Threads.cpp revision 197f766a0e3c37efe4fe941553511c6022cf10b1
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include <common_time/cc_helper.h>
57#include <common_time/local_clock.h>
58
59#include "AudioFlinger.h"
60#include "AudioMixer.h"
61#include "BufferProviders.h"
62#include "FastMixer.h"
63#include "FastCapture.h"
64#include "ServiceUtilities.h"
65#include "mediautils/SchedulingPolicyService.h"
66
67#ifdef ADD_BATTERY_DATA
68#include <media/IMediaPlayerService.h>
69#include <media/IMediaDeathNotifier.h>
70#endif
71
72#ifdef DEBUG_CPU_USAGE
73#include <cpustats/CentralTendencyStatistics.h>
74#include <cpustats/ThreadCpuUsage.h>
75#endif
76
77// ----------------------------------------------------------------------------
78
79// Note: the following macro is used for extremely verbose logging message.  In
80// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
81// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
82// are so verbose that we want to suppress them even when we have ALOG_ASSERT
83// turned on.  Do not uncomment the #def below unless you really know what you
84// are doing and want to see all of the extremely verbose messages.
85//#define VERY_VERY_VERBOSE_LOGGING
86#ifdef VERY_VERY_VERBOSE_LOGGING
87#define ALOGVV ALOGV
88#else
89#define ALOGVV(a...) do { } while(0)
90#endif
91
92// TODO: Move these macro/inlines to a header file.
93#define max(a, b) ((a) > (b) ? (a) : (b))
94template <typename T>
95static inline T min(const T& a, const T& b)
96{
97    return a < b ? a : b;
98}
99
100#ifndef ARRAY_SIZE
101#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
102#endif
103
104namespace android {
105
106// retry counts for buffer fill timeout
107// 50 * ~20msecs = 1 second
108static const int8_t kMaxTrackRetries = 50;
109static const int8_t kMaxTrackStartupRetries = 50;
110// allow less retry attempts on direct output thread.
111// direct outputs can be a scarce resource in audio hardware and should
112// be released as quickly as possible.
113static const int8_t kMaxTrackRetriesDirect = 2;
114
115// don't warn about blocked writes or record buffer overflows more often than this
116static const nsecs_t kWarningThrottleNs = seconds(5);
117
118// RecordThread loop sleep time upon application overrun or audio HAL read error
119static const int kRecordThreadSleepUs = 5000;
120
121// maximum time to wait in sendConfigEvent_l() for a status to be received
122static const nsecs_t kConfigEventTimeoutNs = seconds(2);
123
124// minimum sleep time for the mixer thread loop when tracks are active but in underrun
125static const uint32_t kMinThreadSleepTimeUs = 5000;
126// maximum divider applied to the active sleep time in the mixer thread loop
127static const uint32_t kMaxThreadSleepTimeShift = 2;
128
129// minimum normal sink buffer size, expressed in milliseconds rather than frames
130// FIXME This should be based on experimentally observed scheduling jitter
131static const uint32_t kMinNormalSinkBufferSizeMs = 20;
132// maximum normal sink buffer size
133static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
134
135// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
136// FIXME This should be based on experimentally observed scheduling jitter
137static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
138
139// Offloaded output thread standby delay: allows track transition without going to standby
140static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
141
142// Whether to use fast mixer
143static const enum {
144    FastMixer_Never,    // never initialize or use: for debugging only
145    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
146                        // normal mixer multiplier is 1
147    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
148                        // multiplier is calculated based on min & max normal mixer buffer size
149    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
150                        // multiplier is calculated based on min & max normal mixer buffer size
151    // FIXME for FastMixer_Dynamic:
152    //  Supporting this option will require fixing HALs that can't handle large writes.
153    //  For example, one HAL implementation returns an error from a large write,
154    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
155    //  We could either fix the HAL implementations, or provide a wrapper that breaks
156    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
157} kUseFastMixer = FastMixer_Static;
158
159// Whether to use fast capture
160static const enum {
161    FastCapture_Never,  // never initialize or use: for debugging only
162    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
163    FastCapture_Static, // initialize if needed, then use all the time if initialized
164} kUseFastCapture = FastCapture_Static;
165
166// Priorities for requestPriority
167static const int kPriorityAudioApp = 2;
168static const int kPriorityFastMixer = 3;
169static const int kPriorityFastCapture = 3;
170
171// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
172// for the track.  The client then sub-divides this into smaller buffers for its use.
173// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
174// So for now we just assume that client is double-buffered for fast tracks.
175// FIXME It would be better for client to tell AudioFlinger the value of N,
176// so AudioFlinger could allocate the right amount of memory.
177// See the client's minBufCount and mNotificationFramesAct calculations for details.
178
179// This is the default value, if not specified by property.
180static const int kFastTrackMultiplier = 2;
181
182// The minimum and maximum allowed values
183static const int kFastTrackMultiplierMin = 1;
184static const int kFastTrackMultiplierMax = 2;
185
186// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
187static int sFastTrackMultiplier = kFastTrackMultiplier;
188
189// See Thread::readOnlyHeap().
190// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
191// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
192// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
193static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
194
195// ----------------------------------------------------------------------------
196
197static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
198
199static void sFastTrackMultiplierInit()
200{
201    char value[PROPERTY_VALUE_MAX];
202    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
203        char *endptr;
204        unsigned long ul = strtoul(value, &endptr, 0);
205        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
206            sFastTrackMultiplier = (int) ul;
207        }
208    }
209}
210
211// ----------------------------------------------------------------------------
212
213#ifdef ADD_BATTERY_DATA
214// To collect the amplifier usage
215static void addBatteryData(uint32_t params) {
216    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
217    if (service == NULL) {
218        // it already logged
219        return;
220    }
221
222    service->addBatteryData(params);
223}
224#endif
225
226
227// ----------------------------------------------------------------------------
228//      CPU Stats
229// ----------------------------------------------------------------------------
230
231class CpuStats {
232public:
233    CpuStats();
234    void sample(const String8 &title);
235#ifdef DEBUG_CPU_USAGE
236private:
237    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
238    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
239
240    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
241
242    int mCpuNum;                        // thread's current CPU number
243    int mCpukHz;                        // frequency of thread's current CPU in kHz
244#endif
245};
246
247CpuStats::CpuStats()
248#ifdef DEBUG_CPU_USAGE
249    : mCpuNum(-1), mCpukHz(-1)
250#endif
251{
252}
253
254void CpuStats::sample(const String8 &title
255#ifndef DEBUG_CPU_USAGE
256                __unused
257#endif
258        ) {
259#ifdef DEBUG_CPU_USAGE
260    // get current thread's delta CPU time in wall clock ns
261    double wcNs;
262    bool valid = mCpuUsage.sampleAndEnable(wcNs);
263
264    // record sample for wall clock statistics
265    if (valid) {
266        mWcStats.sample(wcNs);
267    }
268
269    // get the current CPU number
270    int cpuNum = sched_getcpu();
271
272    // get the current CPU frequency in kHz
273    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
274
275    // check if either CPU number or frequency changed
276    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
277        mCpuNum = cpuNum;
278        mCpukHz = cpukHz;
279        // ignore sample for purposes of cycles
280        valid = false;
281    }
282
283    // if no change in CPU number or frequency, then record sample for cycle statistics
284    if (valid && mCpukHz > 0) {
285        double cycles = wcNs * cpukHz * 0.000001;
286        mHzStats.sample(cycles);
287    }
288
289    unsigned n = mWcStats.n();
290    // mCpuUsage.elapsed() is expensive, so don't call it every loop
291    if ((n & 127) == 1) {
292        long long elapsed = mCpuUsage.elapsed();
293        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
294            double perLoop = elapsed / (double) n;
295            double perLoop100 = perLoop * 0.01;
296            double perLoop1k = perLoop * 0.001;
297            double mean = mWcStats.mean();
298            double stddev = mWcStats.stddev();
299            double minimum = mWcStats.minimum();
300            double maximum = mWcStats.maximum();
301            double meanCycles = mHzStats.mean();
302            double stddevCycles = mHzStats.stddev();
303            double minCycles = mHzStats.minimum();
304            double maxCycles = mHzStats.maximum();
305            mCpuUsage.resetElapsed();
306            mWcStats.reset();
307            mHzStats.reset();
308            ALOGD("CPU usage for %s over past %.1f secs\n"
309                "  (%u mixer loops at %.1f mean ms per loop):\n"
310                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
311                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
312                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
313                    title.string(),
314                    elapsed * .000000001, n, perLoop * .000001,
315                    mean * .001,
316                    stddev * .001,
317                    minimum * .001,
318                    maximum * .001,
319                    mean / perLoop100,
320                    stddev / perLoop100,
321                    minimum / perLoop100,
322                    maximum / perLoop100,
323                    meanCycles / perLoop1k,
324                    stddevCycles / perLoop1k,
325                    minCycles / perLoop1k,
326                    maxCycles / perLoop1k);
327
328        }
329    }
330#endif
331};
332
333// ----------------------------------------------------------------------------
334//      ThreadBase
335// ----------------------------------------------------------------------------
336
337// static
338const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
339{
340    switch (type) {
341    case MIXER:
342        return "MIXER";
343    case DIRECT:
344        return "DIRECT";
345    case DUPLICATING:
346        return "DUPLICATING";
347    case RECORD:
348        return "RECORD";
349    case OFFLOAD:
350        return "OFFLOAD";
351    default:
352        return "unknown";
353    }
354}
355
356String8 devicesToString(audio_devices_t devices)
357{
358    static const struct mapping {
359        audio_devices_t mDevices;
360        const char *    mString;
361    } mappingsOut[] = {
362        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
363        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
364        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
365        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
366        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
367        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
368        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
369        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
370        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
371        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
372        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
373        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
374        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
375        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
376        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
377        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
378        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
379        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
380        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
381        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
382        {AUDIO_DEVICE_OUT_FM,               "FM"},
383        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
384        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
385        {AUDIO_DEVICE_OUT_IP,               "IP"},
386        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
387    }, mappingsIn[] = {
388        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
389        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
390        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
391        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
392        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
393        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
394        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
395        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
396        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
397        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
398        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
399        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
400        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
401        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
402        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
403        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
404        {AUDIO_DEVICE_IN_LINE,              "LINE"},
405        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
406        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
407        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
408        {AUDIO_DEVICE_IN_IP,                "IP"},
409        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
410    };
411    String8 result;
412    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
413    const mapping *entry;
414    if (devices & AUDIO_DEVICE_BIT_IN) {
415        devices &= ~AUDIO_DEVICE_BIT_IN;
416        entry = mappingsIn;
417    } else {
418        entry = mappingsOut;
419    }
420    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
421        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
422        if (devices & entry->mDevices) {
423            if (!result.isEmpty()) {
424                result.append("|");
425            }
426            result.append(entry->mString);
427        }
428    }
429    if (devices & ~allDevices) {
430        if (!result.isEmpty()) {
431            result.append("|");
432        }
433        result.appendFormat("0x%X", devices & ~allDevices);
434    }
435    if (result.isEmpty()) {
436        result.append(entry->mString);
437    }
438    return result;
439}
440
441String8 inputFlagsToString(audio_input_flags_t flags)
442{
443    static const struct mapping {
444        audio_input_flags_t     mFlag;
445        const char *            mString;
446    } mappings[] = {
447        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
448        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
449        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
450        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
451        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
452    };
453    String8 result;
454    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
455    const mapping *entry;
456    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
457        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
458        if (flags & entry->mFlag) {
459            if (!result.isEmpty()) {
460                result.append("|");
461            }
462            result.append(entry->mString);
463        }
464    }
465    if (flags & ~allFlags) {
466        if (!result.isEmpty()) {
467            result.append("|");
468        }
469        result.appendFormat("0x%X", flags & ~allFlags);
470    }
471    if (result.isEmpty()) {
472        result.append(entry->mString);
473    }
474    return result;
475}
476
477String8 outputFlagsToString(audio_output_flags_t flags)
478{
479    static const struct mapping {
480        audio_output_flags_t    mFlag;
481        const char *            mString;
482    } mappings[] = {
483        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
484        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
485        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
486        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
487        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
488        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
489        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
490        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
491        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
492        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
493        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
494    };
495    String8 result;
496    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
497    const mapping *entry;
498    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
499        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
500        if (flags & entry->mFlag) {
501            if (!result.isEmpty()) {
502                result.append("|");
503            }
504            result.append(entry->mString);
505        }
506    }
507    if (flags & ~allFlags) {
508        if (!result.isEmpty()) {
509            result.append("|");
510        }
511        result.appendFormat("0x%X", flags & ~allFlags);
512    }
513    if (result.isEmpty()) {
514        result.append(entry->mString);
515    }
516    return result;
517}
518
519const char *sourceToString(audio_source_t source)
520{
521    switch (source) {
522    case AUDIO_SOURCE_DEFAULT:              return "default";
523    case AUDIO_SOURCE_MIC:                  return "mic";
524    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
525    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
526    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
527    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
528    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
529    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
530    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
531    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
532    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
533    case AUDIO_SOURCE_HOTWORD:              return "hotword";
534    default:                                return "unknown";
535    }
536}
537
538AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
539        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
540    :   Thread(false /*canCallJava*/),
541        mType(type),
542        mAudioFlinger(audioFlinger),
543        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
544        // are set by PlaybackThread::readOutputParameters_l() or
545        // RecordThread::readInputParameters_l()
546        //FIXME: mStandby should be true here. Is this some kind of hack?
547        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
548        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
549        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
550        // mName will be set by concrete (non-virtual) subclass
551        mDeathRecipient(new PMDeathRecipient(this)),
552        mSystemReady(systemReady),
553        mNotifiedBatteryStart(false)
554{
555    memset(&mPatch, 0, sizeof(struct audio_patch));
556}
557
558AudioFlinger::ThreadBase::~ThreadBase()
559{
560    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
561    mConfigEvents.clear();
562
563    // do not lock the mutex in destructor
564    releaseWakeLock_l();
565    if (mPowerManager != 0) {
566        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
567        binder->unlinkToDeath(mDeathRecipient);
568    }
569}
570
571status_t AudioFlinger::ThreadBase::readyToRun()
572{
573    status_t status = initCheck();
574    if (status == NO_ERROR) {
575        ALOGI("AudioFlinger's thread %p ready to run", this);
576    } else {
577        ALOGE("No working audio driver found.");
578    }
579    return status;
580}
581
582void AudioFlinger::ThreadBase::exit()
583{
584    ALOGV("ThreadBase::exit");
585    // do any cleanup required for exit to succeed
586    preExit();
587    {
588        // This lock prevents the following race in thread (uniprocessor for illustration):
589        //  if (!exitPending()) {
590        //      // context switch from here to exit()
591        //      // exit() calls requestExit(), what exitPending() observes
592        //      // exit() calls signal(), which is dropped since no waiters
593        //      // context switch back from exit() to here
594        //      mWaitWorkCV.wait(...);
595        //      // now thread is hung
596        //  }
597        AutoMutex lock(mLock);
598        requestExit();
599        mWaitWorkCV.broadcast();
600    }
601    // When Thread::requestExitAndWait is made virtual and this method is renamed to
602    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
603    requestExitAndWait();
604}
605
606status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
607{
608    status_t status;
609
610    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
611    Mutex::Autolock _l(mLock);
612
613    return sendSetParameterConfigEvent_l(keyValuePairs);
614}
615
616// sendConfigEvent_l() must be called with ThreadBase::mLock held
617// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
618status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
619{
620    status_t status = NO_ERROR;
621
622    if (event->mRequiresSystemReady && !mSystemReady) {
623        event->mWaitStatus = false;
624        mPendingConfigEvents.add(event);
625        return status;
626    }
627    mConfigEvents.add(event);
628    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
629    mWaitWorkCV.signal();
630    mLock.unlock();
631    {
632        Mutex::Autolock _l(event->mLock);
633        while (event->mWaitStatus) {
634            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
635                event->mStatus = TIMED_OUT;
636                event->mWaitStatus = false;
637            }
638        }
639        status = event->mStatus;
640    }
641    mLock.lock();
642    return status;
643}
644
645void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
646{
647    Mutex::Autolock _l(mLock);
648    sendIoConfigEvent_l(event, pid);
649}
650
651// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
652void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
653{
654    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
655    sendConfigEvent_l(configEvent);
656}
657
658void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
659{
660    Mutex::Autolock _l(mLock);
661    sendPrioConfigEvent_l(pid, tid, prio);
662}
663
664// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
665void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
666{
667    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
668    sendConfigEvent_l(configEvent);
669}
670
671// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
672status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
673{
674    sp<ConfigEvent> configEvent;
675    AudioParameter param(keyValuePair);
676    int value;
677    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
678        setMasterMono_l(value != 0);
679        if (param.size() == 1) {
680            return NO_ERROR; // should be a solo parameter - we don't pass down
681        }
682        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
683        configEvent = new SetParameterConfigEvent(param.toString());
684    } else {
685        configEvent = new SetParameterConfigEvent(keyValuePair);
686    }
687    return sendConfigEvent_l(configEvent);
688}
689
690status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
691                                                        const struct audio_patch *patch,
692                                                        audio_patch_handle_t *handle)
693{
694    Mutex::Autolock _l(mLock);
695    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
696    status_t status = sendConfigEvent_l(configEvent);
697    if (status == NO_ERROR) {
698        CreateAudioPatchConfigEventData *data =
699                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
700        *handle = data->mHandle;
701    }
702    return status;
703}
704
705status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
706                                                                const audio_patch_handle_t handle)
707{
708    Mutex::Autolock _l(mLock);
709    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
710    return sendConfigEvent_l(configEvent);
711}
712
713
714// post condition: mConfigEvents.isEmpty()
715void AudioFlinger::ThreadBase::processConfigEvents_l()
716{
717    bool configChanged = false;
718
719    while (!mConfigEvents.isEmpty()) {
720        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
721        sp<ConfigEvent> event = mConfigEvents[0];
722        mConfigEvents.removeAt(0);
723        switch (event->mType) {
724        case CFG_EVENT_PRIO: {
725            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
726            // FIXME Need to understand why this has to be done asynchronously
727            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
728                    true /*asynchronous*/);
729            if (err != 0) {
730                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
731                      data->mPrio, data->mPid, data->mTid, err);
732            }
733        } break;
734        case CFG_EVENT_IO: {
735            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
736            ioConfigChanged(data->mEvent, data->mPid);
737        } break;
738        case CFG_EVENT_SET_PARAMETER: {
739            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
740            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
741                configChanged = true;
742            }
743        } break;
744        case CFG_EVENT_CREATE_AUDIO_PATCH: {
745            CreateAudioPatchConfigEventData *data =
746                                            (CreateAudioPatchConfigEventData *)event->mData.get();
747            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
748        } break;
749        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
750            ReleaseAudioPatchConfigEventData *data =
751                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
752            event->mStatus = releaseAudioPatch_l(data->mHandle);
753        } break;
754        default:
755            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
756            break;
757        }
758        {
759            Mutex::Autolock _l(event->mLock);
760            if (event->mWaitStatus) {
761                event->mWaitStatus = false;
762                event->mCond.signal();
763            }
764        }
765        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
766    }
767
768    if (configChanged) {
769        cacheParameters_l();
770    }
771}
772
773String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
774    String8 s;
775    const audio_channel_representation_t representation =
776            audio_channel_mask_get_representation(mask);
777
778    switch (representation) {
779    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
780        if (output) {
781            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
782            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
783            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
784            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
785            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
786            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
787            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
788            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
789            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
790            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
791            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
792            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
793            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
794            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
795            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
796            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
797            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
798            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
799            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
800        } else {
801            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
802            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
803            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
804            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
805            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
806            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
807            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
808            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
809            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
810            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
811            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
812            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
813            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
814            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
815            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
816        }
817        const int len = s.length();
818        if (len > 2) {
819            char *str = s.lockBuffer(len); // needed?
820            s.unlockBuffer(len - 2);       // remove trailing ", "
821        }
822        return s;
823    }
824    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
825        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
826        return s;
827    default:
828        s.appendFormat("unknown mask, representation:%d  bits:%#x",
829                representation, audio_channel_mask_get_bits(mask));
830        return s;
831    }
832}
833
834void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
835{
836    const size_t SIZE = 256;
837    char buffer[SIZE];
838    String8 result;
839
840    bool locked = AudioFlinger::dumpTryLock(mLock);
841    if (!locked) {
842        dprintf(fd, "thread %p may be deadlocked\n", this);
843    }
844
845    dprintf(fd, "  Thread name: %s\n", mThreadName);
846    dprintf(fd, "  I/O handle: %d\n", mId);
847    dprintf(fd, "  TID: %d\n", getTid());
848    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
849    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
850    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
851    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
852    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
853    dprintf(fd, "  Channel count: %u\n", mChannelCount);
854    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
855            channelMaskToString(mChannelMask, mType != RECORD).string());
856    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
857    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
858    dprintf(fd, "  Pending config events:");
859    size_t numConfig = mConfigEvents.size();
860    if (numConfig) {
861        for (size_t i = 0; i < numConfig; i++) {
862            mConfigEvents[i]->dump(buffer, SIZE);
863            dprintf(fd, "\n    %s", buffer);
864        }
865        dprintf(fd, "\n");
866    } else {
867        dprintf(fd, " none\n");
868    }
869    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
870    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
871    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
872
873    if (locked) {
874        mLock.unlock();
875    }
876}
877
878void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
879{
880    const size_t SIZE = 256;
881    char buffer[SIZE];
882    String8 result;
883
884    size_t numEffectChains = mEffectChains.size();
885    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
886    write(fd, buffer, strlen(buffer));
887
888    for (size_t i = 0; i < numEffectChains; ++i) {
889        sp<EffectChain> chain = mEffectChains[i];
890        if (chain != 0) {
891            chain->dump(fd, args);
892        }
893    }
894}
895
896void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
897{
898    Mutex::Autolock _l(mLock);
899    acquireWakeLock_l(uid);
900}
901
902String16 AudioFlinger::ThreadBase::getWakeLockTag()
903{
904    switch (mType) {
905    case MIXER:
906        return String16("AudioMix");
907    case DIRECT:
908        return String16("AudioDirectOut");
909    case DUPLICATING:
910        return String16("AudioDup");
911    case RECORD:
912        return String16("AudioIn");
913    case OFFLOAD:
914        return String16("AudioOffload");
915    default:
916        ALOG_ASSERT(false);
917        return String16("AudioUnknown");
918    }
919}
920
921void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
922{
923    getPowerManager_l();
924    if (mPowerManager != 0) {
925        sp<IBinder> binder = new BBinder();
926        status_t status;
927        if (uid >= 0) {
928            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
929                    binder,
930                    getWakeLockTag(),
931                    String16("audioserver"),
932                    uid,
933                    true /* FIXME force oneway contrary to .aidl */);
934        } else {
935            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
936                    binder,
937                    getWakeLockTag(),
938                    String16("audioserver"),
939                    true /* FIXME force oneway contrary to .aidl */);
940        }
941        if (status == NO_ERROR) {
942            mWakeLockToken = binder;
943        }
944        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
945    }
946
947    if (!mNotifiedBatteryStart) {
948        BatteryNotifier::getInstance().noteStartAudio();
949        mNotifiedBatteryStart = true;
950    }
951}
952
953void AudioFlinger::ThreadBase::releaseWakeLock()
954{
955    Mutex::Autolock _l(mLock);
956    releaseWakeLock_l();
957}
958
959void AudioFlinger::ThreadBase::releaseWakeLock_l()
960{
961    if (mWakeLockToken != 0) {
962        ALOGV("releaseWakeLock_l() %s", mThreadName);
963        if (mPowerManager != 0) {
964            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
965                    true /* FIXME force oneway contrary to .aidl */);
966        }
967        mWakeLockToken.clear();
968    }
969
970    if (mNotifiedBatteryStart) {
971        BatteryNotifier::getInstance().noteStopAudio();
972        mNotifiedBatteryStart = false;
973    }
974}
975
976void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
977    Mutex::Autolock _l(mLock);
978    updateWakeLockUids_l(uids);
979}
980
981void AudioFlinger::ThreadBase::getPowerManager_l() {
982    if (mSystemReady && mPowerManager == 0) {
983        // use checkService() to avoid blocking if power service is not up yet
984        sp<IBinder> binder =
985            defaultServiceManager()->checkService(String16("power"));
986        if (binder == 0) {
987            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
988        } else {
989            mPowerManager = interface_cast<IPowerManager>(binder);
990            binder->linkToDeath(mDeathRecipient);
991        }
992    }
993}
994
995void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
996    getPowerManager_l();
997    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
998        if (mSystemReady) {
999            ALOGE("no wake lock to update, but system ready!");
1000        } else {
1001            ALOGW("no wake lock to update, system not ready yet");
1002        }
1003        return;
1004    }
1005    if (mPowerManager != 0) {
1006        sp<IBinder> binder = new BBinder();
1007        status_t status;
1008        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1009                    true /* FIXME force oneway contrary to .aidl */);
1010        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1011    }
1012}
1013
1014void AudioFlinger::ThreadBase::clearPowerManager()
1015{
1016    Mutex::Autolock _l(mLock);
1017    releaseWakeLock_l();
1018    mPowerManager.clear();
1019}
1020
1021void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1022{
1023    sp<ThreadBase> thread = mThread.promote();
1024    if (thread != 0) {
1025        thread->clearPowerManager();
1026    }
1027    ALOGW("power manager service died !!!");
1028}
1029
1030void AudioFlinger::ThreadBase::setEffectSuspended(
1031        const effect_uuid_t *type, bool suspend, int sessionId)
1032{
1033    Mutex::Autolock _l(mLock);
1034    setEffectSuspended_l(type, suspend, sessionId);
1035}
1036
1037void AudioFlinger::ThreadBase::setEffectSuspended_l(
1038        const effect_uuid_t *type, bool suspend, int sessionId)
1039{
1040    sp<EffectChain> chain = getEffectChain_l(sessionId);
1041    if (chain != 0) {
1042        if (type != NULL) {
1043            chain->setEffectSuspended_l(type, suspend);
1044        } else {
1045            chain->setEffectSuspendedAll_l(suspend);
1046        }
1047    }
1048
1049    updateSuspendedSessions_l(type, suspend, sessionId);
1050}
1051
1052void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1053{
1054    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1055    if (index < 0) {
1056        return;
1057    }
1058
1059    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1060            mSuspendedSessions.valueAt(index);
1061
1062    for (size_t i = 0; i < sessionEffects.size(); i++) {
1063        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1064        for (int j = 0; j < desc->mRefCount; j++) {
1065            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1066                chain->setEffectSuspendedAll_l(true);
1067            } else {
1068                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1069                    desc->mType.timeLow);
1070                chain->setEffectSuspended_l(&desc->mType, true);
1071            }
1072        }
1073    }
1074}
1075
1076void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1077                                                         bool suspend,
1078                                                         int sessionId)
1079{
1080    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1081
1082    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1083
1084    if (suspend) {
1085        if (index >= 0) {
1086            sessionEffects = mSuspendedSessions.valueAt(index);
1087        } else {
1088            mSuspendedSessions.add(sessionId, sessionEffects);
1089        }
1090    } else {
1091        if (index < 0) {
1092            return;
1093        }
1094        sessionEffects = mSuspendedSessions.valueAt(index);
1095    }
1096
1097
1098    int key = EffectChain::kKeyForSuspendAll;
1099    if (type != NULL) {
1100        key = type->timeLow;
1101    }
1102    index = sessionEffects.indexOfKey(key);
1103
1104    sp<SuspendedSessionDesc> desc;
1105    if (suspend) {
1106        if (index >= 0) {
1107            desc = sessionEffects.valueAt(index);
1108        } else {
1109            desc = new SuspendedSessionDesc();
1110            if (type != NULL) {
1111                desc->mType = *type;
1112            }
1113            sessionEffects.add(key, desc);
1114            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1115        }
1116        desc->mRefCount++;
1117    } else {
1118        if (index < 0) {
1119            return;
1120        }
1121        desc = sessionEffects.valueAt(index);
1122        if (--desc->mRefCount == 0) {
1123            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1124            sessionEffects.removeItemsAt(index);
1125            if (sessionEffects.isEmpty()) {
1126                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1127                                 sessionId);
1128                mSuspendedSessions.removeItem(sessionId);
1129            }
1130        }
1131    }
1132    if (!sessionEffects.isEmpty()) {
1133        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1134    }
1135}
1136
1137void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1138                                                            bool enabled,
1139                                                            int sessionId)
1140{
1141    Mutex::Autolock _l(mLock);
1142    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1143}
1144
1145void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1146                                                            bool enabled,
1147                                                            int sessionId)
1148{
1149    if (mType != RECORD) {
1150        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1151        // another session. This gives the priority to well behaved effect control panels
1152        // and applications not using global effects.
1153        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1154        // global effects
1155        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1156            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1157        }
1158    }
1159
1160    sp<EffectChain> chain = getEffectChain_l(sessionId);
1161    if (chain != 0) {
1162        chain->checkSuspendOnEffectEnabled(effect, enabled);
1163    }
1164}
1165
1166// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1167sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1168        const sp<AudioFlinger::Client>& client,
1169        const sp<IEffectClient>& effectClient,
1170        int32_t priority,
1171        int sessionId,
1172        effect_descriptor_t *desc,
1173        int *enabled,
1174        status_t *status)
1175{
1176    sp<EffectModule> effect;
1177    sp<EffectHandle> handle;
1178    status_t lStatus;
1179    sp<EffectChain> chain;
1180    bool chainCreated = false;
1181    bool effectCreated = false;
1182    bool effectRegistered = false;
1183
1184    lStatus = initCheck();
1185    if (lStatus != NO_ERROR) {
1186        ALOGW("createEffect_l() Audio driver not initialized.");
1187        goto Exit;
1188    }
1189
1190    // Reject any effect on Direct output threads for now, since the format of
1191    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1192    if (mType == DIRECT) {
1193        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1194                desc->name, mThreadName);
1195        lStatus = BAD_VALUE;
1196        goto Exit;
1197    }
1198
1199    // Reject any effect on mixer or duplicating multichannel sinks.
1200    // TODO: fix both format and multichannel issues with effects.
1201    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1202        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1203                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1204        lStatus = BAD_VALUE;
1205        goto Exit;
1206    }
1207
1208    // Allow global effects only on offloaded and mixer threads
1209    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1210        switch (mType) {
1211        case MIXER:
1212        case OFFLOAD:
1213            break;
1214        case DIRECT:
1215        case DUPLICATING:
1216        case RECORD:
1217        default:
1218            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1219                    desc->name, mThreadName);
1220            lStatus = BAD_VALUE;
1221            goto Exit;
1222        }
1223    }
1224
1225    // Only Pre processor effects are allowed on input threads and only on input threads
1226    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1227        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1228                desc->name, desc->flags, mType);
1229        lStatus = BAD_VALUE;
1230        goto Exit;
1231    }
1232
1233    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1234
1235    { // scope for mLock
1236        Mutex::Autolock _l(mLock);
1237
1238        // check for existing effect chain with the requested audio session
1239        chain = getEffectChain_l(sessionId);
1240        if (chain == 0) {
1241            // create a new chain for this session
1242            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1243            chain = new EffectChain(this, sessionId);
1244            addEffectChain_l(chain);
1245            chain->setStrategy(getStrategyForSession_l(sessionId));
1246            chainCreated = true;
1247        } else {
1248            effect = chain->getEffectFromDesc_l(desc);
1249        }
1250
1251        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1252
1253        if (effect == 0) {
1254            int id = mAudioFlinger->nextUniqueId();
1255            // Check CPU and memory usage
1256            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1257            if (lStatus != NO_ERROR) {
1258                goto Exit;
1259            }
1260            effectRegistered = true;
1261            // create a new effect module if none present in the chain
1262            effect = new EffectModule(this, chain, desc, id, sessionId);
1263            lStatus = effect->status();
1264            if (lStatus != NO_ERROR) {
1265                goto Exit;
1266            }
1267            effect->setOffloaded(mType == OFFLOAD, mId);
1268
1269            lStatus = chain->addEffect_l(effect);
1270            if (lStatus != NO_ERROR) {
1271                goto Exit;
1272            }
1273            effectCreated = true;
1274
1275            effect->setDevice(mOutDevice);
1276            effect->setDevice(mInDevice);
1277            effect->setMode(mAudioFlinger->getMode());
1278            effect->setAudioSource(mAudioSource);
1279        }
1280        // create effect handle and connect it to effect module
1281        handle = new EffectHandle(effect, client, effectClient, priority);
1282        lStatus = handle->initCheck();
1283        if (lStatus == OK) {
1284            lStatus = effect->addHandle(handle.get());
1285        }
1286        if (enabled != NULL) {
1287            *enabled = (int)effect->isEnabled();
1288        }
1289    }
1290
1291Exit:
1292    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1293        Mutex::Autolock _l(mLock);
1294        if (effectCreated) {
1295            chain->removeEffect_l(effect);
1296        }
1297        if (effectRegistered) {
1298            AudioSystem::unregisterEffect(effect->id());
1299        }
1300        if (chainCreated) {
1301            removeEffectChain_l(chain);
1302        }
1303        handle.clear();
1304    }
1305
1306    *status = lStatus;
1307    return handle;
1308}
1309
1310sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1311{
1312    Mutex::Autolock _l(mLock);
1313    return getEffect_l(sessionId, effectId);
1314}
1315
1316sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1317{
1318    sp<EffectChain> chain = getEffectChain_l(sessionId);
1319    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1320}
1321
1322// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1323// PlaybackThread::mLock held
1324status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1325{
1326    // check for existing effect chain with the requested audio session
1327    int sessionId = effect->sessionId();
1328    sp<EffectChain> chain = getEffectChain_l(sessionId);
1329    bool chainCreated = false;
1330
1331    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1332             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1333                    this, effect->desc().name, effect->desc().flags);
1334
1335    if (chain == 0) {
1336        // create a new chain for this session
1337        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1338        chain = new EffectChain(this, sessionId);
1339        addEffectChain_l(chain);
1340        chain->setStrategy(getStrategyForSession_l(sessionId));
1341        chainCreated = true;
1342    }
1343    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1344
1345    if (chain->getEffectFromId_l(effect->id()) != 0) {
1346        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1347                this, effect->desc().name, chain.get());
1348        return BAD_VALUE;
1349    }
1350
1351    effect->setOffloaded(mType == OFFLOAD, mId);
1352
1353    status_t status = chain->addEffect_l(effect);
1354    if (status != NO_ERROR) {
1355        if (chainCreated) {
1356            removeEffectChain_l(chain);
1357        }
1358        return status;
1359    }
1360
1361    effect->setDevice(mOutDevice);
1362    effect->setDevice(mInDevice);
1363    effect->setMode(mAudioFlinger->getMode());
1364    effect->setAudioSource(mAudioSource);
1365    return NO_ERROR;
1366}
1367
1368void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1369
1370    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1371    effect_descriptor_t desc = effect->desc();
1372    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1373        detachAuxEffect_l(effect->id());
1374    }
1375
1376    sp<EffectChain> chain = effect->chain().promote();
1377    if (chain != 0) {
1378        // remove effect chain if removing last effect
1379        if (chain->removeEffect_l(effect) == 0) {
1380            removeEffectChain_l(chain);
1381        }
1382    } else {
1383        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1384    }
1385}
1386
1387void AudioFlinger::ThreadBase::lockEffectChains_l(
1388        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1389{
1390    effectChains = mEffectChains;
1391    for (size_t i = 0; i < mEffectChains.size(); i++) {
1392        mEffectChains[i]->lock();
1393    }
1394}
1395
1396void AudioFlinger::ThreadBase::unlockEffectChains(
1397        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1398{
1399    for (size_t i = 0; i < effectChains.size(); i++) {
1400        effectChains[i]->unlock();
1401    }
1402}
1403
1404sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1405{
1406    Mutex::Autolock _l(mLock);
1407    return getEffectChain_l(sessionId);
1408}
1409
1410sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1411{
1412    size_t size = mEffectChains.size();
1413    for (size_t i = 0; i < size; i++) {
1414        if (mEffectChains[i]->sessionId() == sessionId) {
1415            return mEffectChains[i];
1416        }
1417    }
1418    return 0;
1419}
1420
1421void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1422{
1423    Mutex::Autolock _l(mLock);
1424    size_t size = mEffectChains.size();
1425    for (size_t i = 0; i < size; i++) {
1426        mEffectChains[i]->setMode_l(mode);
1427    }
1428}
1429
1430void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1431{
1432    config->type = AUDIO_PORT_TYPE_MIX;
1433    config->ext.mix.handle = mId;
1434    config->sample_rate = mSampleRate;
1435    config->format = mFormat;
1436    config->channel_mask = mChannelMask;
1437    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1438                            AUDIO_PORT_CONFIG_FORMAT;
1439}
1440
1441void AudioFlinger::ThreadBase::systemReady()
1442{
1443    Mutex::Autolock _l(mLock);
1444    if (mSystemReady) {
1445        return;
1446    }
1447    mSystemReady = true;
1448
1449    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1450        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1451    }
1452    mPendingConfigEvents.clear();
1453}
1454
1455
1456// ----------------------------------------------------------------------------
1457//      Playback
1458// ----------------------------------------------------------------------------
1459
1460AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1461                                             AudioStreamOut* output,
1462                                             audio_io_handle_t id,
1463                                             audio_devices_t device,
1464                                             type_t type,
1465                                             bool systemReady)
1466    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1467        mNormalFrameCount(0), mSinkBuffer(NULL),
1468        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1469        mMixerBuffer(NULL),
1470        mMixerBufferSize(0),
1471        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1472        mMixerBufferValid(false),
1473        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1474        mEffectBuffer(NULL),
1475        mEffectBufferSize(0),
1476        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1477        mEffectBufferValid(false),
1478        mSuspended(0), mBytesWritten(0),
1479        mActiveTracksGeneration(0),
1480        // mStreamTypes[] initialized in constructor body
1481        mOutput(output),
1482        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1483        mMixerStatus(MIXER_IDLE),
1484        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1485        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1486        mBytesRemaining(0),
1487        mCurrentWriteLength(0),
1488        mUseAsyncWrite(false),
1489        mWriteAckSequence(0),
1490        mDrainSequence(0),
1491        mSignalPending(false),
1492        mScreenState(AudioFlinger::mScreenState),
1493        // index 0 is reserved for normal mixer's submix
1494        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1495        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1496        // mLatchD, mLatchQ,
1497        mLatchDValid(false), mLatchQValid(false)
1498{
1499    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1500    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1501
1502    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1503    // it would be safer to explicitly pass initial masterVolume/masterMute as
1504    // parameter.
1505    //
1506    // If the HAL we are using has support for master volume or master mute,
1507    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1508    // and the mute set to false).
1509    mMasterVolume = audioFlinger->masterVolume_l();
1510    mMasterMute = audioFlinger->masterMute_l();
1511    if (mOutput && mOutput->audioHwDev) {
1512        if (mOutput->audioHwDev->canSetMasterVolume()) {
1513            mMasterVolume = 1.0;
1514        }
1515
1516        if (mOutput->audioHwDev->canSetMasterMute()) {
1517            mMasterMute = false;
1518        }
1519    }
1520
1521    readOutputParameters_l();
1522
1523    // ++ operator does not compile
1524    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1525            stream = (audio_stream_type_t) (stream + 1)) {
1526        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1527        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1528    }
1529}
1530
1531AudioFlinger::PlaybackThread::~PlaybackThread()
1532{
1533    mAudioFlinger->unregisterWriter(mNBLogWriter);
1534    free(mSinkBuffer);
1535    free(mMixerBuffer);
1536    free(mEffectBuffer);
1537}
1538
1539void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1540{
1541    dumpInternals(fd, args);
1542    dumpTracks(fd, args);
1543    dumpEffectChains(fd, args);
1544}
1545
1546void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1547{
1548    const size_t SIZE = 256;
1549    char buffer[SIZE];
1550    String8 result;
1551
1552    result.appendFormat("  Stream volumes in dB: ");
1553    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1554        const stream_type_t *st = &mStreamTypes[i];
1555        if (i > 0) {
1556            result.appendFormat(", ");
1557        }
1558        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1559        if (st->mute) {
1560            result.append("M");
1561        }
1562    }
1563    result.append("\n");
1564    write(fd, result.string(), result.length());
1565    result.clear();
1566
1567    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1568    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1569    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1570            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1571
1572    size_t numtracks = mTracks.size();
1573    size_t numactive = mActiveTracks.size();
1574    dprintf(fd, "  %d Tracks", numtracks);
1575    size_t numactiveseen = 0;
1576    if (numtracks) {
1577        dprintf(fd, " of which %d are active\n", numactive);
1578        Track::appendDumpHeader(result);
1579        for (size_t i = 0; i < numtracks; ++i) {
1580            sp<Track> track = mTracks[i];
1581            if (track != 0) {
1582                bool active = mActiveTracks.indexOf(track) >= 0;
1583                if (active) {
1584                    numactiveseen++;
1585                }
1586                track->dump(buffer, SIZE, active);
1587                result.append(buffer);
1588            }
1589        }
1590    } else {
1591        result.append("\n");
1592    }
1593    if (numactiveseen != numactive) {
1594        // some tracks in the active list were not in the tracks list
1595        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1596                " not in the track list\n");
1597        result.append(buffer);
1598        Track::appendDumpHeader(result);
1599        for (size_t i = 0; i < numactive; ++i) {
1600            sp<Track> track = mActiveTracks[i].promote();
1601            if (track != 0 && mTracks.indexOf(track) < 0) {
1602                track->dump(buffer, SIZE, true);
1603                result.append(buffer);
1604            }
1605        }
1606    }
1607
1608    write(fd, result.string(), result.size());
1609}
1610
1611void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1612{
1613    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1614
1615    dumpBase(fd, args);
1616
1617    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1618    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1619    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1620    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1621    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1622    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1623    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1624    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1625    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1626    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1627    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1628    AudioStreamOut *output = mOutput;
1629    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1630    String8 flagsAsString = outputFlagsToString(flags);
1631    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1632}
1633
1634// Thread virtuals
1635
1636void AudioFlinger::PlaybackThread::onFirstRef()
1637{
1638    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1639}
1640
1641// ThreadBase virtuals
1642void AudioFlinger::PlaybackThread::preExit()
1643{
1644    ALOGV("  preExit()");
1645    // FIXME this is using hard-coded strings but in the future, this functionality will be
1646    //       converted to use audio HAL extensions required to support tunneling
1647    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1648}
1649
1650// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1651sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1652        const sp<AudioFlinger::Client>& client,
1653        audio_stream_type_t streamType,
1654        uint32_t sampleRate,
1655        audio_format_t format,
1656        audio_channel_mask_t channelMask,
1657        size_t *pFrameCount,
1658        const sp<IMemory>& sharedBuffer,
1659        int sessionId,
1660        IAudioFlinger::track_flags_t *flags,
1661        pid_t tid,
1662        int uid,
1663        status_t *status)
1664{
1665    size_t frameCount = *pFrameCount;
1666    sp<Track> track;
1667    status_t lStatus;
1668
1669    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1670
1671    // client expresses a preference for FAST, but we get the final say
1672    if (*flags & IAudioFlinger::TRACK_FAST) {
1673      if (
1674            // not timed
1675            (!isTimed) &&
1676            // either of these use cases:
1677            (
1678              // use case 1: shared buffer with any frame count
1679              (
1680                (sharedBuffer != 0)
1681              ) ||
1682              // use case 2: frame count is default or at least as large as HAL
1683              (
1684                // we formerly checked for a callback handler (non-0 tid),
1685                // but that is no longer required for TRANSFER_OBTAIN mode
1686                ((frameCount == 0) ||
1687                (frameCount >= mFrameCount))
1688              )
1689            ) &&
1690            // PCM data
1691            audio_is_linear_pcm(format) &&
1692            // TODO: extract as a data library function that checks that a computationally
1693            // expensive downmixer is not required: isFastOutputChannelConversion()
1694            (channelMask == mChannelMask ||
1695                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1696                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1697                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1698            // hardware sample rate
1699            (sampleRate == mSampleRate) &&
1700            // normal mixer has an associated fast mixer
1701            hasFastMixer() &&
1702            // there are sufficient fast track slots available
1703            (mFastTrackAvailMask != 0)
1704            // FIXME test that MixerThread for this fast track has a capable output HAL
1705            // FIXME add a permission test also?
1706        ) {
1707        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1708        if (frameCount == 0) {
1709            // read the fast track multiplier property the first time it is needed
1710            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1711            if (ok != 0) {
1712                ALOGE("%s pthread_once failed: %d", __func__, ok);
1713            }
1714            frameCount = mFrameCount * sFastTrackMultiplier;
1715        }
1716        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1717                frameCount, mFrameCount);
1718      } else {
1719        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1720                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1721                "sampleRate=%u mSampleRate=%u "
1722                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1723                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1724                audio_is_linear_pcm(format),
1725                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1726        *flags &= ~IAudioFlinger::TRACK_FAST;
1727      }
1728    }
1729    // For normal PCM streaming tracks, update minimum frame count.
1730    // For compatibility with AudioTrack calculation, buffer depth is forced
1731    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1732    // This is probably too conservative, but legacy application code may depend on it.
1733    // If you change this calculation, also review the start threshold which is related.
1734    if (!(*flags & IAudioFlinger::TRACK_FAST)
1735            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1736        // this must match AudioTrack.cpp calculateMinFrameCount().
1737        // TODO: Move to a common library
1738        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1739        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1740        if (minBufCount < 2) {
1741            minBufCount = 2;
1742        }
1743        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1744        // or the client should compute and pass in a larger buffer request.
1745        size_t minFrameCount =
1746                minBufCount * sourceFramesNeededWithTimestretch(
1747                        sampleRate, mNormalFrameCount,
1748                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1749        if (frameCount < minFrameCount) { // including frameCount == 0
1750            frameCount = minFrameCount;
1751        }
1752    }
1753    *pFrameCount = frameCount;
1754
1755    switch (mType) {
1756
1757    case DIRECT:
1758        if (audio_is_linear_pcm(format)) {
1759            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1760                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1761                        "for output %p with format %#x",
1762                        sampleRate, format, channelMask, mOutput, mFormat);
1763                lStatus = BAD_VALUE;
1764                goto Exit;
1765            }
1766        }
1767        break;
1768
1769    case OFFLOAD:
1770        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1771            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1772                    "for output %p with format %#x",
1773                    sampleRate, format, channelMask, mOutput, mFormat);
1774            lStatus = BAD_VALUE;
1775            goto Exit;
1776        }
1777        break;
1778
1779    default:
1780        if (!audio_is_linear_pcm(format)) {
1781                ALOGE("createTrack_l() Bad parameter: format %#x \""
1782                        "for output %p with format %#x",
1783                        format, mOutput, mFormat);
1784                lStatus = BAD_VALUE;
1785                goto Exit;
1786        }
1787        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1788            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1789            lStatus = BAD_VALUE;
1790            goto Exit;
1791        }
1792        break;
1793
1794    }
1795
1796    lStatus = initCheck();
1797    if (lStatus != NO_ERROR) {
1798        ALOGE("createTrack_l() audio driver not initialized");
1799        goto Exit;
1800    }
1801
1802    { // scope for mLock
1803        Mutex::Autolock _l(mLock);
1804
1805        // all tracks in same audio session must share the same routing strategy otherwise
1806        // conflicts will happen when tracks are moved from one output to another by audio policy
1807        // manager
1808        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1809        for (size_t i = 0; i < mTracks.size(); ++i) {
1810            sp<Track> t = mTracks[i];
1811            if (t != 0 && t->isExternalTrack()) {
1812                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1813                if (sessionId == t->sessionId() && strategy != actual) {
1814                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1815                            strategy, actual);
1816                    lStatus = BAD_VALUE;
1817                    goto Exit;
1818                }
1819            }
1820        }
1821
1822        if (!isTimed) {
1823            track = new Track(this, client, streamType, sampleRate, format,
1824                              channelMask, frameCount, NULL, sharedBuffer,
1825                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1826        } else {
1827            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1828                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1829        }
1830
1831        // new Track always returns non-NULL,
1832        // but TimedTrack::create() is a factory that could fail by returning NULL
1833        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1834        if (lStatus != NO_ERROR) {
1835            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1836            // track must be cleared from the caller as the caller has the AF lock
1837            goto Exit;
1838        }
1839        mTracks.add(track);
1840
1841        sp<EffectChain> chain = getEffectChain_l(sessionId);
1842        if (chain != 0) {
1843            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1844            track->setMainBuffer(chain->inBuffer());
1845            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1846            chain->incTrackCnt();
1847        }
1848
1849        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1850            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1851            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1852            // so ask activity manager to do this on our behalf
1853            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1854        }
1855    }
1856
1857    lStatus = NO_ERROR;
1858
1859Exit:
1860    *status = lStatus;
1861    return track;
1862}
1863
1864uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1865{
1866    return latency;
1867}
1868
1869uint32_t AudioFlinger::PlaybackThread::latency() const
1870{
1871    Mutex::Autolock _l(mLock);
1872    return latency_l();
1873}
1874uint32_t AudioFlinger::PlaybackThread::latency_l() const
1875{
1876    if (initCheck() == NO_ERROR) {
1877        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1878    } else {
1879        return 0;
1880    }
1881}
1882
1883void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1884{
1885    Mutex::Autolock _l(mLock);
1886    // Don't apply master volume in SW if our HAL can do it for us.
1887    if (mOutput && mOutput->audioHwDev &&
1888        mOutput->audioHwDev->canSetMasterVolume()) {
1889        mMasterVolume = 1.0;
1890    } else {
1891        mMasterVolume = value;
1892    }
1893}
1894
1895void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1896{
1897    Mutex::Autolock _l(mLock);
1898    // Don't apply master mute in SW if our HAL can do it for us.
1899    if (mOutput && mOutput->audioHwDev &&
1900        mOutput->audioHwDev->canSetMasterMute()) {
1901        mMasterMute = false;
1902    } else {
1903        mMasterMute = muted;
1904    }
1905}
1906
1907void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1908{
1909    Mutex::Autolock _l(mLock);
1910    mStreamTypes[stream].volume = value;
1911    broadcast_l();
1912}
1913
1914void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1915{
1916    Mutex::Autolock _l(mLock);
1917    mStreamTypes[stream].mute = muted;
1918    broadcast_l();
1919}
1920
1921float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1922{
1923    Mutex::Autolock _l(mLock);
1924    return mStreamTypes[stream].volume;
1925}
1926
1927// addTrack_l() must be called with ThreadBase::mLock held
1928status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1929{
1930    status_t status = ALREADY_EXISTS;
1931
1932    // set retry count for buffer fill
1933    track->mRetryCount = kMaxTrackStartupRetries;
1934    if (mActiveTracks.indexOf(track) < 0) {
1935        // the track is newly added, make sure it fills up all its
1936        // buffers before playing. This is to ensure the client will
1937        // effectively get the latency it requested.
1938        if (track->isExternalTrack()) {
1939            TrackBase::track_state state = track->mState;
1940            mLock.unlock();
1941            status = AudioSystem::startOutput(mId, track->streamType(),
1942                                              (audio_session_t)track->sessionId());
1943            mLock.lock();
1944            // abort track was stopped/paused while we released the lock
1945            if (state != track->mState) {
1946                if (status == NO_ERROR) {
1947                    mLock.unlock();
1948                    AudioSystem::stopOutput(mId, track->streamType(),
1949                                            (audio_session_t)track->sessionId());
1950                    mLock.lock();
1951                }
1952                return INVALID_OPERATION;
1953            }
1954            // abort if start is rejected by audio policy manager
1955            if (status != NO_ERROR) {
1956                return PERMISSION_DENIED;
1957            }
1958#ifdef ADD_BATTERY_DATA
1959            // to track the speaker usage
1960            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1961#endif
1962        }
1963
1964        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1965        track->mResetDone = false;
1966        track->mPresentationCompleteFrames = 0;
1967        mActiveTracks.add(track);
1968        mWakeLockUids.add(track->uid());
1969        mActiveTracksGeneration++;
1970        mLatestActiveTrack = track;
1971        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1972        if (chain != 0) {
1973            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1974                    track->sessionId());
1975            chain->incActiveTrackCnt();
1976        }
1977
1978        status = NO_ERROR;
1979    }
1980
1981    onAddNewTrack_l();
1982    return status;
1983}
1984
1985bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1986{
1987    track->terminate();
1988    // active tracks are removed by threadLoop()
1989    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1990    track->mState = TrackBase::STOPPED;
1991    if (!trackActive) {
1992        removeTrack_l(track);
1993    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1994        track->mState = TrackBase::STOPPING_1;
1995    }
1996
1997    return trackActive;
1998}
1999
2000void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2001{
2002    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2003    mTracks.remove(track);
2004    deleteTrackName_l(track->name());
2005    // redundant as track is about to be destroyed, for dumpsys only
2006    track->mName = -1;
2007    if (track->isFastTrack()) {
2008        int index = track->mFastIndex;
2009        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
2010        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2011        mFastTrackAvailMask |= 1 << index;
2012        // redundant as track is about to be destroyed, for dumpsys only
2013        track->mFastIndex = -1;
2014    }
2015    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2016    if (chain != 0) {
2017        chain->decTrackCnt();
2018    }
2019}
2020
2021void AudioFlinger::PlaybackThread::broadcast_l()
2022{
2023    // Thread could be blocked waiting for async
2024    // so signal it to handle state changes immediately
2025    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2026    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2027    mSignalPending = true;
2028    mWaitWorkCV.broadcast();
2029}
2030
2031String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2032{
2033    Mutex::Autolock _l(mLock);
2034    if (initCheck() != NO_ERROR) {
2035        return String8();
2036    }
2037
2038    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2039    const String8 out_s8(s);
2040    free(s);
2041    return out_s8;
2042}
2043
2044void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2045    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2046    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2047
2048    desc->mIoHandle = mId;
2049
2050    switch (event) {
2051    case AUDIO_OUTPUT_OPENED:
2052    case AUDIO_OUTPUT_CONFIG_CHANGED:
2053        desc->mPatch = mPatch;
2054        desc->mChannelMask = mChannelMask;
2055        desc->mSamplingRate = mSampleRate;
2056        desc->mFormat = mFormat;
2057        desc->mFrameCount = mNormalFrameCount; // FIXME see
2058                                             // AudioFlinger::frameCount(audio_io_handle_t)
2059        desc->mLatency = latency_l();
2060        break;
2061
2062    case AUDIO_OUTPUT_CLOSED:
2063    default:
2064        break;
2065    }
2066    mAudioFlinger->ioConfigChanged(event, desc, pid);
2067}
2068
2069void AudioFlinger::PlaybackThread::writeCallback()
2070{
2071    ALOG_ASSERT(mCallbackThread != 0);
2072    mCallbackThread->resetWriteBlocked();
2073}
2074
2075void AudioFlinger::PlaybackThread::drainCallback()
2076{
2077    ALOG_ASSERT(mCallbackThread != 0);
2078    mCallbackThread->resetDraining();
2079}
2080
2081void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2082{
2083    Mutex::Autolock _l(mLock);
2084    // reject out of sequence requests
2085    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2086        mWriteAckSequence &= ~1;
2087        mWaitWorkCV.signal();
2088    }
2089}
2090
2091void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2092{
2093    Mutex::Autolock _l(mLock);
2094    // reject out of sequence requests
2095    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2096        mDrainSequence &= ~1;
2097        mWaitWorkCV.signal();
2098    }
2099}
2100
2101// static
2102int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2103                                                void *param __unused,
2104                                                void *cookie)
2105{
2106    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2107    ALOGV("asyncCallback() event %d", event);
2108    switch (event) {
2109    case STREAM_CBK_EVENT_WRITE_READY:
2110        me->writeCallback();
2111        break;
2112    case STREAM_CBK_EVENT_DRAIN_READY:
2113        me->drainCallback();
2114        break;
2115    default:
2116        ALOGW("asyncCallback() unknown event %d", event);
2117        break;
2118    }
2119    return 0;
2120}
2121
2122void AudioFlinger::PlaybackThread::readOutputParameters_l()
2123{
2124    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2125    mSampleRate = mOutput->getSampleRate();
2126    mChannelMask = mOutput->getChannelMask();
2127    if (!audio_is_output_channel(mChannelMask)) {
2128        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2129    }
2130    if ((mType == MIXER || mType == DUPLICATING)
2131            && !isValidPcmSinkChannelMask(mChannelMask)) {
2132        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2133                mChannelMask);
2134    }
2135    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2136
2137    // Get actual HAL format.
2138    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2139    // Get format from the shim, which will be different than the HAL format
2140    // if playing compressed audio over HDMI passthrough.
2141    mFormat = mOutput->getFormat();
2142    if (!audio_is_valid_format(mFormat)) {
2143        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2144    }
2145    if ((mType == MIXER || mType == DUPLICATING)
2146            && !isValidPcmSinkFormat(mFormat)) {
2147        LOG_FATAL("HAL format %#x not supported for mixed output",
2148                mFormat);
2149    }
2150    mFrameSize = mOutput->getFrameSize();
2151    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2152    mFrameCount = mBufferSize / mFrameSize;
2153    if (mFrameCount & 15) {
2154        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2155                mFrameCount);
2156    }
2157
2158    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2159            (mOutput->stream->set_callback != NULL)) {
2160        if (mOutput->stream->set_callback(mOutput->stream,
2161                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2162            mUseAsyncWrite = true;
2163            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2164        }
2165    }
2166
2167    mHwSupportsPause = false;
2168    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2169        if (mOutput->stream->pause != NULL) {
2170            if (mOutput->stream->resume != NULL) {
2171                mHwSupportsPause = true;
2172            } else {
2173                ALOGW("direct output implements pause but not resume");
2174            }
2175        } else if (mOutput->stream->resume != NULL) {
2176            ALOGW("direct output implements resume but not pause");
2177        }
2178    }
2179    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2180        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2181    }
2182
2183    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2184        // For best precision, we use float instead of the associated output
2185        // device format (typically PCM 16 bit).
2186
2187        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2188        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2189        mBufferSize = mFrameSize * mFrameCount;
2190
2191        // TODO: We currently use the associated output device channel mask and sample rate.
2192        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2193        // (if a valid mask) to avoid premature downmix.
2194        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2195        // instead of the output device sample rate to avoid loss of high frequency information.
2196        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2197    }
2198
2199    // Calculate size of normal sink buffer relative to the HAL output buffer size
2200    double multiplier = 1.0;
2201    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2202            kUseFastMixer == FastMixer_Dynamic)) {
2203        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2204        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2205        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2206        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2207        maxNormalFrameCount = maxNormalFrameCount & ~15;
2208        if (maxNormalFrameCount < minNormalFrameCount) {
2209            maxNormalFrameCount = minNormalFrameCount;
2210        }
2211        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2212        if (multiplier <= 1.0) {
2213            multiplier = 1.0;
2214        } else if (multiplier <= 2.0) {
2215            if (2 * mFrameCount <= maxNormalFrameCount) {
2216                multiplier = 2.0;
2217            } else {
2218                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2219            }
2220        } else {
2221            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2222            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2223            // track, but we sometimes have to do this to satisfy the maximum frame count
2224            // constraint)
2225            // FIXME this rounding up should not be done if no HAL SRC
2226            uint32_t truncMult = (uint32_t) multiplier;
2227            if ((truncMult & 1)) {
2228                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2229                    ++truncMult;
2230                }
2231            }
2232            multiplier = (double) truncMult;
2233        }
2234    }
2235    mNormalFrameCount = multiplier * mFrameCount;
2236    // round up to nearest 16 frames to satisfy AudioMixer
2237    if (mType == MIXER || mType == DUPLICATING) {
2238        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2239    }
2240    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2241            mNormalFrameCount);
2242
2243    // Check if we want to throttle the processing to no more than 2x normal rate
2244    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2245    mThreadThrottleTimeMs = 0;
2246    mThreadThrottleEndMs = 0;
2247    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2248
2249    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2250    // Originally this was int16_t[] array, need to remove legacy implications.
2251    free(mSinkBuffer);
2252    mSinkBuffer = NULL;
2253    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2254    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2255    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2256    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2257
2258    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2259    // drives the output.
2260    free(mMixerBuffer);
2261    mMixerBuffer = NULL;
2262    if (mMixerBufferEnabled) {
2263        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2264        mMixerBufferSize = mNormalFrameCount * mChannelCount
2265                * audio_bytes_per_sample(mMixerBufferFormat);
2266        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2267    }
2268    free(mEffectBuffer);
2269    mEffectBuffer = NULL;
2270    if (mEffectBufferEnabled) {
2271        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2272        mEffectBufferSize = mNormalFrameCount * mChannelCount
2273                * audio_bytes_per_sample(mEffectBufferFormat);
2274        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2275    }
2276
2277    // force reconfiguration of effect chains and engines to take new buffer size and audio
2278    // parameters into account
2279    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2280    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2281    // matter.
2282    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2283    Vector< sp<EffectChain> > effectChains = mEffectChains;
2284    for (size_t i = 0; i < effectChains.size(); i ++) {
2285        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2286    }
2287}
2288
2289
2290status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2291{
2292    if (halFrames == NULL || dspFrames == NULL) {
2293        return BAD_VALUE;
2294    }
2295    Mutex::Autolock _l(mLock);
2296    if (initCheck() != NO_ERROR) {
2297        return INVALID_OPERATION;
2298    }
2299    size_t framesWritten = mBytesWritten / mFrameSize;
2300    *halFrames = framesWritten;
2301
2302    if (isSuspended()) {
2303        // return an estimation of rendered frames when the output is suspended
2304        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2305        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2306        return NO_ERROR;
2307    } else {
2308        status_t status;
2309        uint32_t frames;
2310        status = mOutput->getRenderPosition(&frames);
2311        *dspFrames = (size_t)frames;
2312        return status;
2313    }
2314}
2315
2316uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2317{
2318    Mutex::Autolock _l(mLock);
2319    uint32_t result = 0;
2320    if (getEffectChain_l(sessionId) != 0) {
2321        result = EFFECT_SESSION;
2322    }
2323
2324    for (size_t i = 0; i < mTracks.size(); ++i) {
2325        sp<Track> track = mTracks[i];
2326        if (sessionId == track->sessionId() && !track->isInvalid()) {
2327            result |= TRACK_SESSION;
2328            break;
2329        }
2330    }
2331
2332    return result;
2333}
2334
2335uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2336{
2337    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2338    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2339    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2340        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2341    }
2342    for (size_t i = 0; i < mTracks.size(); i++) {
2343        sp<Track> track = mTracks[i];
2344        if (sessionId == track->sessionId() && !track->isInvalid()) {
2345            return AudioSystem::getStrategyForStream(track->streamType());
2346        }
2347    }
2348    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2349}
2350
2351
2352AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2353{
2354    Mutex::Autolock _l(mLock);
2355    return mOutput;
2356}
2357
2358AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2359{
2360    Mutex::Autolock _l(mLock);
2361    AudioStreamOut *output = mOutput;
2362    mOutput = NULL;
2363    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2364    //       must push a NULL and wait for ack
2365    mOutputSink.clear();
2366    mPipeSink.clear();
2367    mNormalSink.clear();
2368    return output;
2369}
2370
2371// this method must always be called either with ThreadBase mLock held or inside the thread loop
2372audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2373{
2374    if (mOutput == NULL) {
2375        return NULL;
2376    }
2377    return &mOutput->stream->common;
2378}
2379
2380uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2381{
2382    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2383}
2384
2385status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2386{
2387    if (!isValidSyncEvent(event)) {
2388        return BAD_VALUE;
2389    }
2390
2391    Mutex::Autolock _l(mLock);
2392
2393    for (size_t i = 0; i < mTracks.size(); ++i) {
2394        sp<Track> track = mTracks[i];
2395        if (event->triggerSession() == track->sessionId()) {
2396            (void) track->setSyncEvent(event);
2397            return NO_ERROR;
2398        }
2399    }
2400
2401    return NAME_NOT_FOUND;
2402}
2403
2404bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2405{
2406    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2407}
2408
2409void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2410        const Vector< sp<Track> >& tracksToRemove)
2411{
2412    size_t count = tracksToRemove.size();
2413    if (count > 0) {
2414        for (size_t i = 0 ; i < count ; i++) {
2415            const sp<Track>& track = tracksToRemove.itemAt(i);
2416            if (track->isExternalTrack()) {
2417                AudioSystem::stopOutput(mId, track->streamType(),
2418                                        (audio_session_t)track->sessionId());
2419#ifdef ADD_BATTERY_DATA
2420                // to track the speaker usage
2421                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2422#endif
2423                if (track->isTerminated()) {
2424                    AudioSystem::releaseOutput(mId, track->streamType(),
2425                                               (audio_session_t)track->sessionId());
2426                }
2427            }
2428        }
2429    }
2430}
2431
2432void AudioFlinger::PlaybackThread::checkSilentMode_l()
2433{
2434    if (!mMasterMute) {
2435        char value[PROPERTY_VALUE_MAX];
2436        if (property_get("ro.audio.silent", value, "0") > 0) {
2437            char *endptr;
2438            unsigned long ul = strtoul(value, &endptr, 0);
2439            if (*endptr == '\0' && ul != 0) {
2440                ALOGD("Silence is golden");
2441                // The setprop command will not allow a property to be changed after
2442                // the first time it is set, so we don't have to worry about un-muting.
2443                setMasterMute_l(true);
2444            }
2445        }
2446    }
2447}
2448
2449// shared by MIXER and DIRECT, overridden by DUPLICATING
2450ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2451{
2452    // FIXME rewrite to reduce number of system calls
2453    mLastWriteTime = systemTime();
2454    mInWrite = true;
2455    ssize_t bytesWritten;
2456    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2457
2458    // If an NBAIO sink is present, use it to write the normal mixer's submix
2459    if (mNormalSink != 0) {
2460
2461        const size_t count = mBytesRemaining / mFrameSize;
2462
2463        ATRACE_BEGIN("write");
2464        // update the setpoint when AudioFlinger::mScreenState changes
2465        uint32_t screenState = AudioFlinger::mScreenState;
2466        if (screenState != mScreenState) {
2467            mScreenState = screenState;
2468            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2469            if (pipe != NULL) {
2470                pipe->setAvgFrames((mScreenState & 1) ?
2471                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2472            }
2473        }
2474        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2475        ATRACE_END();
2476        if (framesWritten > 0) {
2477            bytesWritten = framesWritten * mFrameSize;
2478        } else {
2479            bytesWritten = framesWritten;
2480        }
2481        mLatchDValid = false;
2482        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2483        if (status == NO_ERROR) {
2484            size_t totalFramesWritten = mNormalSink->framesWritten();
2485            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2486                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2487                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2488                mLatchDValid = true;
2489            }
2490        }
2491    // otherwise use the HAL / AudioStreamOut directly
2492    } else {
2493        // Direct output and offload threads
2494
2495        if (mUseAsyncWrite) {
2496            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2497            mWriteAckSequence += 2;
2498            mWriteAckSequence |= 1;
2499            ALOG_ASSERT(mCallbackThread != 0);
2500            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2501        }
2502        // FIXME We should have an implementation of timestamps for direct output threads.
2503        // They are used e.g for multichannel PCM playback over HDMI.
2504        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2505        if (mUseAsyncWrite &&
2506                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2507            // do not wait for async callback in case of error of full write
2508            mWriteAckSequence &= ~1;
2509            ALOG_ASSERT(mCallbackThread != 0);
2510            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2511        }
2512    }
2513
2514    mNumWrites++;
2515    mInWrite = false;
2516    mStandby = false;
2517    return bytesWritten;
2518}
2519
2520void AudioFlinger::PlaybackThread::threadLoop_drain()
2521{
2522    if (mOutput->stream->drain) {
2523        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2524        if (mUseAsyncWrite) {
2525            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2526            mDrainSequence |= 1;
2527            ALOG_ASSERT(mCallbackThread != 0);
2528            mCallbackThread->setDraining(mDrainSequence);
2529        }
2530        mOutput->stream->drain(mOutput->stream,
2531            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2532                                                : AUDIO_DRAIN_ALL);
2533    }
2534}
2535
2536void AudioFlinger::PlaybackThread::threadLoop_exit()
2537{
2538    {
2539        Mutex::Autolock _l(mLock);
2540        for (size_t i = 0; i < mTracks.size(); i++) {
2541            sp<Track> track = mTracks[i];
2542            track->invalidate();
2543        }
2544    }
2545}
2546
2547/*
2548The derived values that are cached:
2549 - mSinkBufferSize from frame count * frame size
2550 - mActiveSleepTimeUs from activeSleepTimeUs()
2551 - mIdleSleepTimeUs from idleSleepTimeUs()
2552 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2553   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2554 - maxPeriod from frame count and sample rate (MIXER only)
2555
2556The parameters that affect these derived values are:
2557 - frame count
2558 - frame size
2559 - sample rate
2560 - device type: A2DP or not
2561 - device latency
2562 - format: PCM or not
2563 - active sleep time
2564 - idle sleep time
2565*/
2566
2567void AudioFlinger::PlaybackThread::cacheParameters_l()
2568{
2569    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2570    mActiveSleepTimeUs = activeSleepTimeUs();
2571    mIdleSleepTimeUs = idleSleepTimeUs();
2572
2573    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2574    // truncating audio when going to standby.
2575    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2576    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2577        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2578            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2579        }
2580    }
2581}
2582
2583void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2584{
2585    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2586            this,  streamType, mTracks.size());
2587    Mutex::Autolock _l(mLock);
2588
2589    size_t size = mTracks.size();
2590    for (size_t i = 0; i < size; i++) {
2591        sp<Track> t = mTracks[i];
2592        if (t->streamType() == streamType && t->isExternalTrack()) {
2593            t->invalidate();
2594        }
2595    }
2596}
2597
2598status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2599{
2600    int session = chain->sessionId();
2601    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2602            ? mEffectBuffer : mSinkBuffer);
2603    bool ownsBuffer = false;
2604
2605    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2606    if (session > 0) {
2607        // Only one effect chain can be present in direct output thread and it uses
2608        // the sink buffer as input
2609        if (mType != DIRECT) {
2610            size_t numSamples = mNormalFrameCount * mChannelCount;
2611            buffer = new int16_t[numSamples];
2612            memset(buffer, 0, numSamples * sizeof(int16_t));
2613            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2614            ownsBuffer = true;
2615        }
2616
2617        // Attach all tracks with same session ID to this chain.
2618        for (size_t i = 0; i < mTracks.size(); ++i) {
2619            sp<Track> track = mTracks[i];
2620            if (session == track->sessionId()) {
2621                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2622                        buffer);
2623                track->setMainBuffer(buffer);
2624                chain->incTrackCnt();
2625            }
2626        }
2627
2628        // indicate all active tracks in the chain
2629        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2630            sp<Track> track = mActiveTracks[i].promote();
2631            if (track == 0) {
2632                continue;
2633            }
2634            if (session == track->sessionId()) {
2635                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2636                chain->incActiveTrackCnt();
2637            }
2638        }
2639    }
2640    chain->setThread(this);
2641    chain->setInBuffer(buffer, ownsBuffer);
2642    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2643            ? mEffectBuffer : mSinkBuffer));
2644    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2645    // chains list in order to be processed last as it contains output stage effects
2646    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2647    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2648    // after track specific effects and before output stage
2649    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2650    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2651    // Effect chain for other sessions are inserted at beginning of effect
2652    // chains list to be processed before output mix effects. Relative order between other
2653    // sessions is not important
2654    size_t size = mEffectChains.size();
2655    size_t i = 0;
2656    for (i = 0; i < size; i++) {
2657        if (mEffectChains[i]->sessionId() < session) {
2658            break;
2659        }
2660    }
2661    mEffectChains.insertAt(chain, i);
2662    checkSuspendOnAddEffectChain_l(chain);
2663
2664    return NO_ERROR;
2665}
2666
2667size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2668{
2669    int session = chain->sessionId();
2670
2671    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2672
2673    for (size_t i = 0; i < mEffectChains.size(); i++) {
2674        if (chain == mEffectChains[i]) {
2675            mEffectChains.removeAt(i);
2676            // detach all active tracks from the chain
2677            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2678                sp<Track> track = mActiveTracks[i].promote();
2679                if (track == 0) {
2680                    continue;
2681                }
2682                if (session == track->sessionId()) {
2683                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2684                            chain.get(), session);
2685                    chain->decActiveTrackCnt();
2686                }
2687            }
2688
2689            // detach all tracks with same session ID from this chain
2690            for (size_t i = 0; i < mTracks.size(); ++i) {
2691                sp<Track> track = mTracks[i];
2692                if (session == track->sessionId()) {
2693                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2694                    chain->decTrackCnt();
2695                }
2696            }
2697            break;
2698        }
2699    }
2700    return mEffectChains.size();
2701}
2702
2703status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2704        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2705{
2706    Mutex::Autolock _l(mLock);
2707    return attachAuxEffect_l(track, EffectId);
2708}
2709
2710status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2711        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2712{
2713    status_t status = NO_ERROR;
2714
2715    if (EffectId == 0) {
2716        track->setAuxBuffer(0, NULL);
2717    } else {
2718        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2719        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2720        if (effect != 0) {
2721            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2722                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2723            } else {
2724                status = INVALID_OPERATION;
2725            }
2726        } else {
2727            status = BAD_VALUE;
2728        }
2729    }
2730    return status;
2731}
2732
2733void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2734{
2735    for (size_t i = 0; i < mTracks.size(); ++i) {
2736        sp<Track> track = mTracks[i];
2737        if (track->auxEffectId() == effectId) {
2738            attachAuxEffect_l(track, 0);
2739        }
2740    }
2741}
2742
2743bool AudioFlinger::PlaybackThread::threadLoop()
2744{
2745    Vector< sp<Track> > tracksToRemove;
2746
2747    mStandbyTimeNs = systemTime();
2748
2749    // MIXER
2750    nsecs_t lastWarning = 0;
2751
2752    // DUPLICATING
2753    // FIXME could this be made local to while loop?
2754    writeFrames = 0;
2755
2756    int lastGeneration = 0;
2757
2758    cacheParameters_l();
2759    mSleepTimeUs = mIdleSleepTimeUs;
2760
2761    if (mType == MIXER) {
2762        sleepTimeShift = 0;
2763    }
2764
2765    CpuStats cpuStats;
2766    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2767
2768    acquireWakeLock();
2769
2770    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2771    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2772    // and then that string will be logged at the next convenient opportunity.
2773    const char *logString = NULL;
2774
2775    checkSilentMode_l();
2776
2777    while (!exitPending())
2778    {
2779        cpuStats.sample(myName);
2780
2781        Vector< sp<EffectChain> > effectChains;
2782
2783        { // scope for mLock
2784
2785            Mutex::Autolock _l(mLock);
2786
2787            processConfigEvents_l();
2788
2789            if (logString != NULL) {
2790                mNBLogWriter->logTimestamp();
2791                mNBLogWriter->log(logString);
2792                logString = NULL;
2793            }
2794
2795            // Gather the framesReleased counters for all active tracks,
2796            // and latch them atomically with the timestamp.
2797            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2798            mLatchD.mFramesReleased.clear();
2799            size_t size = mActiveTracks.size();
2800            for (size_t i = 0; i < size; i++) {
2801                sp<Track> t = mActiveTracks[i].promote();
2802                if (t != 0) {
2803                    mLatchD.mFramesReleased.add(t.get(),
2804                            t->mAudioTrackServerProxy->framesReleased());
2805                }
2806            }
2807            if (mLatchDValid) {
2808                mLatchQ = mLatchD;
2809                mLatchDValid = false;
2810                mLatchQValid = true;
2811            }
2812
2813            saveOutputTracks();
2814            if (mSignalPending) {
2815                // A signal was raised while we were unlocked
2816                mSignalPending = false;
2817            } else if (waitingAsyncCallback_l()) {
2818                if (exitPending()) {
2819                    break;
2820                }
2821                bool released = false;
2822                // The following works around a bug in the offload driver. Ideally we would release
2823                // the wake lock every time, but that causes the last offload buffer(s) to be
2824                // dropped while the device is on battery, so we need to hold a wake lock during
2825                // the drain phase.
2826                if (mBytesRemaining && !(mDrainSequence & 1)) {
2827                    releaseWakeLock_l();
2828                    released = true;
2829                }
2830                mWakeLockUids.clear();
2831                mActiveTracksGeneration++;
2832                ALOGV("wait async completion");
2833                mWaitWorkCV.wait(mLock);
2834                ALOGV("async completion/wake");
2835                if (released) {
2836                    acquireWakeLock_l();
2837                }
2838                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2839                mSleepTimeUs = 0;
2840
2841                continue;
2842            }
2843            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2844                                   isSuspended()) {
2845                // put audio hardware into standby after short delay
2846                if (shouldStandby_l()) {
2847
2848                    threadLoop_standby();
2849
2850                    mStandby = true;
2851                }
2852
2853                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2854                    // we're about to wait, flush the binder command buffer
2855                    IPCThreadState::self()->flushCommands();
2856
2857                    clearOutputTracks();
2858
2859                    if (exitPending()) {
2860                        break;
2861                    }
2862
2863                    releaseWakeLock_l();
2864                    mWakeLockUids.clear();
2865                    mActiveTracksGeneration++;
2866                    // wait until we have something to do...
2867                    ALOGV("%s going to sleep", myName.string());
2868                    mWaitWorkCV.wait(mLock);
2869                    ALOGV("%s waking up", myName.string());
2870                    acquireWakeLock_l();
2871
2872                    mMixerStatus = MIXER_IDLE;
2873                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2874                    mBytesWritten = 0;
2875                    mBytesRemaining = 0;
2876                    checkSilentMode_l();
2877
2878                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2879                    mSleepTimeUs = mIdleSleepTimeUs;
2880                    if (mType == MIXER) {
2881                        sleepTimeShift = 0;
2882                    }
2883
2884                    continue;
2885                }
2886            }
2887            // mMixerStatusIgnoringFastTracks is also updated internally
2888            mMixerStatus = prepareTracks_l(&tracksToRemove);
2889
2890            // compare with previously applied list
2891            if (lastGeneration != mActiveTracksGeneration) {
2892                // update wakelock
2893                updateWakeLockUids_l(mWakeLockUids);
2894                lastGeneration = mActiveTracksGeneration;
2895            }
2896
2897            // prevent any changes in effect chain list and in each effect chain
2898            // during mixing and effect process as the audio buffers could be deleted
2899            // or modified if an effect is created or deleted
2900            lockEffectChains_l(effectChains);
2901        } // mLock scope ends
2902
2903        if (mBytesRemaining == 0) {
2904            mCurrentWriteLength = 0;
2905            if (mMixerStatus == MIXER_TRACKS_READY) {
2906                // threadLoop_mix() sets mCurrentWriteLength
2907                threadLoop_mix();
2908            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2909                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2910                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
2911                // must be written to HAL
2912                threadLoop_sleepTime();
2913                if (mSleepTimeUs == 0) {
2914                    mCurrentWriteLength = mSinkBufferSize;
2915                }
2916            }
2917            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2918            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
2919            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2920            // or mSinkBuffer (if there are no effects).
2921            //
2922            // This is done pre-effects computation; if effects change to
2923            // support higher precision, this needs to move.
2924            //
2925            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2926            // TODO use mSleepTimeUs == 0 as an additional condition.
2927            if (mMixerBufferValid) {
2928                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2929                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2930
2931                // mono blend occurs for mixer threads only (not direct or offloaded)
2932                // and is handled here if we're going directly to the sink.
2933                if (requireMonoBlend() && !mEffectBufferValid) {
2934                    mono_blend(
2935                            mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount);
2936                }
2937
2938                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2939                        mNormalFrameCount * mChannelCount);
2940            }
2941
2942            mBytesRemaining = mCurrentWriteLength;
2943            if (isSuspended()) {
2944                mSleepTimeUs = suspendSleepTimeUs();
2945                // simulate write to HAL when suspended
2946                mBytesWritten += mSinkBufferSize;
2947                mBytesRemaining = 0;
2948            }
2949
2950            // only process effects if we're going to write
2951            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
2952                for (size_t i = 0; i < effectChains.size(); i ++) {
2953                    effectChains[i]->process_l();
2954                }
2955            }
2956        }
2957        // Process effect chains for offloaded thread even if no audio
2958        // was read from audio track: process only updates effect state
2959        // and thus does have to be synchronized with audio writes but may have
2960        // to be called while waiting for async write callback
2961        if (mType == OFFLOAD) {
2962            for (size_t i = 0; i < effectChains.size(); i ++) {
2963                effectChains[i]->process_l();
2964            }
2965        }
2966
2967        // Only if the Effects buffer is enabled and there is data in the
2968        // Effects buffer (buffer valid), we need to
2969        // copy into the sink buffer.
2970        // TODO use mSleepTimeUs == 0 as an additional condition.
2971        if (mEffectBufferValid) {
2972            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2973
2974            if (requireMonoBlend()) {
2975                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount);
2976            }
2977
2978            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2979                    mNormalFrameCount * mChannelCount);
2980        }
2981
2982        // enable changes in effect chain
2983        unlockEffectChains(effectChains);
2984
2985        if (!waitingAsyncCallback()) {
2986            // mSleepTimeUs == 0 means we must write to audio hardware
2987            if (mSleepTimeUs == 0) {
2988                ssize_t ret = 0;
2989                if (mBytesRemaining) {
2990                    ret = threadLoop_write();
2991                    if (ret < 0) {
2992                        mBytesRemaining = 0;
2993                    } else {
2994                        mBytesWritten += ret;
2995                        mBytesRemaining -= ret;
2996                    }
2997                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2998                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2999                    threadLoop_drain();
3000                }
3001                if (mType == MIXER && !mStandby) {
3002                    // write blocked detection
3003                    nsecs_t now = systemTime();
3004                    nsecs_t delta = now - mLastWriteTime;
3005                    if (delta > maxPeriod) {
3006                        mNumDelayedWrites++;
3007                        if ((now - lastWarning) > kWarningThrottleNs) {
3008                            ATRACE_NAME("underrun");
3009                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3010                                    ns2ms(delta), mNumDelayedWrites, this);
3011                            lastWarning = now;
3012                        }
3013                    }
3014
3015                    if (mThreadThrottle
3016                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3017                            && ret > 0) {                         // we wrote something
3018                        // Limit MixerThread data processing to no more than twice the
3019                        // expected processing rate.
3020                        //
3021                        // This helps prevent underruns with NuPlayer and other applications
3022                        // which may set up buffers that are close to the minimum size, or use
3023                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3024                        //
3025                        // The throttle smooths out sudden large data drains from the device,
3026                        // e.g. when it comes out of standby, which often causes problems with
3027                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3028                        // (2) minimum buffer sized tracks (even if the track is full,
3029                        //     the app won't fill fast enough to handle the sudden draw).
3030
3031                        const int32_t deltaMs = delta / 1000000;
3032                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3033                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3034                            usleep(throttleMs * 1000);
3035                            // notify of throttle start on verbose log
3036                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3037                                    "mixer(%p) throttle begin:"
3038                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3039                                    this, ret, deltaMs, throttleMs);
3040                            mThreadThrottleTimeMs += throttleMs;
3041                        } else {
3042                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3043                            if (diff > 0) {
3044                                // notify of throttle end on debug log
3045                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3046                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3047                            }
3048                        }
3049                    }
3050                }
3051
3052            } else {
3053                ATRACE_BEGIN("sleep");
3054                usleep(mSleepTimeUs);
3055                ATRACE_END();
3056            }
3057        }
3058
3059        // Finally let go of removed track(s), without the lock held
3060        // since we can't guarantee the destructors won't acquire that
3061        // same lock.  This will also mutate and push a new fast mixer state.
3062        threadLoop_removeTracks(tracksToRemove);
3063        tracksToRemove.clear();
3064
3065        // FIXME I don't understand the need for this here;
3066        //       it was in the original code but maybe the
3067        //       assignment in saveOutputTracks() makes this unnecessary?
3068        clearOutputTracks();
3069
3070        // Effect chains will be actually deleted here if they were removed from
3071        // mEffectChains list during mixing or effects processing
3072        effectChains.clear();
3073
3074        // FIXME Note that the above .clear() is no longer necessary since effectChains
3075        // is now local to this block, but will keep it for now (at least until merge done).
3076    }
3077
3078    threadLoop_exit();
3079
3080    if (!mStandby) {
3081        threadLoop_standby();
3082        mStandby = true;
3083    }
3084
3085    releaseWakeLock();
3086    mWakeLockUids.clear();
3087    mActiveTracksGeneration++;
3088
3089    ALOGV("Thread %p type %d exiting", this, mType);
3090    return false;
3091}
3092
3093// removeTracks_l() must be called with ThreadBase::mLock held
3094void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3095{
3096    size_t count = tracksToRemove.size();
3097    if (count > 0) {
3098        for (size_t i=0 ; i<count ; i++) {
3099            const sp<Track>& track = tracksToRemove.itemAt(i);
3100            mActiveTracks.remove(track);
3101            mWakeLockUids.remove(track->uid());
3102            mActiveTracksGeneration++;
3103            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3104            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3105            if (chain != 0) {
3106                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3107                        track->sessionId());
3108                chain->decActiveTrackCnt();
3109            }
3110            if (track->isTerminated()) {
3111                removeTrack_l(track);
3112            }
3113        }
3114    }
3115
3116}
3117
3118status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3119{
3120    if (mNormalSink != 0) {
3121        return mNormalSink->getTimestamp(timestamp);
3122    }
3123    if ((mType == OFFLOAD || mType == DIRECT)
3124            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3125        uint64_t position64;
3126        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3127        if (ret == 0) {
3128            timestamp.mPosition = (uint32_t)position64;
3129            return NO_ERROR;
3130        }
3131    }
3132    return INVALID_OPERATION;
3133}
3134
3135status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3136                                                          audio_patch_handle_t *handle)
3137{
3138    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3139    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3140    if (mFastMixer != 0) {
3141        FastMixerStateQueue *sq = mFastMixer->sq();
3142        FastMixerState *state = sq->begin();
3143        if (!(state->mCommand & FastMixerState::IDLE)) {
3144            previousCommand = state->mCommand;
3145            state->mCommand = FastMixerState::HOT_IDLE;
3146            sq->end();
3147            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3148        } else {
3149            sq->end(false /*didModify*/);
3150        }
3151    }
3152    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3153
3154    if (!(previousCommand & FastMixerState::IDLE)) {
3155        ALOG_ASSERT(mFastMixer != 0);
3156        FastMixerStateQueue *sq = mFastMixer->sq();
3157        FastMixerState *state = sq->begin();
3158        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3159        state->mCommand = previousCommand;
3160        sq->end();
3161        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3162    }
3163
3164    return status;
3165}
3166
3167status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3168                                                          audio_patch_handle_t *handle)
3169{
3170    status_t status = NO_ERROR;
3171
3172    // store new device and send to effects
3173    audio_devices_t type = AUDIO_DEVICE_NONE;
3174    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3175        type |= patch->sinks[i].ext.device.type;
3176    }
3177
3178#ifdef ADD_BATTERY_DATA
3179    // when changing the audio output device, call addBatteryData to notify
3180    // the change
3181    if (mOutDevice != type) {
3182        uint32_t params = 0;
3183        // check whether speaker is on
3184        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3185            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3186        }
3187
3188        audio_devices_t deviceWithoutSpeaker
3189            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3190        // check if any other device (except speaker) is on
3191        if (type & deviceWithoutSpeaker) {
3192            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3193        }
3194
3195        if (params != 0) {
3196            addBatteryData(params);
3197        }
3198    }
3199#endif
3200
3201    for (size_t i = 0; i < mEffectChains.size(); i++) {
3202        mEffectChains[i]->setDevice_l(type);
3203    }
3204
3205    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3206    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3207    bool configChanged = mPrevOutDevice != type;
3208    mOutDevice = type;
3209    mPatch = *patch;
3210
3211    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3212        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3213        status = hwDevice->create_audio_patch(hwDevice,
3214                                               patch->num_sources,
3215                                               patch->sources,
3216                                               patch->num_sinks,
3217                                               patch->sinks,
3218                                               handle);
3219    } else {
3220        char *address;
3221        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3222            //FIXME: we only support address on first sink with HAL version < 3.0
3223            address = audio_device_address_to_parameter(
3224                                                        patch->sinks[0].ext.device.type,
3225                                                        patch->sinks[0].ext.device.address);
3226        } else {
3227            address = (char *)calloc(1, 1);
3228        }
3229        AudioParameter param = AudioParameter(String8(address));
3230        free(address);
3231        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3232        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3233                param.toString().string());
3234        *handle = AUDIO_PATCH_HANDLE_NONE;
3235    }
3236    if (configChanged) {
3237        mPrevOutDevice = type;
3238        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3239    }
3240    return status;
3241}
3242
3243status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3244{
3245    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3246    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3247    if (mFastMixer != 0) {
3248        FastMixerStateQueue *sq = mFastMixer->sq();
3249        FastMixerState *state = sq->begin();
3250        if (!(state->mCommand & FastMixerState::IDLE)) {
3251            previousCommand = state->mCommand;
3252            state->mCommand = FastMixerState::HOT_IDLE;
3253            sq->end();
3254            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3255        } else {
3256            sq->end(false /*didModify*/);
3257        }
3258    }
3259
3260    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3261
3262    if (!(previousCommand & FastMixerState::IDLE)) {
3263        ALOG_ASSERT(mFastMixer != 0);
3264        FastMixerStateQueue *sq = mFastMixer->sq();
3265        FastMixerState *state = sq->begin();
3266        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3267        state->mCommand = previousCommand;
3268        sq->end();
3269        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3270    }
3271
3272    return status;
3273}
3274
3275status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3276{
3277    status_t status = NO_ERROR;
3278
3279    mOutDevice = AUDIO_DEVICE_NONE;
3280
3281    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3282        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3283        status = hwDevice->release_audio_patch(hwDevice, handle);
3284    } else {
3285        AudioParameter param;
3286        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3287        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3288                param.toString().string());
3289    }
3290    return status;
3291}
3292
3293void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3294{
3295    Mutex::Autolock _l(mLock);
3296    mTracks.add(track);
3297}
3298
3299void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3300{
3301    Mutex::Autolock _l(mLock);
3302    destroyTrack_l(track);
3303}
3304
3305void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3306{
3307    ThreadBase::getAudioPortConfig(config);
3308    config->role = AUDIO_PORT_ROLE_SOURCE;
3309    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3310    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3311}
3312
3313// ----------------------------------------------------------------------------
3314
3315AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3316        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3317    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3318        // mAudioMixer below
3319        // mFastMixer below
3320        mFastMixerFutex(0),
3321        mMasterMono(false)
3322        // mOutputSink below
3323        // mPipeSink below
3324        // mNormalSink below
3325{
3326    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3327    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3328            "mFrameCount=%d, mNormalFrameCount=%d",
3329            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3330            mNormalFrameCount);
3331    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3332
3333    if (type == DUPLICATING) {
3334        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3335        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3336        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3337        return;
3338    }
3339    // create an NBAIO sink for the HAL output stream, and negotiate
3340    mOutputSink = new AudioStreamOutSink(output->stream);
3341    size_t numCounterOffers = 0;
3342    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3343    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3344    ALOG_ASSERT(index == 0);
3345
3346    // initialize fast mixer depending on configuration
3347    bool initFastMixer;
3348    switch (kUseFastMixer) {
3349    case FastMixer_Never:
3350        initFastMixer = false;
3351        break;
3352    case FastMixer_Always:
3353        initFastMixer = true;
3354        break;
3355    case FastMixer_Static:
3356    case FastMixer_Dynamic:
3357        initFastMixer = mFrameCount < mNormalFrameCount;
3358        break;
3359    }
3360    if (initFastMixer) {
3361        audio_format_t fastMixerFormat;
3362        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3363            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3364        } else {
3365            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3366        }
3367        if (mFormat != fastMixerFormat) {
3368            // change our Sink format to accept our intermediate precision
3369            mFormat = fastMixerFormat;
3370            free(mSinkBuffer);
3371            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3372            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3373            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3374        }
3375
3376        // create a MonoPipe to connect our submix to FastMixer
3377        NBAIO_Format format = mOutputSink->format();
3378        NBAIO_Format origformat = format;
3379        // adjust format to match that of the Fast Mixer
3380        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3381        format.mFormat = fastMixerFormat;
3382        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3383
3384        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3385        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3386        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3387        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3388        const NBAIO_Format offers[1] = {format};
3389        size_t numCounterOffers = 0;
3390        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3391        ALOG_ASSERT(index == 0);
3392        monoPipe->setAvgFrames((mScreenState & 1) ?
3393                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3394        mPipeSink = monoPipe;
3395
3396#ifdef TEE_SINK
3397        if (mTeeSinkOutputEnabled) {
3398            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3399            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3400            const NBAIO_Format offers2[1] = {origformat};
3401            numCounterOffers = 0;
3402            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3403            ALOG_ASSERT(index == 0);
3404            mTeeSink = teeSink;
3405            PipeReader *teeSource = new PipeReader(*teeSink);
3406            numCounterOffers = 0;
3407            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3408            ALOG_ASSERT(index == 0);
3409            mTeeSource = teeSource;
3410        }
3411#endif
3412
3413        // create fast mixer and configure it initially with just one fast track for our submix
3414        mFastMixer = new FastMixer();
3415        FastMixerStateQueue *sq = mFastMixer->sq();
3416#ifdef STATE_QUEUE_DUMP
3417        sq->setObserverDump(&mStateQueueObserverDump);
3418        sq->setMutatorDump(&mStateQueueMutatorDump);
3419#endif
3420        FastMixerState *state = sq->begin();
3421        FastTrack *fastTrack = &state->mFastTracks[0];
3422        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3423        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3424        fastTrack->mVolumeProvider = NULL;
3425        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3426        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3427        fastTrack->mGeneration++;
3428        state->mFastTracksGen++;
3429        state->mTrackMask = 1;
3430        // fast mixer will use the HAL output sink
3431        state->mOutputSink = mOutputSink.get();
3432        state->mOutputSinkGen++;
3433        state->mFrameCount = mFrameCount;
3434        state->mCommand = FastMixerState::COLD_IDLE;
3435        // already done in constructor initialization list
3436        //mFastMixerFutex = 0;
3437        state->mColdFutexAddr = &mFastMixerFutex;
3438        state->mColdGen++;
3439        state->mDumpState = &mFastMixerDumpState;
3440#ifdef TEE_SINK
3441        state->mTeeSink = mTeeSink.get();
3442#endif
3443        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3444        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3445        sq->end();
3446        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3447
3448        // start the fast mixer
3449        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3450        pid_t tid = mFastMixer->getTid();
3451        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3452
3453#ifdef AUDIO_WATCHDOG
3454        // create and start the watchdog
3455        mAudioWatchdog = new AudioWatchdog();
3456        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3457        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3458        tid = mAudioWatchdog->getTid();
3459        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3460#endif
3461
3462    }
3463
3464    switch (kUseFastMixer) {
3465    case FastMixer_Never:
3466    case FastMixer_Dynamic:
3467        mNormalSink = mOutputSink;
3468        break;
3469    case FastMixer_Always:
3470        mNormalSink = mPipeSink;
3471        break;
3472    case FastMixer_Static:
3473        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3474        break;
3475    }
3476}
3477
3478AudioFlinger::MixerThread::~MixerThread()
3479{
3480    if (mFastMixer != 0) {
3481        FastMixerStateQueue *sq = mFastMixer->sq();
3482        FastMixerState *state = sq->begin();
3483        if (state->mCommand == FastMixerState::COLD_IDLE) {
3484            int32_t old = android_atomic_inc(&mFastMixerFutex);
3485            if (old == -1) {
3486                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3487            }
3488        }
3489        state->mCommand = FastMixerState::EXIT;
3490        sq->end();
3491        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3492        mFastMixer->join();
3493        // Though the fast mixer thread has exited, it's state queue is still valid.
3494        // We'll use that extract the final state which contains one remaining fast track
3495        // corresponding to our sub-mix.
3496        state = sq->begin();
3497        ALOG_ASSERT(state->mTrackMask == 1);
3498        FastTrack *fastTrack = &state->mFastTracks[0];
3499        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3500        delete fastTrack->mBufferProvider;
3501        sq->end(false /*didModify*/);
3502        mFastMixer.clear();
3503#ifdef AUDIO_WATCHDOG
3504        if (mAudioWatchdog != 0) {
3505            mAudioWatchdog->requestExit();
3506            mAudioWatchdog->requestExitAndWait();
3507            mAudioWatchdog.clear();
3508        }
3509#endif
3510    }
3511    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3512    delete mAudioMixer;
3513}
3514
3515
3516uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3517{
3518    if (mFastMixer != 0) {
3519        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3520        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3521    }
3522    return latency;
3523}
3524
3525
3526void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3527{
3528    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3529}
3530
3531ssize_t AudioFlinger::MixerThread::threadLoop_write()
3532{
3533    // FIXME we should only do one push per cycle; confirm this is true
3534    // Start the fast mixer if it's not already running
3535    if (mFastMixer != 0) {
3536        FastMixerStateQueue *sq = mFastMixer->sq();
3537        FastMixerState *state = sq->begin();
3538        if (state->mCommand != FastMixerState::MIX_WRITE &&
3539                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3540            if (state->mCommand == FastMixerState::COLD_IDLE) {
3541
3542                // FIXME workaround for first HAL write being CPU bound on some devices
3543                ATRACE_BEGIN("write");
3544                mOutput->write((char *)mSinkBuffer, 0);
3545                ATRACE_END();
3546
3547                int32_t old = android_atomic_inc(&mFastMixerFutex);
3548                if (old == -1) {
3549                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3550                }
3551#ifdef AUDIO_WATCHDOG
3552                if (mAudioWatchdog != 0) {
3553                    mAudioWatchdog->resume();
3554                }
3555#endif
3556            }
3557            state->mCommand = FastMixerState::MIX_WRITE;
3558#ifdef FAST_THREAD_STATISTICS
3559            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3560                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3561#endif
3562            sq->end();
3563            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3564            if (kUseFastMixer == FastMixer_Dynamic) {
3565                mNormalSink = mPipeSink;
3566            }
3567        } else {
3568            sq->end(false /*didModify*/);
3569        }
3570    }
3571    return PlaybackThread::threadLoop_write();
3572}
3573
3574void AudioFlinger::MixerThread::threadLoop_standby()
3575{
3576    // Idle the fast mixer if it's currently running
3577    if (mFastMixer != 0) {
3578        FastMixerStateQueue *sq = mFastMixer->sq();
3579        FastMixerState *state = sq->begin();
3580        if (!(state->mCommand & FastMixerState::IDLE)) {
3581            state->mCommand = FastMixerState::COLD_IDLE;
3582            state->mColdFutexAddr = &mFastMixerFutex;
3583            state->mColdGen++;
3584            mFastMixerFutex = 0;
3585            sq->end();
3586            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3587            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3588            if (kUseFastMixer == FastMixer_Dynamic) {
3589                mNormalSink = mOutputSink;
3590            }
3591#ifdef AUDIO_WATCHDOG
3592            if (mAudioWatchdog != 0) {
3593                mAudioWatchdog->pause();
3594            }
3595#endif
3596        } else {
3597            sq->end(false /*didModify*/);
3598        }
3599    }
3600    PlaybackThread::threadLoop_standby();
3601}
3602
3603bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3604{
3605    return false;
3606}
3607
3608bool AudioFlinger::PlaybackThread::shouldStandby_l()
3609{
3610    return !mStandby;
3611}
3612
3613bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3614{
3615    Mutex::Autolock _l(mLock);
3616    return waitingAsyncCallback_l();
3617}
3618
3619// shared by MIXER and DIRECT, overridden by DUPLICATING
3620void AudioFlinger::PlaybackThread::threadLoop_standby()
3621{
3622    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3623    mOutput->standby();
3624    if (mUseAsyncWrite != 0) {
3625        // discard any pending drain or write ack by incrementing sequence
3626        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3627        mDrainSequence = (mDrainSequence + 2) & ~1;
3628        ALOG_ASSERT(mCallbackThread != 0);
3629        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3630        mCallbackThread->setDraining(mDrainSequence);
3631    }
3632    mHwPaused = false;
3633}
3634
3635void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3636{
3637    ALOGV("signal playback thread");
3638    broadcast_l();
3639}
3640
3641void AudioFlinger::MixerThread::threadLoop_mix()
3642{
3643    // obtain the presentation timestamp of the next output buffer
3644    int64_t pts;
3645    status_t status = INVALID_OPERATION;
3646
3647    if (mNormalSink != 0) {
3648        status = mNormalSink->getNextWriteTimestamp(&pts);
3649    } else {
3650        status = mOutputSink->getNextWriteTimestamp(&pts);
3651    }
3652
3653    if (status != NO_ERROR) {
3654        pts = AudioBufferProvider::kInvalidPTS;
3655    }
3656
3657    // mix buffers...
3658    mAudioMixer->process(pts);
3659    mCurrentWriteLength = mSinkBufferSize;
3660    // increase sleep time progressively when application underrun condition clears.
3661    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3662    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3663    // such that we would underrun the audio HAL.
3664    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3665        sleepTimeShift--;
3666    }
3667    mSleepTimeUs = 0;
3668    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3669    //TODO: delay standby when effects have a tail
3670
3671}
3672
3673void AudioFlinger::MixerThread::threadLoop_sleepTime()
3674{
3675    // If no tracks are ready, sleep once for the duration of an output
3676    // buffer size, then write 0s to the output
3677    if (mSleepTimeUs == 0) {
3678        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3679            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3680            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3681                mSleepTimeUs = kMinThreadSleepTimeUs;
3682            }
3683            // reduce sleep time in case of consecutive application underruns to avoid
3684            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3685            // duration we would end up writing less data than needed by the audio HAL if
3686            // the condition persists.
3687            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3688                sleepTimeShift++;
3689            }
3690        } else {
3691            mSleepTimeUs = mIdleSleepTimeUs;
3692        }
3693    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3694        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3695        // before effects processing or output.
3696        if (mMixerBufferValid) {
3697            memset(mMixerBuffer, 0, mMixerBufferSize);
3698        } else {
3699            memset(mSinkBuffer, 0, mSinkBufferSize);
3700        }
3701        mSleepTimeUs = 0;
3702        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3703                "anticipated start");
3704    }
3705    // TODO add standby time extension fct of effect tail
3706}
3707
3708// prepareTracks_l() must be called with ThreadBase::mLock held
3709AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3710        Vector< sp<Track> > *tracksToRemove)
3711{
3712
3713    mixer_state mixerStatus = MIXER_IDLE;
3714    // find out which tracks need to be processed
3715    size_t count = mActiveTracks.size();
3716    size_t mixedTracks = 0;
3717    size_t tracksWithEffect = 0;
3718    // counts only _active_ fast tracks
3719    size_t fastTracks = 0;
3720    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3721
3722    float masterVolume = mMasterVolume;
3723    bool masterMute = mMasterMute;
3724
3725    if (masterMute) {
3726        masterVolume = 0;
3727    }
3728    // Delegate master volume control to effect in output mix effect chain if needed
3729    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3730    if (chain != 0) {
3731        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3732        chain->setVolume_l(&v, &v);
3733        masterVolume = (float)((v + (1 << 23)) >> 24);
3734        chain.clear();
3735    }
3736
3737    // prepare a new state to push
3738    FastMixerStateQueue *sq = NULL;
3739    FastMixerState *state = NULL;
3740    bool didModify = false;
3741    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3742    if (mFastMixer != 0) {
3743        sq = mFastMixer->sq();
3744        state = sq->begin();
3745    }
3746
3747    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3748    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3749
3750    for (size_t i=0 ; i<count ; i++) {
3751        const sp<Track> t = mActiveTracks[i].promote();
3752        if (t == 0) {
3753            continue;
3754        }
3755
3756        // this const just means the local variable doesn't change
3757        Track* const track = t.get();
3758
3759        // process fast tracks
3760        if (track->isFastTrack()) {
3761
3762            // It's theoretically possible (though unlikely) for a fast track to be created
3763            // and then removed within the same normal mix cycle.  This is not a problem, as
3764            // the track never becomes active so it's fast mixer slot is never touched.
3765            // The converse, of removing an (active) track and then creating a new track
3766            // at the identical fast mixer slot within the same normal mix cycle,
3767            // is impossible because the slot isn't marked available until the end of each cycle.
3768            int j = track->mFastIndex;
3769            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3770            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3771            FastTrack *fastTrack = &state->mFastTracks[j];
3772
3773            // Determine whether the track is currently in underrun condition,
3774            // and whether it had a recent underrun.
3775            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3776            FastTrackUnderruns underruns = ftDump->mUnderruns;
3777            uint32_t recentFull = (underruns.mBitFields.mFull -
3778                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3779            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3780                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3781            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3782                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3783            uint32_t recentUnderruns = recentPartial + recentEmpty;
3784            track->mObservedUnderruns = underruns;
3785            // don't count underruns that occur while stopping or pausing
3786            // or stopped which can occur when flush() is called while active
3787            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3788                    recentUnderruns > 0) {
3789                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3790                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3791            }
3792
3793            // This is similar to the state machine for normal tracks,
3794            // with a few modifications for fast tracks.
3795            bool isActive = true;
3796            switch (track->mState) {
3797            case TrackBase::STOPPING_1:
3798                // track stays active in STOPPING_1 state until first underrun
3799                if (recentUnderruns > 0 || track->isTerminated()) {
3800                    track->mState = TrackBase::STOPPING_2;
3801                }
3802                break;
3803            case TrackBase::PAUSING:
3804                // ramp down is not yet implemented
3805                track->setPaused();
3806                break;
3807            case TrackBase::RESUMING:
3808                // ramp up is not yet implemented
3809                track->mState = TrackBase::ACTIVE;
3810                break;
3811            case TrackBase::ACTIVE:
3812                if (recentFull > 0 || recentPartial > 0) {
3813                    // track has provided at least some frames recently: reset retry count
3814                    track->mRetryCount = kMaxTrackRetries;
3815                }
3816                if (recentUnderruns == 0) {
3817                    // no recent underruns: stay active
3818                    break;
3819                }
3820                // there has recently been an underrun of some kind
3821                if (track->sharedBuffer() == 0) {
3822                    // were any of the recent underruns "empty" (no frames available)?
3823                    if (recentEmpty == 0) {
3824                        // no, then ignore the partial underruns as they are allowed indefinitely
3825                        break;
3826                    }
3827                    // there has recently been an "empty" underrun: decrement the retry counter
3828                    if (--(track->mRetryCount) > 0) {
3829                        break;
3830                    }
3831                    // indicate to client process that the track was disabled because of underrun;
3832                    // it will then automatically call start() when data is available
3833                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3834                    // remove from active list, but state remains ACTIVE [confusing but true]
3835                    isActive = false;
3836                    break;
3837                }
3838                // fall through
3839            case TrackBase::STOPPING_2:
3840            case TrackBase::PAUSED:
3841            case TrackBase::STOPPED:
3842            case TrackBase::FLUSHED:   // flush() while active
3843                // Check for presentation complete if track is inactive
3844                // We have consumed all the buffers of this track.
3845                // This would be incomplete if we auto-paused on underrun
3846                {
3847                    size_t audioHALFrames =
3848                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3849                    size_t framesWritten = mBytesWritten / mFrameSize;
3850                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3851                        // track stays in active list until presentation is complete
3852                        break;
3853                    }
3854                }
3855                if (track->isStopping_2()) {
3856                    track->mState = TrackBase::STOPPED;
3857                }
3858                if (track->isStopped()) {
3859                    // Can't reset directly, as fast mixer is still polling this track
3860                    //   track->reset();
3861                    // So instead mark this track as needing to be reset after push with ack
3862                    resetMask |= 1 << i;
3863                }
3864                isActive = false;
3865                break;
3866            case TrackBase::IDLE:
3867            default:
3868                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3869            }
3870
3871            if (isActive) {
3872                // was it previously inactive?
3873                if (!(state->mTrackMask & (1 << j))) {
3874                    ExtendedAudioBufferProvider *eabp = track;
3875                    VolumeProvider *vp = track;
3876                    fastTrack->mBufferProvider = eabp;
3877                    fastTrack->mVolumeProvider = vp;
3878                    fastTrack->mChannelMask = track->mChannelMask;
3879                    fastTrack->mFormat = track->mFormat;
3880                    fastTrack->mGeneration++;
3881                    state->mTrackMask |= 1 << j;
3882                    didModify = true;
3883                    // no acknowledgement required for newly active tracks
3884                }
3885                // cache the combined master volume and stream type volume for fast mixer; this
3886                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3887                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3888                ++fastTracks;
3889            } else {
3890                // was it previously active?
3891                if (state->mTrackMask & (1 << j)) {
3892                    fastTrack->mBufferProvider = NULL;
3893                    fastTrack->mGeneration++;
3894                    state->mTrackMask &= ~(1 << j);
3895                    didModify = true;
3896                    // If any fast tracks were removed, we must wait for acknowledgement
3897                    // because we're about to decrement the last sp<> on those tracks.
3898                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3899                } else {
3900                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
3901                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
3902                            j, track->mState, state->mTrackMask, recentUnderruns,
3903                            track->sharedBuffer() != 0);
3904                }
3905                tracksToRemove->add(track);
3906                // Avoids a misleading display in dumpsys
3907                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3908            }
3909            continue;
3910        }
3911
3912        {   // local variable scope to avoid goto warning
3913
3914        audio_track_cblk_t* cblk = track->cblk();
3915
3916        // The first time a track is added we wait
3917        // for all its buffers to be filled before processing it
3918        int name = track->name();
3919        // make sure that we have enough frames to mix one full buffer.
3920        // enforce this condition only once to enable draining the buffer in case the client
3921        // app does not call stop() and relies on underrun to stop:
3922        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3923        // during last round
3924        size_t desiredFrames;
3925        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3926        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3927
3928        desiredFrames = sourceFramesNeededWithTimestretch(
3929                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3930        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3931        // add frames already consumed but not yet released by the resampler
3932        // because mAudioTrackServerProxy->framesReady() will include these frames
3933        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3934
3935        uint32_t minFrames = 1;
3936        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3937                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3938            minFrames = desiredFrames;
3939        }
3940
3941        size_t framesReady = track->framesReady();
3942        if (ATRACE_ENABLED()) {
3943            // I wish we had formatted trace names
3944            char traceName[16];
3945            strcpy(traceName, "nRdy");
3946            int name = track->name();
3947            if (AudioMixer::TRACK0 <= name &&
3948                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3949                name -= AudioMixer::TRACK0;
3950                traceName[4] = (name / 10) + '0';
3951                traceName[5] = (name % 10) + '0';
3952            } else {
3953                traceName[4] = '?';
3954                traceName[5] = '?';
3955            }
3956            traceName[6] = '\0';
3957            ATRACE_INT(traceName, framesReady);
3958        }
3959        if ((framesReady >= minFrames) && track->isReady() &&
3960                !track->isPaused() && !track->isTerminated())
3961        {
3962            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3963
3964            mixedTracks++;
3965
3966            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3967            // there is an effect chain connected to the track
3968            chain.clear();
3969            if (track->mainBuffer() != mSinkBuffer &&
3970                    track->mainBuffer() != mMixerBuffer) {
3971                if (mEffectBufferEnabled) {
3972                    mEffectBufferValid = true; // Later can set directly.
3973                }
3974                chain = getEffectChain_l(track->sessionId());
3975                // Delegate volume control to effect in track effect chain if needed
3976                if (chain != 0) {
3977                    tracksWithEffect++;
3978                } else {
3979                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3980                            "session %d",
3981                            name, track->sessionId());
3982                }
3983            }
3984
3985
3986            int param = AudioMixer::VOLUME;
3987            if (track->mFillingUpStatus == Track::FS_FILLED) {
3988                // no ramp for the first volume setting
3989                track->mFillingUpStatus = Track::FS_ACTIVE;
3990                if (track->mState == TrackBase::RESUMING) {
3991                    track->mState = TrackBase::ACTIVE;
3992                    param = AudioMixer::RAMP_VOLUME;
3993                }
3994                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3995            // FIXME should not make a decision based on mServer
3996            } else if (cblk->mServer != 0) {
3997                // If the track is stopped before the first frame was mixed,
3998                // do not apply ramp
3999                param = AudioMixer::RAMP_VOLUME;
4000            }
4001
4002            // compute volume for this track
4003            uint32_t vl, vr;       // in U8.24 integer format
4004            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4005            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4006                vl = vr = 0;
4007                vlf = vrf = vaf = 0.;
4008                if (track->isPausing()) {
4009                    track->setPaused();
4010                }
4011            } else {
4012
4013                // read original volumes with volume control
4014                float typeVolume = mStreamTypes[track->streamType()].volume;
4015                float v = masterVolume * typeVolume;
4016                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4017                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4018                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4019                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4020                // track volumes come from shared memory, so can't be trusted and must be clamped
4021                if (vlf > GAIN_FLOAT_UNITY) {
4022                    ALOGV("Track left volume out of range: %.3g", vlf);
4023                    vlf = GAIN_FLOAT_UNITY;
4024                }
4025                if (vrf > GAIN_FLOAT_UNITY) {
4026                    ALOGV("Track right volume out of range: %.3g", vrf);
4027                    vrf = GAIN_FLOAT_UNITY;
4028                }
4029                // now apply the master volume and stream type volume
4030                vlf *= v;
4031                vrf *= v;
4032                // assuming master volume and stream type volume each go up to 1.0,
4033                // then derive vl and vr as U8.24 versions for the effect chain
4034                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4035                vl = (uint32_t) (scaleto8_24 * vlf);
4036                vr = (uint32_t) (scaleto8_24 * vrf);
4037                // vl and vr are now in U8.24 format
4038                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4039                // send level comes from shared memory and so may be corrupt
4040                if (sendLevel > MAX_GAIN_INT) {
4041                    ALOGV("Track send level out of range: %04X", sendLevel);
4042                    sendLevel = MAX_GAIN_INT;
4043                }
4044                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4045                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4046            }
4047
4048            // Delegate volume control to effect in track effect chain if needed
4049            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4050                // Do not ramp volume if volume is controlled by effect
4051                param = AudioMixer::VOLUME;
4052                // Update remaining floating point volume levels
4053                vlf = (float)vl / (1 << 24);
4054                vrf = (float)vr / (1 << 24);
4055                track->mHasVolumeController = true;
4056            } else {
4057                // force no volume ramp when volume controller was just disabled or removed
4058                // from effect chain to avoid volume spike
4059                if (track->mHasVolumeController) {
4060                    param = AudioMixer::VOLUME;
4061                }
4062                track->mHasVolumeController = false;
4063            }
4064
4065            // XXX: these things DON'T need to be done each time
4066            mAudioMixer->setBufferProvider(name, track);
4067            mAudioMixer->enable(name);
4068
4069            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4070            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4071            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4072            mAudioMixer->setParameter(
4073                name,
4074                AudioMixer::TRACK,
4075                AudioMixer::FORMAT, (void *)track->format());
4076            mAudioMixer->setParameter(
4077                name,
4078                AudioMixer::TRACK,
4079                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4080            mAudioMixer->setParameter(
4081                name,
4082                AudioMixer::TRACK,
4083                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4084            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4085            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4086            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4087            if (reqSampleRate == 0) {
4088                reqSampleRate = mSampleRate;
4089            } else if (reqSampleRate > maxSampleRate) {
4090                reqSampleRate = maxSampleRate;
4091            }
4092            mAudioMixer->setParameter(
4093                name,
4094                AudioMixer::RESAMPLE,
4095                AudioMixer::SAMPLE_RATE,
4096                (void *)(uintptr_t)reqSampleRate);
4097
4098            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4099            mAudioMixer->setParameter(
4100                name,
4101                AudioMixer::TIMESTRETCH,
4102                AudioMixer::PLAYBACK_RATE,
4103                &playbackRate);
4104
4105            /*
4106             * Select the appropriate output buffer for the track.
4107             *
4108             * Tracks with effects go into their own effects chain buffer
4109             * and from there into either mEffectBuffer or mSinkBuffer.
4110             *
4111             * Other tracks can use mMixerBuffer for higher precision
4112             * channel accumulation.  If this buffer is enabled
4113             * (mMixerBufferEnabled true), then selected tracks will accumulate
4114             * into it.
4115             *
4116             */
4117            if (mMixerBufferEnabled
4118                    && (track->mainBuffer() == mSinkBuffer
4119                            || track->mainBuffer() == mMixerBuffer)) {
4120                mAudioMixer->setParameter(
4121                        name,
4122                        AudioMixer::TRACK,
4123                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4124                mAudioMixer->setParameter(
4125                        name,
4126                        AudioMixer::TRACK,
4127                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4128                // TODO: override track->mainBuffer()?
4129                mMixerBufferValid = true;
4130            } else {
4131                mAudioMixer->setParameter(
4132                        name,
4133                        AudioMixer::TRACK,
4134                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4135                mAudioMixer->setParameter(
4136                        name,
4137                        AudioMixer::TRACK,
4138                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4139            }
4140            mAudioMixer->setParameter(
4141                name,
4142                AudioMixer::TRACK,
4143                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4144
4145            // reset retry count
4146            track->mRetryCount = kMaxTrackRetries;
4147
4148            // If one track is ready, set the mixer ready if:
4149            //  - the mixer was not ready during previous round OR
4150            //  - no other track is not ready
4151            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4152                    mixerStatus != MIXER_TRACKS_ENABLED) {
4153                mixerStatus = MIXER_TRACKS_READY;
4154            }
4155        } else {
4156            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4157                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4158                        track, framesReady, desiredFrames);
4159                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4160            }
4161            // clear effect chain input buffer if an active track underruns to avoid sending
4162            // previous audio buffer again to effects
4163            chain = getEffectChain_l(track->sessionId());
4164            if (chain != 0) {
4165                chain->clearInputBuffer();
4166            }
4167
4168            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4169            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4170                    track->isStopped() || track->isPaused()) {
4171                // We have consumed all the buffers of this track.
4172                // Remove it from the list of active tracks.
4173                // TODO: use actual buffer filling status instead of latency when available from
4174                // audio HAL
4175                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4176                size_t framesWritten = mBytesWritten / mFrameSize;
4177                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4178                    if (track->isStopped()) {
4179                        track->reset();
4180                    }
4181                    tracksToRemove->add(track);
4182                }
4183            } else {
4184                // No buffers for this track. Give it a few chances to
4185                // fill a buffer, then remove it from active list.
4186                if (--(track->mRetryCount) <= 0) {
4187                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4188                    tracksToRemove->add(track);
4189                    // indicate to client process that the track was disabled because of underrun;
4190                    // it will then automatically call start() when data is available
4191                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4192                // If one track is not ready, mark the mixer also not ready if:
4193                //  - the mixer was ready during previous round OR
4194                //  - no other track is ready
4195                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4196                                mixerStatus != MIXER_TRACKS_READY) {
4197                    mixerStatus = MIXER_TRACKS_ENABLED;
4198                }
4199            }
4200            mAudioMixer->disable(name);
4201        }
4202
4203        }   // local variable scope to avoid goto warning
4204track_is_ready: ;
4205
4206    }
4207
4208    // Push the new FastMixer state if necessary
4209    bool pauseAudioWatchdog = false;
4210    if (didModify) {
4211        state->mFastTracksGen++;
4212        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4213        if (kUseFastMixer == FastMixer_Dynamic &&
4214                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4215            state->mCommand = FastMixerState::COLD_IDLE;
4216            state->mColdFutexAddr = &mFastMixerFutex;
4217            state->mColdGen++;
4218            mFastMixerFutex = 0;
4219            if (kUseFastMixer == FastMixer_Dynamic) {
4220                mNormalSink = mOutputSink;
4221            }
4222            // If we go into cold idle, need to wait for acknowledgement
4223            // so that fast mixer stops doing I/O.
4224            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4225            pauseAudioWatchdog = true;
4226        }
4227    }
4228    if (sq != NULL) {
4229        sq->end(didModify);
4230        sq->push(block);
4231    }
4232#ifdef AUDIO_WATCHDOG
4233    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4234        mAudioWatchdog->pause();
4235    }
4236#endif
4237
4238    // Now perform the deferred reset on fast tracks that have stopped
4239    while (resetMask != 0) {
4240        size_t i = __builtin_ctz(resetMask);
4241        ALOG_ASSERT(i < count);
4242        resetMask &= ~(1 << i);
4243        sp<Track> t = mActiveTracks[i].promote();
4244        if (t == 0) {
4245            continue;
4246        }
4247        Track* track = t.get();
4248        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4249        track->reset();
4250    }
4251
4252    // remove all the tracks that need to be...
4253    removeTracks_l(*tracksToRemove);
4254
4255    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4256        mEffectBufferValid = true;
4257    }
4258
4259    if (mEffectBufferValid) {
4260        // as long as there are effects we should clear the effects buffer, to avoid
4261        // passing a non-clean buffer to the effect chain
4262        memset(mEffectBuffer, 0, mEffectBufferSize);
4263    }
4264    // sink or mix buffer must be cleared if all tracks are connected to an
4265    // effect chain as in this case the mixer will not write to the sink or mix buffer
4266    // and track effects will accumulate into it
4267    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4268            (mixedTracks == 0 && fastTracks > 0))) {
4269        // FIXME as a performance optimization, should remember previous zero status
4270        if (mMixerBufferValid) {
4271            memset(mMixerBuffer, 0, mMixerBufferSize);
4272            // TODO: In testing, mSinkBuffer below need not be cleared because
4273            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4274            // after mixing.
4275            //
4276            // To enforce this guarantee:
4277            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4278            // (mixedTracks == 0 && fastTracks > 0))
4279            // must imply MIXER_TRACKS_READY.
4280            // Later, we may clear buffers regardless, and skip much of this logic.
4281        }
4282        // FIXME as a performance optimization, should remember previous zero status
4283        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4284    }
4285
4286    // if any fast tracks, then status is ready
4287    mMixerStatusIgnoringFastTracks = mixerStatus;
4288    if (fastTracks > 0) {
4289        mixerStatus = MIXER_TRACKS_READY;
4290    }
4291    return mixerStatus;
4292}
4293
4294// getTrackName_l() must be called with ThreadBase::mLock held
4295int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4296        audio_format_t format, int sessionId)
4297{
4298    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4299}
4300
4301// deleteTrackName_l() must be called with ThreadBase::mLock held
4302void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4303{
4304    ALOGV("remove track (%d) and delete from mixer", name);
4305    mAudioMixer->deleteTrackName(name);
4306}
4307
4308// checkForNewParameter_l() must be called with ThreadBase::mLock held
4309bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4310                                                       status_t& status)
4311{
4312    bool reconfig = false;
4313    bool a2dpDeviceChanged = false;
4314
4315    status = NO_ERROR;
4316
4317    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4318    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4319    if (mFastMixer != 0) {
4320        FastMixerStateQueue *sq = mFastMixer->sq();
4321        FastMixerState *state = sq->begin();
4322        if (!(state->mCommand & FastMixerState::IDLE)) {
4323            previousCommand = state->mCommand;
4324            state->mCommand = FastMixerState::HOT_IDLE;
4325            sq->end();
4326            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4327        } else {
4328            sq->end(false /*didModify*/);
4329        }
4330    }
4331
4332    AudioParameter param = AudioParameter(keyValuePair);
4333    int value;
4334    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4335        reconfig = true;
4336    }
4337    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4338        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4339            status = BAD_VALUE;
4340        } else {
4341            // no need to save value, since it's constant
4342            reconfig = true;
4343        }
4344    }
4345    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4346        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4347            status = BAD_VALUE;
4348        } else {
4349            // no need to save value, since it's constant
4350            reconfig = true;
4351        }
4352    }
4353    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4354        // do not accept frame count changes if tracks are open as the track buffer
4355        // size depends on frame count and correct behavior would not be guaranteed
4356        // if frame count is changed after track creation
4357        if (!mTracks.isEmpty()) {
4358            status = INVALID_OPERATION;
4359        } else {
4360            reconfig = true;
4361        }
4362    }
4363    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4364#ifdef ADD_BATTERY_DATA
4365        // when changing the audio output device, call addBatteryData to notify
4366        // the change
4367        if (mOutDevice != value) {
4368            uint32_t params = 0;
4369            // check whether speaker is on
4370            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4371                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4372            }
4373
4374            audio_devices_t deviceWithoutSpeaker
4375                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4376            // check if any other device (except speaker) is on
4377            if (value & deviceWithoutSpeaker) {
4378                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4379            }
4380
4381            if (params != 0) {
4382                addBatteryData(params);
4383            }
4384        }
4385#endif
4386
4387        // forward device change to effects that have requested to be
4388        // aware of attached audio device.
4389        if (value != AUDIO_DEVICE_NONE) {
4390            a2dpDeviceChanged =
4391                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4392            mOutDevice = value;
4393            for (size_t i = 0; i < mEffectChains.size(); i++) {
4394                mEffectChains[i]->setDevice_l(mOutDevice);
4395            }
4396        }
4397    }
4398
4399    if (status == NO_ERROR) {
4400        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4401                                                keyValuePair.string());
4402        if (!mStandby && status == INVALID_OPERATION) {
4403            mOutput->standby();
4404            mStandby = true;
4405            mBytesWritten = 0;
4406            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4407                                                   keyValuePair.string());
4408        }
4409        if (status == NO_ERROR && reconfig) {
4410            readOutputParameters_l();
4411            delete mAudioMixer;
4412            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4413            for (size_t i = 0; i < mTracks.size() ; i++) {
4414                int name = getTrackName_l(mTracks[i]->mChannelMask,
4415                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4416                if (name < 0) {
4417                    break;
4418                }
4419                mTracks[i]->mName = name;
4420            }
4421            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4422        }
4423    }
4424
4425    if (!(previousCommand & FastMixerState::IDLE)) {
4426        ALOG_ASSERT(mFastMixer != 0);
4427        FastMixerStateQueue *sq = mFastMixer->sq();
4428        FastMixerState *state = sq->begin();
4429        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4430        state->mCommand = previousCommand;
4431        sq->end();
4432        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4433    }
4434
4435    return reconfig || a2dpDeviceChanged;
4436}
4437
4438
4439void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4440{
4441    const size_t SIZE = 256;
4442    char buffer[SIZE];
4443    String8 result;
4444
4445    PlaybackThread::dumpInternals(fd, args);
4446    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4447    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4448    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4449
4450    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4451    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4452    // This is a large object so we place it on the heap.
4453    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4454    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4455    copy->dump(fd);
4456    delete copy;
4457
4458#ifdef STATE_QUEUE_DUMP
4459    // Similar for state queue
4460    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4461    observerCopy.dump(fd);
4462    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4463    mutatorCopy.dump(fd);
4464#endif
4465
4466#ifdef TEE_SINK
4467    // Write the tee output to a .wav file
4468    dumpTee(fd, mTeeSource, mId);
4469#endif
4470
4471#ifdef AUDIO_WATCHDOG
4472    if (mAudioWatchdog != 0) {
4473        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4474        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4475        wdCopy.dump(fd);
4476    }
4477#endif
4478}
4479
4480uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4481{
4482    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4483}
4484
4485uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4486{
4487    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4488}
4489
4490void AudioFlinger::MixerThread::cacheParameters_l()
4491{
4492    PlaybackThread::cacheParameters_l();
4493
4494    // FIXME: Relaxed timing because of a certain device that can't meet latency
4495    // Should be reduced to 2x after the vendor fixes the driver issue
4496    // increase threshold again due to low power audio mode. The way this warning
4497    // threshold is calculated and its usefulness should be reconsidered anyway.
4498    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4499}
4500
4501// ----------------------------------------------------------------------------
4502
4503AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4504        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4505    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4506        // mLeftVolFloat, mRightVolFloat
4507{
4508}
4509
4510AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4511        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4512        ThreadBase::type_t type, bool systemReady)
4513    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4514        // mLeftVolFloat, mRightVolFloat
4515{
4516}
4517
4518AudioFlinger::DirectOutputThread::~DirectOutputThread()
4519{
4520}
4521
4522void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4523{
4524    audio_track_cblk_t* cblk = track->cblk();
4525    float left, right;
4526
4527    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4528        left = right = 0;
4529    } else {
4530        float typeVolume = mStreamTypes[track->streamType()].volume;
4531        float v = mMasterVolume * typeVolume;
4532        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4533        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4534        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4535        if (left > GAIN_FLOAT_UNITY) {
4536            left = GAIN_FLOAT_UNITY;
4537        }
4538        left *= v;
4539        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4540        if (right > GAIN_FLOAT_UNITY) {
4541            right = GAIN_FLOAT_UNITY;
4542        }
4543        right *= v;
4544    }
4545
4546    if (lastTrack) {
4547        if (left != mLeftVolFloat || right != mRightVolFloat) {
4548            mLeftVolFloat = left;
4549            mRightVolFloat = right;
4550
4551            // Convert volumes from float to 8.24
4552            uint32_t vl = (uint32_t)(left * (1 << 24));
4553            uint32_t vr = (uint32_t)(right * (1 << 24));
4554
4555            // Delegate volume control to effect in track effect chain if needed
4556            // only one effect chain can be present on DirectOutputThread, so if
4557            // there is one, the track is connected to it
4558            if (!mEffectChains.isEmpty()) {
4559                mEffectChains[0]->setVolume_l(&vl, &vr);
4560                left = (float)vl / (1 << 24);
4561                right = (float)vr / (1 << 24);
4562            }
4563            if (mOutput->stream->set_volume) {
4564                mOutput->stream->set_volume(mOutput->stream, left, right);
4565            }
4566        }
4567    }
4568}
4569
4570void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4571{
4572    sp<Track> previousTrack = mPreviousTrack.promote();
4573    sp<Track> latestTrack = mLatestActiveTrack.promote();
4574
4575    if (previousTrack != 0 && latestTrack != 0) {
4576        if (mType == DIRECT) {
4577            if (previousTrack.get() != latestTrack.get()) {
4578                mFlushPending = true;
4579            }
4580        } else /* mType == OFFLOAD */ {
4581            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4582                mFlushPending = true;
4583            }
4584        }
4585    }
4586    PlaybackThread::onAddNewTrack_l();
4587}
4588
4589AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4590    Vector< sp<Track> > *tracksToRemove
4591)
4592{
4593    size_t count = mActiveTracks.size();
4594    mixer_state mixerStatus = MIXER_IDLE;
4595    bool doHwPause = false;
4596    bool doHwResume = false;
4597
4598    // find out which tracks need to be processed
4599    for (size_t i = 0; i < count; i++) {
4600        sp<Track> t = mActiveTracks[i].promote();
4601        // The track died recently
4602        if (t == 0) {
4603            continue;
4604        }
4605
4606        if (t->isInvalid()) {
4607            ALOGW("An invalidated track shouldn't be in active list");
4608            tracksToRemove->add(t);
4609            continue;
4610        }
4611
4612        Track* const track = t.get();
4613        audio_track_cblk_t* cblk = track->cblk();
4614        // Only consider last track started for volume and mixer state control.
4615        // In theory an older track could underrun and restart after the new one starts
4616        // but as we only care about the transition phase between two tracks on a
4617        // direct output, it is not a problem to ignore the underrun case.
4618        sp<Track> l = mLatestActiveTrack.promote();
4619        bool last = l.get() == track;
4620
4621        if (track->isPausing()) {
4622            track->setPaused();
4623            if (mHwSupportsPause && last && !mHwPaused) {
4624                doHwPause = true;
4625                mHwPaused = true;
4626            }
4627            tracksToRemove->add(track);
4628        } else if (track->isFlushPending()) {
4629            track->flushAck();
4630            if (last) {
4631                mFlushPending = true;
4632            }
4633        } else if (track->isResumePending()) {
4634            track->resumeAck();
4635            if (last && mHwPaused) {
4636                doHwResume = true;
4637                mHwPaused = false;
4638            }
4639        }
4640
4641        // The first time a track is added we wait
4642        // for all its buffers to be filled before processing it.
4643        // Allow draining the buffer in case the client
4644        // app does not call stop() and relies on underrun to stop:
4645        // hence the test on (track->mRetryCount > 1).
4646        // If retryCount<=1 then track is about to underrun and be removed.
4647        // Do not use a high threshold for compressed audio.
4648        uint32_t minFrames;
4649        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4650            && (track->mRetryCount > 1) && audio_is_linear_pcm(mFormat)) {
4651            minFrames = mNormalFrameCount;
4652        } else {
4653            minFrames = 1;
4654        }
4655
4656        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4657                !track->isStopping_2() && !track->isStopped())
4658        {
4659            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4660
4661            if (track->mFillingUpStatus == Track::FS_FILLED) {
4662                track->mFillingUpStatus = Track::FS_ACTIVE;
4663                // make sure processVolume_l() will apply new volume even if 0
4664                mLeftVolFloat = mRightVolFloat = -1.0;
4665                if (!mHwSupportsPause) {
4666                    track->resumeAck();
4667                }
4668            }
4669
4670            // compute volume for this track
4671            processVolume_l(track, last);
4672            if (last) {
4673                sp<Track> previousTrack = mPreviousTrack.promote();
4674                if (previousTrack != 0) {
4675                    if (track != previousTrack.get()) {
4676                        // Flush any data still being written from last track
4677                        mBytesRemaining = 0;
4678                        // Invalidate previous track to force a seek when resuming.
4679                        previousTrack->invalidate();
4680                    }
4681                }
4682                mPreviousTrack = track;
4683
4684                // reset retry count
4685                track->mRetryCount = kMaxTrackRetriesDirect;
4686                mActiveTrack = t;
4687                mixerStatus = MIXER_TRACKS_READY;
4688                if (mHwPaused) {
4689                    doHwResume = true;
4690                    mHwPaused = false;
4691                }
4692            }
4693        } else {
4694            // clear effect chain input buffer if the last active track started underruns
4695            // to avoid sending previous audio buffer again to effects
4696            if (!mEffectChains.isEmpty() && last) {
4697                mEffectChains[0]->clearInputBuffer();
4698            }
4699            if (track->isStopping_1()) {
4700                track->mState = TrackBase::STOPPING_2;
4701                if (last && mHwPaused) {
4702                     doHwResume = true;
4703                     mHwPaused = false;
4704                 }
4705            }
4706            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4707                    track->isStopping_2() || track->isPaused()) {
4708                // We have consumed all the buffers of this track.
4709                // Remove it from the list of active tracks.
4710                size_t audioHALFrames;
4711                if (audio_is_linear_pcm(mFormat)) {
4712                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4713                } else {
4714                    audioHALFrames = 0;
4715                }
4716
4717                size_t framesWritten = mBytesWritten / mFrameSize;
4718                if (mStandby || !last ||
4719                        track->presentationComplete(framesWritten, audioHALFrames)) {
4720                    if (track->isStopping_2()) {
4721                        track->mState = TrackBase::STOPPED;
4722                    }
4723                    if (track->isStopped()) {
4724                        track->reset();
4725                    }
4726                    tracksToRemove->add(track);
4727                }
4728            } else {
4729                // No buffers for this track. Give it a few chances to
4730                // fill a buffer, then remove it from active list.
4731                // Only consider last track started for mixer state control
4732                if (--(track->mRetryCount) <= 0) {
4733                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4734                    tracksToRemove->add(track);
4735                    // indicate to client process that the track was disabled because of underrun;
4736                    // it will then automatically call start() when data is available
4737                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4738                } else if (last) {
4739                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4740                            "minFrames = %u, mFormat = %#x",
4741                            track->framesReady(), minFrames, mFormat);
4742                    mixerStatus = MIXER_TRACKS_ENABLED;
4743                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4744                        doHwPause = true;
4745                        mHwPaused = true;
4746                    }
4747                }
4748            }
4749        }
4750    }
4751
4752    // if an active track did not command a flush, check for pending flush on stopped tracks
4753    if (!mFlushPending) {
4754        for (size_t i = 0; i < mTracks.size(); i++) {
4755            if (mTracks[i]->isFlushPending()) {
4756                mTracks[i]->flushAck();
4757                mFlushPending = true;
4758            }
4759        }
4760    }
4761
4762    // make sure the pause/flush/resume sequence is executed in the right order.
4763    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4764    // before flush and then resume HW. This can happen in case of pause/flush/resume
4765    // if resume is received before pause is executed.
4766    if (mHwSupportsPause && !mStandby &&
4767            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4768        mOutput->stream->pause(mOutput->stream);
4769    }
4770    if (mFlushPending) {
4771        flushHw_l();
4772    }
4773    if (mHwSupportsPause && !mStandby && doHwResume) {
4774        mOutput->stream->resume(mOutput->stream);
4775    }
4776    // remove all the tracks that need to be...
4777    removeTracks_l(*tracksToRemove);
4778
4779    return mixerStatus;
4780}
4781
4782void AudioFlinger::DirectOutputThread::threadLoop_mix()
4783{
4784    size_t frameCount = mFrameCount;
4785    int8_t *curBuf = (int8_t *)mSinkBuffer;
4786    // output audio to hardware
4787    while (frameCount) {
4788        AudioBufferProvider::Buffer buffer;
4789        buffer.frameCount = frameCount;
4790        status_t status = mActiveTrack->getNextBuffer(&buffer);
4791        if (status != NO_ERROR || buffer.raw == NULL) {
4792            memset(curBuf, 0, frameCount * mFrameSize);
4793            break;
4794        }
4795        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4796        frameCount -= buffer.frameCount;
4797        curBuf += buffer.frameCount * mFrameSize;
4798        mActiveTrack->releaseBuffer(&buffer);
4799    }
4800    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4801    mSleepTimeUs = 0;
4802    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4803    mActiveTrack.clear();
4804}
4805
4806void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4807{
4808    // do not write to HAL when paused
4809    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4810        mSleepTimeUs = mIdleSleepTimeUs;
4811        return;
4812    }
4813    if (mSleepTimeUs == 0) {
4814        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4815            mSleepTimeUs = mActiveSleepTimeUs;
4816        } else {
4817            mSleepTimeUs = mIdleSleepTimeUs;
4818        }
4819    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4820        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4821        mSleepTimeUs = 0;
4822    }
4823}
4824
4825void AudioFlinger::DirectOutputThread::threadLoop_exit()
4826{
4827    {
4828        Mutex::Autolock _l(mLock);
4829        for (size_t i = 0; i < mTracks.size(); i++) {
4830            if (mTracks[i]->isFlushPending()) {
4831                mTracks[i]->flushAck();
4832                mFlushPending = true;
4833            }
4834        }
4835        if (mFlushPending) {
4836            flushHw_l();
4837        }
4838    }
4839    PlaybackThread::threadLoop_exit();
4840}
4841
4842// must be called with thread mutex locked
4843bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4844{
4845    bool trackPaused = false;
4846    bool trackStopped = false;
4847
4848    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4849    // after a timeout and we will enter standby then.
4850    if (mTracks.size() > 0) {
4851        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4852        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4853                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4854    }
4855
4856    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4857}
4858
4859// getTrackName_l() must be called with ThreadBase::mLock held
4860int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4861        audio_format_t format __unused, int sessionId __unused)
4862{
4863    return 0;
4864}
4865
4866// deleteTrackName_l() must be called with ThreadBase::mLock held
4867void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4868{
4869}
4870
4871// checkForNewParameter_l() must be called with ThreadBase::mLock held
4872bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4873                                                              status_t& status)
4874{
4875    bool reconfig = false;
4876    bool a2dpDeviceChanged = false;
4877
4878    status = NO_ERROR;
4879
4880    AudioParameter param = AudioParameter(keyValuePair);
4881    int value;
4882    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4883        // forward device change to effects that have requested to be
4884        // aware of attached audio device.
4885        if (value != AUDIO_DEVICE_NONE) {
4886            a2dpDeviceChanged =
4887                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4888            mOutDevice = value;
4889            for (size_t i = 0; i < mEffectChains.size(); i++) {
4890                mEffectChains[i]->setDevice_l(mOutDevice);
4891            }
4892        }
4893    }
4894    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4895        // do not accept frame count changes if tracks are open as the track buffer
4896        // size depends on frame count and correct behavior would not be garantied
4897        // if frame count is changed after track creation
4898        if (!mTracks.isEmpty()) {
4899            status = INVALID_OPERATION;
4900        } else {
4901            reconfig = true;
4902        }
4903    }
4904    if (status == NO_ERROR) {
4905        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4906                                                keyValuePair.string());
4907        if (!mStandby && status == INVALID_OPERATION) {
4908            mOutput->standby();
4909            mStandby = true;
4910            mBytesWritten = 0;
4911            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4912                                                   keyValuePair.string());
4913        }
4914        if (status == NO_ERROR && reconfig) {
4915            readOutputParameters_l();
4916            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4917        }
4918    }
4919
4920    return reconfig || a2dpDeviceChanged;
4921}
4922
4923uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4924{
4925    uint32_t time;
4926    if (audio_is_linear_pcm(mFormat)) {
4927        time = PlaybackThread::activeSleepTimeUs();
4928    } else {
4929        time = 10000;
4930    }
4931    return time;
4932}
4933
4934uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4935{
4936    uint32_t time;
4937    if (audio_is_linear_pcm(mFormat)) {
4938        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4939    } else {
4940        time = 10000;
4941    }
4942    return time;
4943}
4944
4945uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4946{
4947    uint32_t time;
4948    if (audio_is_linear_pcm(mFormat)) {
4949        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4950    } else {
4951        time = 10000;
4952    }
4953    return time;
4954}
4955
4956void AudioFlinger::DirectOutputThread::cacheParameters_l()
4957{
4958    PlaybackThread::cacheParameters_l();
4959
4960    // use shorter standby delay as on normal output to release
4961    // hardware resources as soon as possible
4962    // no delay on outputs with HW A/V sync
4963    if (usesHwAvSync()) {
4964        mStandbyDelayNs = 0;
4965    } else if ((mType == OFFLOAD) && !audio_is_linear_pcm(mFormat)) {
4966        mStandbyDelayNs = kOffloadStandbyDelayNs;
4967    } else {
4968        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
4969    }
4970}
4971
4972void AudioFlinger::DirectOutputThread::flushHw_l()
4973{
4974    mOutput->flush();
4975    mHwPaused = false;
4976    mFlushPending = false;
4977}
4978
4979// ----------------------------------------------------------------------------
4980
4981AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4982        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4983    :   Thread(false /*canCallJava*/),
4984        mPlaybackThread(playbackThread),
4985        mWriteAckSequence(0),
4986        mDrainSequence(0)
4987{
4988}
4989
4990AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4991{
4992}
4993
4994void AudioFlinger::AsyncCallbackThread::onFirstRef()
4995{
4996    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4997}
4998
4999bool AudioFlinger::AsyncCallbackThread::threadLoop()
5000{
5001    while (!exitPending()) {
5002        uint32_t writeAckSequence;
5003        uint32_t drainSequence;
5004
5005        {
5006            Mutex::Autolock _l(mLock);
5007            while (!((mWriteAckSequence & 1) ||
5008                     (mDrainSequence & 1) ||
5009                     exitPending())) {
5010                mWaitWorkCV.wait(mLock);
5011            }
5012
5013            if (exitPending()) {
5014                break;
5015            }
5016            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5017                  mWriteAckSequence, mDrainSequence);
5018            writeAckSequence = mWriteAckSequence;
5019            mWriteAckSequence &= ~1;
5020            drainSequence = mDrainSequence;
5021            mDrainSequence &= ~1;
5022        }
5023        {
5024            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5025            if (playbackThread != 0) {
5026                if (writeAckSequence & 1) {
5027                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5028                }
5029                if (drainSequence & 1) {
5030                    playbackThread->resetDraining(drainSequence >> 1);
5031                }
5032            }
5033        }
5034    }
5035    return false;
5036}
5037
5038void AudioFlinger::AsyncCallbackThread::exit()
5039{
5040    ALOGV("AsyncCallbackThread::exit");
5041    Mutex::Autolock _l(mLock);
5042    requestExit();
5043    mWaitWorkCV.broadcast();
5044}
5045
5046void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5047{
5048    Mutex::Autolock _l(mLock);
5049    // bit 0 is cleared
5050    mWriteAckSequence = sequence << 1;
5051}
5052
5053void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5054{
5055    Mutex::Autolock _l(mLock);
5056    // ignore unexpected callbacks
5057    if (mWriteAckSequence & 2) {
5058        mWriteAckSequence |= 1;
5059        mWaitWorkCV.signal();
5060    }
5061}
5062
5063void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5064{
5065    Mutex::Autolock _l(mLock);
5066    // bit 0 is cleared
5067    mDrainSequence = sequence << 1;
5068}
5069
5070void AudioFlinger::AsyncCallbackThread::resetDraining()
5071{
5072    Mutex::Autolock _l(mLock);
5073    // ignore unexpected callbacks
5074    if (mDrainSequence & 2) {
5075        mDrainSequence |= 1;
5076        mWaitWorkCV.signal();
5077    }
5078}
5079
5080
5081// ----------------------------------------------------------------------------
5082AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5083        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5084    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5085        mPausedBytesRemaining(0)
5086{
5087    //FIXME: mStandby should be set to true by ThreadBase constructor
5088    mStandby = true;
5089}
5090
5091void AudioFlinger::OffloadThread::threadLoop_exit()
5092{
5093    if (mFlushPending || mHwPaused) {
5094        // If a flush is pending or track was paused, just discard buffered data
5095        flushHw_l();
5096    } else {
5097        mMixerStatus = MIXER_DRAIN_ALL;
5098        threadLoop_drain();
5099    }
5100    if (mUseAsyncWrite) {
5101        ALOG_ASSERT(mCallbackThread != 0);
5102        mCallbackThread->exit();
5103    }
5104    PlaybackThread::threadLoop_exit();
5105}
5106
5107AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5108    Vector< sp<Track> > *tracksToRemove
5109)
5110{
5111    size_t count = mActiveTracks.size();
5112
5113    mixer_state mixerStatus = MIXER_IDLE;
5114    bool doHwPause = false;
5115    bool doHwResume = false;
5116
5117    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5118
5119    // find out which tracks need to be processed
5120    for (size_t i = 0; i < count; i++) {
5121        sp<Track> t = mActiveTracks[i].promote();
5122        // The track died recently
5123        if (t == 0) {
5124            continue;
5125        }
5126        Track* const track = t.get();
5127        audio_track_cblk_t* cblk = track->cblk();
5128        // Only consider last track started for volume and mixer state control.
5129        // In theory an older track could underrun and restart after the new one starts
5130        // but as we only care about the transition phase between two tracks on a
5131        // direct output, it is not a problem to ignore the underrun case.
5132        sp<Track> l = mLatestActiveTrack.promote();
5133        bool last = l.get() == track;
5134
5135        if (track->isInvalid()) {
5136            ALOGW("An invalidated track shouldn't be in active list");
5137            tracksToRemove->add(track);
5138            continue;
5139        }
5140
5141        if (track->mState == TrackBase::IDLE) {
5142            ALOGW("An idle track shouldn't be in active list");
5143            continue;
5144        }
5145
5146        if (track->isPausing()) {
5147            track->setPaused();
5148            if (last) {
5149                if (mHwSupportsPause && !mHwPaused) {
5150                    doHwPause = true;
5151                    mHwPaused = true;
5152                }
5153                // If we were part way through writing the mixbuffer to
5154                // the HAL we must save this until we resume
5155                // BUG - this will be wrong if a different track is made active,
5156                // in that case we want to discard the pending data in the
5157                // mixbuffer and tell the client to present it again when the
5158                // track is resumed
5159                mPausedWriteLength = mCurrentWriteLength;
5160                mPausedBytesRemaining = mBytesRemaining;
5161                mBytesRemaining = 0;    // stop writing
5162            }
5163            tracksToRemove->add(track);
5164        } else if (track->isFlushPending()) {
5165            track->flushAck();
5166            if (last) {
5167                mFlushPending = true;
5168            }
5169        } else if (track->isResumePending()){
5170            track->resumeAck();
5171            if (last) {
5172                if (mPausedBytesRemaining) {
5173                    // Need to continue write that was interrupted
5174                    mCurrentWriteLength = mPausedWriteLength;
5175                    mBytesRemaining = mPausedBytesRemaining;
5176                    mPausedBytesRemaining = 0;
5177                }
5178                if (mHwPaused) {
5179                    doHwResume = true;
5180                    mHwPaused = false;
5181                    // threadLoop_mix() will handle the case that we need to
5182                    // resume an interrupted write
5183                }
5184                // enable write to audio HAL
5185                mSleepTimeUs = 0;
5186
5187                // Do not handle new data in this iteration even if track->framesReady()
5188                mixerStatus = MIXER_TRACKS_ENABLED;
5189            }
5190        }  else if (track->framesReady() && track->isReady() &&
5191                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5192            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5193            if (track->mFillingUpStatus == Track::FS_FILLED) {
5194                track->mFillingUpStatus = Track::FS_ACTIVE;
5195                // make sure processVolume_l() will apply new volume even if 0
5196                mLeftVolFloat = mRightVolFloat = -1.0;
5197            }
5198
5199            if (last) {
5200                sp<Track> previousTrack = mPreviousTrack.promote();
5201                if (previousTrack != 0) {
5202                    if (track != previousTrack.get()) {
5203                        // Flush any data still being written from last track
5204                        mBytesRemaining = 0;
5205                        if (mPausedBytesRemaining) {
5206                            // Last track was paused so we also need to flush saved
5207                            // mixbuffer state and invalidate track so that it will
5208                            // re-submit that unwritten data when it is next resumed
5209                            mPausedBytesRemaining = 0;
5210                            // Invalidate is a bit drastic - would be more efficient
5211                            // to have a flag to tell client that some of the
5212                            // previously written data was lost
5213                            previousTrack->invalidate();
5214                        }
5215                        // flush data already sent to the DSP if changing audio session as audio
5216                        // comes from a different source. Also invalidate previous track to force a
5217                        // seek when resuming.
5218                        if (previousTrack->sessionId() != track->sessionId()) {
5219                            previousTrack->invalidate();
5220                        }
5221                    }
5222                }
5223                mPreviousTrack = track;
5224                // reset retry count
5225                track->mRetryCount = kMaxTrackRetriesOffload;
5226                mActiveTrack = t;
5227                mixerStatus = MIXER_TRACKS_READY;
5228            }
5229        } else {
5230            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5231            if (track->isStopping_1()) {
5232                // Hardware buffer can hold a large amount of audio so we must
5233                // wait for all current track's data to drain before we say
5234                // that the track is stopped.
5235                if (mBytesRemaining == 0) {
5236                    // Only start draining when all data in mixbuffer
5237                    // has been written
5238                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5239                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5240                    // do not drain if no data was ever sent to HAL (mStandby == true)
5241                    if (last && !mStandby) {
5242                        // do not modify drain sequence if we are already draining. This happens
5243                        // when resuming from pause after drain.
5244                        if ((mDrainSequence & 1) == 0) {
5245                            mSleepTimeUs = 0;
5246                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5247                            mixerStatus = MIXER_DRAIN_TRACK;
5248                            mDrainSequence += 2;
5249                        }
5250                        if (mHwPaused) {
5251                            // It is possible to move from PAUSED to STOPPING_1 without
5252                            // a resume so we must ensure hardware is running
5253                            doHwResume = true;
5254                            mHwPaused = false;
5255                        }
5256                    }
5257                }
5258            } else if (track->isStopping_2()) {
5259                // Drain has completed or we are in standby, signal presentation complete
5260                if (!(mDrainSequence & 1) || !last || mStandby) {
5261                    track->mState = TrackBase::STOPPED;
5262                    size_t audioHALFrames =
5263                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5264                    size_t framesWritten =
5265                            mBytesWritten / mOutput->getFrameSize();
5266                    track->presentationComplete(framesWritten, audioHALFrames);
5267                    track->reset();
5268                    tracksToRemove->add(track);
5269                }
5270            } else {
5271                // No buffers for this track. Give it a few chances to
5272                // fill a buffer, then remove it from active list.
5273                if (--(track->mRetryCount) <= 0) {
5274                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5275                          track->name());
5276                    tracksToRemove->add(track);
5277                    // indicate to client process that the track was disabled because of underrun;
5278                    // it will then automatically call start() when data is available
5279                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5280                } else if (last){
5281                    mixerStatus = MIXER_TRACKS_ENABLED;
5282                }
5283            }
5284        }
5285        // compute volume for this track
5286        processVolume_l(track, last);
5287    }
5288
5289    // make sure the pause/flush/resume sequence is executed in the right order.
5290    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5291    // before flush and then resume HW. This can happen in case of pause/flush/resume
5292    // if resume is received before pause is executed.
5293    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5294        mOutput->stream->pause(mOutput->stream);
5295    }
5296    if (mFlushPending) {
5297        flushHw_l();
5298    }
5299    if (!mStandby && doHwResume) {
5300        mOutput->stream->resume(mOutput->stream);
5301    }
5302
5303    // remove all the tracks that need to be...
5304    removeTracks_l(*tracksToRemove);
5305
5306    return mixerStatus;
5307}
5308
5309// must be called with thread mutex locked
5310bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5311{
5312    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5313          mWriteAckSequence, mDrainSequence);
5314    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5315        return true;
5316    }
5317    return false;
5318}
5319
5320bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5321{
5322    Mutex::Autolock _l(mLock);
5323    return waitingAsyncCallback_l();
5324}
5325
5326void AudioFlinger::OffloadThread::flushHw_l()
5327{
5328    DirectOutputThread::flushHw_l();
5329    // Flush anything still waiting in the mixbuffer
5330    mCurrentWriteLength = 0;
5331    mBytesRemaining = 0;
5332    mPausedWriteLength = 0;
5333    mPausedBytesRemaining = 0;
5334
5335    if (mUseAsyncWrite) {
5336        // discard any pending drain or write ack by incrementing sequence
5337        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5338        mDrainSequence = (mDrainSequence + 2) & ~1;
5339        ALOG_ASSERT(mCallbackThread != 0);
5340        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5341        mCallbackThread->setDraining(mDrainSequence);
5342    }
5343}
5344
5345// ----------------------------------------------------------------------------
5346
5347AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5348        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5349    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5350                    systemReady, DUPLICATING),
5351        mWaitTimeMs(UINT_MAX)
5352{
5353    addOutputTrack(mainThread);
5354}
5355
5356AudioFlinger::DuplicatingThread::~DuplicatingThread()
5357{
5358    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5359        mOutputTracks[i]->destroy();
5360    }
5361}
5362
5363void AudioFlinger::DuplicatingThread::threadLoop_mix()
5364{
5365    // mix buffers...
5366    if (outputsReady(outputTracks)) {
5367        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5368    } else {
5369        if (mMixerBufferValid) {
5370            memset(mMixerBuffer, 0, mMixerBufferSize);
5371        } else {
5372            memset(mSinkBuffer, 0, mSinkBufferSize);
5373        }
5374    }
5375    mSleepTimeUs = 0;
5376    writeFrames = mNormalFrameCount;
5377    mCurrentWriteLength = mSinkBufferSize;
5378    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5379}
5380
5381void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5382{
5383    if (mSleepTimeUs == 0) {
5384        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5385            mSleepTimeUs = mActiveSleepTimeUs;
5386        } else {
5387            mSleepTimeUs = mIdleSleepTimeUs;
5388        }
5389    } else if (mBytesWritten != 0) {
5390        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5391            writeFrames = mNormalFrameCount;
5392            memset(mSinkBuffer, 0, mSinkBufferSize);
5393        } else {
5394            // flush remaining overflow buffers in output tracks
5395            writeFrames = 0;
5396        }
5397        mSleepTimeUs = 0;
5398    }
5399}
5400
5401ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5402{
5403    for (size_t i = 0; i < outputTracks.size(); i++) {
5404        outputTracks[i]->write(mSinkBuffer, writeFrames);
5405    }
5406    mStandby = false;
5407    return (ssize_t)mSinkBufferSize;
5408}
5409
5410void AudioFlinger::DuplicatingThread::threadLoop_standby()
5411{
5412    // DuplicatingThread implements standby by stopping all tracks
5413    for (size_t i = 0; i < outputTracks.size(); i++) {
5414        outputTracks[i]->stop();
5415    }
5416}
5417
5418void AudioFlinger::DuplicatingThread::saveOutputTracks()
5419{
5420    outputTracks = mOutputTracks;
5421}
5422
5423void AudioFlinger::DuplicatingThread::clearOutputTracks()
5424{
5425    outputTracks.clear();
5426}
5427
5428void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5429{
5430    Mutex::Autolock _l(mLock);
5431    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5432    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5433    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5434    const size_t frameCount =
5435            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5436    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5437    // from different OutputTracks and their associated MixerThreads (e.g. one may
5438    // nearly empty and the other may be dropping data).
5439
5440    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5441                                            this,
5442                                            mSampleRate,
5443                                            mFormat,
5444                                            mChannelMask,
5445                                            frameCount,
5446                                            IPCThreadState::self()->getCallingUid());
5447    if (outputTrack->cblk() != NULL) {
5448        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5449        mOutputTracks.add(outputTrack);
5450        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5451        updateWaitTime_l();
5452    }
5453}
5454
5455void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5456{
5457    Mutex::Autolock _l(mLock);
5458    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5459        if (mOutputTracks[i]->thread() == thread) {
5460            mOutputTracks[i]->destroy();
5461            mOutputTracks.removeAt(i);
5462            updateWaitTime_l();
5463            if (thread->getOutput() == mOutput) {
5464                mOutput = NULL;
5465            }
5466            return;
5467        }
5468    }
5469    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5470}
5471
5472// caller must hold mLock
5473void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5474{
5475    mWaitTimeMs = UINT_MAX;
5476    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5477        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5478        if (strong != 0) {
5479            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5480            if (waitTimeMs < mWaitTimeMs) {
5481                mWaitTimeMs = waitTimeMs;
5482            }
5483        }
5484    }
5485}
5486
5487
5488bool AudioFlinger::DuplicatingThread::outputsReady(
5489        const SortedVector< sp<OutputTrack> > &outputTracks)
5490{
5491    for (size_t i = 0; i < outputTracks.size(); i++) {
5492        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5493        if (thread == 0) {
5494            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5495                    outputTracks[i].get());
5496            return false;
5497        }
5498        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5499        // see note at standby() declaration
5500        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5501            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5502                    thread.get());
5503            return false;
5504        }
5505    }
5506    return true;
5507}
5508
5509uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5510{
5511    return (mWaitTimeMs * 1000) / 2;
5512}
5513
5514void AudioFlinger::DuplicatingThread::cacheParameters_l()
5515{
5516    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5517    updateWaitTime_l();
5518
5519    MixerThread::cacheParameters_l();
5520}
5521
5522// ----------------------------------------------------------------------------
5523//      Record
5524// ----------------------------------------------------------------------------
5525
5526AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5527                                         AudioStreamIn *input,
5528                                         audio_io_handle_t id,
5529                                         audio_devices_t outDevice,
5530                                         audio_devices_t inDevice,
5531                                         bool systemReady
5532#ifdef TEE_SINK
5533                                         , const sp<NBAIO_Sink>& teeSink
5534#endif
5535                                         ) :
5536    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5537    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5538    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5539    mRsmpInRear(0)
5540#ifdef TEE_SINK
5541    , mTeeSink(teeSink)
5542#endif
5543    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5544            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5545    // mFastCapture below
5546    , mFastCaptureFutex(0)
5547    // mInputSource
5548    // mPipeSink
5549    // mPipeSource
5550    , mPipeFramesP2(0)
5551    // mPipeMemory
5552    // mFastCaptureNBLogWriter
5553    , mFastTrackAvail(false)
5554{
5555    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5556    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5557
5558    readInputParameters_l();
5559
5560    // create an NBAIO source for the HAL input stream, and negotiate
5561    mInputSource = new AudioStreamInSource(input->stream);
5562    size_t numCounterOffers = 0;
5563    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5564    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5565    ALOG_ASSERT(index == 0);
5566
5567    // initialize fast capture depending on configuration
5568    bool initFastCapture;
5569    switch (kUseFastCapture) {
5570    case FastCapture_Never:
5571        initFastCapture = false;
5572        break;
5573    case FastCapture_Always:
5574        initFastCapture = true;
5575        break;
5576    case FastCapture_Static:
5577        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5578        break;
5579    // case FastCapture_Dynamic:
5580    }
5581
5582    if (initFastCapture) {
5583        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5584        NBAIO_Format format = mInputSource->format();
5585        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5586        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5587        void *pipeBuffer;
5588        const sp<MemoryDealer> roHeap(readOnlyHeap());
5589        sp<IMemory> pipeMemory;
5590        if ((roHeap == 0) ||
5591                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5592                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5593            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5594            goto failed;
5595        }
5596        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5597        memset(pipeBuffer, 0, pipeSize);
5598        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5599        const NBAIO_Format offers[1] = {format};
5600        size_t numCounterOffers = 0;
5601        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5602        ALOG_ASSERT(index == 0);
5603        mPipeSink = pipe;
5604        PipeReader *pipeReader = new PipeReader(*pipe);
5605        numCounterOffers = 0;
5606        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5607        ALOG_ASSERT(index == 0);
5608        mPipeSource = pipeReader;
5609        mPipeFramesP2 = pipeFramesP2;
5610        mPipeMemory = pipeMemory;
5611
5612        // create fast capture
5613        mFastCapture = new FastCapture();
5614        FastCaptureStateQueue *sq = mFastCapture->sq();
5615#ifdef STATE_QUEUE_DUMP
5616        // FIXME
5617#endif
5618        FastCaptureState *state = sq->begin();
5619        state->mCblk = NULL;
5620        state->mInputSource = mInputSource.get();
5621        state->mInputSourceGen++;
5622        state->mPipeSink = pipe;
5623        state->mPipeSinkGen++;
5624        state->mFrameCount = mFrameCount;
5625        state->mCommand = FastCaptureState::COLD_IDLE;
5626        // already done in constructor initialization list
5627        //mFastCaptureFutex = 0;
5628        state->mColdFutexAddr = &mFastCaptureFutex;
5629        state->mColdGen++;
5630        state->mDumpState = &mFastCaptureDumpState;
5631#ifdef TEE_SINK
5632        // FIXME
5633#endif
5634        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5635        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5636        sq->end();
5637        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5638
5639        // start the fast capture
5640        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5641        pid_t tid = mFastCapture->getTid();
5642        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5643#ifdef AUDIO_WATCHDOG
5644        // FIXME
5645#endif
5646
5647        mFastTrackAvail = true;
5648    }
5649failed: ;
5650
5651    // FIXME mNormalSource
5652}
5653
5654AudioFlinger::RecordThread::~RecordThread()
5655{
5656    if (mFastCapture != 0) {
5657        FastCaptureStateQueue *sq = mFastCapture->sq();
5658        FastCaptureState *state = sq->begin();
5659        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5660            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5661            if (old == -1) {
5662                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5663            }
5664        }
5665        state->mCommand = FastCaptureState::EXIT;
5666        sq->end();
5667        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5668        mFastCapture->join();
5669        mFastCapture.clear();
5670    }
5671    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5672    mAudioFlinger->unregisterWriter(mNBLogWriter);
5673    free(mRsmpInBuffer);
5674}
5675
5676void AudioFlinger::RecordThread::onFirstRef()
5677{
5678    run(mThreadName, PRIORITY_URGENT_AUDIO);
5679}
5680
5681bool AudioFlinger::RecordThread::threadLoop()
5682{
5683    nsecs_t lastWarning = 0;
5684
5685    inputStandBy();
5686
5687reacquire_wakelock:
5688    sp<RecordTrack> activeTrack;
5689    int activeTracksGen;
5690    {
5691        Mutex::Autolock _l(mLock);
5692        size_t size = mActiveTracks.size();
5693        activeTracksGen = mActiveTracksGen;
5694        if (size > 0) {
5695            // FIXME an arbitrary choice
5696            activeTrack = mActiveTracks[0];
5697            acquireWakeLock_l(activeTrack->uid());
5698            if (size > 1) {
5699                SortedVector<int> tmp;
5700                for (size_t i = 0; i < size; i++) {
5701                    tmp.add(mActiveTracks[i]->uid());
5702                }
5703                updateWakeLockUids_l(tmp);
5704            }
5705        } else {
5706            acquireWakeLock_l(-1);
5707        }
5708    }
5709
5710    // used to request a deferred sleep, to be executed later while mutex is unlocked
5711    uint32_t sleepUs = 0;
5712
5713    // loop while there is work to do
5714    for (;;) {
5715        Vector< sp<EffectChain> > effectChains;
5716
5717        // sleep with mutex unlocked
5718        if (sleepUs > 0) {
5719            ATRACE_BEGIN("sleep");
5720            usleep(sleepUs);
5721            ATRACE_END();
5722            sleepUs = 0;
5723        }
5724
5725        // activeTracks accumulates a copy of a subset of mActiveTracks
5726        Vector< sp<RecordTrack> > activeTracks;
5727
5728        // reference to the (first and only) active fast track
5729        sp<RecordTrack> fastTrack;
5730
5731        // reference to a fast track which is about to be removed
5732        sp<RecordTrack> fastTrackToRemove;
5733
5734        { // scope for mLock
5735            Mutex::Autolock _l(mLock);
5736
5737            processConfigEvents_l();
5738
5739            // check exitPending here because checkForNewParameters_l() and
5740            // checkForNewParameters_l() can temporarily release mLock
5741            if (exitPending()) {
5742                break;
5743            }
5744
5745            // if no active track(s), then standby and release wakelock
5746            size_t size = mActiveTracks.size();
5747            if (size == 0) {
5748                standbyIfNotAlreadyInStandby();
5749                // exitPending() can't become true here
5750                releaseWakeLock_l();
5751                ALOGV("RecordThread: loop stopping");
5752                // go to sleep
5753                mWaitWorkCV.wait(mLock);
5754                ALOGV("RecordThread: loop starting");
5755                goto reacquire_wakelock;
5756            }
5757
5758            if (mActiveTracksGen != activeTracksGen) {
5759                activeTracksGen = mActiveTracksGen;
5760                SortedVector<int> tmp;
5761                for (size_t i = 0; i < size; i++) {
5762                    tmp.add(mActiveTracks[i]->uid());
5763                }
5764                updateWakeLockUids_l(tmp);
5765            }
5766
5767            bool doBroadcast = false;
5768            for (size_t i = 0; i < size; ) {
5769
5770                activeTrack = mActiveTracks[i];
5771                if (activeTrack->isTerminated()) {
5772                    if (activeTrack->isFastTrack()) {
5773                        ALOG_ASSERT(fastTrackToRemove == 0);
5774                        fastTrackToRemove = activeTrack;
5775                    }
5776                    removeTrack_l(activeTrack);
5777                    mActiveTracks.remove(activeTrack);
5778                    mActiveTracksGen++;
5779                    size--;
5780                    continue;
5781                }
5782
5783                TrackBase::track_state activeTrackState = activeTrack->mState;
5784                switch (activeTrackState) {
5785
5786                case TrackBase::PAUSING:
5787                    mActiveTracks.remove(activeTrack);
5788                    mActiveTracksGen++;
5789                    doBroadcast = true;
5790                    size--;
5791                    continue;
5792
5793                case TrackBase::STARTING_1:
5794                    sleepUs = 10000;
5795                    i++;
5796                    continue;
5797
5798                case TrackBase::STARTING_2:
5799                    doBroadcast = true;
5800                    mStandby = false;
5801                    activeTrack->mState = TrackBase::ACTIVE;
5802                    break;
5803
5804                case TrackBase::ACTIVE:
5805                    break;
5806
5807                case TrackBase::IDLE:
5808                    i++;
5809                    continue;
5810
5811                default:
5812                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5813                }
5814
5815                activeTracks.add(activeTrack);
5816                i++;
5817
5818                if (activeTrack->isFastTrack()) {
5819                    ALOG_ASSERT(!mFastTrackAvail);
5820                    ALOG_ASSERT(fastTrack == 0);
5821                    fastTrack = activeTrack;
5822                }
5823            }
5824            if (doBroadcast) {
5825                mStartStopCond.broadcast();
5826            }
5827
5828            // sleep if there are no active tracks to process
5829            if (activeTracks.size() == 0) {
5830                if (sleepUs == 0) {
5831                    sleepUs = kRecordThreadSleepUs;
5832                }
5833                continue;
5834            }
5835            sleepUs = 0;
5836
5837            lockEffectChains_l(effectChains);
5838        }
5839
5840        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5841
5842        size_t size = effectChains.size();
5843        for (size_t i = 0; i < size; i++) {
5844            // thread mutex is not locked, but effect chain is locked
5845            effectChains[i]->process_l();
5846        }
5847
5848        // Push a new fast capture state if fast capture is not already running, or cblk change
5849        if (mFastCapture != 0) {
5850            FastCaptureStateQueue *sq = mFastCapture->sq();
5851            FastCaptureState *state = sq->begin();
5852            bool didModify = false;
5853            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5854            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5855                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5856                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5857                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5858                    if (old == -1) {
5859                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5860                    }
5861                }
5862                state->mCommand = FastCaptureState::READ_WRITE;
5863#if 0   // FIXME
5864                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5865                        FastThreadDumpState::kSamplingNforLowRamDevice :
5866                        FastThreadDumpState::kSamplingN);
5867#endif
5868                didModify = true;
5869            }
5870            audio_track_cblk_t *cblkOld = state->mCblk;
5871            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5872            if (cblkNew != cblkOld) {
5873                state->mCblk = cblkNew;
5874                // block until acked if removing a fast track
5875                if (cblkOld != NULL) {
5876                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5877                }
5878                didModify = true;
5879            }
5880            sq->end(didModify);
5881            if (didModify) {
5882                sq->push(block);
5883#if 0
5884                if (kUseFastCapture == FastCapture_Dynamic) {
5885                    mNormalSource = mPipeSource;
5886                }
5887#endif
5888            }
5889        }
5890
5891        // now run the fast track destructor with thread mutex unlocked
5892        fastTrackToRemove.clear();
5893
5894        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5895        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5896        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5897        // If destination is non-contiguous, first read past the nominal end of buffer, then
5898        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5899
5900        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5901        ssize_t framesRead;
5902
5903        // If an NBAIO source is present, use it to read the normal capture's data
5904        if (mPipeSource != 0) {
5905            size_t framesToRead = mBufferSize / mFrameSize;
5906            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5907                    framesToRead, AudioBufferProvider::kInvalidPTS);
5908            if (framesRead == 0) {
5909                // since pipe is non-blocking, simulate blocking input
5910                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5911            }
5912        // otherwise use the HAL / AudioStreamIn directly
5913        } else {
5914            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5915                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5916            if (bytesRead < 0) {
5917                framesRead = bytesRead;
5918            } else {
5919                framesRead = bytesRead / mFrameSize;
5920            }
5921        }
5922
5923        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5924            ALOGE("read failed: framesRead=%d", framesRead);
5925            // Force input into standby so that it tries to recover at next read attempt
5926            inputStandBy();
5927            sleepUs = kRecordThreadSleepUs;
5928        }
5929        if (framesRead <= 0) {
5930            goto unlock;
5931        }
5932        ALOG_ASSERT(framesRead > 0);
5933
5934        if (mTeeSink != 0) {
5935            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
5936        }
5937        // If destination is non-contiguous, we now correct for reading past end of buffer.
5938        {
5939            size_t part1 = mRsmpInFramesP2 - rear;
5940            if ((size_t) framesRead > part1) {
5941                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
5942                        (framesRead - part1) * mFrameSize);
5943            }
5944        }
5945        rear = mRsmpInRear += framesRead;
5946
5947        size = activeTracks.size();
5948        // loop over each active track
5949        for (size_t i = 0; i < size; i++) {
5950            activeTrack = activeTracks[i];
5951
5952            // skip fast tracks, as those are handled directly by FastCapture
5953            if (activeTrack->isFastTrack()) {
5954                continue;
5955            }
5956
5957            // TODO: This code probably should be moved to RecordTrack.
5958            // TODO: Update the activeTrack buffer converter in case of reconfigure.
5959
5960            enum {
5961                OVERRUN_UNKNOWN,
5962                OVERRUN_TRUE,
5963                OVERRUN_FALSE
5964            } overrun = OVERRUN_UNKNOWN;
5965
5966            // loop over getNextBuffer to handle circular sink
5967            for (;;) {
5968
5969                activeTrack->mSink.frameCount = ~0;
5970                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5971                size_t framesOut = activeTrack->mSink.frameCount;
5972                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5973
5974                // check available frames and handle overrun conditions
5975                // if the record track isn't draining fast enough.
5976                bool hasOverrun;
5977                size_t framesIn;
5978                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5979                if (hasOverrun) {
5980                    overrun = OVERRUN_TRUE;
5981                }
5982                if (framesOut == 0 || framesIn == 0) {
5983                    break;
5984                }
5985
5986                // Don't allow framesOut to be larger than what is possible with resampling
5987                // from framesIn.
5988                // This isn't strictly necessary but helps limit buffer resizing in
5989                // RecordBufferConverter.  TODO: remove when no longer needed.
5990                framesOut = min(framesOut,
5991                        destinationFramesPossible(
5992                                framesIn, mSampleRate, activeTrack->mSampleRate));
5993                // process frames from the RecordThread buffer provider to the RecordTrack buffer
5994                framesOut = activeTrack->mRecordBufferConverter->convert(
5995                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5996
5997                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5998                    overrun = OVERRUN_FALSE;
5999                }
6000
6001                if (activeTrack->mFramesToDrop == 0) {
6002                    if (framesOut > 0) {
6003                        activeTrack->mSink.frameCount = framesOut;
6004                        activeTrack->releaseBuffer(&activeTrack->mSink);
6005                    }
6006                } else {
6007                    // FIXME could do a partial drop of framesOut
6008                    if (activeTrack->mFramesToDrop > 0) {
6009                        activeTrack->mFramesToDrop -= framesOut;
6010                        if (activeTrack->mFramesToDrop <= 0) {
6011                            activeTrack->clearSyncStartEvent();
6012                        }
6013                    } else {
6014                        activeTrack->mFramesToDrop += framesOut;
6015                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6016                                activeTrack->mSyncStartEvent->isCancelled()) {
6017                            ALOGW("Synced record %s, session %d, trigger session %d",
6018                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6019                                  activeTrack->sessionId(),
6020                                  (activeTrack->mSyncStartEvent != 0) ?
6021                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
6022                            activeTrack->clearSyncStartEvent();
6023                        }
6024                    }
6025                }
6026
6027                if (framesOut == 0) {
6028                    break;
6029                }
6030            }
6031
6032            switch (overrun) {
6033            case OVERRUN_TRUE:
6034                // client isn't retrieving buffers fast enough
6035                if (!activeTrack->setOverflow()) {
6036                    nsecs_t now = systemTime();
6037                    // FIXME should lastWarning per track?
6038                    if ((now - lastWarning) > kWarningThrottleNs) {
6039                        ALOGW("RecordThread: buffer overflow");
6040                        lastWarning = now;
6041                    }
6042                }
6043                break;
6044            case OVERRUN_FALSE:
6045                activeTrack->clearOverflow();
6046                break;
6047            case OVERRUN_UNKNOWN:
6048                break;
6049            }
6050
6051        }
6052
6053unlock:
6054        // enable changes in effect chain
6055        unlockEffectChains(effectChains);
6056        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6057    }
6058
6059    standbyIfNotAlreadyInStandby();
6060
6061    {
6062        Mutex::Autolock _l(mLock);
6063        for (size_t i = 0; i < mTracks.size(); i++) {
6064            sp<RecordTrack> track = mTracks[i];
6065            track->invalidate();
6066        }
6067        mActiveTracks.clear();
6068        mActiveTracksGen++;
6069        mStartStopCond.broadcast();
6070    }
6071
6072    releaseWakeLock();
6073
6074    ALOGV("RecordThread %p exiting", this);
6075    return false;
6076}
6077
6078void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6079{
6080    if (!mStandby) {
6081        inputStandBy();
6082        mStandby = true;
6083    }
6084}
6085
6086void AudioFlinger::RecordThread::inputStandBy()
6087{
6088    // Idle the fast capture if it's currently running
6089    if (mFastCapture != 0) {
6090        FastCaptureStateQueue *sq = mFastCapture->sq();
6091        FastCaptureState *state = sq->begin();
6092        if (!(state->mCommand & FastCaptureState::IDLE)) {
6093            state->mCommand = FastCaptureState::COLD_IDLE;
6094            state->mColdFutexAddr = &mFastCaptureFutex;
6095            state->mColdGen++;
6096            mFastCaptureFutex = 0;
6097            sq->end();
6098            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6099            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6100#if 0
6101            if (kUseFastCapture == FastCapture_Dynamic) {
6102                // FIXME
6103            }
6104#endif
6105#ifdef AUDIO_WATCHDOG
6106            // FIXME
6107#endif
6108        } else {
6109            sq->end(false /*didModify*/);
6110        }
6111    }
6112    mInput->stream->common.standby(&mInput->stream->common);
6113}
6114
6115// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6116sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6117        const sp<AudioFlinger::Client>& client,
6118        uint32_t sampleRate,
6119        audio_format_t format,
6120        audio_channel_mask_t channelMask,
6121        size_t *pFrameCount,
6122        int sessionId,
6123        size_t *notificationFrames,
6124        int uid,
6125        IAudioFlinger::track_flags_t *flags,
6126        pid_t tid,
6127        status_t *status)
6128{
6129    size_t frameCount = *pFrameCount;
6130    sp<RecordTrack> track;
6131    status_t lStatus;
6132
6133    // client expresses a preference for FAST, but we get the final say
6134    if (*flags & IAudioFlinger::TRACK_FAST) {
6135      if (
6136            // we formerly checked for a callback handler (non-0 tid),
6137            // but that is no longer required for TRANSFER_OBTAIN mode
6138            //
6139            // frame count is not specified, or is exactly the pipe depth
6140            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6141            // PCM data
6142            audio_is_linear_pcm(format) &&
6143            // native format
6144            (format == mFormat) &&
6145            // native channel mask
6146            (channelMask == mChannelMask) &&
6147            // native hardware sample rate
6148            (sampleRate == mSampleRate) &&
6149            // record thread has an associated fast capture
6150            hasFastCapture() &&
6151            // there are sufficient fast track slots available
6152            mFastTrackAvail
6153        ) {
6154        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6155                frameCount, mFrameCount);
6156      } else {
6157        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6158                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6159                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6160                frameCount, mFrameCount, mPipeFramesP2,
6161                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6162                hasFastCapture(), tid, mFastTrackAvail);
6163        *flags &= ~IAudioFlinger::TRACK_FAST;
6164      }
6165    }
6166
6167    // compute track buffer size in frames, and suggest the notification frame count
6168    if (*flags & IAudioFlinger::TRACK_FAST) {
6169        // fast track: frame count is exactly the pipe depth
6170        frameCount = mPipeFramesP2;
6171        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6172        *notificationFrames = mFrameCount;
6173    } else {
6174        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6175        //                 or 20 ms if there is a fast capture
6176        // TODO This could be a roundupRatio inline, and const
6177        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6178                * sampleRate + mSampleRate - 1) / mSampleRate;
6179        // minimum number of notification periods is at least kMinNotifications,
6180        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6181        static const size_t kMinNotifications = 3;
6182        static const uint32_t kMinMs = 30;
6183        // TODO This could be a roundupRatio inline
6184        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6185        // TODO This could be a roundupRatio inline
6186        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6187                maxNotificationFrames;
6188        const size_t minFrameCount = maxNotificationFrames *
6189                max(kMinNotifications, minNotificationsByMs);
6190        frameCount = max(frameCount, minFrameCount);
6191        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6192            *notificationFrames = maxNotificationFrames;
6193        }
6194    }
6195    *pFrameCount = frameCount;
6196
6197    lStatus = initCheck();
6198    if (lStatus != NO_ERROR) {
6199        ALOGE("createRecordTrack_l() audio driver not initialized");
6200        goto Exit;
6201    }
6202
6203    { // scope for mLock
6204        Mutex::Autolock _l(mLock);
6205
6206        track = new RecordTrack(this, client, sampleRate,
6207                      format, channelMask, frameCount, NULL, sessionId, uid,
6208                      *flags, TrackBase::TYPE_DEFAULT);
6209
6210        lStatus = track->initCheck();
6211        if (lStatus != NO_ERROR) {
6212            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6213            // track must be cleared from the caller as the caller has the AF lock
6214            goto Exit;
6215        }
6216        mTracks.add(track);
6217
6218        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6219        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6220                        mAudioFlinger->btNrecIsOff();
6221        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6222        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6223
6224        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6225            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6226            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6227            // so ask activity manager to do this on our behalf
6228            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6229        }
6230    }
6231
6232    lStatus = NO_ERROR;
6233
6234Exit:
6235    *status = lStatus;
6236    return track;
6237}
6238
6239status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6240                                           AudioSystem::sync_event_t event,
6241                                           int triggerSession)
6242{
6243    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6244    sp<ThreadBase> strongMe = this;
6245    status_t status = NO_ERROR;
6246
6247    if (event == AudioSystem::SYNC_EVENT_NONE) {
6248        recordTrack->clearSyncStartEvent();
6249    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6250        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6251                                       triggerSession,
6252                                       recordTrack->sessionId(),
6253                                       syncStartEventCallback,
6254                                       recordTrack);
6255        // Sync event can be cancelled by the trigger session if the track is not in a
6256        // compatible state in which case we start record immediately
6257        if (recordTrack->mSyncStartEvent->isCancelled()) {
6258            recordTrack->clearSyncStartEvent();
6259        } else {
6260            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6261            recordTrack->mFramesToDrop = -
6262                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6263        }
6264    }
6265
6266    {
6267        // This section is a rendezvous between binder thread executing start() and RecordThread
6268        AutoMutex lock(mLock);
6269        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6270            if (recordTrack->mState == TrackBase::PAUSING) {
6271                ALOGV("active record track PAUSING -> ACTIVE");
6272                recordTrack->mState = TrackBase::ACTIVE;
6273            } else {
6274                ALOGV("active record track state %d", recordTrack->mState);
6275            }
6276            return status;
6277        }
6278
6279        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6280        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6281        //      or using a separate command thread
6282        recordTrack->mState = TrackBase::STARTING_1;
6283        mActiveTracks.add(recordTrack);
6284        mActiveTracksGen++;
6285        status_t status = NO_ERROR;
6286        if (recordTrack->isExternalTrack()) {
6287            mLock.unlock();
6288            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6289            mLock.lock();
6290            // FIXME should verify that recordTrack is still in mActiveTracks
6291            if (status != NO_ERROR) {
6292                mActiveTracks.remove(recordTrack);
6293                mActiveTracksGen++;
6294                recordTrack->clearSyncStartEvent();
6295                ALOGV("RecordThread::start error %d", status);
6296                return status;
6297            }
6298        }
6299        // Catch up with current buffer indices if thread is already running.
6300        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6301        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6302        // see previously buffered data before it called start(), but with greater risk of overrun.
6303
6304        recordTrack->mResamplerBufferProvider->reset();
6305        // clear any converter state as new data will be discontinuous
6306        recordTrack->mRecordBufferConverter->reset();
6307        recordTrack->mState = TrackBase::STARTING_2;
6308        // signal thread to start
6309        mWaitWorkCV.broadcast();
6310        if (mActiveTracks.indexOf(recordTrack) < 0) {
6311            ALOGV("Record failed to start");
6312            status = BAD_VALUE;
6313            goto startError;
6314        }
6315        return status;
6316    }
6317
6318startError:
6319    if (recordTrack->isExternalTrack()) {
6320        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6321    }
6322    recordTrack->clearSyncStartEvent();
6323    // FIXME I wonder why we do not reset the state here?
6324    return status;
6325}
6326
6327void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6328{
6329    sp<SyncEvent> strongEvent = event.promote();
6330
6331    if (strongEvent != 0) {
6332        sp<RefBase> ptr = strongEvent->cookie().promote();
6333        if (ptr != 0) {
6334            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6335            recordTrack->handleSyncStartEvent(strongEvent);
6336        }
6337    }
6338}
6339
6340bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6341    ALOGV("RecordThread::stop");
6342    AutoMutex _l(mLock);
6343    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6344        return false;
6345    }
6346    // note that threadLoop may still be processing the track at this point [without lock]
6347    recordTrack->mState = TrackBase::PAUSING;
6348    // do not wait for mStartStopCond if exiting
6349    if (exitPending()) {
6350        return true;
6351    }
6352    // FIXME incorrect usage of wait: no explicit predicate or loop
6353    mStartStopCond.wait(mLock);
6354    // if we have been restarted, recordTrack is in mActiveTracks here
6355    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6356        ALOGV("Record stopped OK");
6357        return true;
6358    }
6359    return false;
6360}
6361
6362bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6363{
6364    return false;
6365}
6366
6367status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6368{
6369#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6370    if (!isValidSyncEvent(event)) {
6371        return BAD_VALUE;
6372    }
6373
6374    int eventSession = event->triggerSession();
6375    status_t ret = NAME_NOT_FOUND;
6376
6377    Mutex::Autolock _l(mLock);
6378
6379    for (size_t i = 0; i < mTracks.size(); i++) {
6380        sp<RecordTrack> track = mTracks[i];
6381        if (eventSession == track->sessionId()) {
6382            (void) track->setSyncEvent(event);
6383            ret = NO_ERROR;
6384        }
6385    }
6386    return ret;
6387#else
6388    return BAD_VALUE;
6389#endif
6390}
6391
6392// destroyTrack_l() must be called with ThreadBase::mLock held
6393void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6394{
6395    track->terminate();
6396    track->mState = TrackBase::STOPPED;
6397    // active tracks are removed by threadLoop()
6398    if (mActiveTracks.indexOf(track) < 0) {
6399        removeTrack_l(track);
6400    }
6401}
6402
6403void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6404{
6405    mTracks.remove(track);
6406    // need anything related to effects here?
6407    if (track->isFastTrack()) {
6408        ALOG_ASSERT(!mFastTrackAvail);
6409        mFastTrackAvail = true;
6410    }
6411}
6412
6413void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6414{
6415    dumpInternals(fd, args);
6416    dumpTracks(fd, args);
6417    dumpEffectChains(fd, args);
6418}
6419
6420void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6421{
6422    dprintf(fd, "\nInput thread %p:\n", this);
6423
6424    dumpBase(fd, args);
6425
6426    if (mActiveTracks.size() == 0) {
6427        dprintf(fd, "  No active record clients\n");
6428    }
6429    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6430    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6431
6432    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6433    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6434    // This is a large object so we place it on the heap.
6435    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6436    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6437    copy->dump(fd);
6438    delete copy;
6439}
6440
6441void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6442{
6443    const size_t SIZE = 256;
6444    char buffer[SIZE];
6445    String8 result;
6446
6447    size_t numtracks = mTracks.size();
6448    size_t numactive = mActiveTracks.size();
6449    size_t numactiveseen = 0;
6450    dprintf(fd, "  %d Tracks", numtracks);
6451    if (numtracks) {
6452        dprintf(fd, " of which %d are active\n", numactive);
6453        RecordTrack::appendDumpHeader(result);
6454        for (size_t i = 0; i < numtracks ; ++i) {
6455            sp<RecordTrack> track = mTracks[i];
6456            if (track != 0) {
6457                bool active = mActiveTracks.indexOf(track) >= 0;
6458                if (active) {
6459                    numactiveseen++;
6460                }
6461                track->dump(buffer, SIZE, active);
6462                result.append(buffer);
6463            }
6464        }
6465    } else {
6466        dprintf(fd, "\n");
6467    }
6468
6469    if (numactiveseen != numactive) {
6470        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6471                " not in the track list\n");
6472        result.append(buffer);
6473        RecordTrack::appendDumpHeader(result);
6474        for (size_t i = 0; i < numactive; ++i) {
6475            sp<RecordTrack> track = mActiveTracks[i];
6476            if (mTracks.indexOf(track) < 0) {
6477                track->dump(buffer, SIZE, true);
6478                result.append(buffer);
6479            }
6480        }
6481
6482    }
6483    write(fd, result.string(), result.size());
6484}
6485
6486
6487void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6488{
6489    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6490    RecordThread *recordThread = (RecordThread *) threadBase.get();
6491    mRsmpInFront = recordThread->mRsmpInRear;
6492    mRsmpInUnrel = 0;
6493}
6494
6495void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6496        size_t *framesAvailable, bool *hasOverrun)
6497{
6498    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6499    RecordThread *recordThread = (RecordThread *) threadBase.get();
6500    const int32_t rear = recordThread->mRsmpInRear;
6501    const int32_t front = mRsmpInFront;
6502    const ssize_t filled = rear - front;
6503
6504    size_t framesIn;
6505    bool overrun = false;
6506    if (filled < 0) {
6507        // should not happen, but treat like a massive overrun and re-sync
6508        framesIn = 0;
6509        mRsmpInFront = rear;
6510        overrun = true;
6511    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6512        framesIn = (size_t) filled;
6513    } else {
6514        // client is not keeping up with server, but give it latest data
6515        framesIn = recordThread->mRsmpInFrames;
6516        mRsmpInFront = /* front = */ rear - framesIn;
6517        overrun = true;
6518    }
6519    if (framesAvailable != NULL) {
6520        *framesAvailable = framesIn;
6521    }
6522    if (hasOverrun != NULL) {
6523        *hasOverrun = overrun;
6524    }
6525}
6526
6527// AudioBufferProvider interface
6528status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6529        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6530{
6531    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6532    if (threadBase == 0) {
6533        buffer->frameCount = 0;
6534        buffer->raw = NULL;
6535        return NOT_ENOUGH_DATA;
6536    }
6537    RecordThread *recordThread = (RecordThread *) threadBase.get();
6538    int32_t rear = recordThread->mRsmpInRear;
6539    int32_t front = mRsmpInFront;
6540    ssize_t filled = rear - front;
6541    // FIXME should not be P2 (don't want to increase latency)
6542    // FIXME if client not keeping up, discard
6543    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6544    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6545    front &= recordThread->mRsmpInFramesP2 - 1;
6546    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6547    if (part1 > (size_t) filled) {
6548        part1 = filled;
6549    }
6550    size_t ask = buffer->frameCount;
6551    ALOG_ASSERT(ask > 0);
6552    if (part1 > ask) {
6553        part1 = ask;
6554    }
6555    if (part1 == 0) {
6556        // out of data is fine since the resampler will return a short-count.
6557        buffer->raw = NULL;
6558        buffer->frameCount = 0;
6559        mRsmpInUnrel = 0;
6560        return NOT_ENOUGH_DATA;
6561    }
6562
6563    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6564    buffer->frameCount = part1;
6565    mRsmpInUnrel = part1;
6566    return NO_ERROR;
6567}
6568
6569// AudioBufferProvider interface
6570void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6571        AudioBufferProvider::Buffer* buffer)
6572{
6573    size_t stepCount = buffer->frameCount;
6574    if (stepCount == 0) {
6575        return;
6576    }
6577    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6578    mRsmpInUnrel -= stepCount;
6579    mRsmpInFront += stepCount;
6580    buffer->raw = NULL;
6581    buffer->frameCount = 0;
6582}
6583
6584AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6585        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6586        uint32_t srcSampleRate,
6587        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6588        uint32_t dstSampleRate) :
6589            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6590            // mSrcFormat
6591            // mSrcSampleRate
6592            // mDstChannelMask
6593            // mDstFormat
6594            // mDstSampleRate
6595            // mSrcChannelCount
6596            // mDstChannelCount
6597            // mDstFrameSize
6598            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6599            mResampler(NULL),
6600            mIsLegacyDownmix(false),
6601            mIsLegacyUpmix(false),
6602            mRequiresFloat(false),
6603            mInputConverterProvider(NULL)
6604{
6605    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6606            dstChannelMask, dstFormat, dstSampleRate);
6607}
6608
6609AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6610    free(mBuf);
6611    delete mResampler;
6612    delete mInputConverterProvider;
6613}
6614
6615size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6616        AudioBufferProvider *provider, size_t frames)
6617{
6618    if (mInputConverterProvider != NULL) {
6619        mInputConverterProvider->setBufferProvider(provider);
6620        provider = mInputConverterProvider;
6621    }
6622
6623    if (mResampler == NULL) {
6624        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6625                mSrcSampleRate, mSrcFormat, mDstFormat);
6626
6627        AudioBufferProvider::Buffer buffer;
6628        for (size_t i = frames; i > 0; ) {
6629            buffer.frameCount = i;
6630            status_t status = provider->getNextBuffer(&buffer, 0);
6631            if (status != OK || buffer.frameCount == 0) {
6632                frames -= i; // cannot fill request.
6633                break;
6634            }
6635            // format convert to destination buffer
6636            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6637
6638            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6639            i -= buffer.frameCount;
6640            provider->releaseBuffer(&buffer);
6641        }
6642    } else {
6643         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6644                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6645
6646         // reallocate buffer if needed
6647         if (mBufFrameSize != 0 && mBufFrames < frames) {
6648             free(mBuf);
6649             mBufFrames = frames;
6650             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6651         }
6652        // resampler accumulates, but we only have one source track
6653        memset(mBuf, 0, frames * mBufFrameSize);
6654        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6655        // format convert to destination buffer
6656        convertResampler(dst, mBuf, frames);
6657    }
6658    return frames;
6659}
6660
6661status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6662        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6663        uint32_t srcSampleRate,
6664        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6665        uint32_t dstSampleRate)
6666{
6667    // quick evaluation if there is any change.
6668    if (mSrcFormat == srcFormat
6669            && mSrcChannelMask == srcChannelMask
6670            && mSrcSampleRate == srcSampleRate
6671            && mDstFormat == dstFormat
6672            && mDstChannelMask == dstChannelMask
6673            && mDstSampleRate == dstSampleRate) {
6674        return NO_ERROR;
6675    }
6676
6677    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6678            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6679            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6680    const bool valid =
6681            audio_is_input_channel(srcChannelMask)
6682            && audio_is_input_channel(dstChannelMask)
6683            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6684            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6685            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6686            ; // no upsampling checks for now
6687    if (!valid) {
6688        return BAD_VALUE;
6689    }
6690
6691    mSrcFormat = srcFormat;
6692    mSrcChannelMask = srcChannelMask;
6693    mSrcSampleRate = srcSampleRate;
6694    mDstFormat = dstFormat;
6695    mDstChannelMask = dstChannelMask;
6696    mDstSampleRate = dstSampleRate;
6697
6698    // compute derived parameters
6699    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6700    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6701    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6702
6703    // do we need to resample?
6704    delete mResampler;
6705    mResampler = NULL;
6706    if (mSrcSampleRate != mDstSampleRate) {
6707        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6708                mSrcChannelCount, mDstSampleRate);
6709        mResampler->setSampleRate(mSrcSampleRate);
6710        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6711    }
6712
6713    // are we running legacy channel conversion modes?
6714    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6715                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6716                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6717    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6718                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6719                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6720
6721    // do we need to process in float?
6722    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6723
6724    // do we need a staging buffer to convert for destination (we can still optimize this)?
6725    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6726    if (mResampler != NULL) {
6727        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6728                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6729    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6730        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6731    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6732        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6733    } else {
6734        mBufFrameSize = 0;
6735    }
6736    mBufFrames = 0; // force the buffer to be resized.
6737
6738    // do we need an input converter buffer provider to give us float?
6739    delete mInputConverterProvider;
6740    mInputConverterProvider = NULL;
6741    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6742        mInputConverterProvider = new ReformatBufferProvider(
6743                audio_channel_count_from_in_mask(mSrcChannelMask),
6744                mSrcFormat,
6745                AUDIO_FORMAT_PCM_FLOAT,
6746                256 /* provider buffer frame count */);
6747    }
6748
6749    // do we need a remixer to do channel mask conversion
6750    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6751        (void) memcpy_by_index_array_initialization_from_channel_mask(
6752                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6753    }
6754    return NO_ERROR;
6755}
6756
6757void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6758        void *dst, const void *src, size_t frames)
6759{
6760    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6761    if (mBufFrameSize != 0 && mBufFrames < frames) {
6762        free(mBuf);
6763        mBufFrames = frames;
6764        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6765    }
6766    // do we need to do legacy upmix and downmix?
6767    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6768        void *dstBuf = mBuf != NULL ? mBuf : dst;
6769        if (mIsLegacyUpmix) {
6770            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6771                    (const float *)src, frames);
6772        } else /*mIsLegacyDownmix */ {
6773            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6774                    (const float *)src, frames);
6775        }
6776        if (mBuf != NULL) {
6777            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6778                    frames * mDstChannelCount);
6779        }
6780        return;
6781    }
6782    // do we need to do channel mask conversion?
6783    if (mSrcChannelMask != mDstChannelMask) {
6784        void *dstBuf = mBuf != NULL ? mBuf : dst;
6785        memcpy_by_index_array(dstBuf, mDstChannelCount,
6786                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6787        if (dstBuf == dst) {
6788            return; // format is the same
6789        }
6790    }
6791    // convert to destination buffer
6792    const void *convertBuf = mBuf != NULL ? mBuf : src;
6793    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6794            frames * mDstChannelCount);
6795}
6796
6797void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6798        void *dst, /*not-a-const*/ void *src, size_t frames)
6799{
6800    // src buffer format is ALWAYS float when entering this routine
6801    if (mIsLegacyUpmix) {
6802        ; // mono to stereo already handled by resampler
6803    } else if (mIsLegacyDownmix
6804            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6805        // the resampler outputs stereo for mono input channel (a feature?)
6806        // must convert to mono
6807        downmix_to_mono_float_from_stereo_float((float *)src,
6808                (const float *)src, frames);
6809    } else if (mSrcChannelMask != mDstChannelMask) {
6810        // convert to mono channel again for channel mask conversion (could be skipped
6811        // with further optimization).
6812        if (mSrcChannelCount == 1) {
6813            downmix_to_mono_float_from_stereo_float((float *)src,
6814                (const float *)src, frames);
6815        }
6816        // convert to destination format (in place, OK as float is larger than other types)
6817        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6818            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6819                    frames * mSrcChannelCount);
6820        }
6821        // channel convert and save to dst
6822        memcpy_by_index_array(dst, mDstChannelCount,
6823                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6824        return;
6825    }
6826    // convert to destination format and save to dst
6827    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6828            frames * mDstChannelCount);
6829}
6830
6831bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6832                                                        status_t& status)
6833{
6834    bool reconfig = false;
6835
6836    status = NO_ERROR;
6837
6838    audio_format_t reqFormat = mFormat;
6839    uint32_t samplingRate = mSampleRate;
6840    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6841    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6842
6843    AudioParameter param = AudioParameter(keyValuePair);
6844    int value;
6845    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6846    //      channel count change can be requested. Do we mandate the first client defines the
6847    //      HAL sampling rate and channel count or do we allow changes on the fly?
6848    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6849        samplingRate = value;
6850        reconfig = true;
6851    }
6852    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6853        if (!audio_is_linear_pcm((audio_format_t) value)) {
6854            status = BAD_VALUE;
6855        } else {
6856            reqFormat = (audio_format_t) value;
6857            reconfig = true;
6858        }
6859    }
6860    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6861        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6862        if (!audio_is_input_channel(mask) ||
6863                audio_channel_count_from_in_mask(mask) > FCC_8) {
6864            status = BAD_VALUE;
6865        } else {
6866            channelMask = mask;
6867            reconfig = true;
6868        }
6869    }
6870    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6871        // do not accept frame count changes if tracks are open as the track buffer
6872        // size depends on frame count and correct behavior would not be guaranteed
6873        // if frame count is changed after track creation
6874        if (mActiveTracks.size() > 0) {
6875            status = INVALID_OPERATION;
6876        } else {
6877            reconfig = true;
6878        }
6879    }
6880    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6881        // forward device change to effects that have requested to be
6882        // aware of attached audio device.
6883        for (size_t i = 0; i < mEffectChains.size(); i++) {
6884            mEffectChains[i]->setDevice_l(value);
6885        }
6886
6887        // store input device and output device but do not forward output device to audio HAL.
6888        // Note that status is ignored by the caller for output device
6889        // (see AudioFlinger::setParameters()
6890        if (audio_is_output_devices(value)) {
6891            mOutDevice = value;
6892            status = BAD_VALUE;
6893        } else {
6894            mInDevice = value;
6895            if (value != AUDIO_DEVICE_NONE) {
6896                mPrevInDevice = value;
6897            }
6898            // disable AEC and NS if the device is a BT SCO headset supporting those
6899            // pre processings
6900            if (mTracks.size() > 0) {
6901                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6902                                    mAudioFlinger->btNrecIsOff();
6903                for (size_t i = 0; i < mTracks.size(); i++) {
6904                    sp<RecordTrack> track = mTracks[i];
6905                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6906                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6907                }
6908            }
6909        }
6910    }
6911    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6912            mAudioSource != (audio_source_t)value) {
6913        // forward device change to effects that have requested to be
6914        // aware of attached audio device.
6915        for (size_t i = 0; i < mEffectChains.size(); i++) {
6916            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6917        }
6918        mAudioSource = (audio_source_t)value;
6919    }
6920
6921    if (status == NO_ERROR) {
6922        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6923                keyValuePair.string());
6924        if (status == INVALID_OPERATION) {
6925            inputStandBy();
6926            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6927                    keyValuePair.string());
6928        }
6929        if (reconfig) {
6930            if (status == BAD_VALUE &&
6931                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6932                audio_is_linear_pcm(reqFormat) &&
6933                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6934                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6935                audio_channel_count_from_in_mask(
6936                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
6937                status = NO_ERROR;
6938            }
6939            if (status == NO_ERROR) {
6940                readInputParameters_l();
6941                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
6942            }
6943        }
6944    }
6945
6946    return reconfig;
6947}
6948
6949String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6950{
6951    Mutex::Autolock _l(mLock);
6952    if (initCheck() != NO_ERROR) {
6953        return String8();
6954    }
6955
6956    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6957    const String8 out_s8(s);
6958    free(s);
6959    return out_s8;
6960}
6961
6962void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
6963    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
6964
6965    desc->mIoHandle = mId;
6966
6967    switch (event) {
6968    case AUDIO_INPUT_OPENED:
6969    case AUDIO_INPUT_CONFIG_CHANGED:
6970        desc->mPatch = mPatch;
6971        desc->mChannelMask = mChannelMask;
6972        desc->mSamplingRate = mSampleRate;
6973        desc->mFormat = mFormat;
6974        desc->mFrameCount = mFrameCount;
6975        desc->mLatency = 0;
6976        break;
6977
6978    case AUDIO_INPUT_CLOSED:
6979    default:
6980        break;
6981    }
6982    mAudioFlinger->ioConfigChanged(event, desc, pid);
6983}
6984
6985void AudioFlinger::RecordThread::readInputParameters_l()
6986{
6987    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6988    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6989    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6990    if (mChannelCount > FCC_8) {
6991        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
6992    }
6993    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6994    mFormat = mHALFormat;
6995    if (!audio_is_linear_pcm(mFormat)) {
6996        ALOGE("HAL format %#x is not linear pcm", mFormat);
6997    }
6998    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6999    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7000    mFrameCount = mBufferSize / mFrameSize;
7001    // This is the formula for calculating the temporary buffer size.
7002    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7003    // 1 full output buffer, regardless of the alignment of the available input.
7004    // The value is somewhat arbitrary, and could probably be even larger.
7005    // A larger value should allow more old data to be read after a track calls start(),
7006    // without increasing latency.
7007    //
7008    // Note this is independent of the maximum downsampling ratio permitted for capture.
7009    mRsmpInFrames = mFrameCount * 7;
7010    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7011    free(mRsmpInBuffer);
7012    mRsmpInBuffer = NULL;
7013
7014    // TODO optimize audio capture buffer sizes ...
7015    // Here we calculate the size of the sliding buffer used as a source
7016    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7017    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7018    // be better to have it derived from the pipe depth in the long term.
7019    // The current value is higher than necessary.  However it should not add to latency.
7020
7021    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7022    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7023    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7024    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7025
7026    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7027    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7028}
7029
7030uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7031{
7032    Mutex::Autolock _l(mLock);
7033    if (initCheck() != NO_ERROR) {
7034        return 0;
7035    }
7036
7037    return mInput->stream->get_input_frames_lost(mInput->stream);
7038}
7039
7040uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
7041{
7042    Mutex::Autolock _l(mLock);
7043    uint32_t result = 0;
7044    if (getEffectChain_l(sessionId) != 0) {
7045        result = EFFECT_SESSION;
7046    }
7047
7048    for (size_t i = 0; i < mTracks.size(); ++i) {
7049        if (sessionId == mTracks[i]->sessionId()) {
7050            result |= TRACK_SESSION;
7051            break;
7052        }
7053    }
7054
7055    return result;
7056}
7057
7058KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
7059{
7060    KeyedVector<int, bool> ids;
7061    Mutex::Autolock _l(mLock);
7062    for (size_t j = 0; j < mTracks.size(); ++j) {
7063        sp<RecordThread::RecordTrack> track = mTracks[j];
7064        int sessionId = track->sessionId();
7065        if (ids.indexOfKey(sessionId) < 0) {
7066            ids.add(sessionId, true);
7067        }
7068    }
7069    return ids;
7070}
7071
7072AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7073{
7074    Mutex::Autolock _l(mLock);
7075    AudioStreamIn *input = mInput;
7076    mInput = NULL;
7077    return input;
7078}
7079
7080// this method must always be called either with ThreadBase mLock held or inside the thread loop
7081audio_stream_t* AudioFlinger::RecordThread::stream() const
7082{
7083    if (mInput == NULL) {
7084        return NULL;
7085    }
7086    return &mInput->stream->common;
7087}
7088
7089status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7090{
7091    // only one chain per input thread
7092    if (mEffectChains.size() != 0) {
7093        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7094        return INVALID_OPERATION;
7095    }
7096    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7097    chain->setThread(this);
7098    chain->setInBuffer(NULL);
7099    chain->setOutBuffer(NULL);
7100
7101    checkSuspendOnAddEffectChain_l(chain);
7102
7103    // make sure enabled pre processing effects state is communicated to the HAL as we
7104    // just moved them to a new input stream.
7105    chain->syncHalEffectsState();
7106
7107    mEffectChains.add(chain);
7108
7109    return NO_ERROR;
7110}
7111
7112size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7113{
7114    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7115    ALOGW_IF(mEffectChains.size() != 1,
7116            "removeEffectChain_l() %p invalid chain size %d on thread %p",
7117            chain.get(), mEffectChains.size(), this);
7118    if (mEffectChains.size() == 1) {
7119        mEffectChains.removeAt(0);
7120    }
7121    return 0;
7122}
7123
7124status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7125                                                          audio_patch_handle_t *handle)
7126{
7127    status_t status = NO_ERROR;
7128
7129    // store new device and send to effects
7130    mInDevice = patch->sources[0].ext.device.type;
7131    mPatch = *patch;
7132    for (size_t i = 0; i < mEffectChains.size(); i++) {
7133        mEffectChains[i]->setDevice_l(mInDevice);
7134    }
7135
7136    // disable AEC and NS if the device is a BT SCO headset supporting those
7137    // pre processings
7138    if (mTracks.size() > 0) {
7139        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7140                            mAudioFlinger->btNrecIsOff();
7141        for (size_t i = 0; i < mTracks.size(); i++) {
7142            sp<RecordTrack> track = mTracks[i];
7143            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7144            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7145        }
7146    }
7147
7148    // store new source and send to effects
7149    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7150        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7151        for (size_t i = 0; i < mEffectChains.size(); i++) {
7152            mEffectChains[i]->setAudioSource_l(mAudioSource);
7153        }
7154    }
7155
7156    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7157        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7158        status = hwDevice->create_audio_patch(hwDevice,
7159                                               patch->num_sources,
7160                                               patch->sources,
7161                                               patch->num_sinks,
7162                                               patch->sinks,
7163                                               handle);
7164    } else {
7165        char *address;
7166        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7167            address = audio_device_address_to_parameter(
7168                                                patch->sources[0].ext.device.type,
7169                                                patch->sources[0].ext.device.address);
7170        } else {
7171            address = (char *)calloc(1, 1);
7172        }
7173        AudioParameter param = AudioParameter(String8(address));
7174        free(address);
7175        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7176                     (int)patch->sources[0].ext.device.type);
7177        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7178                                         (int)patch->sinks[0].ext.mix.usecase.source);
7179        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7180                param.toString().string());
7181        *handle = AUDIO_PATCH_HANDLE_NONE;
7182    }
7183
7184    if (mInDevice != mPrevInDevice) {
7185        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7186        mPrevInDevice = mInDevice;
7187    }
7188
7189    return status;
7190}
7191
7192status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7193{
7194    status_t status = NO_ERROR;
7195
7196    mInDevice = AUDIO_DEVICE_NONE;
7197
7198    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7199        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7200        status = hwDevice->release_audio_patch(hwDevice, handle);
7201    } else {
7202        AudioParameter param;
7203        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7204        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7205                param.toString().string());
7206    }
7207    return status;
7208}
7209
7210void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7211{
7212    Mutex::Autolock _l(mLock);
7213    mTracks.add(record);
7214}
7215
7216void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7217{
7218    Mutex::Autolock _l(mLock);
7219    destroyTrack_l(record);
7220}
7221
7222void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7223{
7224    ThreadBase::getAudioPortConfig(config);
7225    config->role = AUDIO_PORT_ROLE_SINK;
7226    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7227    config->ext.mix.usecase.source = mAudioSource;
7228}
7229
7230} // namespace android
7231