<EffectChain> chain = mEffectChains[i];
789        if (chain != 0) {
790            chain->dump(fd, args);
791        }
792    }
793}
794
795void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
796{
797    Mutex::Autolock _l(mLock);
798    acquireWakeLock_l(uid);
799}
800
801String16 AudioFlinger::ThreadBase::getWakeLockTag()
802{
803    switch (mType) {
804    case MIXER:
805        return String16("AudioMix");
806    case DIRECT:
807        return String16("AudioDirectOut");
808    case DUPLICATING:
809        return String16("AudioDup");
810    case RECORD:
811        return String16("AudioIn");
812    case OFFLOAD:
813        return String16("AudioOffload");
814    default:
815        ALOG_ASSERT(false);
816        return String16("AudioUnknown");
817    }
818}
819
820void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
821{
822    getPowerManager_l();
823    if (mPowerManager != 0) {
824        sp<IBinder> binder = new BBinder();
825        status_t status;
826        if (uid >= 0) {
827            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
828                    binder,
829                    getWakeLockTag(),
830                    String16("media"),
831                    uid,
832                    true /* FIXME force oneway contrary to .aidl */);
833        } else {
834            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
835                    binder,
836                    getWakeLockTag(),
837                    String16("media"),
838                    true /* FIXME force oneway contrary to .aidl */);
839        }
840        if (status == NO_ERROR) {
841            mWakeLockToken = binder;
842        }
843        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
844    }
845}
846
847void AudioFlinger::ThreadBase::releaseWakeLock()
848{
849    Mutex::Autolock _l(mLock);
850    releaseWakeLock_l();
851}
852
853void AudioFlinger::ThreadBase::releaseWakeLock_l()
854{
855    if (mWakeLockToken != 0) {
856        ALOGV("releaseWakeLock_l() %s", mThreadName);
857        if (mPowerManager != 0) {
858            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
859                    true /* FIXME force oneway contrary to .aidl */);
860        }
861        mWakeLockToken.clear();
862    }
863}
864
865void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
866    Mutex::Autolock _l(mLock);
867    updateWakeLockUids_l(uids);
868}
869
870void AudioFlinger::ThreadBase::getPowerManager_l() {
871
872    if (mPowerManager == 0) {
873        // use checkService() to avoid blocking if power service is not up yet
874        sp<IBinder> binder =
875            defaultServiceManager()->checkService(String16("power"));
876        if (binder == 0) {
877            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
878        } else {
879            mPowerManager = interface_cast<IPowerManager>(binder);
880            binder->linkToDeath(mDeathRecipient);
881        }
882    }
883}
884
885void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
886
887    getPowerManager_l();
888    if (mWakeLockToken == NULL) {
889        ALOGE("no wake lock to update!");
890        return;
891    }
892    if (mPowerManager != 0) {
893        sp<IBinder> binder = new BBinder();
894        status_t status;
895        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
896                    true /* FIXME force oneway contrary to .aidl */);
897        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
898    }
899}
900
901void AudioFlinger::ThreadBase::clearPowerManager()
902{
903    Mutex::Autolock _l(mLock);
904    releaseWakeLock_l();
905    mPowerManager.clear();
906}
907
908void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
909{
910    sp<ThreadBase> thread = mThread.promote();
911    if (thread != 0) {
912        thread->clearPowerManager();
913    }
914    ALOGW("power manager service died !!!");
915}
916
917void AudioFlinger::ThreadBase::setEffectSuspended(
918        const effect_uuid_t *type, bool suspend, int sessionId)
919{
920    Mutex::Autolock _l(mLock);
921    setEffectSuspended_l(type, suspend, sessionId);
922}
923
924void AudioFlinger::ThreadBase::setEffectSuspended_l(
925        const effect_uuid_t *type, bool suspend, int sessionId)
926{
927    sp<EffectChain> chain = getEffectChain_l(sessionId);
928    if (chain != 0) {
929        if (type != NULL) {
930            chain->setEffectSuspended_l(type, suspend);
931        } else {
932            chain->setEffectSuspendedAll_l(suspend);
933        }
934    }
935
936    updateSuspendedSessions_l(type, suspend, sessionId);
937}
938
939void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
940{
941    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
942    if (index < 0) {
943        return;
944    }
945
946    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
947            mSuspendedSessions.valueAt(index);
948
949    for (size_t i = 0; i < sessionEffects.size(); i++) {
950        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
951        for (int j = 0; j < desc->mRefCount; j++) {
952            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
953                chain->setEffectSuspendedAll_l(true);
954            } else {
955                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
956                    desc->mType.timeLow);
957                chain->setEffectSuspended_l(&desc->mType, true);
958            }
959        }
960    }
961}
962
963void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
964                                                         bool suspend,
965                                                         int sessionId)
966{
967    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
968
969    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
970
971    if (suspend) {
972        if (index >= 0) {
973            sessionEffects = mSuspendedSessions.valueAt(index);
974        } else {
975            mSuspendedSessions.add(sessionId, sessionEffects);
976        }
977    } else {
978        if (index < 0) {
979            return;
980        }
981        sessionEffects = mSuspendedSessions.valueAt(index);
982    }
983
984
985    int key = EffectChain::kKeyForSuspendAll;
986    if (type != NULL) {
987        key = type->timeLow;
988    }
989    index = sessionEffects.indexOfKey(key);
990
991    sp<SuspendedSessionDesc> desc;
992    if (suspend) {
993        if (index >= 0) {
994            desc = sessionEffects.valueAt(index);
995        } else {
996            desc = new SuspendedSessionDesc();
997            if (type != NULL) {
998                desc->mType = *type;
999            }
1000            sessionEffects.add(key, desc);
1001            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1002        }
1003        desc->mRefCount++;
1004    } else {
1005        if (index < 0) {
1006            return;
1007        }
1008        desc = sessionEffects.valueAt(index);
1009        if (--desc->mRefCount == 0) {
1010            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1011            sessionEffects.removeItemsAt(index);
1012            if (sessionEffects.isEmpty()) {
1013                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1014                                 sessionId);
1015                mSuspendedSessions.removeItem(sessionId);
1016            }
1017        }
1018    }
1019    if (!sessionEffects.isEmpty()) {
1020        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1021    }
1022}
1023
1024void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1025                                                            bool enabled,
1026                                                            int sessionId)
1027{
1028    Mutex::Autolock _l(mLock);
1029    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1030}
1031
1032void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1033                                                            bool enabled,
1034                                                            int sessionId)
1035{
1036    if (mType != RECORD) {
1037        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1038        // another session. This gives the priority to well behaved effect control panels
1039        // and applications not using global effects.
1040        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1041        // global effects
1042        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1043            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1044        }
1045    }
1046
1047    sp<EffectChain> chain = getEffectChain_l(sessionId);
1048    if (chain != 0) {
1049        chain->checkSuspendOnEffectEnabled(effect, enabled);
1050    }
1051}
1052
1053// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1054sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1055        const sp<AudioFlinger::Client>& client,
1056        const sp<IEffectClient>& effectClient,
1057        int32_t priority,
1058        int sessionId,
1059        effect_descriptor_t *desc,
1060        int *enabled,
1061        status_t *status)
1062{
1063    sp<EffectModule> effect;
1064    sp<EffectHandle> handle;
1065    status_t lStatus;
1066    sp<EffectChain> chain;
1067    bool chainCreated = false;
1068    bool effectCreated = false;
1069    bool effectRegistered = false;
1070
1071    lStatus = initCheck();
1072    if (lStatus != NO_ERROR) {
1073        ALOGW("createEffect_l() Audio driver not initialized.");
1074        goto Exit;
1075    }
1076
1077    // Reject any effect on Direct output threads for now, since the format of
1078    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1079    if (mType == DIRECT) {
1080        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1081                desc->name, mThreadName);
1082        lStatus = BAD_VALUE;
1083        goto Exit;
1084    }
1085
1086    // Reject any effect on mixer or duplicating multichannel sinks.
1087    // TODO: fix both format and multichannel issues with effects.
1088    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1089        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1090                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1091        lStatus = BAD_VALUE;
1092        goto Exit;
1093    }
1094
1095    // Allow global effects only on offloaded and mixer threads
1096    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1097        switch (mType) {
1098        case MIXER:
1099        case OFFLOAD:
1100            break;
1101        case DIRECT:
1102        case DUPLICATING:
1103        case RECORD:
1104        default:
1105            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1106                    desc->name, mThreadName);
1107            lStatus = BAD_VALUE;
1108            goto Exit;
1109        }
1110    }
1111
1112    // Only Pre processor effects are allowed on input threads and only on input threads
1113    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1114        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1115                desc->name, desc->flags, mType);
1116        lStatus = BAD_VALUE;
1117        goto Exit;
1118    }
1119
1120    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1121
1122    { // scope for mLock
1123        Mutex::Autolock _l(mLock);
1124
1125        // check for existing effect chain with the requested audio session
1126        chain = getEffectChain_l(sessionId);
1127        if (chain == 0) {
1128            // create a new chain for this session
1129            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1130            chain = new EffectChain(this, sessionId);
1131            addEffectChain_l(chain);
1132            chain->setStrategy(getStrategyForSession_l(sessionId));
1133            chainCreated = true;
1134        } else {
1135            effect = chain->getEffectFromDesc_l(desc);
1136        }
1137
1138        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1139
1140        if (effect == 0) {
1141            int id = mAudioFlinger->nextUniqueId();
1142            // Check CPU and memory usage
1143            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1144            if (lStatus != NO_ERROR) {
1145                goto Exit;
1146            }
1147            effectRegistered = true;
1148            // create a new effect module if none present in the chain
1149            effect = new EffectModule(this, chain, desc, id, sessionId);
1150            lStatus = effect->status();
1151            if (lStatus != NO_ERROR) {
1152                goto Exit;
1153            }
1154            effect->setOffloaded(mType == OFFLOAD, mId);
1155
1156            lStatus = chain->addEffect_l(effect);
1157            if (lStatus != NO_ERROR) {
1158                goto Exit;
1159            }
1160            effectCreated = true;
1161
1162            effect->setDevice(mOutDevice);
1163            effect->setDevice(mInDevice);
1164            effect->setMode(mAudioFlinger->getMode());
1165            effect->setAudioSource(mAudioSource);
1166        }
1167        // create effect handle and connect it to effect module
1168        handle = new EffectHandle(effect, client, effectClient, priority);
1169        lStatus = handle->initCheck();
1170        if (lStatus == OK) {
1171            lStatus = effect->addHandle(handle.get());
1172        }
1173        if (enabled != NULL) {
1174            *enabled = (int)effect->isEnabled();
1175        }
1176    }
1177
1178Exit:
1179    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1180        Mutex::Autolock _l(mLock);
1181        if (effectCreated) {
1182            chain->removeEffect_l(effect);
1183        }
1184        if (effectRegistered) {
1185            AudioSystem::unregisterEffect(effect->id());
1186        }
1187        if (chainCreated) {
1188            removeEffectChain_l(chain);
1189        }
1190        handle.clear();
1191    }
1192
1193    *status = lStatus;
1194    return handle;
1195}
1196
1197sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1198{
1199    Mutex::Autolock _l(mLock);
1200    return getEffect_l(sessionId, effectId);
1201}
1202
1203sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1204{
1205    sp<EffectChain> chain = getEffectChain_l(sessionId);
1206    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1207}
1208
1209// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1210// PlaybackThread::mLock held
1211status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1212{
1213    // check for existing effect chain with the requested audio session
1214    int sessionId = effect->sessionId();
1215    sp<EffectChain> chain = getEffectChain_l(sessionId);
1216    bool chainCreated = false;
1217
1218    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1219             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1220                    this, effect->desc().name, effect->desc().flags);
1221
1222    if (chain == 0) {
1223        // create a new chain for this session
1224        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1225        chain = new EffectChain(this, sessionId);
1226        addEffectChain_l(chain);
1227        chain->setStrategy(getStrategyForSession_l(sessionId));
1228        chainCreated = true;
1229    }
1230    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1231
1232    if (chain->getEffectFromId_l(effect->id()) != 0) {
1233        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1234                this, effect->desc().name, chain.get());
1235        return BAD_VALUE;
1236    }
1237
1238    effect->setOffloaded(mType == OFFLOAD, mId);
1239
1240    status_t status = chain->addEffect_l(effect);
1241    if (status != NO_ERROR) {
1242        if (chainCreated) {
1243            removeEffectChain_l(chain);
1244        }
1245        return status;
1246    }
1247
1248    effect->setDevice(mOutDevice);
1249    effect->setDevice(mInDevice);
1250    effect->setMode(mAudioFlinger->getMode());
1251    effect->setAudioSource(mAudioSource);
1252    return NO_ERROR;
1253}
1254
1255void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1256
1257    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1258    effect_descriptor_t desc = effect->desc();
1259    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1260        detachAuxEffect_l(effect->id());
1261    }
1262
1263    sp<EffectChain> chain = effect->chain().promote();
1264    if (chain != 0) {
1265        // remove effect chain if removing last effect
1266        if (chain->removeEffect_l(effect) == 0) {
1267            removeEffectChain_l(chain);
1268        }
1269    } else {
1270        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1271    }
1272}
1273
1274void AudioFlinger::ThreadBase::lockEffectChains_l(
1275        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1276{
1277    effectChains = mEffectChains;
1278    for (size_t i = 0; i < mEffectChains.size(); i++) {
1279        mEffectChains[i]->lock();
1280    }
1281}
1282
1283void AudioFlinger::ThreadBase::unlockEffectChains(
1284        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1285{
1286    for (size_t i = 0; i < effectChains.size(); i++) {
1287        effectChains[i]->unlock();
1288    }
1289}
1290
1291sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1292{
1293    Mutex::Autolock _l(mLock);
1294    return getEffectChain_l(sessionId);
1295}
1296
1297sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1298{
1299    size_t size = mEffectChains.size();
1300    for (size_t i = 0; i < size; i++) {
1301        if (mEffectChains[i]->sessionId() == sessionId) {
1302            return mEffectChains[i];
1303        }
1304    }
1305    return 0;
1306}
1307
1308void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1309{
1310    Mutex::Autolock _l(mLock);
1311    size_t size = mEffectChains.size();
1312    for (size_t i = 0; i < size; i++) {
1313        mEffectChains[i]->setMode_l(mode);
1314    }
1315}
1316
1317void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1318{
1319    config->type = AUDIO_PORT_TYPE_MIX;
1320    config->ext.mix.handle = mId;
1321    config->sample_rate = mSampleRate;
1322    config->format = mFormat;
1323    config->channel_mask = mChannelMask;
1324    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1325                            AUDIO_PORT_CONFIG_FORMAT;
1326}
1327
1328
1329// ----------------------------------------------------------------------------
1330//      Playback
1331// ----------------------------------------------------------------------------
1332
1333AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1334                                             AudioStreamOut* output,
1335                                             audio_io_handle_t id,
1336                                             audio_devices_t device,
1337                                             type_t type)
1338    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1339        mNormalFrameCount(0), mSinkBuffer(NULL),
1340        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1341        mMixerBuffer(NULL),
1342        mMixerBufferSize(0),
1343        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1344        mMixerBufferValid(false),
1345        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1346        mEffectBuffer(NULL),
1347        mEffectBufferSize(0),
1348        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1349        mEffectBufferValid(false),
1350        mSuspended(0), mBytesWritten(0),
1351        mActiveTracksGeneration(0),
1352        // mStreamTypes[] initialized in constructor body
1353        mOutput(output),
1354        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1355        mMixerStatus(MIXER_IDLE),
1356        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1357        standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1358        mBytesRemaining(0),
1359        mCurrentWriteLength(0),
1360        mUseAsyncWrite(false),
1361        mWriteAckSequence(0),
1362        mDrainSequence(0),
1363        mSignalPending(false),
1364        mScreenState(AudioFlinger::mScreenState),
1365        // index 0 is reserved for normal mixer's submix
1366        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1367        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1368        // mLatchD, mLatchQ,
1369        mLatchDValid(false), mLatchQValid(false)
1370{
1371    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1372    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1373
1374    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1375    // it would be safer to explicitly pass initial masterVolume/masterMute as
1376    // parameter.
1377    //
1378    // If the HAL we are using has support for master volume or master mute,
1379    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1380    // and the mute set to false).
1381    mMasterVolume = audioFlinger->masterVolume_l();
1382    mMasterMute = audioFlinger->masterMute_l();
1383    if (mOutput && mOutput->audioHwDev) {
1384        if (mOutput->audioHwDev->canSetMasterVolume()) {
1385            mMasterVolume = 1.0;
1386        }
1387
1388        if (mOutput->audioHwDev->canSetMasterMute()) {
1389            mMasterMute = false;
1390        }
1391    }
1392
1393    readOutputParameters_l();
1394
1395    // ++ operator does not compile
1396    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1397            stream = (audio_stream_type_t) (stream + 1)) {
1398        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1399        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1400    }
1401}
1402
1403AudioFlinger::PlaybackThread::~PlaybackThread()
1404{
1405    mAudioFlinger->unregisterWriter(mNBLogWriter);
1406    free(mSinkBuffer);
1407    free(mMixerBuffer);
1408    free(mEffectBuffer);
1409}
1410
1411void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1412{
1413    dumpInternals(fd, args);
1414    dumpTracks(fd, args);
1415    dumpEffectChains(fd, args);
1416}
1417
1418void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1419{
1420    const size_t SIZE = 256;
1421    char buffer[SIZE];
1422    String8 result;
1423
1424    result.appendFormat("  Stream volumes in dB: ");
1425    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1426        const stream_type_t *st = &mStreamTypes[i];
1427        if (i > 0) {
1428            result.appendFormat(", ");
1429        }
1430        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1431        if (st->mute) {
1432            result.append("M");
1433        }
1434    }
1435    result.append("\n");
1436    write(fd, result.string(), result.length());
1437    result.clear();
1438
1439    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1440    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1441    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1442            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1443
1444    size_t numtracks = mTracks.size();
1445    size_t numactive = mActiveTracks.size();
1446    dprintf(fd, "  %d Tracks", numtracks);
1447    size_t numactiveseen = 0;
1448    if (numtracks) {
1449        dprintf(fd, " of which %d are active\n", numactive);
1450        Track::appendDumpHeader(result);
1451        for (size_t i = 0; i < numtracks; ++i) {
1452            sp<Track> track = mTracks[i];
1453            if (track != 0) {
1454                bool active = mActiveTracks.indexOf(track) >= 0;
1455                if (active) {
1456                    numactiveseen++;
1457                }
1458                track->dump(buffer, SIZE, active);
1459                result.append(buffer);
1460            }
1461        }
1462    } else {
1463        result.append("\n");
1464    }
1465    if (numactiveseen != numactive) {
1466        // some tracks in the active list were not in the tracks list
1467        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1468                " not in the track list\n");
1469        result.append(buffer);
1470        Track::appendDumpHeader(result);
1471        for (size_t i = 0; i < numactive; ++i) {
1472            sp<Track> track = mActiveTracks[i].promote();
1473            if (track != 0 && mTracks.indexOf(track) < 0) {
1474                track->dump(buffer, SIZE, true);
1475                result.append(buffer);
1476            }
1477        }
1478    }
1479
1480    write(fd, result.string(), result.size());
1481}
1482
1483void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1484{
1485    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1486
1487    dumpBase(fd, args);
1488
1489    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1490    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1491    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1492    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1493    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1494    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1495    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1496    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1497    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1498    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1499    AudioStreamOut *output = mOutput;
1500    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1501    String8 flagsAsString = outputFlagsToString(flags);
1502    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1503}
1504
1505// Thread virtuals
1506
1507void AudioFlinger::PlaybackThread::onFirstRef()
1508{
1509    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1510}
1511
1512// ThreadBase virtuals
1513void AudioFlinger::PlaybackThread::preExit()
1514{
1515    ALOGV("  preExit()");
1516    // FIXME this is using hard-coded strings but in the future, this functionality will be
1517    //       converted to use audio HAL extensions required to support tunneling
1518    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1519}
1520
1521// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1522sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1523        const sp<AudioFlinger::Client>& client,
1524        audio_stream_type_t streamType,
1525        uint32_t sampleRate,
1526        audio_format_t format,
1527        audio_channel_mask_t channelMask,
1528        size_t *pFrameCount,
1529        const sp<IMemory>& sharedBuffer,
1530        int sessionId,
1531        IAudioFlinger::track_flags_t *flags,
1532        pid_t tid,
1533        int uid,
1534        status_t *status)
1535{
1536    size_t frameCount = *pFrameCount;
1537    sp<Track> track;
1538    status_t lStatus;
1539
1540    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1541
1542    // client expresses a preference for FAST, but we get the final say
1543    if (*flags & IAudioFlinger::TRACK_FAST) {
1544      if (
1545            // not timed
1546            (!isTimed) &&
1547            // either of these use cases:
1548            (
1549              // use case 1: shared buffer with any frame count
1550              (
1551                (sharedBuffer != 0)
1552              ) ||
1553              // use case 2: frame count is default or at least as large as HAL
1554              (
1555                // we formerly checked for a callback handler (non-0 tid),
1556                // but that is no longer required for TRANSFER_OBTAIN mode
1557                ((frameCount == 0) ||
1558                (frameCount >= mFrameCount))
1559              )
1560            ) &&
1561            // PCM data
1562            audio_is_linear_pcm(format) &&
1563            // identical channel mask to sink, or mono in and stereo sink
1564            (channelMask == mChannelMask ||
1565                    (channelMask == AUDIO_CHANNEL_OUT_MONO &&
1566                            mChannelMask == AUDIO_CHANNEL_OUT_STEREO)) &&
1567            // hardware sample rate
1568            (sampleRate == mSampleRate) &&
1569            // normal mixer has an associated fast mixer
1570            hasFastMixer() &&
1571            // there are sufficient fast track slots available
1572            (mFastTrackAvailMask != 0)
1573            // FIXME test that MixerThread for this fast track has a capable output HAL
1574            // FIXME add a permission test also?
1575        ) {
1576        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1577        if (frameCount == 0) {
1578            // read the fast track multiplier property the first time it is needed
1579            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1580            if (ok != 0) {
1581                ALOGE("%s pthread_once failed: %d", __func__, ok);
1582            }
1583            frameCount = mFrameCount * sFastTrackMultiplier;
1584        }
1585        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1586                frameCount, mFrameCount);
1587      } else {
1588        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1589                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1590                "sampleRate=%u mSampleRate=%u "
1591                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1592                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1593                audio_is_linear_pcm(format),
1594                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1595        *flags &= ~IAudioFlinger::TRACK_FAST;
1596      }
1597    }
1598    // For normal PCM streaming tracks, update minimum frame count.
1599    // For compatibility with AudioTrack calculation, buffer depth is forced
1600    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1601    // This is probably too conservative, but legacy application code may depend on it.
1602    // If you change this calculation, also review the start threshold which is related.
1603    if (!(*flags & IAudioFlinger::TRACK_FAST)
1604            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1605        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1606        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1607        if (minBufCount < 2) {
1608            minBufCount = 2;
1609        }
1610        size_t minFrameCount =
1611                minBufCount * sourceFramesNeeded(sampleRate, mNormalFrameCount, mSampleRate);
1612        if (frameCount < minFrameCount) { // including frameCount == 0
1613            frameCount = minFrameCount;
1614        }
1615    }
1616    *pFrameCount = frameCount;
1617
1618    switch (mType) {
1619
1620    case DIRECT:
1621        if (audio_is_linear_pcm(format)) {
1622            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1623                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1624                        "for output %p with format %#x",
1625                        sampleRate, format, channelMask, mOutput, mFormat);
1626                lStatus = BAD_VALUE;
1627                goto Exit;
1628            }
1629        }
1630        break;
1631
1632    case OFFLOAD:
1633        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1634            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1635                    "for output %p with format %#x",
1636                    sampleRate, format, channelMask, mOutput, mFormat);
1637            lStatus = BAD_VALUE;
1638            goto Exit;
1639        }
1640        break;
1641
1642    default:
1643        if (!audio_is_linear_pcm(format)) {
1644                ALOGE("createTrack_l() Bad parameter: format %#x \""
1645                        "for output %p with format %#x",
1646                        format, mOutput, mFormat);
1647                lStatus = BAD_VALUE;
1648                goto Exit;
1649        }
1650        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1651            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1652            lStatus = BAD_VALUE;
1653            goto Exit;
1654        }
1655        break;
1656
1657    }
1658
1659    lStatus = initCheck();
1660    if (lStatus != NO_ERROR) {
1661        ALOGE("createTrack_l() audio driver not initialized");
1662        goto Exit;
1663    }
1664
1665    { // scope for mLock
1666        Mutex::Autolock _l(mLock);
1667
1668        // all tracks in same audio session must share the same routing strategy otherwise
1669        // conflicts will happen when tracks are moved from one output to another by audio policy
1670        // manager
1671        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1672        for (size_t i = 0; i < mTracks.size(); ++i) {
1673            sp<Track> t = mTracks[i];
1674            if (t != 0 && t->isExternalTrack()) {
1675                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1676                if (sessionId == t->sessionId() && strategy != actual) {
1677                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1678                            strategy, actual);
1679                    lStatus = BAD_VALUE;
1680                    goto Exit;
1681                }
1682            }
1683        }
1684
1685        if (!isTimed) {
1686            track = new Track(this, client, streamType, sampleRate, format,
1687                              channelMask, frameCount, NULL, sharedBuffer,
1688                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1689        } else {
1690            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1691                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1692        }
1693
1694        // new Track always returns non-NULL,
1695        // but TimedTrack::create() is a factory that could fail by returning NULL
1696        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1697        if (lStatus != NO_ERROR) {
1698            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1699            // track must be cleared from the caller as the caller has the AF lock
1700            goto Exit;
1701        }
1702        mTracks.add(track);
1703
1704        sp<EffectChain> chain = getEffectChain_l(sessionId);
1705        if (chain != 0) {
1706            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1707            track->setMainBuffer(chain->inBuffer());
1708            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1709            chain->incTrackCnt();
1710        }
1711
1712        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1713            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1714            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1715            // so ask activity manager to do this on our behalf
1716            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1717        }
1718    }
1719
1720    lStatus = NO_ERROR;
1721
1722Exit:
1723    *status = lStatus;
1724    return track;
1725}
1726
1727uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1728{
1729    return latency;
1730}
1731
1732uint32_t AudioFlinger::PlaybackThread::latency() const
1733{
1734    Mutex::Autolock _l(mLock);
1735    return latency_l();
1736}
1737uint32_t AudioFlinger::PlaybackThread::latency_l() const
1738{
1739    if (initCheck() == NO_ERROR) {
1740        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1741    } else {
1742        return 0;
1743    }
1744}
1745
1746void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1747{
1748    Mutex::Autolock _l(mLock);
1749    // Don't apply master volume in SW if our HAL can do it for us.
1750    if (mOutput && mOutput->audioHwDev &&
1751        mOutput->audioHwDev->canSetMasterVolume()) {
1752        mMasterVolume = 1.0;
1753    } else {
1754        mMasterVolume = value;
1755    }
1756}
1757
1758void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1759{
1760    Mutex::Autolock _l(mLock);
1761    // Don't apply master mute in SW if our HAL can do it for us.
1762    if (mOutput && mOutput->audioHwDev &&
1763        mOutput->audioHwDev->canSetMasterMute()) {
1764        mMasterMute = false;
1765    } else {
1766        mMasterMute = muted;
1767    }
1768}
1769
1770void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1771{
1772    Mutex::Autolock _l(mLock);
1773    mStreamTypes[stream].volume = value;
1774    broadcast_l();
1775}
1776
1777void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1778{
1779    Mutex::Autolock _l(mLock);
1780    mStreamTypes[stream].mute = muted;
1781    broadcast_l();
1782}
1783
1784float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1785{
1786    Mutex::Autolock _l(mLock);
1787    return mStreamTypes[stream].volume;
1788}
1789
1790// addTrack_l() must be called with ThreadBase::mLock held
1791status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1792{
1793    status_t status = ALREADY_EXISTS;
1794
1795    // set retry count for buffer fill
1796    track->mRetryCount = kMaxTrackStartupRetries;
1797    if (mActiveTracks.indexOf(track) < 0) {
1798        // the track is newly added, make sure it fills up all its
1799        // buffers before playing. This is to ensure the client will
1800        // effectively get the latency it requested.
1801        if (track->isExternalTrack()) {
1802            TrackBase::track_state state = track->mState;
1803            mLock.unlock();
1804            status = AudioSystem::startOutput(mId, track->streamType(),
1805                                              (audio_session_t)track->sessionId());
1806            mLock.lock();
1807            // abort track was stopped/paused while we released the lock
1808            if (state != track->mState) {
1809                if (status == NO_ERROR) {
1810                    mLock.unlock();
1811                    AudioSystem::stopOutput(mId, track->streamType(),
1812                                            (audio_session_t)track->sessionId());
1813                    mLock.lock();
1814                }
1815                return INVALID_OPERATION;
1816            }
1817            // abort if start is rejected by audio policy manager
1818            if (status != NO_ERROR) {
1819                return PERMISSION_DENIED;
1820            }
1821#ifdef ADD_BATTERY_DATA
1822            // to track the speaker usage
1823            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1824#endif
1825        }
1826
1827        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1828        track->mResetDone = false;
1829        track->mPresentationCompleteFrames = 0;
1830        mActiveTracks.add(track);
1831        mWakeLockUids.add(track->uid());
1832        mActiveTracksGeneration++;
1833        mLatestActiveTrack = track;
1834        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1835        if (chain != 0) {
1836            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1837                    track->sessionId());
1838            chain->incActiveTrackCnt();
1839        }
1840
1841        status = NO_ERROR;
1842    }
1843
1844    onAddNewTrack_l();
1845    return status;
1846}
1847
1848bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1849{
1850    track->terminate();
1851    // active tracks are removed by threadLoop()
1852    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1853    track->mState = TrackBase::STOPPED;
1854    if (!trackActive) {
1855        removeTrack_l(track);
1856    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1857        track->mState = TrackBase::STOPPING_1;
1858    }
1859
1860    return trackActive;
1861}
1862
1863void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1864{
1865    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1866    mTracks.remove(track);
1867    deleteTrackName_l(track->name());
1868    // redundant as track is about to be destroyed, for dumpsys only
1869    track->mName = -1;
1870    if (track->isFastTrack()) {
1871        int index = track->mFastIndex;
1872        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1873        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1874        mFastTrackAvailMask |= 1 << index;
1875        // redundant as track is about to be destroyed, for dumpsys only
1876        track->mFastIndex = -1;
1877    }
1878    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1879    if (chain != 0) {
1880        chain->decTrackCnt();
1881    }
1882}
1883
1884void AudioFlinger::PlaybackThread::broadcast_l()
1885{
1886    // Thread could be blocked waiting for async
1887    // so signal it to handle state changes immediately
1888    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1889    // be lost so we also flag to prevent it blocking on mWaitWorkCV
1890    mSignalPending = true;
1891    mWaitWorkCV.broadcast();
1892}
1893
1894String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1895{
1896    Mutex::Autolock _l(mLock);
1897    if (initCheck() != NO_ERROR) {
1898        return String8();
1899    }
1900
1901    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1902    const String8 out_s8(s);
1903    free(s);
1904    return out_s8;
1905}
1906
1907void AudioFlinger::PlaybackThread::audioConfigChanged(int event, int param) {
1908    AudioSystem::OutputDescriptor desc;
1909    void *param2 = NULL;
1910
1911    ALOGV("PlaybackThread::audioConfigChanged, thread %p, event %d, param %d", this, event,
1912            param);
1913
1914    switch (event) {
1915    case AudioSystem::OUTPUT_OPENED:
1916    case AudioSystem::OUTPUT_CONFIG_CHANGED:
1917        desc.channelMask = mChannelMask;
1918        desc.samplingRate = mSampleRate;
1919        desc.format = mFormat;
1920        desc.frameCount = mNormalFrameCount; // FIXME see
1921                                             // AudioFlinger::frameCount(audio_io_handle_t)
1922        desc.latency = latency_l();
1923        param2 = &desc;
1924        break;
1925
1926    case AudioSystem::STREAM_CONFIG_CHANGED:
1927        param2 = &param;
1928    case AudioSystem::OUTPUT_CLOSED:
1929    default:
1930        break;
1931    }
1932    mAudioFlinger->audioConfigChanged(event, mId, param2);
1933}
1934
1935void AudioFlinger::PlaybackThread::writeCallback()
1936{
1937    ALOG_ASSERT(mCallbackThread != 0);
1938    mCallbackThread->resetWriteBlocked();
1939}
1940
1941void AudioFlinger::PlaybackThread::drainCallback()
1942{
1943    ALOG_ASSERT(mCallbackThread != 0);
1944    mCallbackThread->resetDraining();
1945}
1946
1947void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1948{
1949    Mutex::Autolock _l(mLock);
1950    // reject out of sequence requests
1951    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1952        mWriteAckSequence &= ~1;
1953        mWaitWorkCV.signal();
1954    }
1955}
1956
1957void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1958{
1959    Mutex::Autolock _l(mLock);
1960    // reject out of sequence requests
1961    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1962        mDrainSequence &= ~1;
1963        mWaitWorkCV.signal();
1964    }
1965}
1966
1967// static
1968int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1969                                                void *param __unused,
1970                                                void *cookie)
1971{
1972    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
1973    ALOGV("asyncCallback() event %d", event);
1974    switch (event) {
1975    case STREAM_CBK_EVENT_WRITE_READY:
1976        me->writeCallback();
1977        break;
1978    case STREAM_CBK_EVENT_DRAIN_READY:
1979        me->drainCallback();
1980        break;
1981    default:
1982        ALOGW("asyncCallback() unknown event %d", event);
1983        break;
1984    }
1985    return 0;
1986}
1987
1988void AudioFlinger::PlaybackThread::readOutputParameters_l()
1989{
1990    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
1991    mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
1992    mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
1993    if (!audio_is_output_channel(mChannelMask)) {
1994        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
1995    }
1996    if ((mType == MIXER || mType == DUPLICATING)
1997            && !isValidPcmSinkChannelMask(mChannelMask)) {
1998        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
1999                mChannelMask);
2000    }
2001    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2002    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2003    mFormat = mHALFormat;
2004    if (!audio_is_valid_format(mFormat)) {
2005        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2006    }
2007    if ((mType == MIXER || mType == DUPLICATING)
2008            && !isValidPcmSinkFormat(mFormat)) {
2009        LOG_FATAL("HAL format %#x not supported for mixed output",
2010                mFormat);
2011    }
2012    mFrameSize = mOutput->getFrameSize();
2013    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2014    mFrameCount = mBufferSize / mFrameSize;
2015    if (mFrameCount & 15) {
2016        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2017                mFrameCount);
2018    }
2019
2020    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2021            (mOutput->stream->set_callback != NULL)) {
2022        if (mOutput->stream->set_callback(mOutput->stream,
2023                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2024            mUseAsyncWrite = true;
2025            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2026        }
2027    }
2028
2029    mHwSupportsPause = false;
2030    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2031        if (mOutput->stream->pause != NULL) {
2032            if (mOutput->stream->resume != NULL) {
2033                mHwSupportsPause = true;
2034            } else {
2035                ALOGW("direct output implements pause but not resume");
2036            }
2037        } else if (mOutput->stream->resume != NULL) {
2038            ALOGW("direct output implements resume but not pause");
2039        }
2040    }
2041
2042    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2043        // For best precision, we use float instead of the associated output
2044        // device format (typically PCM 16 bit).
2045
2046        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2047        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2048        mBufferSize = mFrameSize * mFrameCount;
2049
2050        // TODO: We currently use the associated output device channel mask and sample rate.
2051        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2052        // (if a valid mask) to avoid premature downmix.
2053        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2054        // instead of the output device sample rate to avoid loss of high frequency information.
2055        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2056    }
2057
2058    // Calculate size of normal sink buffer relative to the HAL output buffer size
2059    double multiplier = 1.0;
2060    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2061            kUseFastMixer == FastMixer_Dynamic)) {
2062        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2063        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2064        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2065        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2066        maxNormalFrameCount = maxNormalFrameCount & ~15;
2067        if (maxNormalFrameCount < minNormalFrameCount) {
2068            maxNormalFrameCount = minNormalFrameCount;
2069        }
2070        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2071        if (multiplier <= 1.0) {
2072            multiplier = 1.0;
2073        } else if (multiplier <= 2.0) {
2074            if (2 * mFrameCount <= maxNormalFrameCount) {
2075                multiplier = 2.0;
2076            } else {
2077                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2078            }
2079        } else {
2080            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2081            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2082            // track, but we sometimes have to do this to satisfy the maximum frame count
2083            // constraint)
2084            // FIXME this rounding up should not be done if no HAL SRC
2085            uint32_t truncMult = (uint32_t) multiplier;
2086            if ((truncMult & 1)) {
2087                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2088                    ++truncMult;
2089                }
2090            }
2091            multiplier = (double) truncMult;
2092        }
2093    }
2094    mNormalFrameCount = multiplier * mFrameCount;
2095    // round up to nearest 16 frames to satisfy AudioMixer
2096    if (mType == MIXER || mType == DUPLICATING) {
2097        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2098    }
2099    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2100            mNormalFrameCount);
2101
2102    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2103    // Originally this was int16_t[] array, need to remove legacy implications.
2104    free(mSinkBuffer);
2105    mSinkBuffer = NULL;
2106    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2107    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2108    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2109    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2110
2111    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2112    // drives the output.
2113    free(mMixerBuffer);
2114    mMixerBuffer = NULL;
2115    if (mMixerBufferEnabled) {
2116        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2117        mMixerBufferSize = mNormalFrameCount * mChannelCount
2118                * audio_bytes_per_sample(mMixerBufferFormat);
2119        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2120    }
2121    free(mEffectBuffer);
2122    mEffectBuffer = NULL;
2123    if (mEffectBufferEnabled) {
2124        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2125        mEffectBufferSize = mNormalFrameCount * mChannelCount
2126                * audio_bytes_per_sample(mEffectBufferFormat);
2127        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2128    }
2129
2130    // force reconfiguration of effect chains and engines to take new buffer size and audio
2131    // parameters into account
2132    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2133    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2134    // matter.
2135    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2136    Vector< sp<EffectChain> > effectChains = mEffectChains;
2137    for (size_t i = 0; i < effectChains.size(); i ++) {
2138        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2139    }
2140}
2141
2142
2143status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2144{
2145    if (halFrames == NULL || dspFrames == NULL) {
2146        return BAD_VALUE;
2147    }
2148    Mutex::Autolock _l(mLock);
2149    if (initCheck() != NO_ERROR) {
2150        return INVALID_OPERATION;
2151    }
2152    size_t framesWritten = mBytesWritten / mFrameSize;
2153    *halFrames = framesWritten;
2154
2155    if (isSuspended()) {
2156        // return an estimation of rendered frames when the output is suspended
2157        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2158        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2159        return NO_ERROR;
2160    } else {
2161        status_t status;
2162        uint32_t frames;
2163        status = mOutput->getRenderPosition(&frames);
2164        *dspFrames = (size_t)frames;
2165        return status;
2166    }
2167}
2168
2169uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2170{
2171    Mutex::Autolock _l(mLock);
2172    uint32_t result = 0;
2173    if (getEffectChain_l(sessionId) != 0) {
2174        result = EFFECT_SESSION;
2175    }
2176
2177    for (size_t i = 0; i < mTracks.size(); ++i) {
2178        sp<Track> track = mTracks[i];
2179        if (sessionId == track->sessionId() && !track->isInvalid()) {
2180            result |= TRACK_SESSION;
2181            break;
2182        }
2183    }
2184
2185    return result;
2186}
2187
2188uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2189{
2190    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2191    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2192    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2193        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2194    }
2195    for (size_t i = 0; i < mTracks.size(); i++) {
2196        sp<Track> track = mTracks[i];
2197        if (sessionId == track->sessionId() && !track->isInvalid()) {
2198            return AudioSystem::getStrategyForStream(track->streamType());
2199        }
2200    }
2201    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2202}
2203
2204
2205AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2206{
2207    Mutex::Autolock _l(mLock);
2208    return mOutput;
2209}
2210
2211AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2212{
2213    Mutex::Autolock _l(mLock);
2214    AudioStreamOut *output = mOutput;
2215    mOutput = NULL;
2216    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2217    //       must push a NULL and wait for ack
2218    mOutputSink.clear();
2219    mPipeSink.clear();
2220    mNormalSink.clear();
2221    return output;
2222}
2223
2224// this method must always be called either with ThreadBase mLock held or inside the thread loop
2225audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2226{
2227    if (mOutput == NULL) {
2228        return NULL;
2229    }
2230    return &mOutput->stream->common;
2231}
2232
2233uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2234{
2235    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2236}
2237
2238status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2239{
2240    if (!isValidSyncEvent(event)) {
2241        return BAD_VALUE;
2242    }
2243
2244    Mutex::Autolock _l(mLock);
2245
2246    for (size_t i = 0; i < mTracks.size(); ++i) {
2247        sp<Track> track = mTracks[i];
2248        if (event->triggerSession() == track->sessionId()) {
2249            (void) track->setSyncEvent(event);
2250            return NO_ERROR;
2251        }
2252    }
2253
2254    return NAME_NOT_FOUND;
2255}
2256
2257bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2258{
2259    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2260}
2261
2262void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2263        const Vector< sp<Track> >& tracksToRemove)
2264{
2265    size_t count = tracksToRemove.size();
2266    if (count > 0) {
2267        for (size_t i = 0 ; i < count ; i++) {
2268            const sp<Track>& track = tracksToRemove.itemAt(i);
2269            if (track->isExternalTrack()) {
2270                AudioSystem::stopOutput(mId, track->streamType(),
2271                                        (audio_session_t)track->sessionId());
2272#ifdef ADD_BATTERY_DATA
2273                // to track the speaker usage
2274                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2275#endif
2276                if (track->isTerminated()) {
2277                    AudioSystem::releaseOutput(mId, track->streamType(),
2278                                               (audio_session_t)track->sessionId());
2279                }
2280            }
2281        }
2282    }
2283}
2284
2285void AudioFlinger::PlaybackThread::checkSilentMode_l()
2286{
2287    if (!mMasterMute) {
2288        char value[PROPERTY_VALUE_MAX];
2289        if (property_get("ro.audio.silent", value, "0") > 0) {
2290            char *endptr;
2291            unsigned long ul = strtoul(value, &endptr, 0);
2292            if (*endptr == '\0' && ul != 0) {
2293                ALOGD("Silence is golden");
2294                // The setprop command will not allow a property to be changed after
2295                // the first time it is set, so we don't have to worry about un-muting.
2296                setMasterMute_l(true);
2297            }
2298        }
2299    }
2300}
2301
2302// shared by MIXER and DIRECT, overridden by DUPLICATING
2303ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2304{
2305    // FIXME rewrite to reduce number of system calls
2306    mLastWriteTime = systemTime();
2307    mInWrite = true;
2308    ssize_t bytesWritten;
2309    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2310
2311    // If an NBAIO sink is present, use it to write the normal mixer's submix
2312    if (mNormalSink != 0) {
2313
2314        const size_t count = mBytesRemaining / mFrameSize;
2315
2316        ATRACE_BEGIN("write");
2317        // update the setpoint when AudioFlinger::mScreenState changes
2318        uint32_t screenState = AudioFlinger::mScreenState;
2319        if (screenState != mScreenState) {
2320            mScreenState = screenState;
2321            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2322            if (pipe != NULL) {
2323                pipe->setAvgFrames((mScreenState & 1) ?
2324                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2325            }
2326        }
2327        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2328        ATRACE_END();
2329        if (framesWritten > 0) {
2330            bytesWritten = framesWritten * mFrameSize;
2331        } else {
2332            bytesWritten = framesWritten;
2333        }
2334        mLatchDValid = false;
2335        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2336        if (status == NO_ERROR) {
2337            size_t totalFramesWritten = mNormalSink->framesWritten();
2338            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2339                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2340                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2341                mLatchDValid = true;
2342            }
2343        }
2344    // otherwise use the HAL / AudioStreamOut directly
2345    } else {
2346        // Direct output and offload threads
2347
2348        if (mUseAsyncWrite) {
2349            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2350            mWriteAckSequence += 2;
2351            mWriteAckSequence |= 1;
2352            ALOG_ASSERT(mCallbackThread != 0);
2353            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2354        }
2355        // FIXME We should have an implementation of timestamps for direct output threads.
2356        // They are used e.g for multichannel PCM playback over HDMI.
2357        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2358        if (mUseAsyncWrite &&
2359                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2360            // do not wait for async callback in case of error of full write
2361            mWriteAckSequence &= ~1;
2362            ALOG_ASSERT(mCallbackThread != 0);
2363            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2364        }
2365    }
2366
2367    mNumWrites++;
2368    mInWrite = false;
2369    mStandby = false;
2370    return bytesWritten;
2371}
2372
2373void AudioFlinger::PlaybackThread::threadLoop_drain()
2374{
2375    if (mOutput->stream->drain) {
2376        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2377        if (mUseAsyncWrite) {
2378            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2379            mDrainSequence |= 1;
2380            ALOG_ASSERT(mCallbackThread != 0);
2381            mCallbackThread->setDraining(mDrainSequence);
2382        }
2383        mOutput->stream->drain(mOutput->stream,
2384            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2385                                                : AUDIO_DRAIN_ALL);
2386    }
2387}
2388
2389void AudioFlinger::PlaybackThread::threadLoop_exit()
2390{
2391    {
2392        Mutex::Autolock _l(mLock);
2393        for (size_t i = 0; i < mTracks.size(); i++) {
2394            sp<Track> track = mTracks[i];
2395            track->invalidate();
2396        }
2397    }
2398}
2399
2400/*
2401The derived values that are cached:
2402 - mSinkBufferSize from frame count * frame size
2403 - activeSleepTime from activeSleepTimeUs()
2404 - idleSleepTime from idleSleepTimeUs()
2405 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
2406 - maxPeriod from frame count and sample rate (MIXER only)
2407
2408The parameters that affect these derived values are:
2409 - frame count
2410 - frame size
2411 - sample rate
2412 - device type: A2DP or not
2413 - device latency
2414 - format: PCM or not
2415 - active sleep time
2416 - idle sleep time
2417*/
2418
2419void AudioFlinger::PlaybackThread::cacheParameters_l()
2420{
2421    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2422    activeSleepTime = activeSleepTimeUs();
2423    idleSleepTime = idleSleepTimeUs();
2424}
2425
2426void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2427{
2428    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2429            this,  streamType, mTracks.size());
2430    Mutex::Autolock _l(mLock);
2431
2432    size_t size = mTracks.size();
2433    for (size_t i = 0; i < size; i++) {
2434        sp<Track> t = mTracks[i];
2435        if (t->streamType() == streamType) {
2436            t->invalidate();
2437        }
2438    }
2439}
2440
2441status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2442{
2443    int session = chain->sessionId();
2444    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2445            ? mEffectBuffer : mSinkBuffer);
2446    bool ownsBuffer = false;
2447
2448    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2449    if (session > 0) {
2450        // Only one effect chain can be present in direct output thread and it uses
2451        // the sink buffer as input
2452        if (mType != DIRECT) {
2453            size_t numSamples = mNormalFrameCount * mChannelCount;
2454            buffer = new int16_t[numSamples];
2455            memset(buffer, 0, numSamples * sizeof(int16_t));
2456            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2457            ownsBuffer = true;
2458        }
2459
2460        // Attach all tracks with same session ID to this chain.
2461        for (size_t i = 0; i < mTracks.size(); ++i) {
2462            sp<Track> track = mTracks[i];
2463            if (session == track->sessionId()) {
2464                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2465                        buffer);
2466                track->setMainBuffer(buffer);
2467                chain->incTrackCnt();
2468            }
2469        }
2470
2471        // indicate all active tracks in the chain
2472        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2473            sp<Track> track = mActiveTracks[i].promote();
2474            if (track == 0) {
2475                continue;
2476            }
2477            if (session == track->sessionId()) {
2478                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2479                chain->incActiveTrackCnt();
2480            }
2481        }
2482    }
2483    chain->setThread(this);
2484    chain->setInBuffer(buffer, ownsBuffer);
2485    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2486            ? mEffectBuffer : mSinkBuffer));
2487    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2488    // chains list in order to be processed last as it contains output stage effects
2489    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2490    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2491    // after track specific effects and before output stage
2492    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2493    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2494    // Effect chain for other sessions are inserted at beginning of effect
2495    // chains list to be processed before output mix effects. Relative order between other
2496    // sessions is not important
2497    size_t size = mEffectChains.size();
2498    size_t i = 0;
2499    for (i = 0; i < size; i++) {
2500        if (mEffectChains[i]->sessionId() < session) {
2501            break;
2502        }
2503    }
2504    mEffectChains.insertAt(chain, i);
2505    checkSuspendOnAddEffectChain_l(chain);
2506
2507    return NO_ERROR;
2508}
2509
2510size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2511{
2512    int session = chain->sessionId();
2513
2514    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2515
2516    for (size_t i = 0; i < mEffectChains.size(); i++) {
2517        if (chain == mEffectChains[i]) {
2518            mEffectChains.removeAt(i);
2519            // detach all active tracks from the chain
2520            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2521                sp<Track> track = mActiveTracks[i].promote();
2522                if (track == 0) {
2523                    continue;
2524                }
2525                if (session == track->sessionId()) {
2526                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2527                            chain.get(), session);
2528                    chain->decActiveTrackCnt();
2529                }
2530            }
2531
2532            // detach all tracks with same session ID from this chain
2533            for (size_t i = 0; i < mTracks.size(); ++i) {
2534                sp<Track> track = mTracks[i];
2535                if (session == track->sessionId()) {
2536                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2537                    chain->decTrackCnt();
2538                }
2539            }
2540            break;
2541        }
2542    }
2543    return mEffectChains.size();
2544}
2545
2546status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2547        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2548{
2549    Mutex::Autolock _l(mLock);
2550    return attachAuxEffect_l(track, EffectId);
2551}
2552
2553status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2554        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2555{
2556    status_t status = NO_ERROR;
2557
2558    if (EffectId == 0) {
2559        track->setAuxBuffer(0, NULL);
2560    } else {
2561        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2562        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2563        if (effect != 0) {
2564            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2565                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2566            } else {
2567                status = INVALID_OPERATION;
2568            }
2569        } else {
2570            status = BAD_VALUE;
2571        }
2572    }
2573    return status;
2574}
2575
2576void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2577{
2578    for (size_t i = 0; i < mTracks.size(); ++i) {
2579        sp<Track> track = mTracks[i];
2580        if (track->auxEffectId() == effectId) {
2581            attachAuxEffect_l(track, 0);
2582        }
2583    }
2584}
2585
2586bool AudioFlinger::PlaybackThread::threadLoop()
2587{
2588    Vector< sp<Track> > tracksToRemove;
2589
2590    standbyTime = systemTime();
2591
2592    // MIXER
2593    nsecs_t lastWarning = 0;
2594
2595    // DUPLICATING
2596    // FIXME could this be made local to while loop?
2597    writeFrames = 0;
2598
2599    int lastGeneration = 0;
2600
2601    cacheParameters_l();
2602    sleepTime = idleSleepTime;
2603
2604    if (mType == MIXER) {
2605        sleepTimeShift = 0;
2606    }
2607
2608    CpuStats cpuStats;
2609    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2610
2611    acquireWakeLock();
2612
2613    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2614    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2615    // and then that string will be logged at the next convenient opportunity.
2616    const char *logString = NULL;
2617
2618    checkSilentMode_l();
2619
2620    while (!exitPending())
2621    {
2622        cpuStats.sample(myName);
2623
2624        Vector< sp<EffectChain> > effectChains;
2625
2626        { // scope for mLock
2627
2628            Mutex::Autolock _l(mLock);
2629
2630            processConfigEvents_l();
2631
2632            if (logString != NULL) {
2633                mNBLogWriter->logTimestamp();
2634                mNBLogWriter->log(logString);
2635                logString = NULL;
2636            }
2637
2638            // Gather the framesReleased counters for all active tracks,
2639            // and latch them atomically with the timestamp.
2640            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2641            mLatchD.mFramesReleased.clear();
2642            size_t size = mActiveTracks.size();
2643            for (size_t i = 0; i < size; i++) {
2644                sp<Track> t = mActiveTracks[i].promote();
2645                if (t != 0) {
2646                    mLatchD.mFramesReleased.add(t.get(),
2647                            t->mAudioTrackServerProxy->framesReleased());
2648                }
2649            }
2650            if (mLatchDValid) {
2651                mLatchQ = mLatchD;
2652                mLatchDValid = false;
2653                mLatchQValid = true;
2654            }
2655
2656            saveOutputTracks();
2657            if (mSignalPending) {
2658                // A signal was raised while we were unlocked
2659                mSignalPending = false;
2660            } else if (waitingAsyncCallback_l()) {
2661                if (exitPending()) {
2662                    break;
2663                }
2664                releaseWakeLock_l();
2665                mWakeLockUids.clear();
2666                mActiveTracksGeneration++;
2667                ALOGV("wait async completion");
2668                mWaitWorkCV.wait(mLock);
2669                ALOGV("async completion/wake");
2670                acquireWakeLock_l();
2671                standbyTime = systemTime() + standbyDelay;
2672                sleepTime = 0;
2673
2674                continue;
2675            }
2676            if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2677                                   isSuspended()) {
2678                // put audio hardware into standby after short delay
2679                if (shouldStandby_l()) {
2680
2681                    threadLoop_standby();
2682
2683                    mStandby = true;
2684                }
2685
2686                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2687                    // we're about to wait, flush the binder command buffer
2688                    IPCThreadState::self()->flushCommands();
2689
2690                    clearOutputTracks();
2691
2692                    if (exitPending()) {
2693                        break;
2694                    }
2695
2696                    releaseWakeLock_l();
2697                    mWakeLockUids.clear();
2698                    mActiveTracksGeneration++;
2699                    // wait until we have something to do...
2700                    ALOGV("%s going to sleep", myName.string());
2701                    mWaitWorkCV.wait(mLock);
2702                    ALOGV("%s waking up", myName.string());
2703                    acquireWakeLock_l();
2704
2705                    mMixerStatus = MIXER_IDLE;
2706                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2707                    mBytesWritten = 0;
2708                    mBytesRemaining = 0;
2709                    checkSilentMode_l();
2710
2711                    standbyTime = systemTime() + standbyDelay;
2712                    sleepTime = idleSleepTime;
2713                    if (mType == MIXER) {
2714                        sleepTimeShift = 0;
2715                    }
2716
2717                    continue;
2718                }
2719            }
2720            // mMixerStatusIgnoringFastTracks is also updated internally
2721            mMixerStatus = prepareTracks_l(&tracksToRemove);
2722
2723            // compare with previously applied list
2724            if (lastGeneration != mActiveTracksGeneration) {
2725                // update wakelock
2726                updateWakeLockUids_l(mWakeLockUids);
2727                lastGeneration = mActiveTracksGeneration;
2728            }
2729
2730            // prevent any changes in effect chain list and in each effect chain
2731            // during mixing and effect process as the audio buffers could be deleted
2732            // or modified if an effect is created or deleted
2733            lockEffectChains_l(effectChains);
2734        } // mLock scope ends
2735
2736        if (mBytesRemaining == 0) {
2737            mCurrentWriteLength = 0;
2738            if (mMixerStatus == MIXER_TRACKS_READY) {
2739                // threadLoop_mix() sets mCurrentWriteLength
2740                threadLoop_mix();
2741            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2742                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2743                // threadLoop_sleepTime sets sleepTime to 0 if data
2744                // must be written to HAL
2745                threadLoop_sleepTime();
2746                if (sleepTime == 0) {
2747                    mCurrentWriteLength = mSinkBufferSize;
2748                }
2749            }
2750            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2751            // mMixerBuffer with data if mMixerBufferValid is true and sleepTime == 0.
2752            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2753            // or mSinkBuffer (if there are no effects).
2754            //
2755            // This is done pre-effects computation; if effects change to
2756            // support higher precision, this needs to move.
2757            //
2758            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2759            // TODO use sleepTime == 0 as an additional condition.
2760            if (mMixerBufferValid) {
2761                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2762                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2763
2764                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2765                        mNormalFrameCount * mChannelCount);
2766            }
2767
2768            mBytesRemaining = mCurrentWriteLength;
2769            if (isSuspended()) {
2770                sleepTime = suspendSleepTimeUs();
2771                // simulate write to HAL when suspended
2772                mBytesWritten += mSinkBufferSize;
2773                mBytesRemaining = 0;
2774            }
2775
2776            // only process effects if we're going to write
2777            if (sleepTime == 0 && mType != OFFLOAD) {
2778                for (size_t i = 0; i < effectChains.size(); i ++) {
2779                    effectChains[i]->process_l();
2780                }
2781            }
2782        }
2783        // Process effect chains for offloaded thread even if no audio
2784        // was read from audio track: process only updates effect state
2785        // and thus does have to be synchronized with audio writes but may have
2786        // to be called while waiting for async write callback
2787        if (mType == OFFLOAD) {
2788            for (size_t i = 0; i < effectChains.size(); i ++) {
2789                effectChains[i]->process_l();
2790            }
2791        }
2792
2793        // Only if the Effects buffer is enabled and there is data in the
2794        // Effects buffer (buffer valid), we need to
2795        // copy into the sink buffer.
2796        // TODO use sleepTime == 0 as an additional condition.
2797        if (mEffectBufferValid) {
2798            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2799            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2800                    mNormalFrameCount * mChannelCount);
2801        }
2802
2803        // enable changes in effect chain
2804        unlockEffectChains(effectChains);
2805
2806        if (!waitingAsyncCallback()) {
2807            // sleepTime == 0 means we must write to audio hardware
2808            if (sleepTime == 0) {
2809                if (mBytesRemaining) {
2810                    ssize_t ret = threadLoop_write();
2811                    if (ret < 0) {
2812                        mBytesRemaining = 0;
2813                    } else {
2814                        mBytesWritten += ret;
2815                        mBytesRemaining -= ret;
2816                    }
2817                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2818                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2819                    threadLoop_drain();
2820                }
2821                if (mType == MIXER) {
2822                    // write blocked detection
2823                    nsecs_t now = systemTime();
2824                    nsecs_t delta = now - mLastWriteTime;
2825                    if (!mStandby && delta > maxPeriod) {
2826                        mNumDelayedWrites++;
2827                        if ((now - lastWarning) > kWarningThrottleNs) {
2828                            ATRACE_NAME("underrun");
2829                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2830                                    ns2ms(delta), mNumDelayedWrites, this);
2831                            lastWarning = now;
2832                        }
2833                    }
2834                }
2835
2836            } else {
2837                ATRACE_BEGIN("sleep");
2838                usleep(sleepTime);
2839                ATRACE_END();
2840            }
2841        }
2842
2843        // Finally let go of removed track(s), without the lock held
2844        // since we can't guarantee the destructors won't acquire that
2845        // same lock.  This will also mutate and push a new fast mixer state.
2846        threadLoop_removeTracks(tracksToRemove);
2847        tracksToRemove.clear();
2848
2849        // FIXME I don't understand the need for this here;
2850        //       it was in the original code but maybe the
2851        //       assignment in saveOutputTracks() makes this unnecessary?
2852        clearOutputTracks();
2853
2854        // Effect chains will be actually deleted here if they were removed from
2855        // mEffectChains list during mixing or effects processing
2856        effectChains.clear();
2857
2858        // FIXME Note that the above .clear() is no longer necessary since effectChains
2859        // is now local to this block, but will keep it for now (at least until merge done).
2860    }
2861
2862    threadLoop_exit();
2863
2864    if (!mStandby) {
2865        threadLoop_standby();
2866        mStandby = true;
2867    }
2868
2869    releaseWakeLock();
2870    mWakeLockUids.clear();
2871    mActiveTracksGeneration++;
2872
2873    ALOGV("Thread %p type %d exiting", this, mType);
2874    return false;
2875}
2876
2877// removeTracks_l() must be called with ThreadBase::mLock held
2878void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2879{
2880    size_t count = tracksToRemove.size();
2881    if (count > 0) {
2882        for (size_t i=0 ; i<count ; i++) {
2883            const sp<Track>& track = tracksToRemove.itemAt(i);
2884            mActiveTracks.remove(track);
2885            mWakeLockUids.remove(track->uid());
2886            mActiveTracksGeneration++;
2887            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2888            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2889            if (chain != 0) {
2890                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2891                        track->sessionId());
2892                chain->decActiveTrackCnt();
2893            }
2894            if (track->isTerminated()) {
2895                removeTrack_l(track);
2896            }
2897        }
2898    }
2899
2900}
2901
2902status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2903{
2904    if (mNormalSink != 0) {
2905        return mNormalSink->getTimestamp(timestamp);
2906    }
2907    if ((mType == OFFLOAD || mType == DIRECT)
2908            && mOutput != NULL && mOutput->stream->get_presentation_position) {
2909        uint64_t position64;
2910        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
2911        if (ret == 0) {
2912            timestamp.mPosition = (uint32_t)position64;
2913            return NO_ERROR;
2914        }
2915    }
2916    return INVALID_OPERATION;
2917}
2918
2919status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
2920                                                          audio_patch_handle_t *handle)
2921{
2922    status_t status = NO_ERROR;
2923    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2924        // store new device and send to effects
2925        audio_devices_t type = AUDIO_DEVICE_NONE;
2926        for (unsigned int i = 0; i < patch->num_sinks; i++) {
2927            type |= patch->sinks[i].ext.device.type;
2928        }
2929        mOutDevice = type;
2930        for (size_t i = 0; i < mEffectChains.size(); i++) {
2931            mEffectChains[i]->setDevice_l(mOutDevice);
2932        }
2933
2934        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2935        status = hwDevice->create_audio_patch(hwDevice,
2936                                               patch->num_sources,
2937                                               patch->sources,
2938                                               patch->num_sinks,
2939                                               patch->sinks,
2940                                               handle);
2941    } else {
2942        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
2943    }
2944    return status;
2945}
2946
2947status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
2948{
2949    status_t status = NO_ERROR;
2950    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2951        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2952        status = hwDevice->release_audio_patch(hwDevice, handle);
2953    } else {
2954        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
2955    }
2956    return status;
2957}
2958
2959void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
2960{
2961    Mutex::Autolock _l(mLock);
2962    mTracks.add(track);
2963}
2964
2965void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
2966{
2967    Mutex::Autolock _l(mLock);
2968    destroyTrack_l(track);
2969}
2970
2971void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
2972{
2973    ThreadBase::getAudioPortConfig(config);
2974    config->role = AUDIO_PORT_ROLE_SOURCE;
2975    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
2976    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
2977}
2978
2979// ----------------------------------------------------------------------------
2980
2981AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
2982        audio_io_handle_t id, audio_devices_t device, type_t type)
2983    :   PlaybackThread(audioFlinger, output, id, device, type),
2984        // mAudioMixer below
2985        // mFastMixer below
2986        mFastMixerFutex(0)
2987        // mOutputSink below
2988        // mPipeSink below
2989        // mNormalSink below
2990{
2991    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
2992    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
2993            "mFrameCount=%d, mNormalFrameCount=%d",
2994            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
2995            mNormalFrameCount);
2996    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
2997
2998    if (type == DUPLICATING) {
2999        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3000        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3001        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3002        return;
3003    }
3004    // create an NBAIO sink for the HAL output stream, and negotiate
3005    mOutputSink = new AudioStreamOutSink(output->stream);
3006    size_t numCounterOffers = 0;
3007    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3008    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3009    ALOG_ASSERT(index == 0);
3010
3011    // initialize fast mixer depending on configuration
3012    bool initFastMixer;
3013    switch (kUseFastMixer) {
3014    case FastMixer_Never:
3015        initFastMixer = false;
3016        break;
3017    case FastMixer_Always:
3018        initFastMixer = true;
3019        break;
3020    case FastMixer_Static:
3021    case FastMixer_Dynamic:
3022        initFastMixer = mFrameCount < mNormalFrameCount;
3023        break;
3024    }
3025    if (initFastMixer) {
3026        audio_format_t fastMixerFormat;
3027        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3028            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3029        } else {
3030            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3031        }
3032        if (mFormat != fastMixerFormat) {
3033            // change our Sink format to accept our intermediate precision
3034            mFormat = fastMixerFormat;
3035            free(mSinkBuffer);
3036            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3037            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3038            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3039        }
3040
3041        // create a MonoPipe to connect our submix to FastMixer
3042        NBAIO_Format format = mOutputSink->format();
3043        NBAIO_Format origformat = format;
3044        // adjust format to match that of the Fast Mixer
3045        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3046        format.mFormat = fastMixerFormat;
3047        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3048
3049        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3050        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3051        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3052        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3053        const NBAIO_Format offers[1] = {format};
3054        size_t numCounterOffers = 0;
3055        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3056        ALOG_ASSERT(index == 0);
3057        monoPipe->setAvgFrames((mScreenState & 1) ?
3058                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3059        mPipeSink = monoPipe;
3060
3061#ifdef TEE_SINK
3062        if (mTeeSinkOutputEnabled) {
3063            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3064            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3065            const NBAIO_Format offers2[1] = {origformat};
3066            numCounterOffers = 0;
3067            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3068            ALOG_ASSERT(index == 0);
3069            mTeeSink = teeSink;
3070            PipeReader *teeSource = new PipeReader(*teeSink);
3071            numCounterOffers = 0;
3072            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3073            ALOG_ASSERT(index == 0);
3074            mTeeSource = teeSource;
3075        }
3076#endif
3077
3078        // create fast mixer and configure it initially with just one fast track for our submix
3079        mFastMixer = new FastMixer();
3080        FastMixerStateQueue *sq = mFastMixer->sq();
3081#ifdef STATE_QUEUE_DUMP
3082        sq->setObserverDump(&mStateQueueObserverDump);
3083        sq->setMutatorDump(&mStateQueueMutatorDump);
3084#endif
3085        FastMixerState *state = sq->begin();
3086        FastTrack *fastTrack = &state->mFastTracks[0];
3087        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3088        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3089        fastTrack->mVolumeProvider = NULL;
3090        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3091        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3092        fastTrack->mGeneration++;
3093        state->mFastTracksGen++;
3094        state->mTrackMask = 1;
3095        // fast mixer will use the HAL output sink
3096        state->mOutputSink = mOutputSink.get();
3097        state->mOutputSinkGen++;
3098        state->mFrameCount = mFrameCount;
3099        state->mCommand = FastMixerState::COLD_IDLE;
3100        // already done in constructor initialization list
3101        //mFastMixerFutex = 0;
3102        state->mColdFutexAddr = &mFastMixerFutex;
3103        state->mColdGen++;
3104        state->mDumpState = &mFastMixerDumpState;
3105#ifdef TEE_SINK
3106        state->mTeeSink = mTeeSink.get();
3107#endif
3108        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3109        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3110        sq->end();
3111        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3112
3113        // start the fast mixer
3114        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3115        pid_t tid = mFastMixer->getTid();
3116        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3117        if (err != 0) {
3118            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3119                    kPriorityFastMixer, getpid_cached, tid, err);
3120        }
3121
3122#ifdef AUDIO_WATCHDOG
3123        // create and start the watchdog
3124        mAudioWatchdog = new AudioWatchdog();
3125        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3126        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3127        tid = mAudioWatchdog->getTid();
3128        err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3129        if (err != 0) {
3130            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3131                    kPriorityFastMixer, getpid_cached, tid, err);
3132        }
3133#endif
3134
3135    }
3136
3137    switch (kUseFastMixer) {
3138    case FastMixer_Never:
3139    case FastMixer_Dynamic:
3140        mNormalSink = mOutputSink;
3141        break;
3142    case FastMixer_Always:
3143        mNormalSink = mPipeSink;
3144        break;
3145    case FastMixer_Static:
3146        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3147        break;
3148    }
3149}
3150
3151AudioFlinger::MixerThread::~MixerThread()
3152{
3153    if (mFastMixer != 0) {
3154        FastMixerStateQueue *sq = mFastMixer->sq();
3155        FastMixerState *state = sq->begin();
3156        if (state->mCommand == FastMixerState::COLD_IDLE) {
3157            int32_t old = android_atomic_inc(&mFastMixerFutex);
3158            if (old == -1) {
3159                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3160            }
3161        }
3162        state->mCommand = FastMixerState::EXIT;
3163        sq->end();
3164        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3165        mFastMixer->join();
3166        // Though the fast mixer thread has exited, it's state queue is still valid.
3167        // We'll use that extract the final state which contains one remaining fast track
3168        // corresponding to our sub-mix.
3169        state = sq->begin();
3170        ALOG_ASSERT(state->mTrackMask == 1);
3171        FastTrack *fastTrack = &state->mFastTracks[0];
3172        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3173        delete fastTrack->mBufferProvider;
3174        sq->end(false /*didModify*/);
3175        mFastMixer.clear();
3176#ifdef AUDIO_WATCHDOG
3177        if (mAudioWatchdog != 0) {
3178            mAudioWatchdog->requestExit();
3179            mAudioWatchdog->requestExitAndWait();
3180            mAudioWatchdog.clear();
3181        }
3182#endif
3183    }
3184    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3185    delete mAudioMixer;
3186}
3187
3188
3189uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3190{
3191    if (mFastMixer != 0) {
3192        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3193        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3194    }
3195    return latency;
3196}
3197
3198
3199void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3200{
3201    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3202}
3203
3204ssize_t AudioFlinger::MixerThread::threadLoop_write()
3205{
3206    // FIXME we should only do one push per cycle; confirm this is true
3207    // Start the fast mixer if it's not already running
3208    if (mFastMixer != 0) {
3209        FastMixerStateQueue *sq = mFastMixer->sq();
3210        FastMixerState *state = sq->begin();
3211        if (state->mCommand != FastMixerState::MIX_WRITE &&
3212                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3213            if (state->mCommand == FastMixerState::COLD_IDLE) {
3214                int32_t old = android_atomic_inc(&mFastMixerFutex);
3215                if (old == -1) {
3216                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3217                }
3218#ifdef AUDIO_WATCHDOG
3219                if (mAudioWatchdog != 0) {
3220                    mAudioWatchdog->resume();
3221                }
3222#endif
3223            }
3224            state->mCommand = FastMixerState::MIX_WRITE;
3225#ifdef FAST_THREAD_STATISTICS
3226            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3227                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3228#endif
3229            sq->end();
3230            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3231            if (kUseFastMixer == FastMixer_Dynamic) {
3232                mNormalSink = mPipeSink;
3233            }
3234        } else {
3235            sq->end(false /*didModify*/);
3236        }
3237    }
3238    return PlaybackThread::threadLoop_write();
3239}
3240
3241void AudioFlinger::MixerThread::threadLoop_standby()
3242{
3243    // Idle the fast mixer if it's currently running
3244    if (mFastMixer != 0) {
3245        FastMixerStateQueue *sq = mFastMixer->sq();
3246        FastMixerState *state = sq->begin();
3247        if (!(state->mCommand & FastMixerState::IDLE)) {
3248            state->mCommand = FastMixerState::COLD_IDLE;
3249            state->mColdFutexAddr = &mFastMixerFutex;
3250            state->mColdGen++;
3251            mFastMixerFutex = 0;
3252            sq->end();
3253            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3254            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3255            if (kUseFastMixer == FastMixer_Dynamic) {
3256                mNormalSink = mOutputSink;
3257            }
3258#ifdef AUDIO_WATCHDOG
3259            if (mAudioWatchdog != 0) {
3260                mAudioWatchdog->pause();
3261            }
3262#endif
3263        } else {
3264            sq->end(false /*didModify*/);
3265        }
3266    }
3267    PlaybackThread::threadLoop_standby();
3268}
3269
3270bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3271{
3272    return false;
3273}
3274
3275bool AudioFlinger::PlaybackThread::shouldStandby_l()
3276{
3277    return !mStandby;
3278}
3279
3280bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3281{
3282    Mutex::Autolock _l(mLock);
3283    return waitingAsyncCallback_l();
3284}
3285
3286// shared by MIXER and DIRECT, overridden by DUPLICATING
3287void AudioFlinger::PlaybackThread::threadLoop_standby()
3288{
3289    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3290    mOutput->standby();
3291    if (mUseAsyncWrite != 0) {
3292        // discard any pending drain or write ack by incrementing sequence
3293        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3294        mDrainSequence = (mDrainSequence + 2) & ~1;
3295        ALOG_ASSERT(mCallbackThread != 0);
3296        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3297        mCallbackThread->setDraining(mDrainSequence);
3298    }
3299    mHwPaused = false;
3300}
3301
3302void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3303{
3304    ALOGV("signal playback thread");
3305    broadcast_l();
3306}
3307
3308void AudioFlinger::MixerThread::threadLoop_mix()
3309{
3310    // obtain the presentation timestamp of the next output buffer
3311    int64_t pts;
3312    status_t status = INVALID_OPERATION;
3313
3314    if (mNormalSink != 0) {
3315        status = mNormalSink->getNextWriteTimestamp(&pts);
3316    } else {
3317        status = mOutputSink->getNextWriteTimestamp(&pts);
3318    }
3319
3320    if (status != NO_ERROR) {
3321        pts = AudioBufferProvider::kInvalidPTS;
3322    }
3323
3324    // mix buffers...
3325    mAudioMixer->process(pts);
3326    mCurrentWriteLength = mSinkBufferSize;
3327    // increase sleep time progressively when application underrun condition clears.
3328    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3329    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3330    // such that we would underrun the audio HAL.
3331    if ((sleepTime == 0) && (sleepTimeShift > 0)) {
3332        sleepTimeShift--;
3333    }
3334    sleepTime = 0;
3335    standbyTime = systemTime() + standbyDelay;
3336    //TODO: delay standby when effects have a tail
3337
3338}
3339
3340void AudioFlinger::MixerThread::threadLoop_sleepTime()
3341{
3342    // If no tracks are ready, sleep once for the duration of an output
3343    // buffer size, then write 0s to the output
3344    if (sleepTime == 0) {
3345        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3346            sleepTime = activeSleepTime >> sleepTimeShift;
3347            if (sleepTime < kMinThreadSleepTimeUs) {
3348                sleepTime = kMinThreadSleepTimeUs;
3349            }
3350            // reduce sleep time in case of consecutive application underruns to avoid
3351            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3352            // duration we would end up writing less data than needed by the audio HAL if
3353            // the condition persists.
3354            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3355                sleepTimeShift++;
3356            }
3357        } else {
3358            sleepTime = idleSleepTime;
3359        }
3360    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3361        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3362        // before effects processing or output.
3363        if (mMixerBufferValid) {
3364            memset(mMixerBuffer, 0, mMixerBufferSize);
3365        } else {
3366            memset(mSinkBuffer, 0, mSinkBufferSize);
3367        }
3368        sleepTime = 0;
3369        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3370                "anticipated start");
3371    }
3372    // TODO add standby time extension fct of effect tail
3373}
3374
3375// prepareTracks_l() must be called with ThreadBase::mLock held
3376AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3377        Vector< sp<Track> > *tracksToRemove)
3378{
3379
3380    mixer_state mixerStatus = MIXER_IDLE;
3381    // find out which tracks need to be processed
3382    size_t count = mActiveTracks.size();
3383    size_t mixedTracks = 0;
3384    size_t tracksWithEffect = 0;
3385    // counts only _active_ fast tracks
3386    size_t fastTracks = 0;
3387    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3388
3389    float masterVolume = mMasterVolume;
3390    bool masterMute = mMasterMute;
3391
3392    if (masterMute) {
3393        masterVolume = 0;
3394    }
3395    // Delegate master volume control to effect in output mix effect chain if needed
3396    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3397    if (chain != 0) {
3398        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3399        chain->setVolume_l(&v, &v);
3400        masterVolume = (float)((v + (1 << 23)) >> 24);
3401        chain.clear();
3402    }
3403
3404    // prepare a new state to push
3405    FastMixerStateQueue *sq = NULL;
3406    FastMixerState *state = NULL;
3407    bool didModify = false;
3408    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3409    if (mFastMixer != 0) {
3410        sq = mFastMixer->sq();
3411        state = sq->begin();
3412    }
3413
3414    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3415    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3416
3417    for (size_t i=0 ; i<count ; i++) {
3418        const sp<Track> t = mActiveTracks[i].promote();
3419        if (t == 0) {
3420            continue;
3421        }
3422
3423        // this const just means the local variable doesn't change
3424        Track* const track = t.get();
3425
3426        // process fast tracks
3427        if (track->isFastTrack()) {
3428
3429            // It's theoretically possible (though unlikely) for a fast track to be created
3430            // and then removed within the same normal mix cycle.  This is not a problem, as
3431            // the track never becomes active so it's fast mixer slot is never touched.
3432            // The converse, of removing an (active) track and then creating a new track
3433            // at the identical fast mixer slot within the same normal mix cycle,
3434            // is impossible because the slot isn't marked available until the end of each cycle.
3435            int j = track->mFastIndex;
3436            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3437            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3438            FastTrack *fastTrack = &state->mFastTracks[j];
3439
3440            // Determine whether the track is currently in underrun condition,
3441            // and whether it had a recent underrun.
3442            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3443            FastTrackUnderruns underruns = ftDump->mUnderruns;
3444            uint32_t recentFull = (underruns.mBitFields.mFull -
3445                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3446            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3447                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3448            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3449                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3450            uint32_t recentUnderruns = recentPartial + recentEmpty;
3451            track->mObservedUnderruns = underruns;
3452            // don't count underruns that occur while stopping or pausing
3453            // or stopped which can occur when flush() is called while active
3454            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3455                    recentUnderruns > 0) {
3456                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3457                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3458            }
3459
3460            // This is similar to the state machine for normal tracks,
3461            // with a few modifications for fast tracks.
3462            bool isActive = true;
3463            switch (track->mState) {
3464            case TrackBase::STOPPING_1:
3465                // track stays active in STOPPING_1 state until first underrun
3466                if (recentUnderruns > 0 || track->isTerminated()) {
3467                    track->mState = TrackBase::STOPPING_2;
3468                }
3469                break;
3470            case TrackBase::PAUSING:
3471                // ramp down is not yet implemented
3472                track->setPaused();
3473                break;
3474            case TrackBase::RESUMING:
3475                // ramp up is not yet implemented
3476                track->mState = TrackBase::ACTIVE;
3477                break;
3478            case TrackBase::ACTIVE:
3479                if (recentFull > 0 || recentPartial > 0) {
3480                    // track has provided at least some frames recently: reset retry count
3481                    track->mRetryCount = kMaxTrackRetries;
3482                }
3483                if (recentUnderruns == 0) {
3484                    // no recent underruns: stay active
3485                    break;
3486                }
3487                // there has recently been an underrun of some kind
3488                if (track->sharedBuffer() == 0) {
3489                    // were any of the recent underruns "empty" (no frames available)?
3490                    if (recentEmpty == 0) {
3491                        // no, then ignore the partial underruns as they are allowed indefinitely
3492                        break;
3493                    }
3494                    // there has recently been an "empty" underrun: decrement the retry counter
3495                    if (--(track->mRetryCount) > 0) {
3496                        break;
3497                    }
3498                    // indicate to client process that the track was disabled because of underrun;
3499                    // it will then automatically call start() when data is available
3500                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3501                    // remove from active list, but state remains ACTIVE [confusing but true]
3502                    isActive = false;
3503                    break;
3504                }
3505                // fall through
3506            case TrackBase::STOPPING_2:
3507            case TrackBase::PAUSED:
3508            case TrackBase::STOPPED:
3509            case TrackBase::FLUSHED:   // flush() while active
3510                // Check for presentation complete if track is inactive
3511                // We have consumed all the buffers of this track.
3512                // This would be incomplete if we auto-paused on underrun
3513                {
3514                    size_t audioHALFrames =
3515                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3516                    size_t framesWritten = mBytesWritten / mFrameSize;
3517                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3518                        // track stays in active list until presentation is complete
3519                        break;
3520                    }
3521                }
3522                if (track->isStopping_2()) {
3523                    track->mState = TrackBase::STOPPED;
3524                }
3525                if (track->isStopped()) {
3526                    // Can't reset directly, as fast mixer is still polling this track
3527                    //   track->reset();
3528                    // So instead mark this track as needing to be reset after push with ack
3529                    resetMask |= 1 << i;
3530                }
3531                isActive = false;
3532                break;
3533            case TrackBase::IDLE:
3534            default:
3535                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3536            }
3537
3538            if (isActive) {
3539                // was it previously inactive?
3540                if (!(state->mTrackMask & (1 << j))) {
3541                    ExtendedAudioBufferProvider *eabp = track;
3542                    VolumeProvider *vp = track;
3543                    fastTrack->mBufferProvider = eabp;
3544                    fastTrack->mVolumeProvider = vp;
3545                    fastTrack->mChannelMask = track->mChannelMask;
3546                    fastTrack->mFormat = track->mFormat;
3547                    fastTrack->mGeneration++;
3548                    state->mTrackMask |= 1 << j;
3549                    didModify = true;
3550                    // no acknowledgement required for newly active tracks
3551                }
3552                // cache the combined master volume and stream type volume for fast mixer; this
3553                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3554                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3555                ++fastTracks;
3556            } else {
3557                // was it previously active?
3558                if (state->mTrackMask & (1 << j)) {
3559                    fastTrack->mBufferProvider = NULL;
3560                    fastTrack->mGeneration++;
3561                    state->mTrackMask &= ~(1 << j);
3562                    didModify = true;
3563                    // If any fast tracks were removed, we must wait for acknowledgement
3564                    // because we're about to decrement the last sp<> on those tracks.
3565                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3566                } else {
3567                    LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3568                }
3569                tracksToRemove->add(track);
3570                // Avoids a misleading display in dumpsys
3571                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3572            }
3573            continue;
3574        }
3575
3576        {   // local variable scope to avoid goto warning
3577
3578        audio_track_cblk_t* cblk = track->cblk();
3579
3580        // The first time a track is added we wait
3581        // for all its buffers to be filled before processing it
3582        int name = track->name();
3583        // make sure that we have enough frames to mix one full buffer.
3584        // enforce this condition only once to enable draining the buffer in case the client
3585        // app does not call stop() and relies on underrun to stop:
3586        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3587        // during last round
3588        size_t desiredFrames;
3589        uint32_t sr = track->sampleRate();
3590        if (sr == mSampleRate) {
3591            desiredFrames = mNormalFrameCount;
3592        } else {
3593            desiredFrames = sourceFramesNeeded(sr, mNormalFrameCount, mSampleRate);
3594            // add frames already consumed but not yet released by the resampler
3595            // because mAudioTrackServerProxy->framesReady() will include these frames
3596            desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3597#if 0
3598            // the minimum track buffer size is normally twice the number of frames necessary
3599            // to fill one buffer and the resampler should not leave more than one buffer worth
3600            // of unreleased frames after each pass, but just in case...
3601            ALOG_ASSERT(desiredFrames <= cblk->frameCount_);
3602#endif
3603        }
3604        uint32_t minFrames = 1;
3605        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3606                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3607            minFrames = desiredFrames;
3608        }
3609
3610        size_t framesReady = track->framesReady();
3611        if (ATRACE_ENABLED()) {
3612            // I wish we had formatted trace names
3613            char traceName[16];
3614            strcpy(traceName, "nRdy");
3615            int name = track->name();
3616            if (AudioMixer::TRACK0 <= name &&
3617                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3618                name -= AudioMixer::TRACK0;
3619                traceName[4] = (name / 10) + '0';
3620                traceName[5] = (name % 10) + '0';
3621            } else {
3622                traceName[4] = '?';
3623                traceName[5] = '?';
3624            }
3625            traceName[6] = '\0';
3626            ATRACE_INT(traceName, framesReady);
3627        }
3628        if ((framesReady >= minFrames) && track->isReady() &&
3629                !track->isPaused() && !track->isTerminated())
3630        {
3631            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3632
3633            mixedTracks++;
3634
3635            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3636            // there is an effect chain connected to the track
3637            chain.clear();
3638            if (track->mainBuffer() != mSinkBuffer &&
3639                    track->mainBuffer() != mMixerBuffer) {
3640                if (mEffectBufferEnabled) {
3641                    mEffectBufferValid = true; // Later can set directly.
3642                }
3643                chain = getEffectChain_l(track->sessionId());
3644                // Delegate volume control to effect in track effect chain if needed
3645                if (chain != 0) {
3646                    tracksWithEffect++;
3647                } else {
3648                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3649                            "session %d",
3650                            name, track->sessionId());
3651                }
3652            }
3653
3654
3655            int param = AudioMixer::VOLUME;
3656            if (track->mFillingUpStatus == Track::FS_FILLED) {
3657                // no ramp for the first volume setting
3658                track->mFillingUpStatus = Track::FS_ACTIVE;
3659                if (track->mState == TrackBase::RESUMING) {
3660                    track->mState = TrackBase::ACTIVE;
3661                    param = AudioMixer::RAMP_VOLUME;
3662                }
3663                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3664            // FIXME should not make a decision based on mServer
3665            } else if (cblk->mServer != 0) {
3666                // If the track is stopped before the first frame was mixed,
3667                // do not apply ramp
3668                param = AudioMixer::RAMP_VOLUME;
3669            }
3670
3671            // compute volume for this track
3672            uint32_t vl, vr;       // in U8.24 integer format
3673            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3674            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3675                vl = vr = 0;
3676                vlf = vrf = vaf = 0.;
3677                if (track->isPausing()) {
3678                    track->setPaused();
3679                }
3680            } else {
3681
3682                // read original volumes with volume control
3683                float typeVolume = mStreamTypes[track->streamType()].volume;
3684                float v = masterVolume * typeVolume;
3685                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3686                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3687                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3688                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3689                // track volumes come from shared memory, so can't be trusted and must be clamped
3690                if (vlf > GAIN_FLOAT_UNITY) {
3691                    ALOGV("Track left volume out of range: %.3g", vlf);
3692                    vlf = GAIN_FLOAT_UNITY;
3693                }
3694                if (vrf > GAIN_FLOAT_UNITY) {
3695                    ALOGV("Track right volume out of range: %.3g", vrf);
3696                    vrf = GAIN_FLOAT_UNITY;
3697                }
3698                // now apply the master volume and stream type volume
3699                vlf *= v;
3700                vrf *= v;
3701                // assuming master volume and stream type volume each go up to 1.0,
3702                // then derive vl and vr as U8.24 versions for the effect chain
3703                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3704                vl = (uint32_t) (scaleto8_24 * vlf);
3705                vr = (uint32_t) (scaleto8_24 * vrf);
3706                // vl and vr are now in U8.24 format
3707                uint16_t sendLevel = proxy->getSendLevel_U4_12();
3708                // send level comes from shared memory and so may be corrupt
3709                if (sendLevel > MAX_GAIN_INT) {
3710                    ALOGV("Track send level out of range: %04X", sendLevel);
3711                    sendLevel = MAX_GAIN_INT;
3712                }
3713                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3714                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3715            }
3716
3717            // Delegate volume control to effect in track effect chain if needed
3718            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3719                // Do not ramp volume if volume is controlled by effect
3720                param = AudioMixer::VOLUME;
3721                // Update remaining floating point volume levels
3722                vlf = (float)vl / (1 << 24);
3723                vrf = (float)vr / (1 << 24);
3724                track->mHasVolumeController = true;
3725            } else {
3726                // force no volume ramp when volume controller was just disabled or removed
3727                // from effect chain to avoid volume spike
3728                if (track->mHasVolumeController) {
3729                    param = AudioMixer::VOLUME;
3730                }
3731                track->mHasVolumeController = false;
3732            }
3733
3734            // XXX: these things DON'T need to be done each time
3735            mAudioMixer->setBufferProvider(name, track);
3736            mAudioMixer->enable(name);
3737
3738            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
3739            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
3740            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
3741            mAudioMixer->setParameter(
3742                name,
3743                AudioMixer::TRACK,
3744                AudioMixer::FORMAT, (void *)track->format());
3745            mAudioMixer->setParameter(
3746                name,
3747                AudioMixer::TRACK,
3748                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
3749            mAudioMixer->setParameter(
3750                name,
3751                AudioMixer::TRACK,
3752                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
3753            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3754            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
3755            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3756            if (reqSampleRate == 0) {
3757                reqSampleRate = mSampleRate;
3758            } else if (reqSampleRate > maxSampleRate) {
3759                reqSampleRate = maxSampleRate;
3760            }
3761            mAudioMixer->setParameter(
3762                name,
3763                AudioMixer::RESAMPLE,
3764                AudioMixer::SAMPLE_RATE,
3765                (void *)(uintptr_t)reqSampleRate);
3766            /*
3767             * Select the appropriate output buffer for the track.
3768             *
3769             * Tracks with effects go into their own effects chain buffer
3770             * and from there into either mEffectBuffer or mSinkBuffer.
3771             *
3772             * Other tracks can use mMixerBuffer for higher precision
3773             * channel accumulation.  If this buffer is enabled
3774             * (mMixerBufferEnabled true), then selected tracks will accumulate
3775             * into it.
3776             *
3777             */
3778            if (mMixerBufferEnabled
3779                    && (track->mainBuffer() == mSinkBuffer
3780                            || track->mainBuffer() == mMixerBuffer)) {
3781                mAudioMixer->setParameter(
3782                        name,
3783                        AudioMixer::TRACK,
3784                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
3785                mAudioMixer->setParameter(
3786                        name,
3787                        AudioMixer::TRACK,
3788                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
3789                // TODO: override track->mainBuffer()?
3790                mMixerBufferValid = true;
3791            } else {
3792                mAudioMixer->setParameter(
3793                        name,
3794                        AudioMixer::TRACK,
3795                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
3796                mAudioMixer->setParameter(
3797                        name,
3798                        AudioMixer::TRACK,
3799                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3800            }
3801            mAudioMixer->setParameter(
3802                name,
3803                AudioMixer::TRACK,
3804                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3805
3806            // reset retry count
3807            track->mRetryCount = kMaxTrackRetries;
3808
3809            // If one track is ready, set the mixer ready if:
3810            //  - the mixer was not ready during previous round OR
3811            //  - no other track is not ready
3812            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3813                    mixerStatus != MIXER_TRACKS_ENABLED) {
3814                mixerStatus = MIXER_TRACKS_READY;
3815            }
3816        } else {
3817            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3818                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3819            }
3820            // clear effect chain input buffer if an active track underruns to avoid sending
3821            // previous audio buffer again to effects
3822            chain = getEffectChain_l(track->sessionId());
3823            if (chain != 0) {
3824                chain->clearInputBuffer();
3825            }
3826
3827            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3828            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3829                    track->isStopped() || track->isPaused()) {
3830                // We have consumed all the buffers of this track.
3831                // Remove it from the list of active tracks.
3832                // TODO: use actual buffer filling status instead of latency when available from
3833                // audio HAL
3834                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3835                size_t framesWritten = mBytesWritten / mFrameSize;
3836                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3837                    if (track->isStopped()) {
3838                        track->reset();
3839                    }
3840                    tracksToRemove->add(track);
3841                }
3842            } else {
3843                // No buffers for this track. Give it a few chances to
3844                // fill a buffer, then remove it from active list.
3845                if (--(track->mRetryCount) <= 0) {
3846                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
3847                    tracksToRemove->add(track);
3848                    // indicate to client process that the track was disabled because of underrun;
3849                    // it will then automatically call start() when data is available
3850                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3851                // If one track is not ready, mark the mixer also not ready if:
3852                //  - the mixer was ready during previous round OR
3853                //  - no other track is ready
3854                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
3855                                mixerStatus != MIXER_TRACKS_READY) {
3856                    mixerStatus = MIXER_TRACKS_ENABLED;
3857                }
3858            }
3859            mAudioMixer->disable(name);
3860        }
3861
3862        }   // local variable scope to avoid goto warning
3863track_is_ready: ;
3864
3865    }
3866
3867    // Push the new FastMixer state if necessary
3868    bool pauseAudioWatchdog = false;
3869    if (didModify) {
3870        state->mFastTracksGen++;
3871        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
3872        if (kUseFastMixer == FastMixer_Dynamic &&
3873                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
3874            state->mCommand = FastMixerState::COLD_IDLE;
3875            state->mColdFutexAddr = &mFastMixerFutex;
3876            state->mColdGen++;
3877            mFastMixerFutex = 0;
3878            if (kUseFastMixer == FastMixer_Dynamic) {
3879                mNormalSink = mOutputSink;
3880            }
3881            // If we go into cold idle, need to wait for acknowledgement
3882            // so that fast mixer stops doing I/O.
3883            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3884            pauseAudioWatchdog = true;
3885        }
3886    }
3887    if (sq != NULL) {
3888        sq->end(didModify);
3889        sq->push(block);
3890    }
3891#ifdef AUDIO_WATCHDOG
3892    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
3893        mAudioWatchdog->pause();
3894    }
3895#endif
3896
3897    // Now perform the deferred reset on fast tracks that have stopped
3898    while (resetMask != 0) {
3899        size_t i = __builtin_ctz(resetMask);
3900        ALOG_ASSERT(i < count);
3901        resetMask &= ~(1 << i);
3902        sp<Track> t = mActiveTracks[i].promote();
3903        if (t == 0) {
3904            continue;
3905        }
3906        Track* track = t.get();
3907        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
3908        track->reset();
3909    }
3910
3911    // remove all the tracks that need to be...
3912    removeTracks_l(*tracksToRemove);
3913
3914    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
3915        mEffectBufferValid = true;
3916    }
3917
3918    if (mEffectBufferValid) {
3919        // as long as there are effects we should clear the effects buffer, to avoid
3920        // passing a non-clean buffer to the effect chain
3921        memset(mEffectBuffer, 0, mEffectBufferSize);
3922    }
3923    // sink or mix buffer must be cleared if all tracks are connected to an
3924    // effect chain as in this case the mixer will not write to the sink or mix buffer
3925    // and track effects will accumulate into it
3926    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3927            (mixedTracks == 0 && fastTracks > 0))) {
3928        // FIXME as a performance optimization, should remember previous zero status
3929        if (mMixerBufferValid) {
3930            memset(mMixerBuffer, 0, mMixerBufferSize);
3931            // TODO: In testing, mSinkBuffer below need not be cleared because
3932            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
3933            // after mixing.
3934            //
3935            // To enforce this guarantee:
3936            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3937            // (mixedTracks == 0 && fastTracks > 0))
3938            // must imply MIXER_TRACKS_READY.
3939            // Later, we may clear buffers regardless, and skip much of this logic.
3940        }
3941        // FIXME as a performance optimization, should remember previous zero status
3942        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
3943    }
3944
3945    // if any fast tracks, then status is ready
3946    mMixerStatusIgnoringFastTracks = mixerStatus;
3947    if (fastTracks > 0) {
3948        mixerStatus = MIXER_TRACKS_READY;
3949    }
3950    return mixerStatus;
3951}
3952
3953// getTrackName_l() must be called with ThreadBase::mLock held
3954int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
3955        audio_format_t format, int sessionId)
3956{
3957    return mAudioMixer->getTrackName(channelMask, format, sessionId);
3958}
3959
3960// deleteTrackName_l() must be called with ThreadBase::mLock held
3961void AudioFlinger::MixerThread::deleteTrackName_l(int name)
3962{
3963    ALOGV("remove track (%d) and delete from mixer", name);
3964    mAudioMixer->deleteTrackName(name);
3965}
3966
3967// checkForNewParameter_l() must be called with ThreadBase::mLock held
3968bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
3969                                                       status_t& status)
3970{
3971    bool reconfig = false;
3972
3973    status = NO_ERROR;
3974
3975    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3976    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3977    if (mFastMixer != 0) {
3978        FastMixerStateQueue *sq = mFastMixer->sq();
3979        FastMixerState *state = sq->begin();
3980        if (!(state->mCommand & FastMixerState::IDLE)) {
3981            previousCommand = state->mCommand;
3982            state->mCommand = FastMixerState::HOT_IDLE;
3983            sq->end();
3984            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3985        } else {
3986            sq->end(false /*didModify*/);
3987        }
3988    }
3989
3990    AudioParameter param = AudioParameter(keyValuePair);
3991    int value;
3992    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
3993        reconfig = true;
3994    }
3995    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
3996        if (!isValidPcmSinkFormat((audio_format_t) value)) {
3997            status = BAD_VALUE;
3998        } else {
3999            // no need to save value, since it's constant
4000            reconfig = true;
4001        }
4002    }
4003    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4004        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4005            status = BAD_VALUE;
4006        } else {
4007            // no need to save value, since it's constant
4008            reconfig = true;
4009        }
4010    }
4011    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4012        // do not accept frame count changes if tracks are open as the track buffer
4013        // size depends on frame count and correct behavior would not be guaranteed
4014        // if frame count is changed after track creation
4015        if (!mTracks.isEmpty()) {
4016            status = INVALID_OPERATION;
4017        } else {
4018            reconfig = true;
4019        }
4020    }
4021    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4022#ifdef ADD_BATTERY_DATA
4023        // when changing the audio output device, call addBatteryData to notify
4024        // the change
4025        if (mOutDevice != value) {
4026            uint32_t params = 0;
4027            // check whether speaker is on
4028            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4029                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4030            }
4031
4032            audio_devices_t deviceWithoutSpeaker
4033                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4034            // check if any other device (except speaker) is on
4035            if (value & deviceWithoutSpeaker ) {
4036                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4037            }
4038
4039            if (params != 0) {
4040                addBatteryData(params);
4041            }
4042        }
4043#endif
4044
4045        // forward device change to effects that have requested to be
4046        // aware of attached audio device.
4047        if (value != AUDIO_DEVICE_NONE) {
4048            mOutDevice = value;
4049            for (size_t i = 0; i < mEffectChains.size(); i++) {
4050                mEffectChains[i]->setDevice_l(mOutDevice);
4051            }
4052        }
4053    }
4054
4055    if (status == NO_ERROR) {
4056        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4057                                                keyValuePair.string());
4058        if (!mStandby && status == INVALID_OPERATION) {
4059            mOutput->standby();
4060            mStandby = true;
4061            mBytesWritten = 0;
4062            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4063                                                   keyValuePair.string());
4064        }
4065        if (status == NO_ERROR && reconfig) {
4066            readOutputParameters_l();
4067            delete mAudioMixer;
4068            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4069            for (size_t i = 0; i < mTracks.size() ; i++) {
4070                int name = getTrackName_l(mTracks[i]->mChannelMask,
4071                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4072                if (name < 0) {
4073                    break;
4074                }
4075                mTracks[i]->mName = name;
4076            }
4077            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4078        }
4079    }
4080
4081    if (!(previousCommand & FastMixerState::IDLE)) {
4082        ALOG_ASSERT(mFastMixer != 0);
4083        FastMixerStateQueue *sq = mFastMixer->sq();
4084        FastMixerState *state = sq->begin();
4085        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4086        state->mCommand = previousCommand;
4087        sq->end();
4088        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4089    }
4090
4091    return reconfig;
4092}
4093
4094
4095void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4096{
4097    const size_t SIZE = 256;
4098    char buffer[SIZE];
4099    String8 result;
4100
4101    PlaybackThread::dumpInternals(fd, args);
4102
4103    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4104
4105    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4106    const FastMixerDumpState copy(mFastMixerDumpState);
4107    copy.dump(fd);
4108
4109#ifdef STATE_QUEUE_DUMP
4110    // Similar for state queue
4111    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4112    observerCopy.dump(fd);
4113    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4114    mutatorCopy.dump(fd);
4115#endif
4116
4117#ifdef TEE_SINK
4118    // Write the tee output to a .wav file
4119    dumpTee(fd, mTeeSource, mId);
4120#endif
4121
4122#ifdef AUDIO_WATCHDOG
4123    if (mAudioWatchdog != 0) {
4124        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4125        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4126        wdCopy.dump(fd);
4127    }
4128#endif
4129}
4130
4131uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4132{
4133    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4134}
4135
4136uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4137{
4138    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4139}
4140
4141void AudioFlinger::MixerThread::cacheParameters_l()
4142{
4143    PlaybackThread::cacheParameters_l();
4144
4145    // FIXME: Relaxed timing because of a certain device that can't meet latency
4146    // Should be reduced to 2x after the vendor fixes the driver issue
4147    // increase threshold again due to low power audio mode. The way this warning
4148    // threshold is calculated and its usefulness should be reconsidered anyway.
4149    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4150}
4151
4152// ----------------------------------------------------------------------------
4153
4154AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4155        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
4156    :   PlaybackThread(audioFlinger, output, id, device, DIRECT)
4157        // mLeftVolFloat, mRightVolFloat
4158{
4159}
4160
4161AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4162        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4163        ThreadBase::type_t type)
4164    :   PlaybackThread(audioFlinger, output, id, device, type)
4165        // mLeftVolFloat, mRightVolFloat
4166{
4167}
4168
4169AudioFlinger::DirectOutputThread::~DirectOutputThread()
4170{
4171}
4172
4173void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4174{
4175    audio_track_cblk_t* cblk = track->cblk();
4176    float left, right;
4177
4178    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4179        left = right = 0;
4180    } else {
4181        float typeVolume = mStreamTypes[track->streamType()].volume;
4182        float v = mMasterVolume * typeVolume;
4183        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4184        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4185        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4186        if (left > GAIN_FLOAT_UNITY) {
4187            left = GAIN_FLOAT_UNITY;
4188        }
4189        left *= v;
4190        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4191        if (right > GAIN_FLOAT_UNITY) {
4192            right = GAIN_FLOAT_UNITY;
4193        }
4194        right *= v;
4195    }
4196
4197    if (lastTrack) {
4198        if (left != mLeftVolFloat || right != mRightVolFloat) {
4199            mLeftVolFloat = left;
4200            mRightVolFloat = right;
4201
4202            // Convert volumes from float to 8.24
4203            uint32_t vl = (uint32_t)(left * (1 << 24));
4204            uint32_t vr = (uint32_t)(right * (1 << 24));
4205
4206            // Delegate volume control to effect in track effect chain if needed
4207            // only one effect chain can be present on DirectOutputThread, so if
4208            // there is one, the track is connected to it
4209            if (!mEffectChains.isEmpty()) {
4210                mEffectChains[0]->setVolume_l(&vl, &vr);
4211                left = (float)vl / (1 << 24);
4212                right = (float)vr / (1 << 24);
4213            }
4214            if (mOutput->stream->set_volume) {
4215                mOutput->stream->set_volume(mOutput->stream, left, right);
4216            }
4217        }
4218    }
4219}
4220
4221
4222AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4223    Vector< sp<Track> > *tracksToRemove
4224)
4225{
4226    size_t count = mActiveTracks.size();
4227    mixer_state mixerStatus = MIXER_IDLE;
4228    bool doHwPause = false;
4229    bool doHwResume = false;
4230    bool flushPending = false;
4231
4232    // find out which tracks need to be processed
4233    for (size_t i = 0; i < count; i++) {
4234        sp<Track> t = mActiveTracks[i].promote();
4235        // The track died recently
4236        if (t == 0) {
4237            continue;
4238        }
4239
4240        Track* const track = t.get();
4241        audio_track_cblk_t* cblk = track->cblk();
4242        // Only consider last track started for volume and mixer state control.
4243        // In theory an older track could underrun and restart after the new one starts
4244        // but as we only care about the transition phase between two tracks on a
4245        // direct output, it is not a problem to ignore the underrun case.
4246        sp<Track> l = mLatestActiveTrack.promote();
4247        bool last = l.get() == track;
4248
4249        if (mHwSupportsPause && track->isPausing()) {
4250            track->setPaused();
4251            if (last && !mHwPaused) {
4252                doHwPause = true;
4253                mHwPaused = true;
4254            }
4255            tracksToRemove->add(track);
4256        } else if (track->isFlushPending()) {
4257            track->flushAck();
4258            if (last) {
4259                flushPending = true;
4260            }
4261        } else if (mHwSupportsPause && track->isResumePending()){
4262            track->resumeAck();
4263            if (last) {
4264                if (mHwPaused) {
4265                    doHwResume = true;
4266                    mHwPaused = false;
4267                }
4268            }
4269        }
4270
4271        // The first time a track is added we wait
4272        // for all its buffers to be filled before processing it.
4273        // Allow draining the buffer in case the client
4274        // app does not call stop() and relies on underrun to stop:
4275        // hence the test on (track->mRetryCount > 1).
4276        // If retryCount<=1 then track is about to underrun and be removed.
4277        uint32_t minFrames;
4278        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4279            && (track->mRetryCount > 1)) {
4280            minFrames = mNormalFrameCount;
4281        } else {
4282            minFrames = 1;
4283        }
4284
4285        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4286                !track->isStopping_2() && !track->isStopped())
4287        {
4288            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4289
4290            if (track->mFillingUpStatus == Track::FS_FILLED) {
4291                track->mFillingUpStatus = Track::FS_ACTIVE;
4292                // make sure processVolume_l() will apply new volume even if 0
4293                mLeftVolFloat = mRightVolFloat = -1.0;
4294                if (!mHwSupportsPause) {
4295                    track->resumeAck();
4296                }
4297            }
4298
4299            // compute volume for this track
4300            processVolume_l(track, last);
4301            if (last) {
4302                // reset retry count
4303                track->mRetryCount = kMaxTrackRetriesDirect;
4304                mActiveTrack = t;
4305                mixerStatus = MIXER_TRACKS_READY;
4306                if (usesHwAvSync() && mHwPaused) {
4307                    doHwResume = true;
4308                    mHwPaused = false;
4309                }
4310            }
4311        } else {
4312            // clear effect chain input buffer if the last active track started underruns
4313            // to avoid sending previous audio buffer again to effects
4314            if (!mEffectChains.isEmpty() && last) {
4315                mEffectChains[0]->clearInputBuffer();
4316            }
4317            if (track->isStopping_1()) {
4318                track->mState = TrackBase::STOPPING_2;
4319            }
4320            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4321                    track->isStopping_2() || track->isPaused()) {
4322                // We have consumed all the buffers of this track.
4323                // Remove it from the list of active tracks.
4324                size_t audioHALFrames;
4325                if (audio_is_linear_pcm(mFormat)) {
4326                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4327                } else {
4328                    audioHALFrames = 0;
4329                }
4330
4331                size_t framesWritten = mBytesWritten / mFrameSize;
4332                if (mStandby || !last ||
4333                        track->presentationComplete(framesWritten, audioHALFrames)) {
4334                    if (track->isStopping_2()) {
4335                        track->mState = TrackBase::STOPPED;
4336                    }
4337                    if (track->isStopped()) {
4338                        track->reset();
4339                    }
4340                    tracksToRemove->add(track);
4341                }
4342            } else {
4343                // No buffers for this track. Give it a few chances to
4344                // fill a buffer, then remove it from active list.
4345                // Only consider last track started for mixer state control
4346                if (--(track->mRetryCount) <= 0) {
4347                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4348                    tracksToRemove->add(track);
4349                    // indicate to client process that the track was disabled because of underrun;
4350                    // it will then automatically call start() when data is available
4351                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4352                } else if (last) {
4353                    mixerStatus = MIXER_TRACKS_ENABLED;
4354                    if (usesHwAvSync() && !mHwPaused && !mStandby) {
4355                        doHwPause = true;
4356                        mHwPaused = true;
4357                    }
4358                }
4359            }
4360        }
4361    }
4362
4363    // if an active track did not command a flush, check for pending flush on stopped tracks
4364    if (!flushPending) {
4365        for (size_t i = 0; i < mTracks.size(); i++) {
4366            if (mTracks[i]->isFlushPending()) {
4367                mTracks[i]->flushAck();
4368                flushPending = true;
4369            }
4370        }
4371    }
4372
4373    // make sure the pause/flush/resume sequence is executed in the right order.
4374    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4375    // before flush and then resume HW. This can happen in case of pause/flush/resume
4376    // if resume is received before pause is executed.
4377    if (mHwSupportsPause && !mStandby &&
4378            (doHwPause || (flushPending && !mHwPaused && (count != 0)))) {
4379        mOutput->stream->pause(mOutput->stream);
4380    }
4381    if (flushPending) {
4382        flushHw_l();
4383    }
4384    if (mHwSupportsPause && !mStandby && doHwResume) {
4385        mOutput->stream->resume(mOutput->stream);
4386    }
4387    // remove all the tracks that need to be...
4388    removeTracks_l(*tracksToRemove);
4389
4390    return mixerStatus;
4391}
4392
4393void AudioFlinger::DirectOutputThread::threadLoop_mix()
4394{
4395    size_t frameCount = mFrameCount;
4396    int8_t *curBuf = (int8_t *)mSinkBuffer;
4397    // output audio to hardware
4398    while (frameCount) {
4399        AudioBufferProvider::Buffer buffer;
4400        buffer.frameCount = frameCount;
4401        status_t status = mActiveTrack->getNextBuffer(&buffer);
4402        if (status != NO_ERROR || buffer.raw == NULL) {
4403            memset(curBuf, 0, frameCount * mFrameSize);
4404            break;
4405        }
4406        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4407        frameCount -= buffer.frameCount;
4408        curBuf += buffer.frameCount * mFrameSize;
4409        mActiveTrack->releaseBuffer(&buffer);
4410    }
4411    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4412    sleepTime = 0;
4413    standbyTime = systemTime() + standbyDelay;
4414    mActiveTrack.clear();
4415}
4416
4417void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4418{
4419    // do not write to HAL when paused
4420    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4421        sleepTime = idleSleepTime;
4422        return;
4423    }
4424    if (sleepTime == 0) {
4425        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4426            sleepTime = activeSleepTime;
4427        } else {
4428            sleepTime = idleSleepTime;
4429        }
4430    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4431        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4432        sleepTime = 0;
4433    }
4434}
4435
4436void AudioFlinger::DirectOutputThread::threadLoop_exit()
4437{
4438    {
4439        Mutex::Autolock _l(mLock);
4440        bool flushPending = false;
4441        for (size_t i = 0; i < mTracks.size(); i++) {
4442            if (mTracks[i]->isFlushPending()) {
4443                mTracks[i]->flushAck();
4444                flushPending = true;
4445            }
4446        }
4447        if (flushPending) {
4448            flushHw_l();
4449        }
4450    }
4451    PlaybackThread::threadLoop_exit();
4452}
4453
4454// must be called with thread mutex locked
4455bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4456{
4457    bool trackPaused = false;
4458
4459    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4460    // after a timeout and we will enter standby then.
4461    if (mTracks.size() > 0) {
4462        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4463    }
4464
4465    return !mStandby && !(trackPaused || (usesHwAvSync() && mHwPaused));
4466}
4467
4468// getTrackName_l() must be called with ThreadBase::mLock held
4469int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4470        audio_format_t format __unused, int sessionId __unused)
4471{
4472    return 0;
4473}
4474
4475// deleteTrackName_l() must be called with ThreadBase::mLock held
4476void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4477{
4478}
4479
4480// checkForNewParameter_l() must be called with ThreadBase::mLock held
4481bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4482                                                              status_t& status)
4483{
4484    bool reconfig = false;
4485
4486    status = NO_ERROR;
4487
4488    AudioParameter param = AudioParameter(keyValuePair);
4489    int value;
4490    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4491        // forward device change to effects that have requested to be
4492        // aware of attached audio device.
4493        if (value != AUDIO_DEVICE_NONE) {
4494            mOutDevice = value;
4495            for (size_t i = 0; i < mEffectChains.size(); i++) {
4496                mEffectChains[i]->setDevice_l(mOutDevice);
4497            }
4498        }
4499    }
4500    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4501        // do not accept frame count changes if tracks are open as the track buffer
4502        // size depends on frame count and correct behavior would not be garantied
4503        // if frame count is changed after track creation
4504        if (!mTracks.isEmpty()) {
4505            status = INVALID_OPERATION;
4506        } else {
4507            reconfig = true;
4508        }
4509    }
4510    if (status == NO_ERROR) {
4511        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4512                                                keyValuePair.string());
4513        if (!mStandby && status == INVALID_OPERATION) {
4514            mOutput->standby();
4515            mStandby = true;
4516            mBytesWritten = 0;
4517            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4518                                                   keyValuePair.string());
4519        }
4520        if (status == NO_ERROR && reconfig) {
4521            readOutputParameters_l();
4522            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4523        }
4524    }
4525
4526    return reconfig;
4527}
4528
4529uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4530{
4531    uint32_t time;
4532    if (audio_is_linear_pcm(mFormat)) {
4533        time = PlaybackThread::activeSleepTimeUs();
4534    } else {
4535        time = 10000;
4536    }
4537    return time;
4538}
4539
4540uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4541{
4542    uint32_t time;
4543    if (audio_is_linear_pcm(mFormat)) {
4544        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4545    } else {
4546        time = 10000;
4547    }
4548    return time;
4549}
4550
4551uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4552{
4553    uint32_t time;
4554    if (audio_is_linear_pcm(mFormat)) {
4555        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4556    } else {
4557        time = 10000;
4558    }
4559    return time;
4560}
4561
4562void AudioFlinger::DirectOutputThread::cacheParameters_l()
4563{
4564    PlaybackThread::cacheParameters_l();
4565
4566    // use shorter standby delay as on normal output to release
4567    // hardware resources as soon as possible
4568    if (audio_is_linear_pcm(mFormat)) {
4569        standbyDelay = microseconds(activeSleepTime*2);
4570    } else {
4571        standbyDelay = kOffloadStandbyDelayNs;
4572    }
4573}
4574
4575void AudioFlinger::DirectOutputThread::flushHw_l()
4576{
4577    mOutput->flush();
4578    mHwPaused = false;
4579}
4580
4581// ----------------------------------------------------------------------------
4582
4583AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4584        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4585    :   Thread(false /*canCallJava*/),
4586        mPlaybackThread(playbackThread),
4587        mWriteAckSequence(0),
4588        mDrainSequence(0)
4589{
4590}
4591
4592AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4593{
4594}
4595
4596void AudioFlinger::AsyncCallbackThread::onFirstRef()
4597{
4598    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4599}
4600
4601bool AudioFlinger::AsyncCallbackThread::threadLoop()
4602{
4603    while (!exitPending()) {
4604        uint32_t writeAckSequence;
4605        uint32_t drainSequence;
4606
4607        {
4608            Mutex::Autolock _l(mLock);
4609            while (!((mWriteAckSequence & 1) ||
4610                     (mDrainSequence & 1) ||
4611                     exitPending())) {
4612                mWaitWorkCV.wait(mLock);
4613            }
4614
4615            if (exitPending()) {
4616                break;
4617            }
4618            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4619                  mWriteAckSequence, mDrainSequence);
4620            writeAckSequence = mWriteAckSequence;
4621            mWriteAckSequence &= ~1;
4622            drainSequence = mDrainSequence;
4623            mDrainSequence &= ~1;
4624        }
4625        {
4626            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4627            if (playbackThread != 0) {
4628                if (writeAckSequence & 1) {
4629                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4630                }
4631                if (drainSequence & 1) {
4632                    playbackThread->resetDraining(drainSequence >> 1);
4633                }
4634            }
4635        }
4636    }
4637    return false;
4638}
4639
4640void AudioFlinger::AsyncCallbackThread::exit()
4641{
4642    ALOGV("AsyncCallbackThread::exit");
4643    Mutex::Autolock _l(mLock);
4644    requestExit();
4645    mWaitWorkCV.broadcast();
4646}
4647
4648void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4649{
4650    Mutex::Autolock _l(mLock);
4651    // bit 0 is cleared
4652    mWriteAckSequence = sequence << 1;
4653}
4654
4655void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4656{
4657    Mutex::Autolock _l(mLock);
4658    // ignore unexpected callbacks
4659    if (mWriteAckSequence & 2) {
4660        mWriteAckSequence |= 1;
4661        mWaitWorkCV.signal();
4662    }
4663}
4664
4665void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4666{
4667    Mutex::Autolock _l(mLock);
4668    // bit 0 is cleared
4669    mDrainSequence = sequence << 1;
4670}
4671
4672void AudioFlinger::AsyncCallbackThread::resetDraining()
4673{
4674    Mutex::Autolock _l(mLock);
4675    // ignore unexpected callbacks
4676    if (mDrainSequence & 2) {
4677        mDrainSequence |= 1;
4678        mWaitWorkCV.signal();
4679    }
4680}
4681
4682
4683// ----------------------------------------------------------------------------
4684AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
4685        AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
4686    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
4687        mPausedBytesRemaining(0)
4688{
4689    //FIXME: mStandby should be set to true by ThreadBase constructor
4690    mStandby = true;
4691}
4692
4693void AudioFlinger::OffloadThread::threadLoop_exit()
4694{
4695    if (mFlushPending || mHwPaused) {
4696        // If a flush is pending or track was paused, just discard buffered data
4697        flushHw_l();
4698    } else {
4699        mMixerStatus = MIXER_DRAIN_ALL;
4700        threadLoop_drain();
4701    }
4702    if (mUseAsyncWrite) {
4703        ALOG_ASSERT(mCallbackThread != 0);
4704        mCallbackThread->exit();
4705    }
4706    PlaybackThread::threadLoop_exit();
4707}
4708
4709AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
4710    Vector< sp<Track> > *tracksToRemove
4711)
4712{
4713    size_t count = mActiveTracks.size();
4714
4715    mixer_state mixerStatus = MIXER_IDLE;
4716    bool doHwPause = false;
4717    bool doHwResume = false;
4718
4719    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
4720
4721    // find out which tracks need to be processed
4722    for (size_t i = 0; i < count; i++) {
4723        sp<Track> t = mActiveTracks[i].promote();
4724        // The track died recently
4725        if (t == 0) {
4726            continue;
4727        }
4728        Track* const track = t.get();
4729        audio_track_cblk_t* cblk = track->cblk();
4730        // Only consider last track started for volume and mixer state control.
4731        // In theory an older track could underrun and restart after the new one starts
4732        // but as we only care about the transition phase between two tracks on a
4733        // direct output, it is not a problem to ignore the underrun case.
4734        sp<Track> l = mLatestActiveTrack.promote();
4735        bool last = l.get() == track;
4736
4737        if (track->isInvalid()) {
4738            ALOGW("An invalidated track shouldn't be in active list");
4739            tracksToRemove->add(track);
4740            continue;
4741        }
4742
4743        if (track->mState == TrackBase::IDLE) {
4744            ALOGW("An idle track shouldn't be in active list");
4745            continue;
4746        }
4747
4748        if (track->isPausing()) {
4749            track->setPaused();
4750            if (last) {
4751                if (!mHwPaused) {
4752                    doHwPause = true;
4753                    mHwPaused = true;
4754                }
4755                // If we were part way through writing the mixbuffer to
4756                // the HAL we must save this until we resume
4757                // BUG - this will be wrong if a different track is made active,
4758                // in that case we want to discard the pending data in the
4759                // mixbuffer and tell the client to present it again when the
4760                // track is resumed
4761                mPausedWriteLength = mCurrentWriteLength;
4762                mPausedBytesRemaining = mBytesRemaining;
4763                mBytesRemaining = 0;    // stop writing
4764            }
4765            tracksToRemove->add(track);
4766        } else if (track->isFlushPending()) {
4767            track->flushAck();
4768            if (last) {
4769                mFlushPending = true;
4770            }
4771        } else if (track->isResumePending()){
4772            track->resumeAck();
4773            if (last) {
4774                if (mPausedBytesRemaining) {
4775                    // Need to continue write that was interrupted
4776                    mCurrentWriteLength = mPausedWriteLength;
4777                    mBytesRemaining = mPausedBytesRemaining;
4778                    mPausedBytesRemaining = 0;
4779                }
4780                if (mHwPaused) {
4781                    doHwResume = true;
4782                    mHwPaused = false;
4783                    // threadLoop_mix() will handle the case that we need to
4784                    // resume an interrupted write
4785                }
4786                // enable write to audio HAL
4787                sleepTime = 0;
4788
4789                // Do not handle new data in this iteration even if track->framesReady()
4790                mixerStatus = MIXER_TRACKS_ENABLED;
4791            }
4792        }  else if (track->framesReady() && track->isReady() &&
4793                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4794            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4795            if (track->mFillingUpStatus == Track::FS_FILLED) {
4796                track->mFillingUpStatus = Track::FS_ACTIVE;
4797                // make sure processVolume_l() will apply new volume even if 0
4798                mLeftVolFloat = mRightVolFloat = -1.0;
4799            }
4800
4801            if (last) {
4802                sp<Track> previousTrack = mPreviousTrack.promote();
4803                if (previousTrack != 0) {
4804                    if (track != previousTrack.get()) {
4805                        // Flush any data still being written from last track
4806                        mBytesRemaining = 0;
4807                        if (mPausedBytesRemaining) {
4808                            // Last track was paused so we also need to flush saved
4809                            // mixbuffer state and invalidate track so that it will
4810                            // re-submit that unwritten data when it is next resumed
4811                            mPausedBytesRemaining = 0;
4812                            // Invalidate is a bit drastic - would be more efficient
4813                            // to have a flag to tell client that some of the
4814                            // previously written data was lost
4815                            previousTrack->invalidate();
4816                        }
4817                        // flush data already sent to the DSP if changing audio session as audio
4818                        // comes from a different source. Also invalidate previous track to force a
4819                        // seek when resuming.
4820                        if (previousTrack->sessionId() != track->sessionId()) {
4821                            previousTrack->invalidate();
4822                        }
4823                    }
4824                }
4825                mPreviousTrack = track;
4826                // reset retry count
4827                track->mRetryCount = kMaxTrackRetriesOffload;
4828                mActiveTrack = t;
4829                mixerStatus = MIXER_TRACKS_READY;
4830            }
4831        } else {
4832            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4833            if (track->isStopping_1()) {
4834                // Hardware buffer can hold a large amount of audio so we must
4835                // wait for all current track's data to drain before we say
4836                // that the track is stopped.
4837                if (mBytesRemaining == 0) {
4838                    // Only start draining when all data in mixbuffer
4839                    // has been written
4840                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
4841                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
4842                    // do not drain if no data was ever sent to HAL (mStandby == true)
4843                    if (last && !mStandby) {
4844                        // do not modify drain sequence if we are already draining. This happens
4845                        // when resuming from pause after drain.
4846                        if ((mDrainSequence & 1) == 0) {
4847                            sleepTime = 0;
4848                            standbyTime = systemTime() + standbyDelay;
4849                            mixerStatus = MIXER_DRAIN_TRACK;
4850                            mDrainSequence += 2;
4851                        }
4852                        if (mHwPaused) {
4853                            // It is possible to move from PAUSED to STOPPING_1 without
4854                            // a resume so we must ensure hardware is running
4855                            doHwResume = true;
4856                            mHwPaused = false;
4857                        }
4858                    }
4859                }
4860            } else if (track->isStopping_2()) {
4861                // Drain has completed or we are in standby, signal presentation complete
4862                if (!(mDrainSequence & 1) || !last || mStandby) {
4863                    track->mState = TrackBase::STOPPED;
4864                    size_t audioHALFrames =
4865                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4866                    size_t framesWritten =
4867                            mBytesWritten / mOutput->getFrameSize();
4868                    track->presentationComplete(framesWritten, audioHALFrames);
4869                    track->reset();
4870                    tracksToRemove->add(track);
4871                }
4872            } else {
4873                // No buffers for this track. Give it a few chances to
4874                // fill a buffer, then remove it from active list.
4875                if (--(track->mRetryCount) <= 0) {
4876                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
4877                          track->name());
4878                    tracksToRemove->add(track);
4879                    // indicate to client process that the track was disabled because of underrun;
4880                    // it will then automatically call start() when data is available
4881                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4882                } else if (last){
4883                    mixerStatus = MIXER_TRACKS_ENABLED;
4884                }
4885            }
4886        }
4887        // compute volume for this track
4888        processVolume_l(track, last);
4889    }
4890
4891    // make sure the pause/flush/resume sequence is executed in the right order.
4892    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4893    // before flush and then resume HW. This can happen in case of pause/flush/resume
4894    // if resume is received before pause is executed.
4895    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4896        mOutput->stream->pause(mOutput->stream);
4897    }
4898    if (mFlushPending) {
4899        flushHw_l();
4900        mFlushPending = false;
4901    }
4902    if (!mStandby && doHwResume) {
4903        mOutput->stream->resume(mOutput->stream);
4904    }
4905
4906    // remove all the tracks that need to be...
4907    removeTracks_l(*tracksToRemove);
4908
4909    return mixerStatus;
4910}
4911
4912// must be called with thread mutex locked
4913bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
4914{
4915    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
4916          mWriteAckSequence, mDrainSequence);
4917    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
4918        return true;
4919    }
4920    return false;
4921}
4922
4923bool AudioFlinger::OffloadThread::waitingAsyncCallback()
4924{
4925    Mutex::Autolock _l(mLock);
4926    return waitingAsyncCallback_l();
4927}
4928
4929void AudioFlinger::OffloadThread::flushHw_l()
4930{
4931    DirectOutputThread::flushHw_l();
4932    // Flush anything still waiting in the mixbuffer
4933    mCurrentWriteLength = 0;
4934    mBytesRemaining = 0;
4935    mPausedWriteLength = 0;
4936    mPausedBytesRemaining = 0;
4937
4938    if (mUseAsyncWrite) {
4939        // discard any pending drain or write ack by incrementing sequence
4940        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4941        mDrainSequence = (mDrainSequence + 2) & ~1;
4942        ALOG_ASSERT(mCallbackThread != 0);
4943        mCallbackThread->setWriteBlocked(mWriteAckSequence);
4944        mCallbackThread->setDraining(mDrainSequence);
4945    }
4946}
4947
4948void AudioFlinger::OffloadThread::onAddNewTrack_l()
4949{
4950    sp<Track> previousTrack = mPreviousTrack.promote();
4951    sp<Track> latestTrack = mLatestActiveTrack.promote();
4952
4953    if (previousTrack != 0 && latestTrack != 0 &&
4954        (previousTrack->sessionId() != latestTrack->sessionId())) {
4955        mFlushPending = true;
4956    }
4957    PlaybackThread::onAddNewTrack_l();
4958}
4959
4960// ----------------------------------------------------------------------------
4961
4962AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
4963        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
4964    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
4965                DUPLICATING),
4966        mWaitTimeMs(UINT_MAX)
4967{
4968    addOutputTrack(mainThread);
4969}
4970
4971AudioFlinger::DuplicatingThread::~DuplicatingThread()
4972{
4973    for (size_t i = 0; i < mOutputTracks.size(); i++) {
4974        mOutputTracks[i]->destroy();
4975    }
4976}
4977
4978void AudioFlinger::DuplicatingThread::threadLoop_mix()
4979{
4980    // mix buffers...
4981    if (outputsReady(outputTracks)) {
4982        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
4983    } else {
4984        if (mMixerBufferValid) {
4985            memset(mMixerBuffer, 0, mMixerBufferSize);
4986        } else {
4987            memset(mSinkBuffer, 0, mSinkBufferSize);
4988        }
4989    }
4990    sleepTime = 0;
4991    writeFrames = mNormalFrameCount;
4992    mCurrentWriteLength = mSinkBufferSize;
4993    standbyTime = systemTime() + standbyDelay;
4994}
4995
4996void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
4997{
4998    if (sleepTime == 0) {
4999        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5000            sleepTime = activeSleepTime;
5001        } else {
5002            sleepTime = idleSleepTime;
5003        }
5004    } else if (mBytesWritten != 0) {
5005        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5006            writeFrames = mNormalFrameCount;
5007            memset(mSinkBuffer, 0, mSinkBufferSize);
5008        } else {
5009            // flush remaining overflow buffers in output tracks
5010            writeFrames = 0;
5011        }
5012        sleepTime = 0;
5013    }
5014}
5015
5016ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5017{
5018    for (size_t i = 0; i < outputTracks.size(); i++) {
5019        outputTracks[i]->write(mSinkBuffer, writeFrames);
5020    }
5021    mStandby = false;
5022    return (ssize_t)mSinkBufferSize;
5023}
5024
5025void AudioFlinger::DuplicatingThread::threadLoop_standby()
5026{
5027    // DuplicatingThread implements standby by stopping all tracks
5028    for (size_t i = 0; i < outputTracks.size(); i++) {
5029        outputTracks[i]->stop();
5030    }
5031}
5032
5033void AudioFlinger::DuplicatingThread::saveOutputTracks()
5034{
5035    outputTracks = mOutputTracks;
5036}
5037
5038void AudioFlinger::DuplicatingThread::clearOutputTracks()
5039{
5040    outputTracks.clear();
5041}
5042
5043void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5044{
5045    Mutex::Autolock _l(mLock);
5046    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5047    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5048    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5049    const size_t frameCount =
5050            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5051    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5052    // from different OutputTracks and their associated MixerThreads (e.g. one may
5053    // nearly empty and the other may be dropping data).
5054
5055    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5056                                            this,
5057                                            mSampleRate,
5058                                            mFormat,
5059                                            mChannelMask,
5060                                            frameCount,
5061                                            IPCThreadState::self()->getCallingUid());
5062    if (outputTrack->cblk() != NULL) {
5063        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5064        mOutputTracks.add(outputTrack);
5065        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5066        updateWaitTime_l();
5067    }
5068}
5069
5070void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5071{
5072    Mutex::Autolock _l(mLock);
5073    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5074        if (mOutputTracks[i]->thread() == thread) {
5075            mOutputTracks[i]->destroy();
5076            mOutputTracks.removeAt(i);
5077            updateWaitTime_l();
5078            return;
5079        }
5080    }
5081    ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
5082}
5083
5084// caller must hold mLock
5085void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5086{
5087    mWaitTimeMs = UINT_MAX;
5088    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5089        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5090        if (strong != 0) {
5091            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5092            if (waitTimeMs < mWaitTimeMs) {
5093                mWaitTimeMs = waitTimeMs;
5094            }
5095        }
5096    }
5097}
5098
5099
5100bool AudioFlinger::DuplicatingThread::outputsReady(
5101        const SortedVector< sp<OutputTrack> > &outputTracks)
5102{
5103    for (size_t i = 0; i < outputTracks.size(); i++) {
5104        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5105        if (thread == 0) {
5106            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5107                    outputTracks[i].get());
5108            return false;
5109        }
5110        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5111        // see note at standby() declaration
5112        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5113            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5114                    thread.get());
5115            return false;
5116        }
5117    }
5118    return true;
5119}
5120
5121uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5122{
5123    return (mWaitTimeMs * 1000) / 2;
5124}
5125
5126void AudioFlinger::DuplicatingThread::cacheParameters_l()
5127{
5128    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5129    updateWaitTime_l();
5130
5131    MixerThread::cacheParameters_l();
5132}
5133
5134// ----------------------------------------------------------------------------
5135//      Record
5136// ----------------------------------------------------------------------------
5137
5138AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5139                                         AudioStreamIn *input,
5140                                         audio_io_handle_t id,
5141                                         audio_devices_t outDevice,
5142                                         audio_devices_t inDevice
5143#ifdef TEE_SINK
5144                                         , const sp<NBAIO_Sink>& teeSink
5145#endif
5146                                         ) :
5147    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
5148    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5149    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5150    mRsmpInRear(0)
5151#ifdef TEE_SINK
5152    , mTeeSink(teeSink)
5153#endif
5154    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5155            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5156    // mFastCapture below
5157    , mFastCaptureFutex(0)
5158    // mInputSource
5159    // mPipeSink
5160    // mPipeSource
5161    , mPipeFramesP2(0)
5162    // mPipeMemory
5163    // mFastCaptureNBLogWriter
5164    , mFastTrackAvail(false)
5165{
5166    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5167    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5168
5169    readInputParameters_l();
5170
5171    // create an NBAIO source for the HAL input stream, and negotiate
5172    mInputSource = new AudioStreamInSource(input->stream);
5173    size_t numCounterOffers = 0;
5174    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5175    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5176    ALOG_ASSERT(index == 0);
5177
5178    // initialize fast capture depending on configuration
5179    bool initFastCapture;
5180    switch (kUseFastCapture) {
5181    case FastCapture_Never:
5182        initFastCapture = false;
5183        break;
5184    case FastCapture_Always:
5185        initFastCapture = true;
5186        break;
5187    case FastCapture_Static:
5188        uint32_t primaryOutputSampleRate;
5189        {
5190            AutoMutex _l(audioFlinger->mHardwareLock);
5191            primaryOutputSampleRate = audioFlinger->mPrimaryOutputSampleRate;
5192        }
5193        initFastCapture =
5194                // either capture sample rate is same as (a reasonable) primary output sample rate
5195                (((primaryOutputSampleRate == 44100 || primaryOutputSampleRate == 48000) &&
5196                    (mSampleRate == primaryOutputSampleRate)) ||
5197                // or primary output sample rate is unknown, and capture sample rate is reasonable
5198                ((primaryOutputSampleRate == 0) &&
5199                    ((mSampleRate == 44100 || mSampleRate == 48000)))) &&
5200                // and the buffer size is < 12 ms
5201                (mFrameCount * 1000) / mSampleRate < 12;
5202        break;
5203    // case FastCapture_Dynamic:
5204    }
5205
5206    if (initFastCapture) {
5207        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5208        NBAIO_Format format = mInputSource->format();
5209        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5210        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5211        void *pipeBuffer;
5212        const sp<MemoryDealer> roHeap(readOnlyHeap());
5213        sp<IMemory> pipeMemory;
5214        if ((roHeap == 0) ||
5215                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5216                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5217            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5218            goto failed;
5219        }
5220        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5221        memset(pipeBuffer, 0, pipeSize);
5222        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5223        const NBAIO_Format offers[1] = {format};
5224        size_t numCounterOffers = 0;
5225        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5226        ALOG_ASSERT(index == 0);
5227        mPipeSink = pipe;
5228        PipeReader *pipeReader = new PipeReader(*pipe);
5229        numCounterOffers = 0;
5230        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5231        ALOG_ASSERT(index == 0);
5232        mPipeSource = pipeReader;
5233        mPipeFramesP2 = pipeFramesP2;
5234        mPipeMemory = pipeMemory;
5235
5236        // create fast capture
5237        mFastCapture = new FastCapture();
5238        FastCaptureStateQueue *sq = mFastCapture->sq();
5239#ifdef STATE_QUEUE_DUMP
5240        // FIXME
5241#endif
5242        FastCaptureState *state = sq->begin();
5243        state->mCblk = NULL;
5244        state->mInputSource = mInputSource.get();
5245        state->mInputSourceGen++;
5246        state->mPipeSink = pipe;
5247        state->mPipeSinkGen++;
5248        state->mFrameCount = mFrameCount;
5249        state->mCommand = FastCaptureState::COLD_IDLE;
5250        // already done in constructor initialization list
5251        //mFastCaptureFutex = 0;
5252        state->mColdFutexAddr = &mFastCaptureFutex;
5253        state->mColdGen++;
5254        state->mDumpState = &mFastCaptureDumpState;
5255#ifdef TEE_SINK
5256        // FIXME
5257#endif
5258        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5259        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5260        sq->end();
5261        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5262
5263        // start the fast capture
5264        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5265        pid_t tid = mFastCapture->getTid();
5266        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
5267        if (err != 0) {
5268            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
5269                    kPriorityFastCapture, getpid_cached, tid, err);
5270        }
5271
5272#ifdef AUDIO_WATCHDOG
5273        // FIXME
5274#endif
5275
5276        mFastTrackAvail = true;
5277    }
5278failed: ;
5279
5280    // FIXME mNormalSource
5281}
5282
5283
5284AudioFlinger::RecordThread::~RecordThread()
5285{
5286    if (mFastCapture != 0) {
5287        FastCaptureStateQueue *sq = mFastCapture->sq();
5288        FastCaptureState *state = sq->begin();
5289        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5290            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5291            if (old == -1) {
5292                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5293            }
5294        }
5295        state->mCommand = FastCaptureState::EXIT;
5296        sq->end();
5297        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5298        mFastCapture->join();
5299        mFastCapture.clear();
5300    }
5301    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5302    mAudioFlinger->unregisterWriter(mNBLogWriter);
5303    delete[] mRsmpInBuffer;
5304}
5305
5306void AudioFlinger::RecordThread::onFirstRef()
5307{
5308    run(mThreadName, PRIORITY_URGENT_AUDIO);
5309}
5310
5311bool AudioFlinger::RecordThread::threadLoop()
5312{
5313    nsecs_t lastWarning = 0;
5314
5315    inputStandBy();
5316
5317reacquire_wakelock:
5318    sp<RecordTrack> activeTrack;
5319    int activeTracksGen;
5320    {
5321        Mutex::Autolock _l(mLock);
5322        size_t size = mActiveTracks.size();
5323        activeTracksGen = mActiveTracksGen;
5324        if (size > 0) {
5325            // FIXME an arbitrary choice
5326            activeTrack = mActiveTracks[0];
5327            acquireWakeLock_l(activeTrack->uid());
5328            if (size > 1) {
5329                SortedVector<int> tmp;
5330                for (size_t i = 0; i < size; i++) {
5331                    tmp.add(mActiveTracks[i]->uid());
5332                }
5333                updateWakeLockUids_l(tmp);
5334            }
5335        } else {
5336            acquireWakeLock_l(-1);
5337        }
5338    }
5339
5340    // used to request a deferred sleep, to be executed later while mutex is unlocked
5341    uint32_t sleepUs = 0;
5342
5343    // loop while there is work to do
5344    for (;;) {
5345        Vector< sp<EffectChain> > effectChains;
5346
5347        // sleep with mutex unlocked
5348        if (sleepUs > 0) {
5349            ATRACE_BEGIN("sleep");
5350            usleep(sleepUs);
5351            ATRACE_END();
5352            sleepUs = 0;
5353        }
5354
5355        // activeTracks accumulates a copy of a subset of mActiveTracks
5356        Vector< sp<RecordTrack> > activeTracks;
5357
5358        // reference to the (first and only) active fast track
5359        sp<RecordTrack> fastTrack;
5360
5361        // reference to a fast track which is about to be removed
5362        sp<RecordTrack> fastTrackToRemove;
5363
5364        { // scope for mLock
5365            Mutex::Autolock _l(mLock);
5366
5367            processConfigEvents_l();
5368
5369            // check exitPending here because checkForNewParameters_l() and
5370            // checkForNewParameters_l() can temporarily release mLock
5371            if (exitPending()) {
5372                break;
5373            }
5374
5375            // if no active track(s), then standby and release wakelock
5376            size_t size = mActiveTracks.size();
5377            if (size == 0) {
5378                standbyIfNotAlreadyInStandby();
5379                // exitPending() can't become true here
5380                releaseWakeLock_l();
5381                ALOGV("RecordThread: loop stopping");
5382                // go to sleep
5383                mWaitWorkCV.wait(mLock);
5384                ALOGV("RecordThread: loop starting");
5385                goto reacquire_wakelock;
5386            }
5387
5388            if (mActiveTracksGen != activeTracksGen) {
5389                activeTracksGen = mActiveTracksGen;
5390                SortedVector<int> tmp;
5391                for (size_t i = 0; i < size; i++) {
5392                    tmp.add(mActiveTracks[i]->uid());
5393                }
5394                updateWakeLockUids_l(tmp);
5395            }
5396
5397            bool doBroadcast = false;
5398            for (size_t i = 0; i < size; ) {
5399
5400                activeTrack = mActiveTracks[i];
5401                if (activeTrack->isTerminated()) {
5402                    if (activeTrack->isFastTrack()) {
5403                        ALOG_ASSERT(fastTrackToRemove == 0);
5404                        fastTrackToRemove = activeTrack;
5405                    }
5406                    removeTrack_l(activeTrack);
5407                    mActiveTracks.remove(activeTrack);
5408                    mActiveTracksGen++;
5409                    size--;
5410                    continue;
5411                }
5412
5413                TrackBase::track_state activeTrackState = activeTrack->mState;
5414                switch (activeTrackState) {
5415
5416                case TrackBase::PAUSING:
5417                    mActiveTracks.remove(activeTrack);
5418                    mActiveTracksGen++;
5419                    doBroadcast = true;
5420                    size--;
5421                    continue;
5422
5423                case TrackBase::STARTING_1:
5424                    sleepUs = 10000;
5425                    i++;
5426                    continue;
5427
5428                case TrackBase::STARTING_2:
5429                    doBroadcast = true;
5430                    mStandby = false;
5431                    activeTrack->mState = TrackBase::ACTIVE;
5432                    break;
5433
5434                case TrackBase::ACTIVE:
5435                    break;
5436
5437                case TrackBase::IDLE:
5438                    i++;
5439                    continue;
5440
5441                default:
5442                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5443                }
5444
5445                activeTracks.add(activeTrack);
5446                i++;
5447
5448                if (activeTrack->isFastTrack()) {
5449                    ALOG_ASSERT(!mFastTrackAvail);
5450                    ALOG_ASSERT(fastTrack == 0);
5451                    fastTrack = activeTrack;
5452                }
5453            }
5454            if (doBroadcast) {
5455                mStartStopCond.broadcast();
5456            }
5457
5458            // sleep if there are no active tracks to process
5459            if (activeTracks.size() == 0) {
5460                if (sleepUs == 0) {
5461                    sleepUs = kRecordThreadSleepUs;
5462                }
5463                continue;
5464            }
5465            sleepUs = 0;
5466
5467            lockEffectChains_l(effectChains);
5468        }
5469
5470        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5471
5472        size_t size = effectChains.size();
5473        for (size_t i = 0; i < size; i++) {
5474            // thread mutex is not locked, but effect chain is locked
5475            effectChains[i]->process_l();
5476        }
5477
5478        // Push a new fast capture state if fast capture is not already running, or cblk change
5479        if (mFastCapture != 0) {
5480            FastCaptureStateQueue *sq = mFastCapture->sq();
5481            FastCaptureState *state = sq->begin();
5482            bool didModify = false;
5483            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5484            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5485                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5486                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5487                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5488                    if (old == -1) {
5489                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5490                    }
5491                }
5492                state->mCommand = FastCaptureState::READ_WRITE;
5493#if 0   // FIXME
5494                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5495                        FastThreadDumpState::kSamplingNforLowRamDevice :
5496                        FastThreadDumpState::kSamplingN);
5497#endif
5498                didModify = true;
5499            }
5500            audio_track_cblk_t *cblkOld = state->mCblk;
5501            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5502            if (cblkNew != cblkOld) {
5503                state->mCblk = cblkNew;
5504                // block until acked if removing a fast track
5505                if (cblkOld != NULL) {
5506                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5507                }
5508                didModify = true;
5509            }
5510            sq->end(didModify);
5511            if (didModify) {
5512                sq->push(block);
5513#if 0
5514                if (kUseFastCapture == FastCapture_Dynamic) {
5515                    mNormalSource = mPipeSource;
5516                }
5517#endif
5518            }
5519        }
5520
5521        // now run the fast track destructor with thread mutex unlocked
5522        fastTrackToRemove.clear();
5523
5524        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5525        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5526        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5527        // If destination is non-contiguous, first read past the nominal end of buffer, then
5528        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5529
5530        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5531        ssize_t framesRead;
5532
5533        // If an NBAIO source is present, use it to read the normal capture's data
5534        if (mPipeSource != 0) {
5535            size_t framesToRead = mBufferSize / mFrameSize;
5536            framesRead = mPipeSource->read(&mRsmpInBuffer[rear * mChannelCount],
5537                    framesToRead, AudioBufferProvider::kInvalidPTS);
5538            if (framesRead == 0) {
5539                // since pipe is non-blocking, simulate blocking input
5540                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5541            }
5542        // otherwise use the HAL / AudioStreamIn directly
5543        } else {
5544            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5545                    &mRsmpInBuffer[rear * mChannelCount], mBufferSize);
5546            if (bytesRead < 0) {
5547                framesRead = bytesRead;
5548            } else {
5549                framesRead = bytesRead / mFrameSize;
5550            }
5551        }
5552
5553        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5554            ALOGE("read failed: framesRead=%d", framesRead);
5555            // Force input into standby so that it tries to recover at next read attempt
5556            inputStandBy();
5557            sleepUs = kRecordThreadSleepUs;
5558        }
5559        if (framesRead <= 0) {
5560            goto unlock;
5561        }
5562        ALOG_ASSERT(framesRead > 0);
5563
5564        if (mTeeSink != 0) {
5565            (void) mTeeSink->write(&mRsmpInBuffer[rear * mChannelCount], framesRead);
5566        }
5567        // If destination is non-contiguous, we now correct for reading past end of buffer.
5568        {
5569            size_t part1 = mRsmpInFramesP2 - rear;
5570            if ((size_t) framesRead > part1) {
5571                memcpy(mRsmpInBuffer, &mRsmpInBuffer[mRsmpInFramesP2 * mChannelCount],
5572                        (framesRead - part1) * mFrameSize);
5573            }
5574        }
5575        rear = mRsmpInRear += framesRead;
5576
5577        size = activeTracks.size();
5578        // loop over each active track
5579        for (size_t i = 0; i < size; i++) {
5580            activeTrack = activeTracks[i];
5581
5582            // skip fast tracks, as those are handled directly by FastCapture
5583            if (activeTrack->isFastTrack()) {
5584                continue;
5585            }
5586
5587            enum {
5588                OVERRUN_UNKNOWN,
5589                OVERRUN_TRUE,
5590                OVERRUN_FALSE
5591            } overrun = OVERRUN_UNKNOWN;
5592
5593            // loop over getNextBuffer to handle circular sink
5594            for (;;) {
5595
5596                activeTrack->mSink.frameCount = ~0;
5597                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5598                size_t framesOut = activeTrack->mSink.frameCount;
5599                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5600
5601                int32_t front = activeTrack->mRsmpInFront;
5602                ssize_t filled = rear - front;
5603                size_t framesIn;
5604
5605                if (filled < 0) {
5606                    // should not happen, but treat like a massive overrun and re-sync
5607                    framesIn = 0;
5608                    activeTrack->mRsmpInFront = rear;
5609                    overrun = OVERRUN_TRUE;
5610                } else if ((size_t) filled <= mRsmpInFrames) {
5611                    framesIn = (size_t) filled;
5612                } else {
5613                    // client is not keeping up with server, but give it latest data
5614                    framesIn = mRsmpInFrames;
5615                    activeTrack->mRsmpInFront = front = rear - framesIn;
5616                    overrun = OVERRUN_TRUE;
5617                }
5618
5619                if (framesOut == 0 || framesIn == 0) {
5620                    break;
5621                }
5622
5623                if (activeTrack->mResampler == NULL) {
5624                    // no resampling
5625                    if (framesIn > framesOut) {
5626                        framesIn = framesOut;
5627                    } else {
5628                        framesOut = framesIn;
5629                    }
5630                    int8_t *dst = activeTrack->mSink.i8;
5631                    while (framesIn > 0) {
5632                        front &= mRsmpInFramesP2 - 1;
5633                        size_t part1 = mRsmpInFramesP2 - front;
5634                        if (part1 > framesIn) {
5635                            part1 = framesIn;
5636                        }
5637                        int8_t *src = (int8_t *)mRsmpInBuffer + (front * mFrameSize);
5638                        if (mChannelCount == activeTrack->mChannelCount) {
5639                            memcpy(dst, src, part1 * mFrameSize);
5640                        } else if (mChannelCount == 1) {
5641                            upmix_to_stereo_i16_from_mono_i16((int16_t *)dst, (const int16_t *)src,
5642                                    part1);
5643                        } else {
5644                            downmix_to_mono_i16_from_stereo_i16((int16_t *)dst,
5645                                    (const int16_t *)src, part1);
5646                        }
5647                        dst += part1 * activeTrack->mFrameSize;
5648                        front += part1;
5649                        framesIn -= part1;
5650                    }
5651                    activeTrack->mRsmpInFront += framesOut;
5652
5653                } else {
5654                    // resampling
5655                    // FIXME framesInNeeded should really be part of resampler API, and should
5656                    //       depend on the SRC ratio
5657                    //       to keep mRsmpInBuffer full so resampler always has sufficient input
5658                    size_t framesInNeeded;
5659                    // FIXME only re-calculate when it changes, and optimize for common ratios
5660                    // Do not precompute in/out because floating point is not associative
5661                    // e.g. a*b/c != a*(b/c).
5662                    const double in(mSampleRate);
5663                    const double out(activeTrack->mSampleRate);
5664                    framesInNeeded = ceil(framesOut * in / out) + 1;
5665                    ALOGV("need %u frames in to produce %u out given in/out ratio of %.4g",
5666                                framesInNeeded, framesOut, in / out);
5667                    // Although we theoretically have framesIn in circular buffer, some of those are
5668                    // unreleased frames, and thus must be discounted for purpose of budgeting.
5669                    size_t unreleased = activeTrack->mRsmpInUnrel;
5670                    framesIn = framesIn > unreleased ? framesIn - unreleased : 0;
5671                    if (framesIn < framesInNeeded) {
5672                        ALOGV("not enough to resample: have %u frames in but need %u in to "
5673                                "produce %u out given in/out ratio of %.4g",
5674                                framesIn, framesInNeeded, framesOut, in / out);
5675                        size_t newFramesOut = framesIn > 0 ? floor((framesIn - 1) * out / in) : 0;
5676                        LOG_ALWAYS_FATAL_IF(newFramesOut >= framesOut);
5677                        if (newFramesOut == 0) {
5678                            break;
5679                        }
5680                        framesInNeeded = ceil(newFramesOut * in / out) + 1;
5681                        ALOGV("now need %u frames in to produce %u out given out/in ratio of %.4g",
5682                                framesInNeeded, newFramesOut, out / in);
5683                        LOG_ALWAYS_FATAL_IF(framesIn < framesInNeeded);
5684                        ALOGV("success 2: have %u frames in and need %u in to produce %u out "
5685                              "given in/out ratio of %.4g",
5686                              framesIn, framesInNeeded, newFramesOut, in / out);
5687                        framesOut = newFramesOut;
5688                    } else {
5689                        ALOGV("success 1: have %u in and need %u in to produce %u out "
5690                            "given in/out ratio of %.4g",
5691                            framesIn, framesInNeeded, framesOut, in / out);
5692                    }
5693
5694                    // reallocate mRsmpOutBuffer as needed; we will grow but never shrink
5695                    if (activeTrack->mRsmpOutFrameCount < framesOut) {
5696                        // FIXME why does each track need it's own mRsmpOutBuffer? can't they share?
5697                        delete[] activeTrack->mRsmpOutBuffer;
5698                        // resampler always outputs stereo
5699                        activeTrack->mRsmpOutBuffer = new int32_t[framesOut * FCC_2];
5700                        activeTrack->mRsmpOutFrameCount = framesOut;
5701                    }
5702
5703                    // resampler accumulates, but we only have one source track
5704                    memset(activeTrack->mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
5705                    activeTrack->mResampler->resample(activeTrack->mRsmpOutBuffer, framesOut,
5706                            // FIXME how about having activeTrack implement this interface itself?
5707                            activeTrack->mResamplerBufferProvider
5708                            /*this*/ /* AudioBufferProvider* */);
5709                    // ditherAndClamp() works as long as all buffers returned by
5710                    // activeTrack->getNextBuffer() are 32 bit aligned which should be always true.
5711                    if (activeTrack->mChannelCount == 1) {
5712                        // temporarily type pun mRsmpOutBuffer from Q4.27 to int16_t
5713                        ditherAndClamp(activeTrack->mRsmpOutBuffer, activeTrack->mRsmpOutBuffer,
5714                                framesOut);
5715                        // the resampler always outputs stereo samples:
5716                        // do post stereo to mono conversion
5717                        downmix_to_mono_i16_from_stereo_i16(activeTrack->mSink.i16,
5718                                (const int16_t *)activeTrack->mRsmpOutBuffer, framesOut);
5719                    } else {
5720                        ditherAndClamp((int32_t *)activeTrack->mSink.raw,
5721                                activeTrack->mRsmpOutBuffer, framesOut);
5722                    }
5723                    // now done with mRsmpOutBuffer
5724
5725                }
5726
5727                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5728                    overrun = OVERRUN_FALSE;
5729                }
5730
5731                if (activeTrack->mFramesToDrop == 0) {
5732                    if (framesOut > 0) {
5733                        activeTrack->mSink.frameCount = framesOut;
5734                        activeTrack->releaseBuffer(&activeTrack->mSink);
5735                    }
5736                } else {
5737                    // FIXME could do a partial drop of framesOut
5738                    if (activeTrack->mFramesToDrop > 0) {
5739                        activeTrack->mFramesToDrop -= framesOut;
5740                        if (activeTrack->mFramesToDrop <= 0) {
5741                            activeTrack->clearSyncStartEvent();
5742                        }
5743                    } else {
5744                        activeTrack->mFramesToDrop += framesOut;
5745                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5746                                activeTrack->mSyncStartEvent->isCancelled()) {
5747                            ALOGW("Synced record %s, session %d, trigger session %d",
5748                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5749                                  activeTrack->sessionId(),
5750                                  (activeTrack->mSyncStartEvent != 0) ?
5751                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
5752                            activeTrack->clearSyncStartEvent();
5753                        }
5754                    }
5755                }
5756
5757                if (framesOut == 0) {
5758                    break;
5759                }
5760            }
5761
5762            switch (overrun) {
5763            case OVERRUN_TRUE:
5764                // client isn't retrieving buffers fast enough
5765                if (!activeTrack->setOverflow()) {
5766                    nsecs_t now = systemTime();
5767                    // FIXME should lastWarning per track?
5768                    if ((now - lastWarning) > kWarningThrottleNs) {
5769                        ALOGW("RecordThread: buffer overflow");
5770                        lastWarning = now;
5771                    }
5772                }
5773                break;
5774            case OVERRUN_FALSE:
5775                activeTrack->clearOverflow();
5776                break;
5777            case OVERRUN_UNKNOWN:
5778                break;
5779            }
5780
5781        }
5782
5783unlock:
5784        // enable changes in effect chain
5785        unlockEffectChains(effectChains);
5786        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5787    }
5788
5789    standbyIfNotAlreadyInStandby();
5790
5791    {
5792        Mutex::Autolock _l(mLock);
5793        for (size_t i = 0; i < mTracks.size(); i++) {
5794            sp<RecordTrack> track = mTracks[i];
5795            track->invalidate();
5796        }
5797        mActiveTracks.clear();
5798        mActiveTracksGen++;
5799        mStartStopCond.broadcast();
5800    }
5801
5802    releaseWakeLock();
5803
5804    ALOGV("RecordThread %p exiting", this);
5805    return false;
5806}
5807
5808void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
5809{
5810    if (!mStandby) {
5811        inputStandBy();
5812        mStandby = true;
5813    }
5814}
5815
5816void AudioFlinger::RecordThread::inputStandBy()
5817{
5818    // Idle the fast capture if it's currently running
5819    if (mFastCapture != 0) {
5820        FastCaptureStateQueue *sq = mFastCapture->sq();
5821        FastCaptureState *state = sq->begin();
5822        if (!(state->mCommand & FastCaptureState::IDLE)) {
5823            state->mCommand = FastCaptureState::COLD_IDLE;
5824            state->mColdFutexAddr = &mFastCaptureFutex;
5825            state->mColdGen++;
5826            mFastCaptureFutex = 0;
5827            sq->end();
5828            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5829            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
5830#if 0
5831            if (kUseFastCapture == FastCapture_Dynamic) {
5832                // FIXME
5833            }
5834#endif
5835#ifdef AUDIO_WATCHDOG
5836            // FIXME
5837#endif
5838        } else {
5839            sq->end(false /*didModify*/);
5840        }
5841    }
5842    mInput->stream->common.standby(&mInput->stream->common);
5843}
5844
5845// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
5846sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
5847        const sp<AudioFlinger::Client>& client,
5848        uint32_t sampleRate,
5849        audio_format_t format,
5850        audio_channel_mask_t channelMask,
5851        size_t *pFrameCount,
5852        int sessionId,
5853        size_t *notificationFrames,
5854        int uid,
5855        IAudioFlinger::track_flags_t *flags,
5856        pid_t tid,
5857        status_t *status)
5858{
5859    size_t frameCount = *pFrameCount;
5860    sp<RecordTrack> track;
5861    status_t lStatus;
5862
5863    // client expresses a preference for FAST, but we get the final say
5864    if (*flags & IAudioFlinger::TRACK_FAST) {
5865      if (
5866            // use case: callback handler
5867            (tid != -1) &&
5868            // frame count is not specified, or is exactly the pipe depth
5869            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
5870            // PCM data
5871            audio_is_linear_pcm(format) &&
5872            // native format
5873            (format == mFormat) &&
5874            // native channel mask
5875            (channelMask == mChannelMask) &&
5876            // native hardware sample rate
5877            (sampleRate == mSampleRate) &&
5878            // record thread has an associated fast capture
5879            hasFastCapture() &&
5880            // there are sufficient fast track slots available
5881            mFastTrackAvail
5882        ) {
5883        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
5884                frameCount, mFrameCount);
5885      } else {
5886        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
5887                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
5888                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
5889                frameCount, mFrameCount, mPipeFramesP2,
5890                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
5891                hasFastCapture(), tid, mFastTrackAvail);
5892        *flags &= ~IAudioFlinger::TRACK_FAST;
5893      }
5894    }
5895
5896    // compute track buffer size in frames, and suggest the notification frame count
5897    if (*flags & IAudioFlinger::TRACK_FAST) {
5898        // fast track: frame count is exactly the pipe depth
5899        frameCount = mPipeFramesP2;
5900        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
5901        *notificationFrames = mFrameCount;
5902    } else {
5903        // not fast track: max notification period is resampled equivalent of one HAL buffer time
5904        //                 or 20 ms if there is a fast capture
5905        // TODO This could be a roundupRatio inline, and const
5906        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
5907                * sampleRate + mSampleRate - 1) / mSampleRate;
5908        // minimum number of notification periods is at least kMinNotifications,
5909        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
5910        static const size_t kMinNotifications = 3;
5911        static const uint32_t kMinMs = 30;
5912        // TODO This could be a roundupRatio inline
5913        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
5914        // TODO This could be a roundupRatio inline
5915        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
5916                maxNotificationFrames;
5917        const size_t minFrameCount = maxNotificationFrames *
5918                max(kMinNotifications, minNotificationsByMs);
5919        frameCount = max(frameCount, minFrameCount);
5920        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
5921            *notificationFrames = maxNotificationFrames;
5922        }
5923    }
5924    *pFrameCount = frameCount;
5925
5926    lStatus = initCheck();
5927    if (lStatus != NO_ERROR) {
5928        ALOGE("createRecordTrack_l() audio driver not initialized");
5929        goto Exit;
5930    }
5931
5932    { // scope for mLock
5933        Mutex::Autolock _l(mLock);
5934
5935        track = new RecordTrack(this, client, sampleRate,
5936                      format, channelMask, frameCount, NULL, sessionId, uid,
5937                      *flags, TrackBase::TYPE_DEFAULT);
5938
5939        lStatus = track->initCheck();
5940        if (lStatus != NO_ERROR) {
5941            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
5942            // track must be cleared from the caller as the caller has the AF lock
5943            goto Exit;
5944        }
5945        mTracks.add(track);
5946
5947        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
5948        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
5949                        mAudioFlinger->btNrecIsOff();
5950        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
5951        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
5952
5953        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
5954            pid_t callingPid = IPCThreadState::self()->getCallingPid();
5955            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
5956            // so ask activity manager to do this on our behalf
5957            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
5958        }
5959    }
5960
5961    lStatus = NO_ERROR;
5962
5963Exit:
5964    *status = lStatus;
5965    return track;
5966}
5967
5968status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
5969                                           AudioSystem::sync_event_t event,
5970                                           int triggerSession)
5971{
5972    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
5973    sp<ThreadBase> strongMe = this;
5974    status_t status = NO_ERROR;
5975
5976    if (event == AudioSystem::SYNC_EVENT_NONE) {
5977        recordTrack->clearSyncStartEvent();
5978    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
5979        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
5980                                       triggerSession,
5981                                       recordTrack->sessionId(),
5982                                       syncStartEventCallback,
5983                                       recordTrack);
5984        // Sync event can be cancelled by the trigger session if the track is not in a
5985        // compatible state in which case we start record immediately
5986        if (recordTrack->mSyncStartEvent->isCancelled()) {
5987            recordTrack->clearSyncStartEvent();
5988        } else {
5989            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
5990            recordTrack->mFramesToDrop = -
5991                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
5992        }
5993    }
5994
5995    {
5996        // This section is a rendezvous between binder thread executing start() and RecordThread
5997        AutoMutex lock(mLock);
5998        if (mActiveTracks.indexOf(recordTrack) >= 0) {
5999            if (recordTrack->mState == TrackBase::PAUSING) {
6000                ALOGV("active record track PAUSING -> ACTIVE");
6001                recordTrack->mState = TrackBase::ACTIVE;
6002            } else {
6003                ALOGV("active record track state %d", recordTrack->mState);
6004            }
6005            return status;
6006        }
6007
6008        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6009        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6010        //      or using a separate command thread
6011        recordTrack->mState = TrackBase::STARTING_1;
6012        mActiveTracks.add(recordTrack);
6013        mActiveTracksGen++;
6014        status_t status = NO_ERROR;
6015        if (recordTrack->isExternalTrack()) {
6016            mLock.unlock();
6017            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6018            mLock.lock();
6019            // FIXME should verify that recordTrack is still in mActiveTracks
6020            if (status != NO_ERROR) {
6021                mActiveTracks.remove(recordTrack);
6022                mActiveTracksGen++;
6023                recordTrack->clearSyncStartEvent();
6024                ALOGV("RecordThread::start error %d", status);
6025                return status;
6026            }
6027        }
6028        // Catch up with current buffer indices if thread is already running.
6029        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6030        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6031        // see previously buffered data before it called start(), but with greater risk of overrun.
6032
6033        recordTrack->mRsmpInFront = mRsmpInRear;
6034        recordTrack->mRsmpInUnrel = 0;
6035        // FIXME why reset?
6036        if (recordTrack->mResampler != NULL) {
6037            recordTrack->mResampler->reset();
6038        }
6039        recordTrack->mState = TrackBase::STARTING_2;
6040        // signal thread to start
6041        mWaitWorkCV.broadcast();
6042        if (mActiveTracks.indexOf(recordTrack) < 0) {
6043            ALOGV("Record failed to start");
6044            status = BAD_VALUE;
6045            goto startError;
6046        }
6047        return status;
6048    }
6049
6050startError:
6051    if (recordTrack->isExternalTrack()) {
6052        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6053    }
6054    recordTrack->clearSyncStartEvent();
6055    // FIXME I wonder why we do not reset the state here?
6056    return status;
6057}
6058
6059void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6060{
6061    sp<SyncEvent> strongEvent = event.promote();
6062
6063    if (strongEvent != 0) {
6064        sp<RefBase> ptr = strongEvent->cookie().promote();
6065        if (ptr != 0) {
6066            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6067            recordTrack->handleSyncStartEvent(strongEvent);
6068        }
6069    }
6070}
6071
6072bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6073    ALOGV("RecordThread::stop");
6074    AutoMutex _l(mLock);
6075    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6076        return false;
6077    }
6078    // note that threadLoop may still be processing the track at this point [without lock]
6079    recordTrack->mState = TrackBase::PAUSING;
6080    // do not wait for mStartStopCond if exiting
6081    if (exitPending()) {
6082        return true;
6083    }
6084    // FIXME incorrect usage of wait: no explicit predicate or loop
6085    mStartStopCond.wait(mLock);
6086    // if we have been restarted, recordTrack is in mActiveTracks here
6087    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6088        ALOGV("Record stopped OK");
6089        return true;
6090    }
6091    return false;
6092}
6093
6094bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6095{
6096    return false;
6097}
6098
6099status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6100{
6101#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6102    if (!isValidSyncEvent(event)) {
6103        return BAD_VALUE;
6104    }
6105
6106    int eventSession = event->triggerSession();
6107    status_t ret = NAME_NOT_FOUND;
6108
6109    Mutex::Autolock _l(mLock);
6110
6111    for (size_t i = 0; i < mTracks.size(); i++) {
6112        sp<RecordTrack> track = mTracks[i];
6113        if (eventSession == track->sessionId()) {
6114            (void) track->setSyncEvent(event);
6115            ret = NO_ERROR;
6116        }
6117    }
6118    return ret;
6119#else
6120    return BAD_VALUE;
6121#endif
6122}
6123
6124// destroyTrack_l() must be called with ThreadBase::mLock held
6125void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6126{
6127    track->terminate();
6128    track->mState = TrackBase::STOPPED;
6129    // active tracks are removed by threadLoop()
6130    if (mActiveTracks.indexOf(track) < 0) {
6131        removeTrack_l(track);
6132    }
6133}
6134
6135void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6136{
6137    mTracks.remove(track);
6138    // need anything related to effects here?
6139    if (track->isFastTrack()) {
6140        ALOG_ASSERT(!mFastTrackAvail);
6141        mFastTrackAvail = true;
6142    }
6143}
6144
6145void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6146{
6147    dumpInternals(fd, args);
6148    dumpTracks(fd, args);
6149    dumpEffectChains(fd, args);
6150}
6151
6152void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6153{
6154    dprintf(fd, "\nInput thread %p:\n", this);
6155
6156    dumpBase(fd, args);
6157
6158    if (mActiveTracks.size() == 0) {
6159        dprintf(fd, "  No active record clients\n");
6160    }
6161    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6162    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6163
6164    //  Make a non-atomic copy of fast capture dump state so it won't change underneath us
6165    const FastCaptureDumpState copy(mFastCaptureDumpState);
6166    copy.dump(fd);
6167}
6168
6169void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6170{
6171    const size_t SIZE = 256;
6172    char buffer[SIZE];
6173    String8 result;
6174
6175    size_t numtracks = mTracks.size();
6176    size_t numactive = mActiveTracks.size();
6177    size_t numactiveseen = 0;
6178    dprintf(fd, "  %d Tracks", numtracks);
6179    if (numtracks) {
6180        dprintf(fd, " of which %d are active\n", numactive);
6181        RecordTrack::appendDumpHeader(result);
6182        for (size_t i = 0; i < numtracks ; ++i) {
6183            sp<RecordTrack> track = mTracks[i];
6184            if (track != 0) {
6185                bool active = mActiveTracks.indexOf(track) >= 0;
6186                if (active) {
6187                    numactiveseen++;
6188                }
6189                track->dump(buffer, SIZE, active);
6190                result.append(buffer);
6191            }
6192        }
6193    } else {
6194        dprintf(fd, "\n");
6195    }
6196
6197    if (numactiveseen != numactive) {
6198        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6199                " not in the track list\n");
6200        result.append(buffer);
6201        RecordTrack::appendDumpHeader(result);
6202        for (size_t i = 0; i < numactive; ++i) {
6203            sp<RecordTrack> track = mActiveTracks[i];
6204            if (mTracks.indexOf(track) < 0) {
6205                track->dump(buffer, SIZE, true);
6206                result.append(buffer);
6207            }
6208        }
6209
6210    }
6211    write(fd, result.string(), result.size());
6212}
6213
6214// AudioBufferProvider interface
6215status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6216        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6217{
6218    RecordTrack *activeTrack = mRecordTrack;
6219    sp<ThreadBase> threadBase = activeTrack->mThread.promote();
6220    if (threadBase == 0) {
6221        buffer->frameCount = 0;
6222        buffer->raw = NULL;
6223        return NOT_ENOUGH_DATA;
6224    }
6225    RecordThread *recordThread = (RecordThread *) threadBase.get();
6226    int32_t rear = recordThread->mRsmpInRear;
6227    int32_t front = activeTrack->mRsmpInFront;
6228    ssize_t filled = rear - front;
6229    // FIXME should not be P2 (don't want to increase latency)
6230    // FIXME if client not keeping up, discard
6231    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6232    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6233    front &= recordThread->mRsmpInFramesP2 - 1;
6234    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6235    if (part1 > (size_t) filled) {
6236        part1 = filled;
6237    }
6238    size_t ask = buffer->frameCount;
6239    ALOG_ASSERT(ask > 0);
6240    if (part1 > ask) {
6241        part1 = ask;
6242    }
6243    if (part1 == 0) {
6244        // Higher-level should keep mRsmpInBuffer full, and not call resampler if empty
6245        LOG_ALWAYS_FATAL("RecordThread::getNextBuffer() starved");
6246        buffer->raw = NULL;
6247        buffer->frameCount = 0;
6248        activeTrack->mRsmpInUnrel = 0;
6249        return NOT_ENOUGH_DATA;
6250    }
6251
6252    buffer->raw = recordThread->mRsmpInBuffer + front * recordThread->mChannelCount;
6253    buffer->frameCount = part1;
6254    activeTrack->mRsmpInUnrel = part1;
6255    return NO_ERROR;
6256}
6257
6258// AudioBufferProvider interface
6259void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6260        AudioBufferProvider::Buffer* buffer)
6261{
6262    RecordTrack *activeTrack = mRecordTrack;
6263    size_t stepCount = buffer->frameCount;
6264    if (stepCount == 0) {
6265        return;
6266    }
6267    ALOG_ASSERT(stepCount <= activeTrack->mRsmpInUnrel);
6268    activeTrack->mRsmpInUnrel -= stepCount;
6269    activeTrack->mRsmpInFront += stepCount;
6270    buffer->raw = NULL;
6271    buffer->frameCount = 0;
6272}
6273
6274bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6275                                                        status_t& status)
6276{
6277    bool reconfig = false;
6278
6279    status = NO_ERROR;
6280
6281    audio_format_t reqFormat = mFormat;
6282    uint32_t samplingRate = mSampleRate;
6283    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6284
6285    AudioParameter param = AudioParameter(keyValuePair);
6286    int value;
6287    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6288    //      channel count change can be requested. Do we mandate the first client defines the
6289    //      HAL sampling rate and channel count or do we allow changes on the fly?
6290    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6291        samplingRate = value;
6292        reconfig = true;
6293    }
6294    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6295        if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
6296            status = BAD_VALUE;
6297        } else {
6298            reqFormat = (audio_format_t) value;
6299            reconfig = true;
6300        }
6301    }
6302    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6303        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6304        if (mask != AUDIO_CHANNEL_IN_MONO && mask != AUDIO_CHANNEL_IN_STEREO) {
6305            status = BAD_VALUE;
6306        } else {
6307            channelMask = mask;
6308            reconfig = true;
6309        }
6310    }
6311    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6312        // do not accept frame count changes if tracks are open as the track buffer
6313        // size depends on frame count and correct behavior would not be guaranteed
6314        // if frame count is changed after track creation
6315        if (mActiveTracks.size() > 0) {
6316            status = INVALID_OPERATION;
6317        } else {
6318            reconfig = true;
6319        }
6320    }
6321    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6322        // forward device change to effects that have requested to be
6323        // aware of attached audio device.
6324        for (size_t i = 0; i < mEffectChains.size(); i++) {
6325            mEffectChains[i]->setDevice_l(value);
6326        }
6327
6328        // store input device and output device but do not forward output device to audio HAL.
6329        // Note that status is ignored by the caller for output device
6330        // (see AudioFlinger::setParameters()
6331        if (audio_is_output_devices(value)) {
6332            mOutDevice = value;
6333            status = BAD_VALUE;
6334        } else {
6335            mInDevice = value;
6336            // disable AEC and NS if the device is a BT SCO headset supporting those
6337            // pre processings
6338            if (mTracks.size() > 0) {
6339                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6340                                    mAudioFlinger->btNrecIsOff();
6341                for (size_t i = 0; i < mTracks.size(); i++) {
6342                    sp<RecordTrack> track = mTracks[i];
6343                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6344                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6345                }
6346            }
6347        }
6348    }
6349    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6350            mAudioSource != (audio_source_t)value) {
6351        // forward device change to effects that have requested to be
6352        // aware of attached audio device.
6353        for (size_t i = 0; i < mEffectChains.size(); i++) {
6354            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6355        }
6356        mAudioSource = (audio_source_t)value;
6357    }
6358
6359    if (status == NO_ERROR) {
6360        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6361                keyValuePair.string());
6362        if (status == INVALID_OPERATION) {
6363            inputStandBy();
6364            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6365                    keyValuePair.string());
6366        }
6367        if (reconfig) {
6368            if (status == BAD_VALUE &&
6369                reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
6370                reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
6371                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6372                        <= (2 * samplingRate)) &&
6373                audio_channel_count_from_in_mask(
6374                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_2 &&
6375                (channelMask == AUDIO_CHANNEL_IN_MONO ||
6376                        channelMask == AUDIO_CHANNEL_IN_STEREO)) {
6377                status = NO_ERROR;
6378            }
6379            if (status == NO_ERROR) {
6380                readInputParameters_l();
6381                sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
6382            }
6383        }
6384    }
6385
6386    return reconfig;
6387}
6388
6389String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6390{
6391    Mutex::Autolock _l(mLock);
6392    if (initCheck() != NO_ERROR) {
6393        return String8();
6394    }
6395
6396    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6397    const String8 out_s8(s);
6398    free(s);
6399    return out_s8;
6400}
6401
6402void AudioFlinger::RecordThread::audioConfigChanged(int event, int param __unused) {
6403    AudioSystem::OutputDescriptor desc;
6404    const void *param2 = NULL;
6405
6406    switch (event) {
6407    case AudioSystem::INPUT_OPENED:
6408    case AudioSystem::INPUT_CONFIG_CHANGED:
6409        desc.channelMask = mChannelMask;
6410        desc.samplingRate = mSampleRate;
6411        desc.format = mFormat;
6412        desc.frameCount = mFrameCount;
6413        desc.latency = 0;
6414        param2 = &desc;
6415        break;
6416
6417    case AudioSystem::INPUT_CLOSED:
6418    default:
6419        break;
6420    }
6421    mAudioFlinger->audioConfigChanged(event, mId, param2);
6422}
6423
6424void AudioFlinger::RecordThread::readInputParameters_l()
6425{
6426    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6427    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6428    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6429    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6430    mFormat = mHALFormat;
6431    if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
6432        ALOGE("HAL format %#x not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
6433    }
6434    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6435    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6436    mFrameCount = mBufferSize / mFrameSize;
6437    // This is the formula for calculating the temporary buffer size.
6438    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6439    // 1 full output buffer, regardless of the alignment of the available input.
6440    // The value is somewhat arbitrary, and could probably be even larger.
6441    // A larger value should allow more old data to be read after a track calls start(),
6442    // without increasing latency.
6443    mRsmpInFrames = mFrameCount * 7;
6444    mRsmpInFramesP2 = roundup(mRsmpInFrames);
6445    delete[] mRsmpInBuffer;
6446
6447    // TODO optimize audio capture buffer sizes ...
6448    // Here we calculate the size of the sliding buffer used as a source
6449    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6450    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6451    // be better to have it derived from the pipe depth in the long term.
6452    // The current value is higher than necessary.  However it should not add to latency.
6453
6454    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6455    mRsmpInBuffer = new int16_t[(mRsmpInFramesP2 + mFrameCount - 1) * mChannelCount];
6456
6457    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6458    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6459}
6460
6461uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6462{
6463    Mutex::Autolock _l(mLock);
6464    if (initCheck() != NO_ERROR) {
6465        return 0;
6466    }
6467
6468    return mInput->stream->get_input_frames_lost(mInput->stream);
6469}
6470
6471uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6472{
6473    Mutex::Autolock _l(mLock);
6474    uint32_t result = 0;
6475    if (getEffectChain_l(sessionId) != 0) {
6476        result = EFFECT_SESSION;
6477    }
6478
6479    for (size_t i = 0; i < mTracks.size(); ++i) {
6480        if (sessionId == mTracks[i]->sessionId()) {
6481            result |= TRACK_SESSION;
6482            break;
6483        }
6484    }
6485
6486    return result;
6487}
6488
6489KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6490{
6491    KeyedVector<int, bool> ids;
6492    Mutex::Autolock _l(mLock);
6493    for (size_t j = 0; j < mTracks.size(); ++j) {
6494        sp<RecordThread::RecordTrack> track = mTracks[j];
6495        int sessionId = track->sessionId();
6496        if (ids.indexOfKey(sessionId) < 0) {
6497            ids.add(sessionId, true);
6498        }
6499    }
6500    return ids;
6501}
6502
6503AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6504{
6505    Mutex::Autolock _l(mLock);
6506    AudioStreamIn *input = mInput;
6507    mInput = NULL;
6508    return input;
6509}
6510
6511// this method must always be called either with ThreadBase mLock held or inside the thread loop
6512audio_stream_t* AudioFlinger::RecordThread::stream() const
6513{
6514    if (mInput == NULL) {
6515        return NULL;
6516    }
6517    return &mInput->stream->common;
6518}
6519
6520status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
6521{
6522    // only one chain per input thread
6523    if (mEffectChains.size() != 0) {
6524        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
6525        return INVALID_OPERATION;
6526    }
6527    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
6528    chain->setThread(this);
6529    chain->setInBuffer(NULL);
6530    chain->setOutBuffer(NULL);
6531
6532    checkSuspendOnAddEffectChain_l(chain);
6533
6534    // make sure enabled pre processing effects state is communicated to the HAL as we
6535    // just moved them to a new input stream.
6536    chain->syncHalEffectsState();
6537
6538    mEffectChains.add(chain);
6539
6540    return NO_ERROR;
6541}
6542
6543size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
6544{
6545    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
6546    ALOGW_IF(mEffectChains.size() != 1,
6547            "removeEffectChain_l() %p invalid chain size %d on thread %p",
6548            chain.get(), mEffectChains.size(), this);
6549    if (mEffectChains.size() == 1) {
6550        mEffectChains.removeAt(0);
6551    }
6552    return 0;
6553}
6554
6555status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
6556                                                          audio_patch_handle_t *handle)
6557{
6558    status_t status = NO_ERROR;
6559    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6560        // store new device and send to effects
6561        mInDevice = patch->sources[0].ext.device.type;
6562        for (size_t i = 0; i < mEffectChains.size(); i++) {
6563            mEffectChains[i]->setDevice_l(mInDevice);
6564        }
6565
6566        // disable AEC and NS if the device is a BT SCO headset supporting those
6567        // pre processings
6568        if (mTracks.size() > 0) {
6569            bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6570                                mAudioFlinger->btNrecIsOff();
6571            for (size_t i = 0; i < mTracks.size(); i++) {
6572                sp<RecordTrack> track = mTracks[i];
6573                setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6574                setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6575            }
6576        }
6577
6578        // store new source and send to effects
6579        if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
6580            mAudioSource = patch->sinks[0].ext.mix.usecase.source;
6581            for (size_t i = 0; i < mEffectChains.size(); i++) {
6582                mEffectChains[i]->setAudioSource_l(mAudioSource);
6583            }
6584        }
6585
6586        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6587        status = hwDevice->create_audio_patch(hwDevice,
6588                                               patch->num_sources,
6589                                               patch->sources,
6590                                               patch->num_sinks,
6591                                               patch->sinks,
6592                                               handle);
6593    } else {
6594        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
6595    }
6596    return status;
6597}
6598
6599status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
6600{
6601    status_t status = NO_ERROR;
6602    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6603        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6604        status = hwDevice->release_audio_patch(hwDevice, handle);
6605    } else {
6606        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
6607    }
6608    return status;
6609}
6610
6611void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
6612{
6613    Mutex::Autolock _l(mLock);
6614    mTracks.add(record);
6615}
6616
6617void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
6618{
6619    Mutex::Autolock _l(mLock);
6620    destroyTrack_l(record);
6621}
6622
6623void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
6624{
6625    ThreadBase::getAudioPortConfig(config);
6626    config->role = AUDIO_PORT_ROLE_SINK;
6627    config->ext.mix.hw_module = mInput->audioHwDev->handle();
6628    config->ext.mix.usecase.source = mAudioSource;
6629}
6630
6631} // namespace android
6632