Threads.cpp revision 3f273d10817ddb2f792ae043de692efcdf1988ae
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/primitives.h>
40#include <audio_utils/format.h>
41#include <audio_utils/minifloat.h>
42
43// NBAIO implementations
44#include <media/nbaio/AudioStreamInSource.h>
45#include <media/nbaio/AudioStreamOutSink.h>
46#include <media/nbaio/MonoPipe.h>
47#include <media/nbaio/MonoPipeReader.h>
48#include <media/nbaio/Pipe.h>
49#include <media/nbaio/PipeReader.h>
50#include <media/nbaio/SourceAudioBufferProvider.h>
51#include <mediautils/BatteryNotifier.h>
52
53#include <powermanager/PowerManager.h>
54
55#include <common_time/cc_helper.h>
56#include <common_time/local_clock.h>
57
58#include "AudioFlinger.h"
59#include "AudioMixer.h"
60#include "BufferProviders.h"
61#include "FastMixer.h"
62#include "FastCapture.h"
63#include "ServiceUtilities.h"
64#include "mediautils/SchedulingPolicyService.h"
65
66#ifdef ADD_BATTERY_DATA
67#include <media/IMediaPlayerService.h>
68#include <media/IMediaDeathNotifier.h>
69#endif
70
71#ifdef DEBUG_CPU_USAGE
72#include <cpustats/CentralTendencyStatistics.h>
73#include <cpustats/ThreadCpuUsage.h>
74#endif
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113
114// don't warn about blocked writes or record buffer overflows more often than this
115static const nsecs_t kWarningThrottleNs = seconds(5);
116
117// RecordThread loop sleep time upon application overrun or audio HAL read error
118static const int kRecordThreadSleepUs = 5000;
119
120// maximum time to wait in sendConfigEvent_l() for a status to be received
121static const nsecs_t kConfigEventTimeoutNs = seconds(2);
122
123// minimum sleep time for the mixer thread loop when tracks are active but in underrun
124static const uint32_t kMinThreadSleepTimeUs = 5000;
125// maximum divider applied to the active sleep time in the mixer thread loop
126static const uint32_t kMaxThreadSleepTimeShift = 2;
127
128// minimum normal sink buffer size, expressed in milliseconds rather than frames
129// FIXME This should be based on experimentally observed scheduling jitter
130static const uint32_t kMinNormalSinkBufferSizeMs = 20;
131// maximum normal sink buffer size
132static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
133
134// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
135// FIXME This should be based on experimentally observed scheduling jitter
136static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
137
138// Offloaded output thread standby delay: allows track transition without going to standby
139static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
140
141// Whether to use fast mixer
142static const enum {
143    FastMixer_Never,    // never initialize or use: for debugging only
144    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
145                        // normal mixer multiplier is 1
146    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
147                        // multiplier is calculated based on min & max normal mixer buffer size
148    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
149                        // multiplier is calculated based on min & max normal mixer buffer size
150    // FIXME for FastMixer_Dynamic:
151    //  Supporting this option will require fixing HALs that can't handle large writes.
152    //  For example, one HAL implementation returns an error from a large write,
153    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
154    //  We could either fix the HAL implementations, or provide a wrapper that breaks
155    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
156} kUseFastMixer = FastMixer_Static;
157
158// Whether to use fast capture
159static const enum {
160    FastCapture_Never,  // never initialize or use: for debugging only
161    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
162    FastCapture_Static, // initialize if needed, then use all the time if initialized
163} kUseFastCapture = FastCapture_Static;
164
165// Priorities for requestPriority
166static const int kPriorityAudioApp = 2;
167static const int kPriorityFastMixer = 3;
168static const int kPriorityFastCapture = 3;
169
170// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
171// for the track.  The client then sub-divides this into smaller buffers for its use.
172// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
173// So for now we just assume that client is double-buffered for fast tracks.
174// FIXME It would be better for client to tell AudioFlinger the value of N,
175// so AudioFlinger could allocate the right amount of memory.
176// See the client's minBufCount and mNotificationFramesAct calculations for details.
177
178// This is the default value, if not specified by property.
179static const int kFastTrackMultiplier = 2;
180
181// The minimum and maximum allowed values
182static const int kFastTrackMultiplierMin = 1;
183static const int kFastTrackMultiplierMax = 2;
184
185// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
186static int sFastTrackMultiplier = kFastTrackMultiplier;
187
188// See Thread::readOnlyHeap().
189// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
190// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
191// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
192static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
193
194// ----------------------------------------------------------------------------
195
196static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
197
198static void sFastTrackMultiplierInit()
199{
200    char value[PROPERTY_VALUE_MAX];
201    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
202        char *endptr;
203        unsigned long ul = strtoul(value, &endptr, 0);
204        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
205            sFastTrackMultiplier = (int) ul;
206        }
207    }
208}
209
210// ----------------------------------------------------------------------------
211
212#ifdef ADD_BATTERY_DATA
213// To collect the amplifier usage
214static void addBatteryData(uint32_t params) {
215    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
216    if (service == NULL) {
217        // it already logged
218        return;
219    }
220
221    service->addBatteryData(params);
222}
223#endif
224
225
226// ----------------------------------------------------------------------------
227//      CPU Stats
228// ----------------------------------------------------------------------------
229
230class CpuStats {
231public:
232    CpuStats();
233    void sample(const String8 &title);
234#ifdef DEBUG_CPU_USAGE
235private:
236    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
237    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
238
239    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
240
241    int mCpuNum;                        // thread's current CPU number
242    int mCpukHz;                        // frequency of thread's current CPU in kHz
243#endif
244};
245
246CpuStats::CpuStats()
247#ifdef DEBUG_CPU_USAGE
248    : mCpuNum(-1), mCpukHz(-1)
249#endif
250{
251}
252
253void CpuStats::sample(const String8 &title
254#ifndef DEBUG_CPU_USAGE
255                __unused
256#endif
257        ) {
258#ifdef DEBUG_CPU_USAGE
259    // get current thread's delta CPU time in wall clock ns
260    double wcNs;
261    bool valid = mCpuUsage.sampleAndEnable(wcNs);
262
263    // record sample for wall clock statistics
264    if (valid) {
265        mWcStats.sample(wcNs);
266    }
267
268    // get the current CPU number
269    int cpuNum = sched_getcpu();
270
271    // get the current CPU frequency in kHz
272    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
273
274    // check if either CPU number or frequency changed
275    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
276        mCpuNum = cpuNum;
277        mCpukHz = cpukHz;
278        // ignore sample for purposes of cycles
279        valid = false;
280    }
281
282    // if no change in CPU number or frequency, then record sample for cycle statistics
283    if (valid && mCpukHz > 0) {
284        double cycles = wcNs * cpukHz * 0.000001;
285        mHzStats.sample(cycles);
286    }
287
288    unsigned n = mWcStats.n();
289    // mCpuUsage.elapsed() is expensive, so don't call it every loop
290    if ((n & 127) == 1) {
291        long long elapsed = mCpuUsage.elapsed();
292        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
293            double perLoop = elapsed / (double) n;
294            double perLoop100 = perLoop * 0.01;
295            double perLoop1k = perLoop * 0.001;
296            double mean = mWcStats.mean();
297            double stddev = mWcStats.stddev();
298            double minimum = mWcStats.minimum();
299            double maximum = mWcStats.maximum();
300            double meanCycles = mHzStats.mean();
301            double stddevCycles = mHzStats.stddev();
302            double minCycles = mHzStats.minimum();
303            double maxCycles = mHzStats.maximum();
304            mCpuUsage.resetElapsed();
305            mWcStats.reset();
306            mHzStats.reset();
307            ALOGD("CPU usage for %s over past %.1f secs\n"
308                "  (%u mixer loops at %.1f mean ms per loop):\n"
309                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
310                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
311                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
312                    title.string(),
313                    elapsed * .000000001, n, perLoop * .000001,
314                    mean * .001,
315                    stddev * .001,
316                    minimum * .001,
317                    maximum * .001,
318                    mean / perLoop100,
319                    stddev / perLoop100,
320                    minimum / perLoop100,
321                    maximum / perLoop100,
322                    meanCycles / perLoop1k,
323                    stddevCycles / perLoop1k,
324                    minCycles / perLoop1k,
325                    maxCycles / perLoop1k);
326
327        }
328    }
329#endif
330};
331
332// ----------------------------------------------------------------------------
333//      ThreadBase
334// ----------------------------------------------------------------------------
335
336// static
337const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
338{
339    switch (type) {
340    case MIXER:
341        return "MIXER";
342    case DIRECT:
343        return "DIRECT";
344    case DUPLICATING:
345        return "DUPLICATING";
346    case RECORD:
347        return "RECORD";
348    case OFFLOAD:
349        return "OFFLOAD";
350    default:
351        return "unknown";
352    }
353}
354
355String8 devicesToString(audio_devices_t devices)
356{
357    static const struct mapping {
358        audio_devices_t mDevices;
359        const char *    mString;
360    } mappingsOut[] = {
361        AUDIO_DEVICE_OUT_EARPIECE,          "EARPIECE",
362        AUDIO_DEVICE_OUT_SPEAKER,           "SPEAKER",
363        AUDIO_DEVICE_OUT_WIRED_HEADSET,     "WIRED_HEADSET",
364        AUDIO_DEVICE_OUT_WIRED_HEADPHONE,   "WIRED_HEADPHONE",
365        AUDIO_DEVICE_OUT_BLUETOOTH_SCO,     "BLUETOOTH_SCO",
366        AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,     "BLUETOOTH_SCO_HEADSET",
367        AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,      "BLUETOOTH_SCO_CARKIT",
368        AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,            "BLUETOOTH_A2DP",
369        AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES, "BLUETOOTH_A2DP_HEADPHONES",
370        AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,    "BLUETOOTH_A2DP_SPEAKER",
371        AUDIO_DEVICE_OUT_AUX_DIGITAL,       "AUX_DIGITAL",
372        AUDIO_DEVICE_OUT_HDMI,              "HDMI",
373        AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET",
374        AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET",
375        AUDIO_DEVICE_OUT_USB_ACCESSORY,     "USB_ACCESSORY",
376        AUDIO_DEVICE_OUT_USB_DEVICE,        "USB_DEVICE",
377        AUDIO_DEVICE_OUT_TELEPHONY_TX,      "TELEPHONY_TX",
378        AUDIO_DEVICE_OUT_LINE,              "LINE",
379        AUDIO_DEVICE_OUT_HDMI_ARC,          "HDMI_ARC",
380        AUDIO_DEVICE_OUT_SPDIF,             "SPDIF",
381        AUDIO_DEVICE_OUT_FM,                "FM",
382        AUDIO_DEVICE_OUT_AUX_LINE,          "AUX_LINE",
383        AUDIO_DEVICE_OUT_SPEAKER_SAFE,      "SPEAKER_SAFE",
384        AUDIO_DEVICE_OUT_IP,                "IP",
385        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
386    }, mappingsIn[] = {
387        AUDIO_DEVICE_IN_COMMUNICATION,      "COMMUNICATION",
388        AUDIO_DEVICE_IN_AMBIENT,            "AMBIENT",
389        AUDIO_DEVICE_IN_BUILTIN_MIC,        "BUILTIN_MIC",
390        AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET,  "BLUETOOTH_SCO_HEADSET",
391        AUDIO_DEVICE_IN_WIRED_HEADSET,      "WIRED_HEADSET",
392        AUDIO_DEVICE_IN_AUX_DIGITAL,        "AUX_DIGITAL",
393        AUDIO_DEVICE_IN_VOICE_CALL,         "VOICE_CALL",
394        AUDIO_DEVICE_IN_TELEPHONY_RX,       "TELEPHONY_RX",
395        AUDIO_DEVICE_IN_BACK_MIC,           "BACK_MIC",
396        AUDIO_DEVICE_IN_REMOTE_SUBMIX,      "REMOTE_SUBMIX",
397        AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET,  "ANLG_DOCK_HEADSET",
398        AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET,  "DGTL_DOCK_HEADSET",
399        AUDIO_DEVICE_IN_USB_ACCESSORY,      "USB_ACCESSORY",
400        AUDIO_DEVICE_IN_USB_DEVICE,         "USB_DEVICE",
401        AUDIO_DEVICE_IN_FM_TUNER,           "FM_TUNER",
402        AUDIO_DEVICE_IN_TV_TUNER,           "TV_TUNER",
403        AUDIO_DEVICE_IN_LINE,               "LINE",
404        AUDIO_DEVICE_IN_SPDIF,              "SPDIF",
405        AUDIO_DEVICE_IN_BLUETOOTH_A2DP,     "BLUETOOTH_A2DP",
406        AUDIO_DEVICE_IN_LOOPBACK,           "LOOPBACK",
407        AUDIO_DEVICE_IN_IP,                 "IP",
408        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
409    };
410    String8 result;
411    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
412    const mapping *entry;
413    if (devices & AUDIO_DEVICE_BIT_IN) {
414        devices &= ~AUDIO_DEVICE_BIT_IN;
415        entry = mappingsIn;
416    } else {
417        entry = mappingsOut;
418    }
419    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
420        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
421        if (devices & entry->mDevices) {
422            if (!result.isEmpty()) {
423                result.append("|");
424            }
425            result.append(entry->mString);
426        }
427    }
428    if (devices & ~allDevices) {
429        if (!result.isEmpty()) {
430            result.append("|");
431        }
432        result.appendFormat("0x%X", devices & ~allDevices);
433    }
434    if (result.isEmpty()) {
435        result.append(entry->mString);
436    }
437    return result;
438}
439
440String8 inputFlagsToString(audio_input_flags_t flags)
441{
442    static const struct mapping {
443        audio_input_flags_t     mFlag;
444        const char *            mString;
445    } mappings[] = {
446        AUDIO_INPUT_FLAG_FAST,              "FAST",
447        AUDIO_INPUT_FLAG_HW_HOTWORD,        "HW_HOTWORD",
448        AUDIO_INPUT_FLAG_RAW,               "RAW",
449        AUDIO_INPUT_FLAG_SYNC,              "SYNC",
450        AUDIO_INPUT_FLAG_NONE,              "NONE",         // must be last
451    };
452    String8 result;
453    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
454    const mapping *entry;
455    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
456        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
457        if (flags & entry->mFlag) {
458            if (!result.isEmpty()) {
459                result.append("|");
460            }
461            result.append(entry->mString);
462        }
463    }
464    if (flags & ~allFlags) {
465        if (!result.isEmpty()) {
466            result.append("|");
467        }
468        result.appendFormat("0x%X", flags & ~allFlags);
469    }
470    if (result.isEmpty()) {
471        result.append(entry->mString);
472    }
473    return result;
474}
475
476String8 outputFlagsToString(audio_output_flags_t flags)
477{
478    static const struct mapping {
479        audio_output_flags_t    mFlag;
480        const char *            mString;
481    } mappings[] = {
482        AUDIO_OUTPUT_FLAG_DIRECT,           "DIRECT",
483        AUDIO_OUTPUT_FLAG_PRIMARY,          "PRIMARY",
484        AUDIO_OUTPUT_FLAG_FAST,             "FAST",
485        AUDIO_OUTPUT_FLAG_DEEP_BUFFER,      "DEEP_BUFFER",
486        AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
487        AUDIO_OUTPUT_FLAG_NON_BLOCKING,     "NON_BLOCKING",
488        AUDIO_OUTPUT_FLAG_HW_AV_SYNC,       "HW_AV_SYNC",
489        AUDIO_OUTPUT_FLAG_RAW,              "RAW",
490        AUDIO_OUTPUT_FLAG_SYNC,             "SYNC",
491        AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO,  "IEC958_NONAUDIO",
492        AUDIO_OUTPUT_FLAG_NONE,             "NONE",         // must be last
493    };
494    String8 result;
495    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
496    const mapping *entry;
497    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
498        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
499        if (flags & entry->mFlag) {
500            if (!result.isEmpty()) {
501                result.append("|");
502            }
503            result.append(entry->mString);
504        }
505    }
506    if (flags & ~allFlags) {
507        if (!result.isEmpty()) {
508            result.append("|");
509        }
510        result.appendFormat("0x%X", flags & ~allFlags);
511    }
512    if (result.isEmpty()) {
513        result.append(entry->mString);
514    }
515    return result;
516}
517
518const char *sourceToString(audio_source_t source)
519{
520    switch (source) {
521    case AUDIO_SOURCE_DEFAULT:              return "default";
522    case AUDIO_SOURCE_MIC:                  return "mic";
523    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
524    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
525    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
526    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
527    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
528    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
529    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
530    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
531    case AUDIO_SOURCE_HOTWORD:              return "hotword";
532    default:                                return "unknown";
533    }
534}
535
536AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
537        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
538    :   Thread(false /*canCallJava*/),
539        mType(type),
540        mAudioFlinger(audioFlinger),
541        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
542        // are set by PlaybackThread::readOutputParameters_l() or
543        // RecordThread::readInputParameters_l()
544        //FIXME: mStandby should be true here. Is this some kind of hack?
545        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
546        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
547        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
548        // mName will be set by concrete (non-virtual) subclass
549        mDeathRecipient(new PMDeathRecipient(this)),
550        mSystemReady(systemReady),
551        mNotifiedBatteryStart(false)
552{
553    memset(&mPatch, 0, sizeof(struct audio_patch));
554}
555
556AudioFlinger::ThreadBase::~ThreadBase()
557{
558    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
559    mConfigEvents.clear();
560
561    // do not lock the mutex in destructor
562    releaseWakeLock_l();
563    if (mPowerManager != 0) {
564        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
565        binder->unlinkToDeath(mDeathRecipient);
566    }
567}
568
569status_t AudioFlinger::ThreadBase::readyToRun()
570{
571    status_t status = initCheck();
572    if (status == NO_ERROR) {
573        ALOGI("AudioFlinger's thread %p ready to run", this);
574    } else {
575        ALOGE("No working audio driver found.");
576    }
577    return status;
578}
579
580void AudioFlinger::ThreadBase::exit()
581{
582    ALOGV("ThreadBase::exit");
583    // do any cleanup required for exit to succeed
584    preExit();
585    {
586        // This lock prevents the following race in thread (uniprocessor for illustration):
587        //  if (!exitPending()) {
588        //      // context switch from here to exit()
589        //      // exit() calls requestExit(), what exitPending() observes
590        //      // exit() calls signal(), which is dropped since no waiters
591        //      // context switch back from exit() to here
592        //      mWaitWorkCV.wait(...);
593        //      // now thread is hung
594        //  }
595        AutoMutex lock(mLock);
596        requestExit();
597        mWaitWorkCV.broadcast();
598    }
599    // When Thread::requestExitAndWait is made virtual and this method is renamed to
600    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
601    requestExitAndWait();
602}
603
604status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
605{
606    status_t status;
607
608    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
609    Mutex::Autolock _l(mLock);
610
611    return sendSetParameterConfigEvent_l(keyValuePairs);
612}
613
614// sendConfigEvent_l() must be called with ThreadBase::mLock held
615// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
616status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
617{
618    status_t status = NO_ERROR;
619
620    if (event->mRequiresSystemReady && !mSystemReady) {
621        event->mWaitStatus = false;
622        mPendingConfigEvents.add(event);
623        return status;
624    }
625    mConfigEvents.add(event);
626    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
627    mWaitWorkCV.signal();
628    mLock.unlock();
629    {
630        Mutex::Autolock _l(event->mLock);
631        while (event->mWaitStatus) {
632            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
633                event->mStatus = TIMED_OUT;
634                event->mWaitStatus = false;
635            }
636        }
637        status = event->mStatus;
638    }
639    mLock.lock();
640    return status;
641}
642
643void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
644{
645    Mutex::Autolock _l(mLock);
646    sendIoConfigEvent_l(event, pid);
647}
648
649// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
650void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
651{
652    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
653    sendConfigEvent_l(configEvent);
654}
655
656void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
657{
658    Mutex::Autolock _l(mLock);
659    sendPrioConfigEvent_l(pid, tid, prio);
660}
661
662// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
663void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
664{
665    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
666    sendConfigEvent_l(configEvent);
667}
668
669// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
670status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
671{
672    sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
673    return sendConfigEvent_l(configEvent);
674}
675
676status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
677                                                        const struct audio_patch *patch,
678                                                        audio_patch_handle_t *handle)
679{
680    Mutex::Autolock _l(mLock);
681    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
682    status_t status = sendConfigEvent_l(configEvent);
683    if (status == NO_ERROR) {
684        CreateAudioPatchConfigEventData *data =
685                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
686        *handle = data->mHandle;
687    }
688    return status;
689}
690
691status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
692                                                                const audio_patch_handle_t handle)
693{
694    Mutex::Autolock _l(mLock);
695    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
696    return sendConfigEvent_l(configEvent);
697}
698
699
700// post condition: mConfigEvents.isEmpty()
701void AudioFlinger::ThreadBase::processConfigEvents_l()
702{
703    bool configChanged = false;
704
705    while (!mConfigEvents.isEmpty()) {
706        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
707        sp<ConfigEvent> event = mConfigEvents[0];
708        mConfigEvents.removeAt(0);
709        switch (event->mType) {
710        case CFG_EVENT_PRIO: {
711            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
712            // FIXME Need to understand why this has to be done asynchronously
713            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
714                    true /*asynchronous*/);
715            if (err != 0) {
716                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
717                      data->mPrio, data->mPid, data->mTid, err);
718            }
719        } break;
720        case CFG_EVENT_IO: {
721            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
722            ioConfigChanged(data->mEvent, data->mPid);
723        } break;
724        case CFG_EVENT_SET_PARAMETER: {
725            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
726            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
727                configChanged = true;
728            }
729        } break;
730        case CFG_EVENT_CREATE_AUDIO_PATCH: {
731            CreateAudioPatchConfigEventData *data =
732                                            (CreateAudioPatchConfigEventData *)event->mData.get();
733            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
734        } break;
735        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
736            ReleaseAudioPatchConfigEventData *data =
737                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
738            event->mStatus = releaseAudioPatch_l(data->mHandle);
739        } break;
740        default:
741            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
742            break;
743        }
744        {
745            Mutex::Autolock _l(event->mLock);
746            if (event->mWaitStatus) {
747                event->mWaitStatus = false;
748                event->mCond.signal();
749            }
750        }
751        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
752    }
753
754    if (configChanged) {
755        cacheParameters_l();
756    }
757}
758
759String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
760    String8 s;
761    const audio_channel_representation_t representation =
762            audio_channel_mask_get_representation(mask);
763
764    switch (representation) {
765    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
766        if (output) {
767            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
768            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
769            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
770            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
771            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
772            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
773            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
774            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
775            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
776            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
777            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
778            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
779            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
780            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
781            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
782            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
783            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
784            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
785            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
786        } else {
787            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
788            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
789            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
790            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
791            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
792            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
793            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
794            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
795            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
796            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
797            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
798            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
799            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
800            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
801            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
802        }
803        const int len = s.length();
804        if (len > 2) {
805            char *str = s.lockBuffer(len); // needed?
806            s.unlockBuffer(len - 2);       // remove trailing ", "
807        }
808        return s;
809    }
810    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
811        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
812        return s;
813    default:
814        s.appendFormat("unknown mask, representation:%d  bits:%#x",
815                representation, audio_channel_mask_get_bits(mask));
816        return s;
817    }
818}
819
820void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
821{
822    const size_t SIZE = 256;
823    char buffer[SIZE];
824    String8 result;
825
826    bool locked = AudioFlinger::dumpTryLock(mLock);
827    if (!locked) {
828        dprintf(fd, "thread %p may be deadlocked\n", this);
829    }
830
831    dprintf(fd, "  Thread name: %s\n", mThreadName);
832    dprintf(fd, "  I/O handle: %d\n", mId);
833    dprintf(fd, "  TID: %d\n", getTid());
834    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
835    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
836    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
837    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
838    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
839    dprintf(fd, "  Channel count: %u\n", mChannelCount);
840    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
841            channelMaskToString(mChannelMask, mType != RECORD).string());
842    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
843    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
844    dprintf(fd, "  Pending config events:");
845    size_t numConfig = mConfigEvents.size();
846    if (numConfig) {
847        for (size_t i = 0; i < numConfig; i++) {
848            mConfigEvents[i]->dump(buffer, SIZE);
849            dprintf(fd, "\n    %s", buffer);
850        }
851        dprintf(fd, "\n");
852    } else {
853        dprintf(fd, " none\n");
854    }
855    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
856    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
857    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
858
859    if (locked) {
860        mLock.unlock();
861    }
862}
863
864void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
865{
866    const size_t SIZE = 256;
867    char buffer[SIZE];
868    String8 result;
869
870    size_t numEffectChains = mEffectChains.size();
871    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
872    write(fd, buffer, strlen(buffer));
873
874    for (size_t i = 0; i < numEffectChains; ++i) {
875        sp<EffectChain> chain = mEffectChains[i];
876        if (chain != 0) {
877            chain->dump(fd, args);
878        }
879    }
880}
881
882void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
883{
884    Mutex::Autolock _l(mLock);
885    acquireWakeLock_l(uid);
886}
887
888String16 AudioFlinger::ThreadBase::getWakeLockTag()
889{
890    switch (mType) {
891    case MIXER:
892        return String16("AudioMix");
893    case DIRECT:
894        return String16("AudioDirectOut");
895    case DUPLICATING:
896        return String16("AudioDup");
897    case RECORD:
898        return String16("AudioIn");
899    case OFFLOAD:
900        return String16("AudioOffload");
901    default:
902        ALOG_ASSERT(false);
903        return String16("AudioUnknown");
904    }
905}
906
907void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
908{
909    getPowerManager_l();
910    if (mPowerManager != 0) {
911        sp<IBinder> binder = new BBinder();
912        status_t status;
913        if (uid >= 0) {
914            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
915                    binder,
916                    getWakeLockTag(),
917                    String16("media"),
918                    uid,
919                    true /* FIXME force oneway contrary to .aidl */);
920        } else {
921            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
922                    binder,
923                    getWakeLockTag(),
924                    String16("media"),
925                    true /* FIXME force oneway contrary to .aidl */);
926        }
927        if (status == NO_ERROR) {
928            mWakeLockToken = binder;
929        }
930        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
931    }
932
933    if (!mNotifiedBatteryStart) {
934        BatteryNotifier::getInstance().noteStartAudio();
935        mNotifiedBatteryStart = true;
936    }
937}
938
939void AudioFlinger::ThreadBase::releaseWakeLock()
940{
941    Mutex::Autolock _l(mLock);
942    releaseWakeLock_l();
943}
944
945void AudioFlinger::ThreadBase::releaseWakeLock_l()
946{
947    if (mWakeLockToken != 0) {
948        ALOGV("releaseWakeLock_l() %s", mThreadName);
949        if (mPowerManager != 0) {
950            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
951                    true /* FIXME force oneway contrary to .aidl */);
952        }
953        mWakeLockToken.clear();
954    }
955
956    if (mNotifiedBatteryStart) {
957        BatteryNotifier::getInstance().noteStopAudio();
958        mNotifiedBatteryStart = false;
959    }
960}
961
962void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
963    Mutex::Autolock _l(mLock);
964    updateWakeLockUids_l(uids);
965}
966
967void AudioFlinger::ThreadBase::getPowerManager_l() {
968    if (mSystemReady && mPowerManager == 0) {
969        // use checkService() to avoid blocking if power service is not up yet
970        sp<IBinder> binder =
971            defaultServiceManager()->checkService(String16("power"));
972        if (binder == 0) {
973            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
974        } else {
975            mPowerManager = interface_cast<IPowerManager>(binder);
976            binder->linkToDeath(mDeathRecipient);
977        }
978    }
979}
980
981void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
982    getPowerManager_l();
983    if (mWakeLockToken == NULL) {
984        ALOGE("no wake lock to update!");
985        return;
986    }
987    if (mPowerManager != 0) {
988        sp<IBinder> binder = new BBinder();
989        status_t status;
990        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
991                    true /* FIXME force oneway contrary to .aidl */);
992        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
993    }
994}
995
996void AudioFlinger::ThreadBase::clearPowerManager()
997{
998    Mutex::Autolock _l(mLock);
999    releaseWakeLock_l();
1000    mPowerManager.clear();
1001}
1002
1003void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1004{
1005    sp<ThreadBase> thread = mThread.promote();
1006    if (thread != 0) {
1007        thread->clearPowerManager();
1008    }
1009    ALOGW("power manager service died !!!");
1010}
1011
1012void AudioFlinger::ThreadBase::setEffectSuspended(
1013        const effect_uuid_t *type, bool suspend, int sessionId)
1014{
1015    Mutex::Autolock _l(mLock);
1016    setEffectSuspended_l(type, suspend, sessionId);
1017}
1018
1019void AudioFlinger::ThreadBase::setEffectSuspended_l(
1020        const effect_uuid_t *type, bool suspend, int sessionId)
1021{
1022    sp<EffectChain> chain = getEffectChain_l(sessionId);
1023    if (chain != 0) {
1024        if (type != NULL) {
1025            chain->setEffectSuspended_l(type, suspend);
1026        } else {
1027            chain->setEffectSuspendedAll_l(suspend);
1028        }
1029    }
1030
1031    updateSuspendedSessions_l(type, suspend, sessionId);
1032}
1033
1034void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1035{
1036    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1037    if (index < 0) {
1038        return;
1039    }
1040
1041    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1042            mSuspendedSessions.valueAt(index);
1043
1044    for (size_t i = 0; i < sessionEffects.size(); i++) {
1045        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1046        for (int j = 0; j < desc->mRefCount; j++) {
1047            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1048                chain->setEffectSuspendedAll_l(true);
1049            } else {
1050                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1051                    desc->mType.timeLow);
1052                chain->setEffectSuspended_l(&desc->mType, true);
1053            }
1054        }
1055    }
1056}
1057
1058void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1059                                                         bool suspend,
1060                                                         int sessionId)
1061{
1062    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1063
1064    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1065
1066    if (suspend) {
1067        if (index >= 0) {
1068            sessionEffects = mSuspendedSessions.valueAt(index);
1069        } else {
1070            mSuspendedSessions.add(sessionId, sessionEffects);
1071        }
1072    } else {
1073        if (index < 0) {
1074            return;
1075        }
1076        sessionEffects = mSuspendedSessions.valueAt(index);
1077    }
1078
1079
1080    int key = EffectChain::kKeyForSuspendAll;
1081    if (type != NULL) {
1082        key = type->timeLow;
1083    }
1084    index = sessionEffects.indexOfKey(key);
1085
1086    sp<SuspendedSessionDesc> desc;
1087    if (suspend) {
1088        if (index >= 0) {
1089            desc = sessionEffects.valueAt(index);
1090        } else {
1091            desc = new SuspendedSessionDesc();
1092            if (type != NULL) {
1093                desc->mType = *type;
1094            }
1095            sessionEffects.add(key, desc);
1096            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1097        }
1098        desc->mRefCount++;
1099    } else {
1100        if (index < 0) {
1101            return;
1102        }
1103        desc = sessionEffects.valueAt(index);
1104        if (--desc->mRefCount == 0) {
1105            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1106            sessionEffects.removeItemsAt(index);
1107            if (sessionEffects.isEmpty()) {
1108                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1109                                 sessionId);
1110                mSuspendedSessions.removeItem(sessionId);
1111            }
1112        }
1113    }
1114    if (!sessionEffects.isEmpty()) {
1115        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1116    }
1117}
1118
1119void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1120                                                            bool enabled,
1121                                                            int sessionId)
1122{
1123    Mutex::Autolock _l(mLock);
1124    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1125}
1126
1127void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1128                                                            bool enabled,
1129                                                            int sessionId)
1130{
1131    if (mType != RECORD) {
1132        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1133        // another session. This gives the priority to well behaved effect control panels
1134        // and applications not using global effects.
1135        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1136        // global effects
1137        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1138            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1139        }
1140    }
1141
1142    sp<EffectChain> chain = getEffectChain_l(sessionId);
1143    if (chain != 0) {
1144        chain->checkSuspendOnEffectEnabled(effect, enabled);
1145    }
1146}
1147
1148// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1149sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1150        const sp<AudioFlinger::Client>& client,
1151        const sp<IEffectClient>& effectClient,
1152        int32_t priority,
1153        int sessionId,
1154        effect_descriptor_t *desc,
1155        int *enabled,
1156        status_t *status)
1157{
1158    sp<EffectModule> effect;
1159    sp<EffectHandle> handle;
1160    status_t lStatus;
1161    sp<EffectChain> chain;
1162    bool chainCreated = false;
1163    bool effectCreated = false;
1164    bool effectRegistered = false;
1165
1166    lStatus = initCheck();
1167    if (lStatus != NO_ERROR) {
1168        ALOGW("createEffect_l() Audio driver not initialized.");
1169        goto Exit;
1170    }
1171
1172    // Reject any effect on Direct output threads for now, since the format of
1173    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1174    if (mType == DIRECT) {
1175        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1176                desc->name, mThreadName);
1177        lStatus = BAD_VALUE;
1178        goto Exit;
1179    }
1180
1181    // Reject any effect on mixer or duplicating multichannel sinks.
1182    // TODO: fix both format and multichannel issues with effects.
1183    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1184        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1185                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1186        lStatus = BAD_VALUE;
1187        goto Exit;
1188    }
1189
1190    // Allow global effects only on offloaded and mixer threads
1191    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1192        switch (mType) {
1193        case MIXER:
1194        case OFFLOAD:
1195            break;
1196        case DIRECT:
1197        case DUPLICATING:
1198        case RECORD:
1199        default:
1200            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1201                    desc->name, mThreadName);
1202            lStatus = BAD_VALUE;
1203            goto Exit;
1204        }
1205    }
1206
1207    // Only Pre processor effects are allowed on input threads and only on input threads
1208    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1209        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1210                desc->name, desc->flags, mType);
1211        lStatus = BAD_VALUE;
1212        goto Exit;
1213    }
1214
1215    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1216
1217    { // scope for mLock
1218        Mutex::Autolock _l(mLock);
1219
1220        // check for existing effect chain with the requested audio session
1221        chain = getEffectChain_l(sessionId);
1222        if (chain == 0) {
1223            // create a new chain for this session
1224            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1225            chain = new EffectChain(this, sessionId);
1226            addEffectChain_l(chain);
1227            chain->setStrategy(getStrategyForSession_l(sessionId));
1228            chainCreated = true;
1229        } else {
1230            effect = chain->getEffectFromDesc_l(desc);
1231        }
1232
1233        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1234
1235        if (effect == 0) {
1236            int id = mAudioFlinger->nextUniqueId();
1237            // Check CPU and memory usage
1238            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1239            if (lStatus != NO_ERROR) {
1240                goto Exit;
1241            }
1242            effectRegistered = true;
1243            // create a new effect module if none present in the chain
1244            effect = new EffectModule(this, chain, desc, id, sessionId);
1245            lStatus = effect->status();
1246            if (lStatus != NO_ERROR) {
1247                goto Exit;
1248            }
1249            effect->setOffloaded(mType == OFFLOAD, mId);
1250
1251            lStatus = chain->addEffect_l(effect);
1252            if (lStatus != NO_ERROR) {
1253                goto Exit;
1254            }
1255            effectCreated = true;
1256
1257            effect->setDevice(mOutDevice);
1258            effect->setDevice(mInDevice);
1259            effect->setMode(mAudioFlinger->getMode());
1260            effect->setAudioSource(mAudioSource);
1261        }
1262        // create effect handle and connect it to effect module
1263        handle = new EffectHandle(effect, client, effectClient, priority);
1264        lStatus = handle->initCheck();
1265        if (lStatus == OK) {
1266            lStatus = effect->addHandle(handle.get());
1267        }
1268        if (enabled != NULL) {
1269            *enabled = (int)effect->isEnabled();
1270        }
1271    }
1272
1273Exit:
1274    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1275        Mutex::Autolock _l(mLock);
1276        if (effectCreated) {
1277            chain->removeEffect_l(effect);
1278        }
1279        if (effectRegistered) {
1280            AudioSystem::unregisterEffect(effect->id());
1281        }
1282        if (chainCreated) {
1283            removeEffectChain_l(chain);
1284        }
1285        handle.clear();
1286    }
1287
1288    *status = lStatus;
1289    return handle;
1290}
1291
1292sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1293{
1294    Mutex::Autolock _l(mLock);
1295    return getEffect_l(sessionId, effectId);
1296}
1297
1298sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1299{
1300    sp<EffectChain> chain = getEffectChain_l(sessionId);
1301    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1302}
1303
1304// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1305// PlaybackThread::mLock held
1306status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1307{
1308    // check for existing effect chain with the requested audio session
1309    int sessionId = effect->sessionId();
1310    sp<EffectChain> chain = getEffectChain_l(sessionId);
1311    bool chainCreated = false;
1312
1313    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1314             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1315                    this, effect->desc().name, effect->desc().flags);
1316
1317    if (chain == 0) {
1318        // create a new chain for this session
1319        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1320        chain = new EffectChain(this, sessionId);
1321        addEffectChain_l(chain);
1322        chain->setStrategy(getStrategyForSession_l(sessionId));
1323        chainCreated = true;
1324    }
1325    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1326
1327    if (chain->getEffectFromId_l(effect->id()) != 0) {
1328        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1329                this, effect->desc().name, chain.get());
1330        return BAD_VALUE;
1331    }
1332
1333    effect->setOffloaded(mType == OFFLOAD, mId);
1334
1335    status_t status = chain->addEffect_l(effect);
1336    if (status != NO_ERROR) {
1337        if (chainCreated) {
1338            removeEffectChain_l(chain);
1339        }
1340        return status;
1341    }
1342
1343    effect->setDevice(mOutDevice);
1344    effect->setDevice(mInDevice);
1345    effect->setMode(mAudioFlinger->getMode());
1346    effect->setAudioSource(mAudioSource);
1347    return NO_ERROR;
1348}
1349
1350void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1351
1352    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1353    effect_descriptor_t desc = effect->desc();
1354    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1355        detachAuxEffect_l(effect->id());
1356    }
1357
1358    sp<EffectChain> chain = effect->chain().promote();
1359    if (chain != 0) {
1360        // remove effect chain if removing last effect
1361        if (chain->removeEffect_l(effect) == 0) {
1362            removeEffectChain_l(chain);
1363        }
1364    } else {
1365        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1366    }
1367}
1368
1369void AudioFlinger::ThreadBase::lockEffectChains_l(
1370        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1371{
1372    effectChains = mEffectChains;
1373    for (size_t i = 0; i < mEffectChains.size(); i++) {
1374        mEffectChains[i]->lock();
1375    }
1376}
1377
1378void AudioFlinger::ThreadBase::unlockEffectChains(
1379        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1380{
1381    for (size_t i = 0; i < effectChains.size(); i++) {
1382        effectChains[i]->unlock();
1383    }
1384}
1385
1386sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1387{
1388    Mutex::Autolock _l(mLock);
1389    return getEffectChain_l(sessionId);
1390}
1391
1392sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1393{
1394    size_t size = mEffectChains.size();
1395    for (size_t i = 0; i < size; i++) {
1396        if (mEffectChains[i]->sessionId() == sessionId) {
1397            return mEffectChains[i];
1398        }
1399    }
1400    return 0;
1401}
1402
1403void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1404{
1405    Mutex::Autolock _l(mLock);
1406    size_t size = mEffectChains.size();
1407    for (size_t i = 0; i < size; i++) {
1408        mEffectChains[i]->setMode_l(mode);
1409    }
1410}
1411
1412void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1413{
1414    config->type = AUDIO_PORT_TYPE_MIX;
1415    config->ext.mix.handle = mId;
1416    config->sample_rate = mSampleRate;
1417    config->format = mFormat;
1418    config->channel_mask = mChannelMask;
1419    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1420                            AUDIO_PORT_CONFIG_FORMAT;
1421}
1422
1423void AudioFlinger::ThreadBase::systemReady()
1424{
1425    Mutex::Autolock _l(mLock);
1426    if (mSystemReady) {
1427        return;
1428    }
1429    mSystemReady = true;
1430
1431    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1432        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1433    }
1434    mPendingConfigEvents.clear();
1435}
1436
1437
1438// ----------------------------------------------------------------------------
1439//      Playback
1440// ----------------------------------------------------------------------------
1441
1442AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1443                                             AudioStreamOut* output,
1444                                             audio_io_handle_t id,
1445                                             audio_devices_t device,
1446                                             type_t type,
1447                                             bool systemReady)
1448    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1449        mNormalFrameCount(0), mSinkBuffer(NULL),
1450        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1451        mMixerBuffer(NULL),
1452        mMixerBufferSize(0),
1453        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1454        mMixerBufferValid(false),
1455        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1456        mEffectBuffer(NULL),
1457        mEffectBufferSize(0),
1458        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1459        mEffectBufferValid(false),
1460        mSuspended(0), mBytesWritten(0),
1461        mActiveTracksGeneration(0),
1462        // mStreamTypes[] initialized in constructor body
1463        mOutput(output),
1464        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1465        mMixerStatus(MIXER_IDLE),
1466        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1467        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1468        mBytesRemaining(0),
1469        mCurrentWriteLength(0),
1470        mUseAsyncWrite(false),
1471        mWriteAckSequence(0),
1472        mDrainSequence(0),
1473        mSignalPending(false),
1474        mScreenState(AudioFlinger::mScreenState),
1475        // index 0 is reserved for normal mixer's submix
1476        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1477        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1478        // mLatchD, mLatchQ,
1479        mLatchDValid(false), mLatchQValid(false)
1480{
1481    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1482    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1483
1484    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1485    // it would be safer to explicitly pass initial masterVolume/masterMute as
1486    // parameter.
1487    //
1488    // If the HAL we are using has support for master volume or master mute,
1489    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1490    // and the mute set to false).
1491    mMasterVolume = audioFlinger->masterVolume_l();
1492    mMasterMute = audioFlinger->masterMute_l();
1493    if (mOutput && mOutput->audioHwDev) {
1494        if (mOutput->audioHwDev->canSetMasterVolume()) {
1495            mMasterVolume = 1.0;
1496        }
1497
1498        if (mOutput->audioHwDev->canSetMasterMute()) {
1499            mMasterMute = false;
1500        }
1501    }
1502
1503    readOutputParameters_l();
1504
1505    // ++ operator does not compile
1506    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1507            stream = (audio_stream_type_t) (stream + 1)) {
1508        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1509        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1510    }
1511}
1512
1513AudioFlinger::PlaybackThread::~PlaybackThread()
1514{
1515    mAudioFlinger->unregisterWriter(mNBLogWriter);
1516    free(mSinkBuffer);
1517    free(mMixerBuffer);
1518    free(mEffectBuffer);
1519}
1520
1521void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1522{
1523    dumpInternals(fd, args);
1524    dumpTracks(fd, args);
1525    dumpEffectChains(fd, args);
1526}
1527
1528void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1529{
1530    const size_t SIZE = 256;
1531    char buffer[SIZE];
1532    String8 result;
1533
1534    result.appendFormat("  Stream volumes in dB: ");
1535    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1536        const stream_type_t *st = &mStreamTypes[i];
1537        if (i > 0) {
1538            result.appendFormat(", ");
1539        }
1540        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1541        if (st->mute) {
1542            result.append("M");
1543        }
1544    }
1545    result.append("\n");
1546    write(fd, result.string(), result.length());
1547    result.clear();
1548
1549    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1550    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1551    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1552            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1553
1554    size_t numtracks = mTracks.size();
1555    size_t numactive = mActiveTracks.size();
1556    dprintf(fd, "  %d Tracks", numtracks);
1557    size_t numactiveseen = 0;
1558    if (numtracks) {
1559        dprintf(fd, " of which %d are active\n", numactive);
1560        Track::appendDumpHeader(result);
1561        for (size_t i = 0; i < numtracks; ++i) {
1562            sp<Track> track = mTracks[i];
1563            if (track != 0) {
1564                bool active = mActiveTracks.indexOf(track) >= 0;
1565                if (active) {
1566                    numactiveseen++;
1567                }
1568                track->dump(buffer, SIZE, active);
1569                result.append(buffer);
1570            }
1571        }
1572    } else {
1573        result.append("\n");
1574    }
1575    if (numactiveseen != numactive) {
1576        // some tracks in the active list were not in the tracks list
1577        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1578                " not in the track list\n");
1579        result.append(buffer);
1580        Track::appendDumpHeader(result);
1581        for (size_t i = 0; i < numactive; ++i) {
1582            sp<Track> track = mActiveTracks[i].promote();
1583            if (track != 0 && mTracks.indexOf(track) < 0) {
1584                track->dump(buffer, SIZE, true);
1585                result.append(buffer);
1586            }
1587        }
1588    }
1589
1590    write(fd, result.string(), result.size());
1591}
1592
1593void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1594{
1595    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1596
1597    dumpBase(fd, args);
1598
1599    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1600    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1601    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1602    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1603    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1604    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1605    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1606    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1607    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1608    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1609    AudioStreamOut *output = mOutput;
1610    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1611    String8 flagsAsString = outputFlagsToString(flags);
1612    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1613}
1614
1615// Thread virtuals
1616
1617void AudioFlinger::PlaybackThread::onFirstRef()
1618{
1619    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1620}
1621
1622// ThreadBase virtuals
1623void AudioFlinger::PlaybackThread::preExit()
1624{
1625    ALOGV("  preExit()");
1626    // FIXME this is using hard-coded strings but in the future, this functionality will be
1627    //       converted to use audio HAL extensions required to support tunneling
1628    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1629}
1630
1631// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1632sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1633        const sp<AudioFlinger::Client>& client,
1634        audio_stream_type_t streamType,
1635        uint32_t sampleRate,
1636        audio_format_t format,
1637        audio_channel_mask_t channelMask,
1638        size_t *pFrameCount,
1639        const sp<IMemory>& sharedBuffer,
1640        int sessionId,
1641        IAudioFlinger::track_flags_t *flags,
1642        pid_t tid,
1643        int uid,
1644        status_t *status)
1645{
1646    size_t frameCount = *pFrameCount;
1647    sp<Track> track;
1648    status_t lStatus;
1649
1650    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1651
1652    // client expresses a preference for FAST, but we get the final say
1653    if (*flags & IAudioFlinger::TRACK_FAST) {
1654      if (
1655            // not timed
1656            (!isTimed) &&
1657            // either of these use cases:
1658            (
1659              // use case 1: shared buffer with any frame count
1660              (
1661                (sharedBuffer != 0)
1662              ) ||
1663              // use case 2: frame count is default or at least as large as HAL
1664              (
1665                // we formerly checked for a callback handler (non-0 tid),
1666                // but that is no longer required for TRANSFER_OBTAIN mode
1667                ((frameCount == 0) ||
1668                (frameCount >= mFrameCount))
1669              )
1670            ) &&
1671            // PCM data
1672            audio_is_linear_pcm(format) &&
1673            // TODO: extract as a data library function that checks that a computationally
1674            // expensive downmixer is not required: isFastOutputChannelConversion()
1675            (channelMask == mChannelMask ||
1676                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1677                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1678                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1679            // hardware sample rate
1680            (sampleRate == mSampleRate) &&
1681            // normal mixer has an associated fast mixer
1682            hasFastMixer() &&
1683            // there are sufficient fast track slots available
1684            (mFastTrackAvailMask != 0)
1685            // FIXME test that MixerThread for this fast track has a capable output HAL
1686            // FIXME add a permission test also?
1687        ) {
1688        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1689        if (frameCount == 0) {
1690            // read the fast track multiplier property the first time it is needed
1691            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1692            if (ok != 0) {
1693                ALOGE("%s pthread_once failed: %d", __func__, ok);
1694            }
1695            frameCount = mFrameCount * sFastTrackMultiplier;
1696        }
1697        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1698                frameCount, mFrameCount);
1699      } else {
1700        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1701                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1702                "sampleRate=%u mSampleRate=%u "
1703                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1704                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1705                audio_is_linear_pcm(format),
1706                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1707        *flags &= ~IAudioFlinger::TRACK_FAST;
1708      }
1709    }
1710    // For normal PCM streaming tracks, update minimum frame count.
1711    // For compatibility with AudioTrack calculation, buffer depth is forced
1712    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1713    // This is probably too conservative, but legacy application code may depend on it.
1714    // If you change this calculation, also review the start threshold which is related.
1715    if (!(*flags & IAudioFlinger::TRACK_FAST)
1716            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1717        // this must match AudioTrack.cpp calculateMinFrameCount().
1718        // TODO: Move to a common library
1719        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1720        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1721        if (minBufCount < 2) {
1722            minBufCount = 2;
1723        }
1724        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1725        // or the client should compute and pass in a larger buffer request.
1726        size_t minFrameCount =
1727                minBufCount * sourceFramesNeededWithTimestretch(
1728                        sampleRate, mNormalFrameCount,
1729                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1730        if (frameCount < minFrameCount) { // including frameCount == 0
1731            frameCount = minFrameCount;
1732        }
1733    }
1734    *pFrameCount = frameCount;
1735
1736    switch (mType) {
1737
1738    case DIRECT:
1739        if (audio_is_linear_pcm(format)) {
1740            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1741                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1742                        "for output %p with format %#x",
1743                        sampleRate, format, channelMask, mOutput, mFormat);
1744                lStatus = BAD_VALUE;
1745                goto Exit;
1746            }
1747        }
1748        break;
1749
1750    case OFFLOAD:
1751        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1752            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1753                    "for output %p with format %#x",
1754                    sampleRate, format, channelMask, mOutput, mFormat);
1755            lStatus = BAD_VALUE;
1756            goto Exit;
1757        }
1758        break;
1759
1760    default:
1761        if (!audio_is_linear_pcm(format)) {
1762                ALOGE("createTrack_l() Bad parameter: format %#x \""
1763                        "for output %p with format %#x",
1764                        format, mOutput, mFormat);
1765                lStatus = BAD_VALUE;
1766                goto Exit;
1767        }
1768        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1769            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1770            lStatus = BAD_VALUE;
1771            goto Exit;
1772        }
1773        break;
1774
1775    }
1776
1777    lStatus = initCheck();
1778    if (lStatus != NO_ERROR) {
1779        ALOGE("createTrack_l() audio driver not initialized");
1780        goto Exit;
1781    }
1782
1783    { // scope for mLock
1784        Mutex::Autolock _l(mLock);
1785
1786        // all tracks in same audio session must share the same routing strategy otherwise
1787        // conflicts will happen when tracks are moved from one output to another by audio policy
1788        // manager
1789        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1790        for (size_t i = 0; i < mTracks.size(); ++i) {
1791            sp<Track> t = mTracks[i];
1792            if (t != 0 && t->isExternalTrack()) {
1793                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1794                if (sessionId == t->sessionId() && strategy != actual) {
1795                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1796                            strategy, actual);
1797                    lStatus = BAD_VALUE;
1798                    goto Exit;
1799                }
1800            }
1801        }
1802
1803        if (!isTimed) {
1804            track = new Track(this, client, streamType, sampleRate, format,
1805                              channelMask, frameCount, NULL, sharedBuffer,
1806                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1807        } else {
1808            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1809                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1810        }
1811
1812        // new Track always returns non-NULL,
1813        // but TimedTrack::create() is a factory that could fail by returning NULL
1814        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1815        if (lStatus != NO_ERROR) {
1816            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1817            // track must be cleared from the caller as the caller has the AF lock
1818            goto Exit;
1819        }
1820        mTracks.add(track);
1821
1822        sp<EffectChain> chain = getEffectChain_l(sessionId);
1823        if (chain != 0) {
1824            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1825            track->setMainBuffer(chain->inBuffer());
1826            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1827            chain->incTrackCnt();
1828        }
1829
1830        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1831            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1832            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1833            // so ask activity manager to do this on our behalf
1834            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1835        }
1836    }
1837
1838    lStatus = NO_ERROR;
1839
1840Exit:
1841    *status = lStatus;
1842    return track;
1843}
1844
1845uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1846{
1847    return latency;
1848}
1849
1850uint32_t AudioFlinger::PlaybackThread::latency() const
1851{
1852    Mutex::Autolock _l(mLock);
1853    return latency_l();
1854}
1855uint32_t AudioFlinger::PlaybackThread::latency_l() const
1856{
1857    if (initCheck() == NO_ERROR) {
1858        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1859    } else {
1860        return 0;
1861    }
1862}
1863
1864void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1865{
1866    Mutex::Autolock _l(mLock);
1867    // Don't apply master volume in SW if our HAL can do it for us.
1868    if (mOutput && mOutput->audioHwDev &&
1869        mOutput->audioHwDev->canSetMasterVolume()) {
1870        mMasterVolume = 1.0;
1871    } else {
1872        mMasterVolume = value;
1873    }
1874}
1875
1876void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1877{
1878    Mutex::Autolock _l(mLock);
1879    // Don't apply master mute in SW if our HAL can do it for us.
1880    if (mOutput && mOutput->audioHwDev &&
1881        mOutput->audioHwDev->canSetMasterMute()) {
1882        mMasterMute = false;
1883    } else {
1884        mMasterMute = muted;
1885    }
1886}
1887
1888void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1889{
1890    Mutex::Autolock _l(mLock);
1891    mStreamTypes[stream].volume = value;
1892    broadcast_l();
1893}
1894
1895void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1896{
1897    Mutex::Autolock _l(mLock);
1898    mStreamTypes[stream].mute = muted;
1899    broadcast_l();
1900}
1901
1902float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1903{
1904    Mutex::Autolock _l(mLock);
1905    return mStreamTypes[stream].volume;
1906}
1907
1908// addTrack_l() must be called with ThreadBase::mLock held
1909status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1910{
1911    status_t status = ALREADY_EXISTS;
1912
1913    // set retry count for buffer fill
1914    track->mRetryCount = kMaxTrackStartupRetries;
1915    if (mActiveTracks.indexOf(track) < 0) {
1916        // the track is newly added, make sure it fills up all its
1917        // buffers before playing. This is to ensure the client will
1918        // effectively get the latency it requested.
1919        if (track->isExternalTrack()) {
1920            TrackBase::track_state state = track->mState;
1921            mLock.unlock();
1922            status = AudioSystem::startOutput(mId, track->streamType(),
1923                                              (audio_session_t)track->sessionId());
1924            mLock.lock();
1925            // abort track was stopped/paused while we released the lock
1926            if (state != track->mState) {
1927                if (status == NO_ERROR) {
1928                    mLock.unlock();
1929                    AudioSystem::stopOutput(mId, track->streamType(),
1930                                            (audio_session_t)track->sessionId());
1931                    mLock.lock();
1932                }
1933                return INVALID_OPERATION;
1934            }
1935            // abort if start is rejected by audio policy manager
1936            if (status != NO_ERROR) {
1937                return PERMISSION_DENIED;
1938            }
1939#ifdef ADD_BATTERY_DATA
1940            // to track the speaker usage
1941            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1942#endif
1943        }
1944
1945        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1946        track->mResetDone = false;
1947        track->mPresentationCompleteFrames = 0;
1948        mActiveTracks.add(track);
1949        mWakeLockUids.add(track->uid());
1950        mActiveTracksGeneration++;
1951        mLatestActiveTrack = track;
1952        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1953        if (chain != 0) {
1954            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1955                    track->sessionId());
1956            chain->incActiveTrackCnt();
1957        }
1958
1959        status = NO_ERROR;
1960    }
1961
1962    onAddNewTrack_l();
1963    return status;
1964}
1965
1966bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1967{
1968    track->terminate();
1969    // active tracks are removed by threadLoop()
1970    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1971    track->mState = TrackBase::STOPPED;
1972    if (!trackActive) {
1973        removeTrack_l(track);
1974    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1975        track->mState = TrackBase::STOPPING_1;
1976    }
1977
1978    return trackActive;
1979}
1980
1981void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1982{
1983    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1984    mTracks.remove(track);
1985    deleteTrackName_l(track->name());
1986    // redundant as track is about to be destroyed, for dumpsys only
1987    track->mName = -1;
1988    if (track->isFastTrack()) {
1989        int index = track->mFastIndex;
1990        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1991        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1992        mFastTrackAvailMask |= 1 << index;
1993        // redundant as track is about to be destroyed, for dumpsys only
1994        track->mFastIndex = -1;
1995    }
1996    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1997    if (chain != 0) {
1998        chain->decTrackCnt();
1999    }
2000}
2001
2002void AudioFlinger::PlaybackThread::broadcast_l()
2003{
2004    // Thread could be blocked waiting for async
2005    // so signal it to handle state changes immediately
2006    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2007    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2008    mSignalPending = true;
2009    mWaitWorkCV.broadcast();
2010}
2011
2012String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2013{
2014    Mutex::Autolock _l(mLock);
2015    if (initCheck() != NO_ERROR) {
2016        return String8();
2017    }
2018
2019    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2020    const String8 out_s8(s);
2021    free(s);
2022    return out_s8;
2023}
2024
2025void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2026    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2027    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2028
2029    desc->mIoHandle = mId;
2030
2031    switch (event) {
2032    case AUDIO_OUTPUT_OPENED:
2033    case AUDIO_OUTPUT_CONFIG_CHANGED:
2034        desc->mPatch = mPatch;
2035        desc->mChannelMask = mChannelMask;
2036        desc->mSamplingRate = mSampleRate;
2037        desc->mFormat = mFormat;
2038        desc->mFrameCount = mNormalFrameCount; // FIXME see
2039                                             // AudioFlinger::frameCount(audio_io_handle_t)
2040        desc->mLatency = latency_l();
2041        break;
2042
2043    case AUDIO_OUTPUT_CLOSED:
2044    default:
2045        break;
2046    }
2047    mAudioFlinger->ioConfigChanged(event, desc, pid);
2048}
2049
2050void AudioFlinger::PlaybackThread::writeCallback()
2051{
2052    ALOG_ASSERT(mCallbackThread != 0);
2053    mCallbackThread->resetWriteBlocked();
2054}
2055
2056void AudioFlinger::PlaybackThread::drainCallback()
2057{
2058    ALOG_ASSERT(mCallbackThread != 0);
2059    mCallbackThread->resetDraining();
2060}
2061
2062void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2063{
2064    Mutex::Autolock _l(mLock);
2065    // reject out of sequence requests
2066    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2067        mWriteAckSequence &= ~1;
2068        mWaitWorkCV.signal();
2069    }
2070}
2071
2072void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2073{
2074    Mutex::Autolock _l(mLock);
2075    // reject out of sequence requests
2076    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2077        mDrainSequence &= ~1;
2078        mWaitWorkCV.signal();
2079    }
2080}
2081
2082// static
2083int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2084                                                void *param __unused,
2085                                                void *cookie)
2086{
2087    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2088    ALOGV("asyncCallback() event %d", event);
2089    switch (event) {
2090    case STREAM_CBK_EVENT_WRITE_READY:
2091        me->writeCallback();
2092        break;
2093    case STREAM_CBK_EVENT_DRAIN_READY:
2094        me->drainCallback();
2095        break;
2096    default:
2097        ALOGW("asyncCallback() unknown event %d", event);
2098        break;
2099    }
2100    return 0;
2101}
2102
2103void AudioFlinger::PlaybackThread::readOutputParameters_l()
2104{
2105    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2106    mSampleRate = mOutput->getSampleRate();
2107    mChannelMask = mOutput->getChannelMask();
2108    if (!audio_is_output_channel(mChannelMask)) {
2109        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2110    }
2111    if ((mType == MIXER || mType == DUPLICATING)
2112            && !isValidPcmSinkChannelMask(mChannelMask)) {
2113        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2114                mChannelMask);
2115    }
2116    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2117
2118    // Get actual HAL format.
2119    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2120    // Get format from the shim, which will be different than the HAL format
2121    // if playing compressed audio over HDMI passthrough.
2122    mFormat = mOutput->getFormat();
2123    if (!audio_is_valid_format(mFormat)) {
2124        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2125    }
2126    if ((mType == MIXER || mType == DUPLICATING)
2127            && !isValidPcmSinkFormat(mFormat)) {
2128        LOG_FATAL("HAL format %#x not supported for mixed output",
2129                mFormat);
2130    }
2131    mFrameSize = mOutput->getFrameSize();
2132    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2133    mFrameCount = mBufferSize / mFrameSize;
2134    if (mFrameCount & 15) {
2135        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2136                mFrameCount);
2137    }
2138
2139    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2140            (mOutput->stream->set_callback != NULL)) {
2141        if (mOutput->stream->set_callback(mOutput->stream,
2142                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2143            mUseAsyncWrite = true;
2144            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2145        }
2146    }
2147
2148    mHwSupportsPause = false;
2149    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2150        if (mOutput->stream->pause != NULL) {
2151            if (mOutput->stream->resume != NULL) {
2152                mHwSupportsPause = true;
2153            } else {
2154                ALOGW("direct output implements pause but not resume");
2155            }
2156        } else if (mOutput->stream->resume != NULL) {
2157            ALOGW("direct output implements resume but not pause");
2158        }
2159    }
2160    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2161        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2162    }
2163
2164    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2165        // For best precision, we use float instead of the associated output
2166        // device format (typically PCM 16 bit).
2167
2168        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2169        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2170        mBufferSize = mFrameSize * mFrameCount;
2171
2172        // TODO: We currently use the associated output device channel mask and sample rate.
2173        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2174        // (if a valid mask) to avoid premature downmix.
2175        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2176        // instead of the output device sample rate to avoid loss of high frequency information.
2177        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2178    }
2179
2180    // Calculate size of normal sink buffer relative to the HAL output buffer size
2181    double multiplier = 1.0;
2182    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2183            kUseFastMixer == FastMixer_Dynamic)) {
2184        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2185        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2186        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2187        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2188        maxNormalFrameCount = maxNormalFrameCount & ~15;
2189        if (maxNormalFrameCount < minNormalFrameCount) {
2190            maxNormalFrameCount = minNormalFrameCount;
2191        }
2192        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2193        if (multiplier <= 1.0) {
2194            multiplier = 1.0;
2195        } else if (multiplier <= 2.0) {
2196            if (2 * mFrameCount <= maxNormalFrameCount) {
2197                multiplier = 2.0;
2198            } else {
2199                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2200            }
2201        } else {
2202            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2203            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2204            // track, but we sometimes have to do this to satisfy the maximum frame count
2205            // constraint)
2206            // FIXME this rounding up should not be done if no HAL SRC
2207            uint32_t truncMult = (uint32_t) multiplier;
2208            if ((truncMult & 1)) {
2209                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2210                    ++truncMult;
2211                }
2212            }
2213            multiplier = (double) truncMult;
2214        }
2215    }
2216    mNormalFrameCount = multiplier * mFrameCount;
2217    // round up to nearest 16 frames to satisfy AudioMixer
2218    if (mType == MIXER || mType == DUPLICATING) {
2219        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2220    }
2221    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2222            mNormalFrameCount);
2223
2224    // Check if we want to throttle the processing to no more than 2x normal rate
2225    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2226    mThreadThrottleTimeMs = 0;
2227    mThreadThrottleEndMs = 0;
2228    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2229
2230    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2231    // Originally this was int16_t[] array, need to remove legacy implications.
2232    free(mSinkBuffer);
2233    mSinkBuffer = NULL;
2234    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2235    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2236    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2237    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2238
2239    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2240    // drives the output.
2241    free(mMixerBuffer);
2242    mMixerBuffer = NULL;
2243    if (mMixerBufferEnabled) {
2244        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2245        mMixerBufferSize = mNormalFrameCount * mChannelCount
2246                * audio_bytes_per_sample(mMixerBufferFormat);
2247        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2248    }
2249    free(mEffectBuffer);
2250    mEffectBuffer = NULL;
2251    if (mEffectBufferEnabled) {
2252        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2253        mEffectBufferSize = mNormalFrameCount * mChannelCount
2254                * audio_bytes_per_sample(mEffectBufferFormat);
2255        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2256    }
2257
2258    // force reconfiguration of effect chains and engines to take new buffer size and audio
2259    // parameters into account
2260    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2261    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2262    // matter.
2263    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2264    Vector< sp<EffectChain> > effectChains = mEffectChains;
2265    for (size_t i = 0; i < effectChains.size(); i ++) {
2266        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2267    }
2268}
2269
2270
2271status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2272{
2273    if (halFrames == NULL || dspFrames == NULL) {
2274        return BAD_VALUE;
2275    }
2276    Mutex::Autolock _l(mLock);
2277    if (initCheck() != NO_ERROR) {
2278        return INVALID_OPERATION;
2279    }
2280    size_t framesWritten = mBytesWritten / mFrameSize;
2281    *halFrames = framesWritten;
2282
2283    if (isSuspended()) {
2284        // return an estimation of rendered frames when the output is suspended
2285        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2286        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2287        return NO_ERROR;
2288    } else {
2289        status_t status;
2290        uint32_t frames;
2291        status = mOutput->getRenderPosition(&frames);
2292        *dspFrames = (size_t)frames;
2293        return status;
2294    }
2295}
2296
2297uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2298{
2299    Mutex::Autolock _l(mLock);
2300    uint32_t result = 0;
2301    if (getEffectChain_l(sessionId) != 0) {
2302        result = EFFECT_SESSION;
2303    }
2304
2305    for (size_t i = 0; i < mTracks.size(); ++i) {
2306        sp<Track> track = mTracks[i];
2307        if (sessionId == track->sessionId() && !track->isInvalid()) {
2308            result |= TRACK_SESSION;
2309            break;
2310        }
2311    }
2312
2313    return result;
2314}
2315
2316uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2317{
2318    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2319    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2320    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2321        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2322    }
2323    for (size_t i = 0; i < mTracks.size(); i++) {
2324        sp<Track> track = mTracks[i];
2325        if (sessionId == track->sessionId() && !track->isInvalid()) {
2326            return AudioSystem::getStrategyForStream(track->streamType());
2327        }
2328    }
2329    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2330}
2331
2332
2333AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2334{
2335    Mutex::Autolock _l(mLock);
2336    return mOutput;
2337}
2338
2339AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2340{
2341    Mutex::Autolock _l(mLock);
2342    AudioStreamOut *output = mOutput;
2343    mOutput = NULL;
2344    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2345    //       must push a NULL and wait for ack
2346    mOutputSink.clear();
2347    mPipeSink.clear();
2348    mNormalSink.clear();
2349    return output;
2350}
2351
2352// this method must always be called either with ThreadBase mLock held or inside the thread loop
2353audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2354{
2355    if (mOutput == NULL) {
2356        return NULL;
2357    }
2358    return &mOutput->stream->common;
2359}
2360
2361uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2362{
2363    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2364}
2365
2366status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2367{
2368    if (!isValidSyncEvent(event)) {
2369        return BAD_VALUE;
2370    }
2371
2372    Mutex::Autolock _l(mLock);
2373
2374    for (size_t i = 0; i < mTracks.size(); ++i) {
2375        sp<Track> track = mTracks[i];
2376        if (event->triggerSession() == track->sessionId()) {
2377            (void) track->setSyncEvent(event);
2378            return NO_ERROR;
2379        }
2380    }
2381
2382    return NAME_NOT_FOUND;
2383}
2384
2385bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2386{
2387    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2388}
2389
2390void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2391        const Vector< sp<Track> >& tracksToRemove)
2392{
2393    size_t count = tracksToRemove.size();
2394    if (count > 0) {
2395        for (size_t i = 0 ; i < count ; i++) {
2396            const sp<Track>& track = tracksToRemove.itemAt(i);
2397            if (track->isExternalTrack()) {
2398                AudioSystem::stopOutput(mId, track->streamType(),
2399                                        (audio_session_t)track->sessionId());
2400#ifdef ADD_BATTERY_DATA
2401                // to track the speaker usage
2402                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2403#endif
2404                if (track->isTerminated()) {
2405                    AudioSystem::releaseOutput(mId, track->streamType(),
2406                                               (audio_session_t)track->sessionId());
2407                }
2408            }
2409        }
2410    }
2411}
2412
2413void AudioFlinger::PlaybackThread::checkSilentMode_l()
2414{
2415    if (!mMasterMute) {
2416        char value[PROPERTY_VALUE_MAX];
2417        if (property_get("ro.audio.silent", value, "0") > 0) {
2418            char *endptr;
2419            unsigned long ul = strtoul(value, &endptr, 0);
2420            if (*endptr == '\0' && ul != 0) {
2421                ALOGD("Silence is golden");
2422                // The setprop command will not allow a property to be changed after
2423                // the first time it is set, so we don't have to worry about un-muting.
2424                setMasterMute_l(true);
2425            }
2426        }
2427    }
2428}
2429
2430// shared by MIXER and DIRECT, overridden by DUPLICATING
2431ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2432{
2433    // FIXME rewrite to reduce number of system calls
2434    mLastWriteTime = systemTime();
2435    mInWrite = true;
2436    ssize_t bytesWritten;
2437    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2438
2439    // If an NBAIO sink is present, use it to write the normal mixer's submix
2440    if (mNormalSink != 0) {
2441
2442        const size_t count = mBytesRemaining / mFrameSize;
2443
2444        ATRACE_BEGIN("write");
2445        // update the setpoint when AudioFlinger::mScreenState changes
2446        uint32_t screenState = AudioFlinger::mScreenState;
2447        if (screenState != mScreenState) {
2448            mScreenState = screenState;
2449            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2450            if (pipe != NULL) {
2451                pipe->setAvgFrames((mScreenState & 1) ?
2452                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2453            }
2454        }
2455        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2456        ATRACE_END();
2457        if (framesWritten > 0) {
2458            bytesWritten = framesWritten * mFrameSize;
2459        } else {
2460            bytesWritten = framesWritten;
2461        }
2462        mLatchDValid = false;
2463        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2464        if (status == NO_ERROR) {
2465            size_t totalFramesWritten = mNormalSink->framesWritten();
2466            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2467                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2468                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2469                mLatchDValid = true;
2470            }
2471        }
2472    // otherwise use the HAL / AudioStreamOut directly
2473    } else {
2474        // Direct output and offload threads
2475
2476        if (mUseAsyncWrite) {
2477            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2478            mWriteAckSequence += 2;
2479            mWriteAckSequence |= 1;
2480            ALOG_ASSERT(mCallbackThread != 0);
2481            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2482        }
2483        // FIXME We should have an implementation of timestamps for direct output threads.
2484        // They are used e.g for multichannel PCM playback over HDMI.
2485        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2486        if (mUseAsyncWrite &&
2487                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2488            // do not wait for async callback in case of error of full write
2489            mWriteAckSequence &= ~1;
2490            ALOG_ASSERT(mCallbackThread != 0);
2491            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2492        }
2493    }
2494
2495    mNumWrites++;
2496    mInWrite = false;
2497    mStandby = false;
2498    return bytesWritten;
2499}
2500
2501void AudioFlinger::PlaybackThread::threadLoop_drain()
2502{
2503    if (mOutput->stream->drain) {
2504        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2505        if (mUseAsyncWrite) {
2506            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2507            mDrainSequence |= 1;
2508            ALOG_ASSERT(mCallbackThread != 0);
2509            mCallbackThread->setDraining(mDrainSequence);
2510        }
2511        mOutput->stream->drain(mOutput->stream,
2512            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2513                                                : AUDIO_DRAIN_ALL);
2514    }
2515}
2516
2517void AudioFlinger::PlaybackThread::threadLoop_exit()
2518{
2519    {
2520        Mutex::Autolock _l(mLock);
2521        for (size_t i = 0; i < mTracks.size(); i++) {
2522            sp<Track> track = mTracks[i];
2523            track->invalidate();
2524        }
2525    }
2526}
2527
2528/*
2529The derived values that are cached:
2530 - mSinkBufferSize from frame count * frame size
2531 - mActiveSleepTimeUs from activeSleepTimeUs()
2532 - mIdleSleepTimeUs from idleSleepTimeUs()
2533 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only)
2534 - maxPeriod from frame count and sample rate (MIXER only)
2535
2536The parameters that affect these derived values are:
2537 - frame count
2538 - frame size
2539 - sample rate
2540 - device type: A2DP or not
2541 - device latency
2542 - format: PCM or not
2543 - active sleep time
2544 - idle sleep time
2545*/
2546
2547void AudioFlinger::PlaybackThread::cacheParameters_l()
2548{
2549    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2550    mActiveSleepTimeUs = activeSleepTimeUs();
2551    mIdleSleepTimeUs = idleSleepTimeUs();
2552}
2553
2554void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2555{
2556    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2557            this,  streamType, mTracks.size());
2558    Mutex::Autolock _l(mLock);
2559
2560    size_t size = mTracks.size();
2561    for (size_t i = 0; i < size; i++) {
2562        sp<Track> t = mTracks[i];
2563        if (t->streamType() == streamType && t->isExternalTrack()) {
2564            t->invalidate();
2565        }
2566    }
2567}
2568
2569status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2570{
2571    int session = chain->sessionId();
2572    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2573            ? mEffectBuffer : mSinkBuffer);
2574    bool ownsBuffer = false;
2575
2576    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2577    if (session > 0) {
2578        // Only one effect chain can be present in direct output thread and it uses
2579        // the sink buffer as input
2580        if (mType != DIRECT) {
2581            size_t numSamples = mNormalFrameCount * mChannelCount;
2582            buffer = new int16_t[numSamples];
2583            memset(buffer, 0, numSamples * sizeof(int16_t));
2584            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2585            ownsBuffer = true;
2586        }
2587
2588        // Attach all tracks with same session ID to this chain.
2589        for (size_t i = 0; i < mTracks.size(); ++i) {
2590            sp<Track> track = mTracks[i];
2591            if (session == track->sessionId()) {
2592                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2593                        buffer);
2594                track->setMainBuffer(buffer);
2595                chain->incTrackCnt();
2596            }
2597        }
2598
2599        // indicate all active tracks in the chain
2600        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2601            sp<Track> track = mActiveTracks[i].promote();
2602            if (track == 0) {
2603                continue;
2604            }
2605            if (session == track->sessionId()) {
2606                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2607                chain->incActiveTrackCnt();
2608            }
2609        }
2610    }
2611    chain->setThread(this);
2612    chain->setInBuffer(buffer, ownsBuffer);
2613    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2614            ? mEffectBuffer : mSinkBuffer));
2615    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2616    // chains list in order to be processed last as it contains output stage effects
2617    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2618    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2619    // after track specific effects and before output stage
2620    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2621    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2622    // Effect chain for other sessions are inserted at beginning of effect
2623    // chains list to be processed before output mix effects. Relative order between other
2624    // sessions is not important
2625    size_t size = mEffectChains.size();
2626    size_t i = 0;
2627    for (i = 0; i < size; i++) {
2628        if (mEffectChains[i]->sessionId() < session) {
2629            break;
2630        }
2631    }
2632    mEffectChains.insertAt(chain, i);
2633    checkSuspendOnAddEffectChain_l(chain);
2634
2635    return NO_ERROR;
2636}
2637
2638size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2639{
2640    int session = chain->sessionId();
2641
2642    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2643
2644    for (size_t i = 0; i < mEffectChains.size(); i++) {
2645        if (chain == mEffectChains[i]) {
2646            mEffectChains.removeAt(i);
2647            // detach all active tracks from the chain
2648            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2649                sp<Track> track = mActiveTracks[i].promote();
2650                if (track == 0) {
2651                    continue;
2652                }
2653                if (session == track->sessionId()) {
2654                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2655                            chain.get(), session);
2656                    chain->decActiveTrackCnt();
2657                }
2658            }
2659
2660            // detach all tracks with same session ID from this chain
2661            for (size_t i = 0; i < mTracks.size(); ++i) {
2662                sp<Track> track = mTracks[i];
2663                if (session == track->sessionId()) {
2664                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2665                    chain->decTrackCnt();
2666                }
2667            }
2668            break;
2669        }
2670    }
2671    return mEffectChains.size();
2672}
2673
2674status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2675        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2676{
2677    Mutex::Autolock _l(mLock);
2678    return attachAuxEffect_l(track, EffectId);
2679}
2680
2681status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2682        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2683{
2684    status_t status = NO_ERROR;
2685
2686    if (EffectId == 0) {
2687        track->setAuxBuffer(0, NULL);
2688    } else {
2689        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2690        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2691        if (effect != 0) {
2692            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2693                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2694            } else {
2695                status = INVALID_OPERATION;
2696            }
2697        } else {
2698            status = BAD_VALUE;
2699        }
2700    }
2701    return status;
2702}
2703
2704void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2705{
2706    for (size_t i = 0; i < mTracks.size(); ++i) {
2707        sp<Track> track = mTracks[i];
2708        if (track->auxEffectId() == effectId) {
2709            attachAuxEffect_l(track, 0);
2710        }
2711    }
2712}
2713
2714bool AudioFlinger::PlaybackThread::threadLoop()
2715{
2716    Vector< sp<Track> > tracksToRemove;
2717
2718    mStandbyTimeNs = systemTime();
2719
2720    // MIXER
2721    nsecs_t lastWarning = 0;
2722
2723    // DUPLICATING
2724    // FIXME could this be made local to while loop?
2725    writeFrames = 0;
2726
2727    int lastGeneration = 0;
2728
2729    cacheParameters_l();
2730    mSleepTimeUs = mIdleSleepTimeUs;
2731
2732    if (mType == MIXER) {
2733        sleepTimeShift = 0;
2734    }
2735
2736    CpuStats cpuStats;
2737    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2738
2739    acquireWakeLock();
2740
2741    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2742    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2743    // and then that string will be logged at the next convenient opportunity.
2744    const char *logString = NULL;
2745
2746    checkSilentMode_l();
2747
2748    while (!exitPending())
2749    {
2750        cpuStats.sample(myName);
2751
2752        Vector< sp<EffectChain> > effectChains;
2753
2754        { // scope for mLock
2755
2756            Mutex::Autolock _l(mLock);
2757
2758            processConfigEvents_l();
2759
2760            if (logString != NULL) {
2761                mNBLogWriter->logTimestamp();
2762                mNBLogWriter->log(logString);
2763                logString = NULL;
2764            }
2765
2766            // Gather the framesReleased counters for all active tracks,
2767            // and latch them atomically with the timestamp.
2768            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2769            mLatchD.mFramesReleased.clear();
2770            size_t size = mActiveTracks.size();
2771            for (size_t i = 0; i < size; i++) {
2772                sp<Track> t = mActiveTracks[i].promote();
2773                if (t != 0) {
2774                    mLatchD.mFramesReleased.add(t.get(),
2775                            t->mAudioTrackServerProxy->framesReleased());
2776                }
2777            }
2778            if (mLatchDValid) {
2779                mLatchQ = mLatchD;
2780                mLatchDValid = false;
2781                mLatchQValid = true;
2782            }
2783
2784            saveOutputTracks();
2785            if (mSignalPending) {
2786                // A signal was raised while we were unlocked
2787                mSignalPending = false;
2788            } else if (waitingAsyncCallback_l()) {
2789                if (exitPending()) {
2790                    break;
2791                }
2792                bool released = false;
2793                // The following works around a bug in the offload driver. Ideally we would release
2794                // the wake lock every time, but that causes the last offload buffer(s) to be
2795                // dropped while the device is on battery, so we need to hold a wake lock during
2796                // the drain phase.
2797                if (mBytesRemaining && !(mDrainSequence & 1)) {
2798                    releaseWakeLock_l();
2799                    released = true;
2800                }
2801                mWakeLockUids.clear();
2802                mActiveTracksGeneration++;
2803                ALOGV("wait async completion");
2804                mWaitWorkCV.wait(mLock);
2805                ALOGV("async completion/wake");
2806                if (released) {
2807                    acquireWakeLock_l();
2808                }
2809                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2810                mSleepTimeUs = 0;
2811
2812                continue;
2813            }
2814            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2815                                   isSuspended()) {
2816                // put audio hardware into standby after short delay
2817                if (shouldStandby_l()) {
2818
2819                    threadLoop_standby();
2820
2821                    mStandby = true;
2822                }
2823
2824                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2825                    // we're about to wait, flush the binder command buffer
2826                    IPCThreadState::self()->flushCommands();
2827
2828                    clearOutputTracks();
2829
2830                    if (exitPending()) {
2831                        break;
2832                    }
2833
2834                    releaseWakeLock_l();
2835                    mWakeLockUids.clear();
2836                    mActiveTracksGeneration++;
2837                    // wait until we have something to do...
2838                    ALOGV("%s going to sleep", myName.string());
2839                    mWaitWorkCV.wait(mLock);
2840                    ALOGV("%s waking up", myName.string());
2841                    acquireWakeLock_l();
2842
2843                    mMixerStatus = MIXER_IDLE;
2844                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2845                    mBytesWritten = 0;
2846                    mBytesRemaining = 0;
2847                    checkSilentMode_l();
2848
2849                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2850                    mSleepTimeUs = mIdleSleepTimeUs;
2851                    if (mType == MIXER) {
2852                        sleepTimeShift = 0;
2853                    }
2854
2855                    continue;
2856                }
2857            }
2858            // mMixerStatusIgnoringFastTracks is also updated internally
2859            mMixerStatus = prepareTracks_l(&tracksToRemove);
2860
2861            // compare with previously applied list
2862            if (lastGeneration != mActiveTracksGeneration) {
2863                // update wakelock
2864                updateWakeLockUids_l(mWakeLockUids);
2865                lastGeneration = mActiveTracksGeneration;
2866            }
2867
2868            // prevent any changes in effect chain list and in each effect chain
2869            // during mixing and effect process as the audio buffers could be deleted
2870            // or modified if an effect is created or deleted
2871            lockEffectChains_l(effectChains);
2872        } // mLock scope ends
2873
2874        if (mBytesRemaining == 0) {
2875            mCurrentWriteLength = 0;
2876            if (mMixerStatus == MIXER_TRACKS_READY) {
2877                // threadLoop_mix() sets mCurrentWriteLength
2878                threadLoop_mix();
2879            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2880                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2881                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
2882                // must be written to HAL
2883                threadLoop_sleepTime();
2884                if (mSleepTimeUs == 0) {
2885                    mCurrentWriteLength = mSinkBufferSize;
2886                }
2887            }
2888            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2889            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
2890            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2891            // or mSinkBuffer (if there are no effects).
2892            //
2893            // This is done pre-effects computation; if effects change to
2894            // support higher precision, this needs to move.
2895            //
2896            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2897            // TODO use mSleepTimeUs == 0 as an additional condition.
2898            if (mMixerBufferValid) {
2899                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2900                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2901
2902                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2903                        mNormalFrameCount * mChannelCount);
2904            }
2905
2906            mBytesRemaining = mCurrentWriteLength;
2907            if (isSuspended()) {
2908                mSleepTimeUs = suspendSleepTimeUs();
2909                // simulate write to HAL when suspended
2910                mBytesWritten += mSinkBufferSize;
2911                mBytesRemaining = 0;
2912            }
2913
2914            // only process effects if we're going to write
2915            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
2916                for (size_t i = 0; i < effectChains.size(); i ++) {
2917                    effectChains[i]->process_l();
2918                }
2919            }
2920        }
2921        // Process effect chains for offloaded thread even if no audio
2922        // was read from audio track: process only updates effect state
2923        // and thus does have to be synchronized with audio writes but may have
2924        // to be called while waiting for async write callback
2925        if (mType == OFFLOAD) {
2926            for (size_t i = 0; i < effectChains.size(); i ++) {
2927                effectChains[i]->process_l();
2928            }
2929        }
2930
2931        // Only if the Effects buffer is enabled and there is data in the
2932        // Effects buffer (buffer valid), we need to
2933        // copy into the sink buffer.
2934        // TODO use mSleepTimeUs == 0 as an additional condition.
2935        if (mEffectBufferValid) {
2936            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2937            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2938                    mNormalFrameCount * mChannelCount);
2939        }
2940
2941        // enable changes in effect chain
2942        unlockEffectChains(effectChains);
2943
2944        if (!waitingAsyncCallback()) {
2945            // mSleepTimeUs == 0 means we must write to audio hardware
2946            if (mSleepTimeUs == 0) {
2947                ssize_t ret = 0;
2948                if (mBytesRemaining) {
2949                    ret = threadLoop_write();
2950                    if (ret < 0) {
2951                        mBytesRemaining = 0;
2952                    } else {
2953                        mBytesWritten += ret;
2954                        mBytesRemaining -= ret;
2955                    }
2956                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2957                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2958                    threadLoop_drain();
2959                }
2960                if (mType == MIXER && !mStandby) {
2961                    // write blocked detection
2962                    nsecs_t now = systemTime();
2963                    nsecs_t delta = now - mLastWriteTime;
2964                    if (delta > maxPeriod) {
2965                        mNumDelayedWrites++;
2966                        if ((now - lastWarning) > kWarningThrottleNs) {
2967                            ATRACE_NAME("underrun");
2968                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2969                                    ns2ms(delta), mNumDelayedWrites, this);
2970                            lastWarning = now;
2971                        }
2972                    }
2973
2974                    if (mThreadThrottle
2975                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
2976                            && ret > 0) {                         // we wrote something
2977                        // Limit MixerThread data processing to no more than twice the
2978                        // expected processing rate.
2979                        //
2980                        // This helps prevent underruns with NuPlayer and other applications
2981                        // which may set up buffers that are close to the minimum size, or use
2982                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
2983                        //
2984                        // The throttle smooths out sudden large data drains from the device,
2985                        // e.g. when it comes out of standby, which often causes problems with
2986                        // (1) mixer threads without a fast mixer (which has its own warm-up)
2987                        // (2) minimum buffer sized tracks (even if the track is full,
2988                        //     the app won't fill fast enough to handle the sudden draw).
2989
2990                        const int32_t deltaMs = delta / 1000000;
2991                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
2992                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
2993                            usleep(throttleMs * 1000);
2994                            // notify of throttle start on verbose log
2995                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
2996                                    "mixer(%p) throttle begin:"
2997                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
2998                                    this, ret, deltaMs, throttleMs);
2999                            mThreadThrottleTimeMs += throttleMs;
3000                        } else {
3001                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3002                            if (diff > 0) {
3003                                // notify of throttle end on debug log
3004                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3005                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3006                            }
3007                        }
3008                    }
3009                }
3010
3011            } else {
3012                ATRACE_BEGIN("sleep");
3013                usleep(mSleepTimeUs);
3014                ATRACE_END();
3015            }
3016        }
3017
3018        // Finally let go of removed track(s), without the lock held
3019        // since we can't guarantee the destructors won't acquire that
3020        // same lock.  This will also mutate and push a new fast mixer state.
3021        threadLoop_removeTracks(tracksToRemove);
3022        tracksToRemove.clear();
3023
3024        // FIXME I don't understand the need for this here;
3025        //       it was in the original code but maybe the
3026        //       assignment in saveOutputTracks() makes this unnecessary?
3027        clearOutputTracks();
3028
3029        // Effect chains will be actually deleted here if they were removed from
3030        // mEffectChains list during mixing or effects processing
3031        effectChains.clear();
3032
3033        // FIXME Note that the above .clear() is no longer necessary since effectChains
3034        // is now local to this block, but will keep it for now (at least until merge done).
3035    }
3036
3037    threadLoop_exit();
3038
3039    if (!mStandby) {
3040        threadLoop_standby();
3041        mStandby = true;
3042    }
3043
3044    releaseWakeLock();
3045    mWakeLockUids.clear();
3046    mActiveTracksGeneration++;
3047
3048    ALOGV("Thread %p type %d exiting", this, mType);
3049    return false;
3050}
3051
3052// removeTracks_l() must be called with ThreadBase::mLock held
3053void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3054{
3055    size_t count = tracksToRemove.size();
3056    if (count > 0) {
3057        for (size_t i=0 ; i<count ; i++) {
3058            const sp<Track>& track = tracksToRemove.itemAt(i);
3059            mActiveTracks.remove(track);
3060            mWakeLockUids.remove(track->uid());
3061            mActiveTracksGeneration++;
3062            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3063            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3064            if (chain != 0) {
3065                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3066                        track->sessionId());
3067                chain->decActiveTrackCnt();
3068            }
3069            if (track->isTerminated()) {
3070                removeTrack_l(track);
3071            }
3072        }
3073    }
3074
3075}
3076
3077status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3078{
3079    if (mNormalSink != 0) {
3080        return mNormalSink->getTimestamp(timestamp);
3081    }
3082    if ((mType == OFFLOAD || mType == DIRECT)
3083            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3084        uint64_t position64;
3085        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3086        if (ret == 0) {
3087            timestamp.mPosition = (uint32_t)position64;
3088            return NO_ERROR;
3089        }
3090    }
3091    return INVALID_OPERATION;
3092}
3093
3094status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3095                                                          audio_patch_handle_t *handle)
3096{
3097    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3098    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3099    if (mFastMixer != 0) {
3100        FastMixerStateQueue *sq = mFastMixer->sq();
3101        FastMixerState *state = sq->begin();
3102        if (!(state->mCommand & FastMixerState::IDLE)) {
3103            previousCommand = state->mCommand;
3104            state->mCommand = FastMixerState::HOT_IDLE;
3105            sq->end();
3106            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3107        } else {
3108            sq->end(false /*didModify*/);
3109        }
3110    }
3111    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3112
3113    if (!(previousCommand & FastMixerState::IDLE)) {
3114        ALOG_ASSERT(mFastMixer != 0);
3115        FastMixerStateQueue *sq = mFastMixer->sq();
3116        FastMixerState *state = sq->begin();
3117        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3118        state->mCommand = previousCommand;
3119        sq->end();
3120        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3121    }
3122
3123    return status;
3124}
3125
3126status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3127                                                          audio_patch_handle_t *handle)
3128{
3129    status_t status = NO_ERROR;
3130
3131    // store new device and send to effects
3132    audio_devices_t type = AUDIO_DEVICE_NONE;
3133    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3134        type |= patch->sinks[i].ext.device.type;
3135    }
3136
3137#ifdef ADD_BATTERY_DATA
3138    // when changing the audio output device, call addBatteryData to notify
3139    // the change
3140    if (mOutDevice != type) {
3141        uint32_t params = 0;
3142        // check whether speaker is on
3143        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3144            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3145        }
3146
3147        audio_devices_t deviceWithoutSpeaker
3148            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3149        // check if any other device (except speaker) is on
3150        if (type & deviceWithoutSpeaker) {
3151            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3152        }
3153
3154        if (params != 0) {
3155            addBatteryData(params);
3156        }
3157    }
3158#endif
3159
3160    for (size_t i = 0; i < mEffectChains.size(); i++) {
3161        mEffectChains[i]->setDevice_l(type);
3162    }
3163
3164    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3165    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3166    bool configChanged = mPrevOutDevice != type;
3167    mOutDevice = type;
3168    mPatch = *patch;
3169
3170    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3171        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3172        status = hwDevice->create_audio_patch(hwDevice,
3173                                               patch->num_sources,
3174                                               patch->sources,
3175                                               patch->num_sinks,
3176                                               patch->sinks,
3177                                               handle);
3178    } else {
3179        char *address;
3180        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3181            //FIXME: we only support address on first sink with HAL version < 3.0
3182            address = audio_device_address_to_parameter(
3183                                                        patch->sinks[0].ext.device.type,
3184                                                        patch->sinks[0].ext.device.address);
3185        } else {
3186            address = (char *)calloc(1, 1);
3187        }
3188        AudioParameter param = AudioParameter(String8(address));
3189        free(address);
3190        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3191        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3192                param.toString().string());
3193        *handle = AUDIO_PATCH_HANDLE_NONE;
3194    }
3195    if (configChanged) {
3196        mPrevOutDevice = type;
3197        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3198    }
3199    return status;
3200}
3201
3202status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3203{
3204    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3205    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3206    if (mFastMixer != 0) {
3207        FastMixerStateQueue *sq = mFastMixer->sq();
3208        FastMixerState *state = sq->begin();
3209        if (!(state->mCommand & FastMixerState::IDLE)) {
3210            previousCommand = state->mCommand;
3211            state->mCommand = FastMixerState::HOT_IDLE;
3212            sq->end();
3213            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3214        } else {
3215            sq->end(false /*didModify*/);
3216        }
3217    }
3218
3219    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3220
3221    if (!(previousCommand & FastMixerState::IDLE)) {
3222        ALOG_ASSERT(mFastMixer != 0);
3223        FastMixerStateQueue *sq = mFastMixer->sq();
3224        FastMixerState *state = sq->begin();
3225        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3226        state->mCommand = previousCommand;
3227        sq->end();
3228        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3229    }
3230
3231    return status;
3232}
3233
3234status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3235{
3236    status_t status = NO_ERROR;
3237
3238    mOutDevice = AUDIO_DEVICE_NONE;
3239
3240    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3241        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3242        status = hwDevice->release_audio_patch(hwDevice, handle);
3243    } else {
3244        AudioParameter param;
3245        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3246        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3247                param.toString().string());
3248    }
3249    return status;
3250}
3251
3252void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3253{
3254    Mutex::Autolock _l(mLock);
3255    mTracks.add(track);
3256}
3257
3258void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3259{
3260    Mutex::Autolock _l(mLock);
3261    destroyTrack_l(track);
3262}
3263
3264void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3265{
3266    ThreadBase::getAudioPortConfig(config);
3267    config->role = AUDIO_PORT_ROLE_SOURCE;
3268    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3269    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3270}
3271
3272// ----------------------------------------------------------------------------
3273
3274AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3275        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3276    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3277        // mAudioMixer below
3278        // mFastMixer below
3279        mFastMixerFutex(0)
3280        // mOutputSink below
3281        // mPipeSink below
3282        // mNormalSink below
3283{
3284    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3285    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3286            "mFrameCount=%d, mNormalFrameCount=%d",
3287            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3288            mNormalFrameCount);
3289    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3290
3291    if (type == DUPLICATING) {
3292        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3293        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3294        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3295        return;
3296    }
3297    // create an NBAIO sink for the HAL output stream, and negotiate
3298    mOutputSink = new AudioStreamOutSink(output->stream);
3299    size_t numCounterOffers = 0;
3300    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3301    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3302    ALOG_ASSERT(index == 0);
3303
3304    // initialize fast mixer depending on configuration
3305    bool initFastMixer;
3306    switch (kUseFastMixer) {
3307    case FastMixer_Never:
3308        initFastMixer = false;
3309        break;
3310    case FastMixer_Always:
3311        initFastMixer = true;
3312        break;
3313    case FastMixer_Static:
3314    case FastMixer_Dynamic:
3315        initFastMixer = mFrameCount < mNormalFrameCount;
3316        break;
3317    }
3318    if (initFastMixer) {
3319        audio_format_t fastMixerFormat;
3320        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3321            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3322        } else {
3323            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3324        }
3325        if (mFormat != fastMixerFormat) {
3326            // change our Sink format to accept our intermediate precision
3327            mFormat = fastMixerFormat;
3328            free(mSinkBuffer);
3329            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3330            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3331            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3332        }
3333
3334        // create a MonoPipe to connect our submix to FastMixer
3335        NBAIO_Format format = mOutputSink->format();
3336        NBAIO_Format origformat = format;
3337        // adjust format to match that of the Fast Mixer
3338        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3339        format.mFormat = fastMixerFormat;
3340        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3341
3342        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3343        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3344        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3345        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3346        const NBAIO_Format offers[1] = {format};
3347        size_t numCounterOffers = 0;
3348        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3349        ALOG_ASSERT(index == 0);
3350        monoPipe->setAvgFrames((mScreenState & 1) ?
3351                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3352        mPipeSink = monoPipe;
3353
3354#ifdef TEE_SINK
3355        if (mTeeSinkOutputEnabled) {
3356            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3357            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3358            const NBAIO_Format offers2[1] = {origformat};
3359            numCounterOffers = 0;
3360            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3361            ALOG_ASSERT(index == 0);
3362            mTeeSink = teeSink;
3363            PipeReader *teeSource = new PipeReader(*teeSink);
3364            numCounterOffers = 0;
3365            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3366            ALOG_ASSERT(index == 0);
3367            mTeeSource = teeSource;
3368        }
3369#endif
3370
3371        // create fast mixer and configure it initially with just one fast track for our submix
3372        mFastMixer = new FastMixer();
3373        FastMixerStateQueue *sq = mFastMixer->sq();
3374#ifdef STATE_QUEUE_DUMP
3375        sq->setObserverDump(&mStateQueueObserverDump);
3376        sq->setMutatorDump(&mStateQueueMutatorDump);
3377#endif
3378        FastMixerState *state = sq->begin();
3379        FastTrack *fastTrack = &state->mFastTracks[0];
3380        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3381        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3382        fastTrack->mVolumeProvider = NULL;
3383        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3384        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3385        fastTrack->mGeneration++;
3386        state->mFastTracksGen++;
3387        state->mTrackMask = 1;
3388        // fast mixer will use the HAL output sink
3389        state->mOutputSink = mOutputSink.get();
3390        state->mOutputSinkGen++;
3391        state->mFrameCount = mFrameCount;
3392        state->mCommand = FastMixerState::COLD_IDLE;
3393        // already done in constructor initialization list
3394        //mFastMixerFutex = 0;
3395        state->mColdFutexAddr = &mFastMixerFutex;
3396        state->mColdGen++;
3397        state->mDumpState = &mFastMixerDumpState;
3398#ifdef TEE_SINK
3399        state->mTeeSink = mTeeSink.get();
3400#endif
3401        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3402        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3403        sq->end();
3404        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3405
3406        // start the fast mixer
3407        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3408        pid_t tid = mFastMixer->getTid();
3409        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3410
3411#ifdef AUDIO_WATCHDOG
3412        // create and start the watchdog
3413        mAudioWatchdog = new AudioWatchdog();
3414        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3415        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3416        tid = mAudioWatchdog->getTid();
3417        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3418#endif
3419
3420    }
3421
3422    switch (kUseFastMixer) {
3423    case FastMixer_Never:
3424    case FastMixer_Dynamic:
3425        mNormalSink = mOutputSink;
3426        break;
3427    case FastMixer_Always:
3428        mNormalSink = mPipeSink;
3429        break;
3430    case FastMixer_Static:
3431        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3432        break;
3433    }
3434}
3435
3436AudioFlinger::MixerThread::~MixerThread()
3437{
3438    if (mFastMixer != 0) {
3439        FastMixerStateQueue *sq = mFastMixer->sq();
3440        FastMixerState *state = sq->begin();
3441        if (state->mCommand == FastMixerState::COLD_IDLE) {
3442            int32_t old = android_atomic_inc(&mFastMixerFutex);
3443            if (old == -1) {
3444                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3445            }
3446        }
3447        state->mCommand = FastMixerState::EXIT;
3448        sq->end();
3449        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3450        mFastMixer->join();
3451        // Though the fast mixer thread has exited, it's state queue is still valid.
3452        // We'll use that extract the final state which contains one remaining fast track
3453        // corresponding to our sub-mix.
3454        state = sq->begin();
3455        ALOG_ASSERT(state->mTrackMask == 1);
3456        FastTrack *fastTrack = &state->mFastTracks[0];
3457        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3458        delete fastTrack->mBufferProvider;
3459        sq->end(false /*didModify*/);
3460        mFastMixer.clear();
3461#ifdef AUDIO_WATCHDOG
3462        if (mAudioWatchdog != 0) {
3463            mAudioWatchdog->requestExit();
3464            mAudioWatchdog->requestExitAndWait();
3465            mAudioWatchdog.clear();
3466        }
3467#endif
3468    }
3469    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3470    delete mAudioMixer;
3471}
3472
3473
3474uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3475{
3476    if (mFastMixer != 0) {
3477        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3478        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3479    }
3480    return latency;
3481}
3482
3483
3484void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3485{
3486    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3487}
3488
3489ssize_t AudioFlinger::MixerThread::threadLoop_write()
3490{
3491    // FIXME we should only do one push per cycle; confirm this is true
3492    // Start the fast mixer if it's not already running
3493    if (mFastMixer != 0) {
3494        FastMixerStateQueue *sq = mFastMixer->sq();
3495        FastMixerState *state = sq->begin();
3496        if (state->mCommand != FastMixerState::MIX_WRITE &&
3497                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3498            if (state->mCommand == FastMixerState::COLD_IDLE) {
3499
3500                // FIXME workaround for first HAL write being CPU bound on some devices
3501                ATRACE_BEGIN("write");
3502                mOutput->write((char *)mSinkBuffer, 0);
3503                ATRACE_END();
3504
3505                int32_t old = android_atomic_inc(&mFastMixerFutex);
3506                if (old == -1) {
3507                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3508                }
3509#ifdef AUDIO_WATCHDOG
3510                if (mAudioWatchdog != 0) {
3511                    mAudioWatchdog->resume();
3512                }
3513#endif
3514            }
3515            state->mCommand = FastMixerState::MIX_WRITE;
3516#ifdef FAST_THREAD_STATISTICS
3517            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3518                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3519#endif
3520            sq->end();
3521            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3522            if (kUseFastMixer == FastMixer_Dynamic) {
3523                mNormalSink = mPipeSink;
3524            }
3525        } else {
3526            sq->end(false /*didModify*/);
3527        }
3528    }
3529    return PlaybackThread::threadLoop_write();
3530}
3531
3532void AudioFlinger::MixerThread::threadLoop_standby()
3533{
3534    // Idle the fast mixer if it's currently running
3535    if (mFastMixer != 0) {
3536        FastMixerStateQueue *sq = mFastMixer->sq();
3537        FastMixerState *state = sq->begin();
3538        if (!(state->mCommand & FastMixerState::IDLE)) {
3539            state->mCommand = FastMixerState::COLD_IDLE;
3540            state->mColdFutexAddr = &mFastMixerFutex;
3541            state->mColdGen++;
3542            mFastMixerFutex = 0;
3543            sq->end();
3544            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3545            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3546            if (kUseFastMixer == FastMixer_Dynamic) {
3547                mNormalSink = mOutputSink;
3548            }
3549#ifdef AUDIO_WATCHDOG
3550            if (mAudioWatchdog != 0) {
3551                mAudioWatchdog->pause();
3552            }
3553#endif
3554        } else {
3555            sq->end(false /*didModify*/);
3556        }
3557    }
3558    PlaybackThread::threadLoop_standby();
3559}
3560
3561bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3562{
3563    return false;
3564}
3565
3566bool AudioFlinger::PlaybackThread::shouldStandby_l()
3567{
3568    return !mStandby;
3569}
3570
3571bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3572{
3573    Mutex::Autolock _l(mLock);
3574    return waitingAsyncCallback_l();
3575}
3576
3577// shared by MIXER and DIRECT, overridden by DUPLICATING
3578void AudioFlinger::PlaybackThread::threadLoop_standby()
3579{
3580    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3581    mOutput->standby();
3582    if (mUseAsyncWrite != 0) {
3583        // discard any pending drain or write ack by incrementing sequence
3584        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3585        mDrainSequence = (mDrainSequence + 2) & ~1;
3586        ALOG_ASSERT(mCallbackThread != 0);
3587        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3588        mCallbackThread->setDraining(mDrainSequence);
3589    }
3590    mHwPaused = false;
3591}
3592
3593void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3594{
3595    ALOGV("signal playback thread");
3596    broadcast_l();
3597}
3598
3599void AudioFlinger::MixerThread::threadLoop_mix()
3600{
3601    // obtain the presentation timestamp of the next output buffer
3602    int64_t pts;
3603    status_t status = INVALID_OPERATION;
3604
3605    if (mNormalSink != 0) {
3606        status = mNormalSink->getNextWriteTimestamp(&pts);
3607    } else {
3608        status = mOutputSink->getNextWriteTimestamp(&pts);
3609    }
3610
3611    if (status != NO_ERROR) {
3612        pts = AudioBufferProvider::kInvalidPTS;
3613    }
3614
3615    // mix buffers...
3616    mAudioMixer->process(pts);
3617    mCurrentWriteLength = mSinkBufferSize;
3618    // increase sleep time progressively when application underrun condition clears.
3619    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3620    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3621    // such that we would underrun the audio HAL.
3622    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3623        sleepTimeShift--;
3624    }
3625    mSleepTimeUs = 0;
3626    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3627    //TODO: delay standby when effects have a tail
3628
3629}
3630
3631void AudioFlinger::MixerThread::threadLoop_sleepTime()
3632{
3633    // If no tracks are ready, sleep once for the duration of an output
3634    // buffer size, then write 0s to the output
3635    if (mSleepTimeUs == 0) {
3636        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3637            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3638            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3639                mSleepTimeUs = kMinThreadSleepTimeUs;
3640            }
3641            // reduce sleep time in case of consecutive application underruns to avoid
3642            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3643            // duration we would end up writing less data than needed by the audio HAL if
3644            // the condition persists.
3645            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3646                sleepTimeShift++;
3647            }
3648        } else {
3649            mSleepTimeUs = mIdleSleepTimeUs;
3650        }
3651    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3652        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3653        // before effects processing or output.
3654        if (mMixerBufferValid) {
3655            memset(mMixerBuffer, 0, mMixerBufferSize);
3656        } else {
3657            memset(mSinkBuffer, 0, mSinkBufferSize);
3658        }
3659        mSleepTimeUs = 0;
3660        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3661                "anticipated start");
3662    }
3663    // TODO add standby time extension fct of effect tail
3664}
3665
3666// prepareTracks_l() must be called with ThreadBase::mLock held
3667AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3668        Vector< sp<Track> > *tracksToRemove)
3669{
3670
3671    mixer_state mixerStatus = MIXER_IDLE;
3672    // find out which tracks need to be processed
3673    size_t count = mActiveTracks.size();
3674    size_t mixedTracks = 0;
3675    size_t tracksWithEffect = 0;
3676    // counts only _active_ fast tracks
3677    size_t fastTracks = 0;
3678    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3679
3680    float masterVolume = mMasterVolume;
3681    bool masterMute = mMasterMute;
3682
3683    if (masterMute) {
3684        masterVolume = 0;
3685    }
3686    // Delegate master volume control to effect in output mix effect chain if needed
3687    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3688    if (chain != 0) {
3689        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3690        chain->setVolume_l(&v, &v);
3691        masterVolume = (float)((v + (1 << 23)) >> 24);
3692        chain.clear();
3693    }
3694
3695    // prepare a new state to push
3696    FastMixerStateQueue *sq = NULL;
3697    FastMixerState *state = NULL;
3698    bool didModify = false;
3699    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3700    if (mFastMixer != 0) {
3701        sq = mFastMixer->sq();
3702        state = sq->begin();
3703    }
3704
3705    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3706    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3707
3708    for (size_t i=0 ; i<count ; i++) {
3709        const sp<Track> t = mActiveTracks[i].promote();
3710        if (t == 0) {
3711            continue;
3712        }
3713
3714        // this const just means the local variable doesn't change
3715        Track* const track = t.get();
3716
3717        // process fast tracks
3718        if (track->isFastTrack()) {
3719
3720            // It's theoretically possible (though unlikely) for a fast track to be created
3721            // and then removed within the same normal mix cycle.  This is not a problem, as
3722            // the track never becomes active so it's fast mixer slot is never touched.
3723            // The converse, of removing an (active) track and then creating a new track
3724            // at the identical fast mixer slot within the same normal mix cycle,
3725            // is impossible because the slot isn't marked available until the end of each cycle.
3726            int j = track->mFastIndex;
3727            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3728            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3729            FastTrack *fastTrack = &state->mFastTracks[j];
3730
3731            // Determine whether the track is currently in underrun condition,
3732            // and whether it had a recent underrun.
3733            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3734            FastTrackUnderruns underruns = ftDump->mUnderruns;
3735            uint32_t recentFull = (underruns.mBitFields.mFull -
3736                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3737            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3738                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3739            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3740                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3741            uint32_t recentUnderruns = recentPartial + recentEmpty;
3742            track->mObservedUnderruns = underruns;
3743            // don't count underruns that occur while stopping or pausing
3744            // or stopped which can occur when flush() is called while active
3745            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3746                    recentUnderruns > 0) {
3747                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3748                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3749            }
3750
3751            // This is similar to the state machine for normal tracks,
3752            // with a few modifications for fast tracks.
3753            bool isActive = true;
3754            switch (track->mState) {
3755            case TrackBase::STOPPING_1:
3756                // track stays active in STOPPING_1 state until first underrun
3757                if (recentUnderruns > 0 || track->isTerminated()) {
3758                    track->mState = TrackBase::STOPPING_2;
3759                }
3760                break;
3761            case TrackBase::PAUSING:
3762                // ramp down is not yet implemented
3763                track->setPaused();
3764                break;
3765            case TrackBase::RESUMING:
3766                // ramp up is not yet implemented
3767                track->mState = TrackBase::ACTIVE;
3768                break;
3769            case TrackBase::ACTIVE:
3770                if (recentFull > 0 || recentPartial > 0) {
3771                    // track has provided at least some frames recently: reset retry count
3772                    track->mRetryCount = kMaxTrackRetries;
3773                }
3774                if (recentUnderruns == 0) {
3775                    // no recent underruns: stay active
3776                    break;
3777                }
3778                // there has recently been an underrun of some kind
3779                if (track->sharedBuffer() == 0) {
3780                    // were any of the recent underruns "empty" (no frames available)?
3781                    if (recentEmpty == 0) {
3782                        // no, then ignore the partial underruns as they are allowed indefinitely
3783                        break;
3784                    }
3785                    // there has recently been an "empty" underrun: decrement the retry counter
3786                    if (--(track->mRetryCount) > 0) {
3787                        break;
3788                    }
3789                    // indicate to client process that the track was disabled because of underrun;
3790                    // it will then automatically call start() when data is available
3791                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3792                    // remove from active list, but state remains ACTIVE [confusing but true]
3793                    isActive = false;
3794                    break;
3795                }
3796                // fall through
3797            case TrackBase::STOPPING_2:
3798            case TrackBase::PAUSED:
3799            case TrackBase::STOPPED:
3800            case TrackBase::FLUSHED:   // flush() while active
3801                // Check for presentation complete if track is inactive
3802                // We have consumed all the buffers of this track.
3803                // This would be incomplete if we auto-paused on underrun
3804                {
3805                    size_t audioHALFrames =
3806                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3807                    size_t framesWritten = mBytesWritten / mFrameSize;
3808                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3809                        // track stays in active list until presentation is complete
3810                        break;
3811                    }
3812                }
3813                if (track->isStopping_2()) {
3814                    track->mState = TrackBase::STOPPED;
3815                }
3816                if (track->isStopped()) {
3817                    // Can't reset directly, as fast mixer is still polling this track
3818                    //   track->reset();
3819                    // So instead mark this track as needing to be reset after push with ack
3820                    resetMask |= 1 << i;
3821                }
3822                isActive = false;
3823                break;
3824            case TrackBase::IDLE:
3825            default:
3826                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3827            }
3828
3829            if (isActive) {
3830                // was it previously inactive?
3831                if (!(state->mTrackMask & (1 << j))) {
3832                    ExtendedAudioBufferProvider *eabp = track;
3833                    VolumeProvider *vp = track;
3834                    fastTrack->mBufferProvider = eabp;
3835                    fastTrack->mVolumeProvider = vp;
3836                    fastTrack->mChannelMask = track->mChannelMask;
3837                    fastTrack->mFormat = track->mFormat;
3838                    fastTrack->mGeneration++;
3839                    state->mTrackMask |= 1 << j;
3840                    didModify = true;
3841                    // no acknowledgement required for newly active tracks
3842                }
3843                // cache the combined master volume and stream type volume for fast mixer; this
3844                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3845                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3846                ++fastTracks;
3847            } else {
3848                // was it previously active?
3849                if (state->mTrackMask & (1 << j)) {
3850                    fastTrack->mBufferProvider = NULL;
3851                    fastTrack->mGeneration++;
3852                    state->mTrackMask &= ~(1 << j);
3853                    didModify = true;
3854                    // If any fast tracks were removed, we must wait for acknowledgement
3855                    // because we're about to decrement the last sp<> on those tracks.
3856                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3857                } else {
3858                    LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3859                }
3860                tracksToRemove->add(track);
3861                // Avoids a misleading display in dumpsys
3862                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3863            }
3864            continue;
3865        }
3866
3867        {   // local variable scope to avoid goto warning
3868
3869        audio_track_cblk_t* cblk = track->cblk();
3870
3871        // The first time a track is added we wait
3872        // for all its buffers to be filled before processing it
3873        int name = track->name();
3874        // make sure that we have enough frames to mix one full buffer.
3875        // enforce this condition only once to enable draining the buffer in case the client
3876        // app does not call stop() and relies on underrun to stop:
3877        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3878        // during last round
3879        size_t desiredFrames;
3880        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3881        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3882
3883        desiredFrames = sourceFramesNeededWithTimestretch(
3884                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3885        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3886        // add frames already consumed but not yet released by the resampler
3887        // because mAudioTrackServerProxy->framesReady() will include these frames
3888        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3889
3890        uint32_t minFrames = 1;
3891        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3892                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3893            minFrames = desiredFrames;
3894        }
3895
3896        size_t framesReady = track->framesReady();
3897        if (ATRACE_ENABLED()) {
3898            // I wish we had formatted trace names
3899            char traceName[16];
3900            strcpy(traceName, "nRdy");
3901            int name = track->name();
3902            if (AudioMixer::TRACK0 <= name &&
3903                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3904                name -= AudioMixer::TRACK0;
3905                traceName[4] = (name / 10) + '0';
3906                traceName[5] = (name % 10) + '0';
3907            } else {
3908                traceName[4] = '?';
3909                traceName[5] = '?';
3910            }
3911            traceName[6] = '\0';
3912            ATRACE_INT(traceName, framesReady);
3913        }
3914        if ((framesReady >= minFrames) && track->isReady() &&
3915                !track->isPaused() && !track->isTerminated())
3916        {
3917            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3918
3919            mixedTracks++;
3920
3921            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3922            // there is an effect chain connected to the track
3923            chain.clear();
3924            if (track->mainBuffer() != mSinkBuffer &&
3925                    track->mainBuffer() != mMixerBuffer) {
3926                if (mEffectBufferEnabled) {
3927                    mEffectBufferValid = true; // Later can set directly.
3928                }
3929                chain = getEffectChain_l(track->sessionId());
3930                // Delegate volume control to effect in track effect chain if needed
3931                if (chain != 0) {
3932                    tracksWithEffect++;
3933                } else {
3934                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3935                            "session %d",
3936                            name, track->sessionId());
3937                }
3938            }
3939
3940
3941            int param = AudioMixer::VOLUME;
3942            if (track->mFillingUpStatus == Track::FS_FILLED) {
3943                // no ramp for the first volume setting
3944                track->mFillingUpStatus = Track::FS_ACTIVE;
3945                if (track->mState == TrackBase::RESUMING) {
3946                    track->mState = TrackBase::ACTIVE;
3947                    param = AudioMixer::RAMP_VOLUME;
3948                }
3949                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3950            // FIXME should not make a decision based on mServer
3951            } else if (cblk->mServer != 0) {
3952                // If the track is stopped before the first frame was mixed,
3953                // do not apply ramp
3954                param = AudioMixer::RAMP_VOLUME;
3955            }
3956
3957            // compute volume for this track
3958            uint32_t vl, vr;       // in U8.24 integer format
3959            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3960            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3961                vl = vr = 0;
3962                vlf = vrf = vaf = 0.;
3963                if (track->isPausing()) {
3964                    track->setPaused();
3965                }
3966            } else {
3967
3968                // read original volumes with volume control
3969                float typeVolume = mStreamTypes[track->streamType()].volume;
3970                float v = masterVolume * typeVolume;
3971                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3972                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3973                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3974                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3975                // track volumes come from shared memory, so can't be trusted and must be clamped
3976                if (vlf > GAIN_FLOAT_UNITY) {
3977                    ALOGV("Track left volume out of range: %.3g", vlf);
3978                    vlf = GAIN_FLOAT_UNITY;
3979                }
3980                if (vrf > GAIN_FLOAT_UNITY) {
3981                    ALOGV("Track right volume out of range: %.3g", vrf);
3982                    vrf = GAIN_FLOAT_UNITY;
3983                }
3984                // now apply the master volume and stream type volume
3985                vlf *= v;
3986                vrf *= v;
3987                // assuming master volume and stream type volume each go up to 1.0,
3988                // then derive vl and vr as U8.24 versions for the effect chain
3989                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3990                vl = (uint32_t) (scaleto8_24 * vlf);
3991                vr = (uint32_t) (scaleto8_24 * vrf);
3992                // vl and vr are now in U8.24 format
3993                uint16_t sendLevel = proxy->getSendLevel_U4_12();
3994                // send level comes from shared memory and so may be corrupt
3995                if (sendLevel > MAX_GAIN_INT) {
3996                    ALOGV("Track send level out of range: %04X", sendLevel);
3997                    sendLevel = MAX_GAIN_INT;
3998                }
3999                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4000                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4001            }
4002
4003            // Delegate volume control to effect in track effect chain if needed
4004            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4005                // Do not ramp volume if volume is controlled by effect
4006                param = AudioMixer::VOLUME;
4007                // Update remaining floating point volume levels
4008                vlf = (float)vl / (1 << 24);
4009                vrf = (float)vr / (1 << 24);
4010                track->mHasVolumeController = true;
4011            } else {
4012                // force no volume ramp when volume controller was just disabled or removed
4013                // from effect chain to avoid volume spike
4014                if (track->mHasVolumeController) {
4015                    param = AudioMixer::VOLUME;
4016                }
4017                track->mHasVolumeController = false;
4018            }
4019
4020            // XXX: these things DON'T need to be done each time
4021            mAudioMixer->setBufferProvider(name, track);
4022            mAudioMixer->enable(name);
4023
4024            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4025            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4026            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4027            mAudioMixer->setParameter(
4028                name,
4029                AudioMixer::TRACK,
4030                AudioMixer::FORMAT, (void *)track->format());
4031            mAudioMixer->setParameter(
4032                name,
4033                AudioMixer::TRACK,
4034                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4035            mAudioMixer->setParameter(
4036                name,
4037                AudioMixer::TRACK,
4038                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4039            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4040            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4041            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4042            if (reqSampleRate == 0) {
4043                reqSampleRate = mSampleRate;
4044            } else if (reqSampleRate > maxSampleRate) {
4045                reqSampleRate = maxSampleRate;
4046            }
4047            mAudioMixer->setParameter(
4048                name,
4049                AudioMixer::RESAMPLE,
4050                AudioMixer::SAMPLE_RATE,
4051                (void *)(uintptr_t)reqSampleRate);
4052
4053            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4054            mAudioMixer->setParameter(
4055                name,
4056                AudioMixer::TIMESTRETCH,
4057                AudioMixer::PLAYBACK_RATE,
4058                &playbackRate);
4059
4060            /*
4061             * Select the appropriate output buffer for the track.
4062             *
4063             * Tracks with effects go into their own effects chain buffer
4064             * and from there into either mEffectBuffer or mSinkBuffer.
4065             *
4066             * Other tracks can use mMixerBuffer for higher precision
4067             * channel accumulation.  If this buffer is enabled
4068             * (mMixerBufferEnabled true), then selected tracks will accumulate
4069             * into it.
4070             *
4071             */
4072            if (mMixerBufferEnabled
4073                    && (track->mainBuffer() == mSinkBuffer
4074                            || track->mainBuffer() == mMixerBuffer)) {
4075                mAudioMixer->setParameter(
4076                        name,
4077                        AudioMixer::TRACK,
4078                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4079                mAudioMixer->setParameter(
4080                        name,
4081                        AudioMixer::TRACK,
4082                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4083                // TODO: override track->mainBuffer()?
4084                mMixerBufferValid = true;
4085            } else {
4086                mAudioMixer->setParameter(
4087                        name,
4088                        AudioMixer::TRACK,
4089                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4090                mAudioMixer->setParameter(
4091                        name,
4092                        AudioMixer::TRACK,
4093                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4094            }
4095            mAudioMixer->setParameter(
4096                name,
4097                AudioMixer::TRACK,
4098                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4099
4100            // reset retry count
4101            track->mRetryCount = kMaxTrackRetries;
4102
4103            // If one track is ready, set the mixer ready if:
4104            //  - the mixer was not ready during previous round OR
4105            //  - no other track is not ready
4106            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4107                    mixerStatus != MIXER_TRACKS_ENABLED) {
4108                mixerStatus = MIXER_TRACKS_READY;
4109            }
4110        } else {
4111            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4112                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4113                        track, framesReady, desiredFrames);
4114                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4115            }
4116            // clear effect chain input buffer if an active track underruns to avoid sending
4117            // previous audio buffer again to effects
4118            chain = getEffectChain_l(track->sessionId());
4119            if (chain != 0) {
4120                chain->clearInputBuffer();
4121            }
4122
4123            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4124            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4125                    track->isStopped() || track->isPaused()) {
4126                // We have consumed all the buffers of this track.
4127                // Remove it from the list of active tracks.
4128                // TODO: use actual buffer filling status instead of latency when available from
4129                // audio HAL
4130                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4131                size_t framesWritten = mBytesWritten / mFrameSize;
4132                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4133                    if (track->isStopped()) {
4134                        track->reset();
4135                    }
4136                    tracksToRemove->add(track);
4137                }
4138            } else {
4139                // No buffers for this track. Give it a few chances to
4140                // fill a buffer, then remove it from active list.
4141                if (--(track->mRetryCount) <= 0) {
4142                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4143                    tracksToRemove->add(track);
4144                    // indicate to client process that the track was disabled because of underrun;
4145                    // it will then automatically call start() when data is available
4146                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4147                // If one track is not ready, mark the mixer also not ready if:
4148                //  - the mixer was ready during previous round OR
4149                //  - no other track is ready
4150                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4151                                mixerStatus != MIXER_TRACKS_READY) {
4152                    mixerStatus = MIXER_TRACKS_ENABLED;
4153                }
4154            }
4155            mAudioMixer->disable(name);
4156        }
4157
4158        }   // local variable scope to avoid goto warning
4159track_is_ready: ;
4160
4161    }
4162
4163    // Push the new FastMixer state if necessary
4164    bool pauseAudioWatchdog = false;
4165    if (didModify) {
4166        state->mFastTracksGen++;
4167        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4168        if (kUseFastMixer == FastMixer_Dynamic &&
4169                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4170            state->mCommand = FastMixerState::COLD_IDLE;
4171            state->mColdFutexAddr = &mFastMixerFutex;
4172            state->mColdGen++;
4173            mFastMixerFutex = 0;
4174            if (kUseFastMixer == FastMixer_Dynamic) {
4175                mNormalSink = mOutputSink;
4176            }
4177            // If we go into cold idle, need to wait for acknowledgement
4178            // so that fast mixer stops doing I/O.
4179            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4180            pauseAudioWatchdog = true;
4181        }
4182    }
4183    if (sq != NULL) {
4184        sq->end(didModify);
4185        sq->push(block);
4186    }
4187#ifdef AUDIO_WATCHDOG
4188    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4189        mAudioWatchdog->pause();
4190    }
4191#endif
4192
4193    // Now perform the deferred reset on fast tracks that have stopped
4194    while (resetMask != 0) {
4195        size_t i = __builtin_ctz(resetMask);
4196        ALOG_ASSERT(i < count);
4197        resetMask &= ~(1 << i);
4198        sp<Track> t = mActiveTracks[i].promote();
4199        if (t == 0) {
4200            continue;
4201        }
4202        Track* track = t.get();
4203        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4204        track->reset();
4205    }
4206
4207    // remove all the tracks that need to be...
4208    removeTracks_l(*tracksToRemove);
4209
4210    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4211        mEffectBufferValid = true;
4212    }
4213
4214    if (mEffectBufferValid) {
4215        // as long as there are effects we should clear the effects buffer, to avoid
4216        // passing a non-clean buffer to the effect chain
4217        memset(mEffectBuffer, 0, mEffectBufferSize);
4218    }
4219    // sink or mix buffer must be cleared if all tracks are connected to an
4220    // effect chain as in this case the mixer will not write to the sink or mix buffer
4221    // and track effects will accumulate into it
4222    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4223            (mixedTracks == 0 && fastTracks > 0))) {
4224        // FIXME as a performance optimization, should remember previous zero status
4225        if (mMixerBufferValid) {
4226            memset(mMixerBuffer, 0, mMixerBufferSize);
4227            // TODO: In testing, mSinkBuffer below need not be cleared because
4228            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4229            // after mixing.
4230            //
4231            // To enforce this guarantee:
4232            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4233            // (mixedTracks == 0 && fastTracks > 0))
4234            // must imply MIXER_TRACKS_READY.
4235            // Later, we may clear buffers regardless, and skip much of this logic.
4236        }
4237        // FIXME as a performance optimization, should remember previous zero status
4238        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4239    }
4240
4241    // if any fast tracks, then status is ready
4242    mMixerStatusIgnoringFastTracks = mixerStatus;
4243    if (fastTracks > 0) {
4244        mixerStatus = MIXER_TRACKS_READY;
4245    }
4246    return mixerStatus;
4247}
4248
4249// getTrackName_l() must be called with ThreadBase::mLock held
4250int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4251        audio_format_t format, int sessionId)
4252{
4253    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4254}
4255
4256// deleteTrackName_l() must be called with ThreadBase::mLock held
4257void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4258{
4259    ALOGV("remove track (%d) and delete from mixer", name);
4260    mAudioMixer->deleteTrackName(name);
4261}
4262
4263// checkForNewParameter_l() must be called with ThreadBase::mLock held
4264bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4265                                                       status_t& status)
4266{
4267    bool reconfig = false;
4268
4269    status = NO_ERROR;
4270
4271    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4272    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4273    if (mFastMixer != 0) {
4274        FastMixerStateQueue *sq = mFastMixer->sq();
4275        FastMixerState *state = sq->begin();
4276        if (!(state->mCommand & FastMixerState::IDLE)) {
4277            previousCommand = state->mCommand;
4278            state->mCommand = FastMixerState::HOT_IDLE;
4279            sq->end();
4280            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4281        } else {
4282            sq->end(false /*didModify*/);
4283        }
4284    }
4285
4286    AudioParameter param = AudioParameter(keyValuePair);
4287    int value;
4288    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4289        reconfig = true;
4290    }
4291    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4292        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4293            status = BAD_VALUE;
4294        } else {
4295            // no need to save value, since it's constant
4296            reconfig = true;
4297        }
4298    }
4299    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4300        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4301            status = BAD_VALUE;
4302        } else {
4303            // no need to save value, since it's constant
4304            reconfig = true;
4305        }
4306    }
4307    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4308        // do not accept frame count changes if tracks are open as the track buffer
4309        // size depends on frame count and correct behavior would not be guaranteed
4310        // if frame count is changed after track creation
4311        if (!mTracks.isEmpty()) {
4312            status = INVALID_OPERATION;
4313        } else {
4314            reconfig = true;
4315        }
4316    }
4317    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4318#ifdef ADD_BATTERY_DATA
4319        // when changing the audio output device, call addBatteryData to notify
4320        // the change
4321        if (mOutDevice != value) {
4322            uint32_t params = 0;
4323            // check whether speaker is on
4324            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4325                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4326            }
4327
4328            audio_devices_t deviceWithoutSpeaker
4329                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4330            // check if any other device (except speaker) is on
4331            if (value & deviceWithoutSpeaker) {
4332                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4333            }
4334
4335            if (params != 0) {
4336                addBatteryData(params);
4337            }
4338        }
4339#endif
4340
4341        // forward device change to effects that have requested to be
4342        // aware of attached audio device.
4343        if (value != AUDIO_DEVICE_NONE) {
4344            mOutDevice = value;
4345            for (size_t i = 0; i < mEffectChains.size(); i++) {
4346                mEffectChains[i]->setDevice_l(mOutDevice);
4347            }
4348        }
4349    }
4350
4351    if (status == NO_ERROR) {
4352        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4353                                                keyValuePair.string());
4354        if (!mStandby && status == INVALID_OPERATION) {
4355            mOutput->standby();
4356            mStandby = true;
4357            mBytesWritten = 0;
4358            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4359                                                   keyValuePair.string());
4360        }
4361        if (status == NO_ERROR && reconfig) {
4362            readOutputParameters_l();
4363            delete mAudioMixer;
4364            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4365            for (size_t i = 0; i < mTracks.size() ; i++) {
4366                int name = getTrackName_l(mTracks[i]->mChannelMask,
4367                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4368                if (name < 0) {
4369                    break;
4370                }
4371                mTracks[i]->mName = name;
4372            }
4373            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4374        }
4375    }
4376
4377    if (!(previousCommand & FastMixerState::IDLE)) {
4378        ALOG_ASSERT(mFastMixer != 0);
4379        FastMixerStateQueue *sq = mFastMixer->sq();
4380        FastMixerState *state = sq->begin();
4381        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4382        state->mCommand = previousCommand;
4383        sq->end();
4384        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4385    }
4386
4387    return reconfig;
4388}
4389
4390
4391void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4392{
4393    const size_t SIZE = 256;
4394    char buffer[SIZE];
4395    String8 result;
4396
4397    PlaybackThread::dumpInternals(fd, args);
4398    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4399    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4400
4401    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4402    const FastMixerDumpState copy(mFastMixerDumpState);
4403    copy.dump(fd);
4404
4405#ifdef STATE_QUEUE_DUMP
4406    // Similar for state queue
4407    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4408    observerCopy.dump(fd);
4409    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4410    mutatorCopy.dump(fd);
4411#endif
4412
4413#ifdef TEE_SINK
4414    // Write the tee output to a .wav file
4415    dumpTee(fd, mTeeSource, mId);
4416#endif
4417
4418#ifdef AUDIO_WATCHDOG
4419    if (mAudioWatchdog != 0) {
4420        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4421        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4422        wdCopy.dump(fd);
4423    }
4424#endif
4425}
4426
4427uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4428{
4429    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4430}
4431
4432uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4433{
4434    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4435}
4436
4437void AudioFlinger::MixerThread::cacheParameters_l()
4438{
4439    PlaybackThread::cacheParameters_l();
4440
4441    // FIXME: Relaxed timing because of a certain device that can't meet latency
4442    // Should be reduced to 2x after the vendor fixes the driver issue
4443    // increase threshold again due to low power audio mode. The way this warning
4444    // threshold is calculated and its usefulness should be reconsidered anyway.
4445    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4446}
4447
4448// ----------------------------------------------------------------------------
4449
4450AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4451        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4452    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4453        // mLeftVolFloat, mRightVolFloat
4454{
4455}
4456
4457AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4458        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4459        ThreadBase::type_t type, bool systemReady)
4460    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4461        // mLeftVolFloat, mRightVolFloat
4462{
4463}
4464
4465AudioFlinger::DirectOutputThread::~DirectOutputThread()
4466{
4467}
4468
4469void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4470{
4471    audio_track_cblk_t* cblk = track->cblk();
4472    float left, right;
4473
4474    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4475        left = right = 0;
4476    } else {
4477        float typeVolume = mStreamTypes[track->streamType()].volume;
4478        float v = mMasterVolume * typeVolume;
4479        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4480        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4481        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4482        if (left > GAIN_FLOAT_UNITY) {
4483            left = GAIN_FLOAT_UNITY;
4484        }
4485        left *= v;
4486        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4487        if (right > GAIN_FLOAT_UNITY) {
4488            right = GAIN_FLOAT_UNITY;
4489        }
4490        right *= v;
4491    }
4492
4493    if (lastTrack) {
4494        if (left != mLeftVolFloat || right != mRightVolFloat) {
4495            mLeftVolFloat = left;
4496            mRightVolFloat = right;
4497
4498            // Convert volumes from float to 8.24
4499            uint32_t vl = (uint32_t)(left * (1 << 24));
4500            uint32_t vr = (uint32_t)(right * (1 << 24));
4501
4502            // Delegate volume control to effect in track effect chain if needed
4503            // only one effect chain can be present on DirectOutputThread, so if
4504            // there is one, the track is connected to it
4505            if (!mEffectChains.isEmpty()) {
4506                mEffectChains[0]->setVolume_l(&vl, &vr);
4507                left = (float)vl / (1 << 24);
4508                right = (float)vr / (1 << 24);
4509            }
4510            if (mOutput->stream->set_volume) {
4511                mOutput->stream->set_volume(mOutput->stream, left, right);
4512            }
4513        }
4514    }
4515}
4516
4517void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4518{
4519    sp<Track> previousTrack = mPreviousTrack.promote();
4520    sp<Track> latestTrack = mLatestActiveTrack.promote();
4521
4522    if (previousTrack != 0 && latestTrack != 0) {
4523        if (mType == DIRECT) {
4524            if (previousTrack.get() != latestTrack.get()) {
4525                mFlushPending = true;
4526            }
4527        } else /* mType == OFFLOAD */ {
4528            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4529                mFlushPending = true;
4530            }
4531        }
4532    }
4533    PlaybackThread::onAddNewTrack_l();
4534}
4535
4536AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4537    Vector< sp<Track> > *tracksToRemove
4538)
4539{
4540    size_t count = mActiveTracks.size();
4541    mixer_state mixerStatus = MIXER_IDLE;
4542    bool doHwPause = false;
4543    bool doHwResume = false;
4544
4545    // find out which tracks need to be processed
4546    for (size_t i = 0; i < count; i++) {
4547        sp<Track> t = mActiveTracks[i].promote();
4548        // The track died recently
4549        if (t == 0) {
4550            continue;
4551        }
4552
4553        if (t->isInvalid()) {
4554            ALOGW("An invalidated track shouldn't be in active list");
4555            tracksToRemove->add(t);
4556            continue;
4557        }
4558
4559        Track* const track = t.get();
4560        audio_track_cblk_t* cblk = track->cblk();
4561        // Only consider last track started for volume and mixer state control.
4562        // In theory an older track could underrun and restart after the new one starts
4563        // but as we only care about the transition phase between two tracks on a
4564        // direct output, it is not a problem to ignore the underrun case.
4565        sp<Track> l = mLatestActiveTrack.promote();
4566        bool last = l.get() == track;
4567
4568        if (track->isPausing()) {
4569            track->setPaused();
4570            if (mHwSupportsPause && last && !mHwPaused) {
4571                doHwPause = true;
4572                mHwPaused = true;
4573            }
4574            tracksToRemove->add(track);
4575        } else if (track->isFlushPending()) {
4576            track->flushAck();
4577            if (last) {
4578                mFlushPending = true;
4579            }
4580        } else if (track->isResumePending()) {
4581            track->resumeAck();
4582            if (last && mHwPaused) {
4583                doHwResume = true;
4584                mHwPaused = false;
4585            }
4586        }
4587
4588        // The first time a track is added we wait
4589        // for all its buffers to be filled before processing it.
4590        // Allow draining the buffer in case the client
4591        // app does not call stop() and relies on underrun to stop:
4592        // hence the test on (track->mRetryCount > 1).
4593        // If retryCount<=1 then track is about to underrun and be removed.
4594        // Do not use a high threshold for compressed audio.
4595        uint32_t minFrames;
4596        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4597            && (track->mRetryCount > 1) && audio_is_linear_pcm(mFormat)) {
4598            minFrames = mNormalFrameCount;
4599        } else {
4600            minFrames = 1;
4601        }
4602
4603        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4604                !track->isStopping_2() && !track->isStopped())
4605        {
4606            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4607
4608            if (track->mFillingUpStatus == Track::FS_FILLED) {
4609                track->mFillingUpStatus = Track::FS_ACTIVE;
4610                // make sure processVolume_l() will apply new volume even if 0
4611                mLeftVolFloat = mRightVolFloat = -1.0;
4612                if (!mHwSupportsPause) {
4613                    track->resumeAck();
4614                }
4615            }
4616
4617            // compute volume for this track
4618            processVolume_l(track, last);
4619            if (last) {
4620                sp<Track> previousTrack = mPreviousTrack.promote();
4621                if (previousTrack != 0) {
4622                    if (track != previousTrack.get()) {
4623                        // Flush any data still being written from last track
4624                        mBytesRemaining = 0;
4625                        // Invalidate previous track to force a seek when resuming.
4626                        previousTrack->invalidate();
4627                    }
4628                }
4629                mPreviousTrack = track;
4630
4631                // reset retry count
4632                track->mRetryCount = kMaxTrackRetriesDirect;
4633                mActiveTrack = t;
4634                mixerStatus = MIXER_TRACKS_READY;
4635                if (mHwPaused) {
4636                    doHwResume = true;
4637                    mHwPaused = false;
4638                }
4639            }
4640        } else {
4641            // clear effect chain input buffer if the last active track started underruns
4642            // to avoid sending previous audio buffer again to effects
4643            if (!mEffectChains.isEmpty() && last) {
4644                mEffectChains[0]->clearInputBuffer();
4645            }
4646            if (track->isStopping_1()) {
4647                track->mState = TrackBase::STOPPING_2;
4648                if (last && mHwPaused) {
4649                     doHwResume = true;
4650                     mHwPaused = false;
4651                 }
4652            }
4653            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4654                    track->isStopping_2() || track->isPaused()) {
4655                // We have consumed all the buffers of this track.
4656                // Remove it from the list of active tracks.
4657                size_t audioHALFrames;
4658                if (audio_is_linear_pcm(mFormat)) {
4659                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4660                } else {
4661                    audioHALFrames = 0;
4662                }
4663
4664                size_t framesWritten = mBytesWritten / mFrameSize;
4665                if (mStandby || !last ||
4666                        track->presentationComplete(framesWritten, audioHALFrames)) {
4667                    if (track->isStopping_2()) {
4668                        track->mState = TrackBase::STOPPED;
4669                    }
4670                    if (track->isStopped()) {
4671                        track->reset();
4672                    }
4673                    tracksToRemove->add(track);
4674                }
4675            } else {
4676                // No buffers for this track. Give it a few chances to
4677                // fill a buffer, then remove it from active list.
4678                // Only consider last track started for mixer state control
4679                if (--(track->mRetryCount) <= 0) {
4680                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4681                    tracksToRemove->add(track);
4682                    // indicate to client process that the track was disabled because of underrun;
4683                    // it will then automatically call start() when data is available
4684                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4685                } else if (last) {
4686                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4687                            "minFrames = %u, mFormat = %#x",
4688                            track->framesReady(), minFrames, mFormat);
4689                    mixerStatus = MIXER_TRACKS_ENABLED;
4690                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4691                        doHwPause = true;
4692                        mHwPaused = true;
4693                    }
4694                }
4695            }
4696        }
4697    }
4698
4699    // if an active track did not command a flush, check for pending flush on stopped tracks
4700    if (!mFlushPending) {
4701        for (size_t i = 0; i < mTracks.size(); i++) {
4702            if (mTracks[i]->isFlushPending()) {
4703                mTracks[i]->flushAck();
4704                mFlushPending = true;
4705            }
4706        }
4707    }
4708
4709    // make sure the pause/flush/resume sequence is executed in the right order.
4710    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4711    // before flush and then resume HW. This can happen in case of pause/flush/resume
4712    // if resume is received before pause is executed.
4713    if (mHwSupportsPause && !mStandby &&
4714            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4715        mOutput->stream->pause(mOutput->stream);
4716    }
4717    if (mFlushPending) {
4718        flushHw_l();
4719    }
4720    if (mHwSupportsPause && !mStandby && doHwResume) {
4721        mOutput->stream->resume(mOutput->stream);
4722    }
4723    // remove all the tracks that need to be...
4724    removeTracks_l(*tracksToRemove);
4725
4726    return mixerStatus;
4727}
4728
4729void AudioFlinger::DirectOutputThread::threadLoop_mix()
4730{
4731    size_t frameCount = mFrameCount;
4732    int8_t *curBuf = (int8_t *)mSinkBuffer;
4733    // output audio to hardware
4734    while (frameCount) {
4735        AudioBufferProvider::Buffer buffer;
4736        buffer.frameCount = frameCount;
4737        status_t status = mActiveTrack->getNextBuffer(&buffer);
4738        if (status != NO_ERROR || buffer.raw == NULL) {
4739            memset(curBuf, 0, frameCount * mFrameSize);
4740            break;
4741        }
4742        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4743        frameCount -= buffer.frameCount;
4744        curBuf += buffer.frameCount * mFrameSize;
4745        mActiveTrack->releaseBuffer(&buffer);
4746    }
4747    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4748    mSleepTimeUs = 0;
4749    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4750    mActiveTrack.clear();
4751}
4752
4753void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4754{
4755    // do not write to HAL when paused
4756    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4757        mSleepTimeUs = mIdleSleepTimeUs;
4758        return;
4759    }
4760    if (mSleepTimeUs == 0) {
4761        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4762            mSleepTimeUs = mActiveSleepTimeUs;
4763        } else {
4764            mSleepTimeUs = mIdleSleepTimeUs;
4765        }
4766    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4767        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4768        mSleepTimeUs = 0;
4769    }
4770}
4771
4772void AudioFlinger::DirectOutputThread::threadLoop_exit()
4773{
4774    {
4775        Mutex::Autolock _l(mLock);
4776        for (size_t i = 0; i < mTracks.size(); i++) {
4777            if (mTracks[i]->isFlushPending()) {
4778                mTracks[i]->flushAck();
4779                mFlushPending = true;
4780            }
4781        }
4782        if (mFlushPending) {
4783            flushHw_l();
4784        }
4785    }
4786    PlaybackThread::threadLoop_exit();
4787}
4788
4789// must be called with thread mutex locked
4790bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4791{
4792    bool trackPaused = false;
4793    bool trackStopped = false;
4794
4795    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4796    // after a timeout and we will enter standby then.
4797    if (mTracks.size() > 0) {
4798        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4799        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4800                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4801    }
4802
4803    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4804}
4805
4806// getTrackName_l() must be called with ThreadBase::mLock held
4807int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4808        audio_format_t format __unused, int sessionId __unused)
4809{
4810    return 0;
4811}
4812
4813// deleteTrackName_l() must be called with ThreadBase::mLock held
4814void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4815{
4816}
4817
4818// checkForNewParameter_l() must be called with ThreadBase::mLock held
4819bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4820                                                              status_t& status)
4821{
4822    bool reconfig = false;
4823
4824    status = NO_ERROR;
4825
4826    AudioParameter param = AudioParameter(keyValuePair);
4827    int value;
4828    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4829        // forward device change to effects that have requested to be
4830        // aware of attached audio device.
4831        if (value != AUDIO_DEVICE_NONE) {
4832            mOutDevice = value;
4833            for (size_t i = 0; i < mEffectChains.size(); i++) {
4834                mEffectChains[i]->setDevice_l(mOutDevice);
4835            }
4836        }
4837    }
4838    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4839        // do not accept frame count changes if tracks are open as the track buffer
4840        // size depends on frame count and correct behavior would not be garantied
4841        // if frame count is changed after track creation
4842        if (!mTracks.isEmpty()) {
4843            status = INVALID_OPERATION;
4844        } else {
4845            reconfig = true;
4846        }
4847    }
4848    if (status == NO_ERROR) {
4849        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4850                                                keyValuePair.string());
4851        if (!mStandby && status == INVALID_OPERATION) {
4852            mOutput->standby();
4853            mStandby = true;
4854            mBytesWritten = 0;
4855            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4856                                                   keyValuePair.string());
4857        }
4858        if (status == NO_ERROR && reconfig) {
4859            readOutputParameters_l();
4860            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4861        }
4862    }
4863
4864    return reconfig;
4865}
4866
4867uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4868{
4869    uint32_t time;
4870    if (audio_is_linear_pcm(mFormat)) {
4871        time = PlaybackThread::activeSleepTimeUs();
4872    } else {
4873        time = 10000;
4874    }
4875    return time;
4876}
4877
4878uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4879{
4880    uint32_t time;
4881    if (audio_is_linear_pcm(mFormat)) {
4882        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4883    } else {
4884        time = 10000;
4885    }
4886    return time;
4887}
4888
4889uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4890{
4891    uint32_t time;
4892    if (audio_is_linear_pcm(mFormat)) {
4893        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4894    } else {
4895        time = 10000;
4896    }
4897    return time;
4898}
4899
4900void AudioFlinger::DirectOutputThread::cacheParameters_l()
4901{
4902    PlaybackThread::cacheParameters_l();
4903
4904    // use shorter standby delay as on normal output to release
4905    // hardware resources as soon as possible
4906    // no delay on outputs with HW A/V sync
4907    if (usesHwAvSync()) {
4908        mStandbyDelayNs = 0;
4909    } else if ((mType == OFFLOAD) && !audio_is_linear_pcm(mFormat)) {
4910        mStandbyDelayNs = kOffloadStandbyDelayNs;
4911    } else {
4912        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
4913    }
4914}
4915
4916void AudioFlinger::DirectOutputThread::flushHw_l()
4917{
4918    mOutput->flush();
4919    mHwPaused = false;
4920    mFlushPending = false;
4921}
4922
4923// ----------------------------------------------------------------------------
4924
4925AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4926        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4927    :   Thread(false /*canCallJava*/),
4928        mPlaybackThread(playbackThread),
4929        mWriteAckSequence(0),
4930        mDrainSequence(0)
4931{
4932}
4933
4934AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4935{
4936}
4937
4938void AudioFlinger::AsyncCallbackThread::onFirstRef()
4939{
4940    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4941}
4942
4943bool AudioFlinger::AsyncCallbackThread::threadLoop()
4944{
4945    while (!exitPending()) {
4946        uint32_t writeAckSequence;
4947        uint32_t drainSequence;
4948
4949        {
4950            Mutex::Autolock _l(mLock);
4951            while (!((mWriteAckSequence & 1) ||
4952                     (mDrainSequence & 1) ||
4953                     exitPending())) {
4954                mWaitWorkCV.wait(mLock);
4955            }
4956
4957            if (exitPending()) {
4958                break;
4959            }
4960            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4961                  mWriteAckSequence, mDrainSequence);
4962            writeAckSequence = mWriteAckSequence;
4963            mWriteAckSequence &= ~1;
4964            drainSequence = mDrainSequence;
4965            mDrainSequence &= ~1;
4966        }
4967        {
4968            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4969            if (playbackThread != 0) {
4970                if (writeAckSequence & 1) {
4971                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4972                }
4973                if (drainSequence & 1) {
4974                    playbackThread->resetDraining(drainSequence >> 1);
4975                }
4976            }
4977        }
4978    }
4979    return false;
4980}
4981
4982void AudioFlinger::AsyncCallbackThread::exit()
4983{
4984    ALOGV("AsyncCallbackThread::exit");
4985    Mutex::Autolock _l(mLock);
4986    requestExit();
4987    mWaitWorkCV.broadcast();
4988}
4989
4990void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4991{
4992    Mutex::Autolock _l(mLock);
4993    // bit 0 is cleared
4994    mWriteAckSequence = sequence << 1;
4995}
4996
4997void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4998{
4999    Mutex::Autolock _l(mLock);
5000    // ignore unexpected callbacks
5001    if (mWriteAckSequence & 2) {
5002        mWriteAckSequence |= 1;
5003        mWaitWorkCV.signal();
5004    }
5005}
5006
5007void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5008{
5009    Mutex::Autolock _l(mLock);
5010    // bit 0 is cleared
5011    mDrainSequence = sequence << 1;
5012}
5013
5014void AudioFlinger::AsyncCallbackThread::resetDraining()
5015{
5016    Mutex::Autolock _l(mLock);
5017    // ignore unexpected callbacks
5018    if (mDrainSequence & 2) {
5019        mDrainSequence |= 1;
5020        mWaitWorkCV.signal();
5021    }
5022}
5023
5024
5025// ----------------------------------------------------------------------------
5026AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5027        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5028    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5029        mPausedBytesRemaining(0)
5030{
5031    //FIXME: mStandby should be set to true by ThreadBase constructor
5032    mStandby = true;
5033}
5034
5035void AudioFlinger::OffloadThread::threadLoop_exit()
5036{
5037    if (mFlushPending || mHwPaused) {
5038        // If a flush is pending or track was paused, just discard buffered data
5039        flushHw_l();
5040    } else {
5041        mMixerStatus = MIXER_DRAIN_ALL;
5042        threadLoop_drain();
5043    }
5044    if (mUseAsyncWrite) {
5045        ALOG_ASSERT(mCallbackThread != 0);
5046        mCallbackThread->exit();
5047    }
5048    PlaybackThread::threadLoop_exit();
5049}
5050
5051AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5052    Vector< sp<Track> > *tracksToRemove
5053)
5054{
5055    size_t count = mActiveTracks.size();
5056
5057    mixer_state mixerStatus = MIXER_IDLE;
5058    bool doHwPause = false;
5059    bool doHwResume = false;
5060
5061    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5062
5063    // find out which tracks need to be processed
5064    for (size_t i = 0; i < count; i++) {
5065        sp<Track> t = mActiveTracks[i].promote();
5066        // The track died recently
5067        if (t == 0) {
5068            continue;
5069        }
5070        Track* const track = t.get();
5071        audio_track_cblk_t* cblk = track->cblk();
5072        // Only consider last track started for volume and mixer state control.
5073        // In theory an older track could underrun and restart after the new one starts
5074        // but as we only care about the transition phase between two tracks on a
5075        // direct output, it is not a problem to ignore the underrun case.
5076        sp<Track> l = mLatestActiveTrack.promote();
5077        bool last = l.get() == track;
5078
5079        if (track->isInvalid()) {
5080            ALOGW("An invalidated track shouldn't be in active list");
5081            tracksToRemove->add(track);
5082            continue;
5083        }
5084
5085        if (track->mState == TrackBase::IDLE) {
5086            ALOGW("An idle track shouldn't be in active list");
5087            continue;
5088        }
5089
5090        if (track->isPausing()) {
5091            track->setPaused();
5092            if (last) {
5093                if (mHwSupportsPause && !mHwPaused) {
5094                    doHwPause = true;
5095                    mHwPaused = true;
5096                }
5097                // If we were part way through writing the mixbuffer to
5098                // the HAL we must save this until we resume
5099                // BUG - this will be wrong if a different track is made active,
5100                // in that case we want to discard the pending data in the
5101                // mixbuffer and tell the client to present it again when the
5102                // track is resumed
5103                mPausedWriteLength = mCurrentWriteLength;
5104                mPausedBytesRemaining = mBytesRemaining;
5105                mBytesRemaining = 0;    // stop writing
5106            }
5107            tracksToRemove->add(track);
5108        } else if (track->isFlushPending()) {
5109            track->flushAck();
5110            if (last) {
5111                mFlushPending = true;
5112            }
5113        } else if (track->isResumePending()){
5114            track->resumeAck();
5115            if (last) {
5116                if (mPausedBytesRemaining) {
5117                    // Need to continue write that was interrupted
5118                    mCurrentWriteLength = mPausedWriteLength;
5119                    mBytesRemaining = mPausedBytesRemaining;
5120                    mPausedBytesRemaining = 0;
5121                }
5122                if (mHwPaused) {
5123                    doHwResume = true;
5124                    mHwPaused = false;
5125                    // threadLoop_mix() will handle the case that we need to
5126                    // resume an interrupted write
5127                }
5128                // enable write to audio HAL
5129                mSleepTimeUs = 0;
5130
5131                // Do not handle new data in this iteration even if track->framesReady()
5132                mixerStatus = MIXER_TRACKS_ENABLED;
5133            }
5134        }  else if (track->framesReady() && track->isReady() &&
5135                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5136            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5137            if (track->mFillingUpStatus == Track::FS_FILLED) {
5138                track->mFillingUpStatus = Track::FS_ACTIVE;
5139                // make sure processVolume_l() will apply new volume even if 0
5140                mLeftVolFloat = mRightVolFloat = -1.0;
5141            }
5142
5143            if (last) {
5144                sp<Track> previousTrack = mPreviousTrack.promote();
5145                if (previousTrack != 0) {
5146                    if (track != previousTrack.get()) {
5147                        // Flush any data still being written from last track
5148                        mBytesRemaining = 0;
5149                        if (mPausedBytesRemaining) {
5150                            // Last track was paused so we also need to flush saved
5151                            // mixbuffer state and invalidate track so that it will
5152                            // re-submit that unwritten data when it is next resumed
5153                            mPausedBytesRemaining = 0;
5154                            // Invalidate is a bit drastic - would be more efficient
5155                            // to have a flag to tell client that some of the
5156                            // previously written data was lost
5157                            previousTrack->invalidate();
5158                        }
5159                        // flush data already sent to the DSP if changing audio session as audio
5160                        // comes from a different source. Also invalidate previous track to force a
5161                        // seek when resuming.
5162                        if (previousTrack->sessionId() != track->sessionId()) {
5163                            previousTrack->invalidate();
5164                        }
5165                    }
5166                }
5167                mPreviousTrack = track;
5168                // reset retry count
5169                track->mRetryCount = kMaxTrackRetriesOffload;
5170                mActiveTrack = t;
5171                mixerStatus = MIXER_TRACKS_READY;
5172            }
5173        } else {
5174            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5175            if (track->isStopping_1()) {
5176                // Hardware buffer can hold a large amount of audio so we must
5177                // wait for all current track's data to drain before we say
5178                // that the track is stopped.
5179                if (mBytesRemaining == 0) {
5180                    // Only start draining when all data in mixbuffer
5181                    // has been written
5182                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5183                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5184                    // do not drain if no data was ever sent to HAL (mStandby == true)
5185                    if (last && !mStandby) {
5186                        // do not modify drain sequence if we are already draining. This happens
5187                        // when resuming from pause after drain.
5188                        if ((mDrainSequence & 1) == 0) {
5189                            mSleepTimeUs = 0;
5190                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5191                            mixerStatus = MIXER_DRAIN_TRACK;
5192                            mDrainSequence += 2;
5193                        }
5194                        if (mHwPaused) {
5195                            // It is possible to move from PAUSED to STOPPING_1 without
5196                            // a resume so we must ensure hardware is running
5197                            doHwResume = true;
5198                            mHwPaused = false;
5199                        }
5200                    }
5201                }
5202            } else if (track->isStopping_2()) {
5203                // Drain has completed or we are in standby, signal presentation complete
5204                if (!(mDrainSequence & 1) || !last || mStandby) {
5205                    track->mState = TrackBase::STOPPED;
5206                    size_t audioHALFrames =
5207                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5208                    size_t framesWritten =
5209                            mBytesWritten / mOutput->getFrameSize();
5210                    track->presentationComplete(framesWritten, audioHALFrames);
5211                    track->reset();
5212                    tracksToRemove->add(track);
5213                }
5214            } else {
5215                // No buffers for this track. Give it a few chances to
5216                // fill a buffer, then remove it from active list.
5217                if (--(track->mRetryCount) <= 0) {
5218                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5219                          track->name());
5220                    tracksToRemove->add(track);
5221                    // indicate to client process that the track was disabled because of underrun;
5222                    // it will then automatically call start() when data is available
5223                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5224                } else if (last){
5225                    mixerStatus = MIXER_TRACKS_ENABLED;
5226                }
5227            }
5228        }
5229        // compute volume for this track
5230        processVolume_l(track, last);
5231    }
5232
5233    // make sure the pause/flush/resume sequence is executed in the right order.
5234    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5235    // before flush and then resume HW. This can happen in case of pause/flush/resume
5236    // if resume is received before pause is executed.
5237    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5238        mOutput->stream->pause(mOutput->stream);
5239    }
5240    if (mFlushPending) {
5241        flushHw_l();
5242    }
5243    if (!mStandby && doHwResume) {
5244        mOutput->stream->resume(mOutput->stream);
5245    }
5246
5247    // remove all the tracks that need to be...
5248    removeTracks_l(*tracksToRemove);
5249
5250    return mixerStatus;
5251}
5252
5253// must be called with thread mutex locked
5254bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5255{
5256    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5257          mWriteAckSequence, mDrainSequence);
5258    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5259        return true;
5260    }
5261    return false;
5262}
5263
5264bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5265{
5266    Mutex::Autolock _l(mLock);
5267    return waitingAsyncCallback_l();
5268}
5269
5270void AudioFlinger::OffloadThread::flushHw_l()
5271{
5272    DirectOutputThread::flushHw_l();
5273    // Flush anything still waiting in the mixbuffer
5274    mCurrentWriteLength = 0;
5275    mBytesRemaining = 0;
5276    mPausedWriteLength = 0;
5277    mPausedBytesRemaining = 0;
5278
5279    if (mUseAsyncWrite) {
5280        // discard any pending drain or write ack by incrementing sequence
5281        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5282        mDrainSequence = (mDrainSequence + 2) & ~1;
5283        ALOG_ASSERT(mCallbackThread != 0);
5284        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5285        mCallbackThread->setDraining(mDrainSequence);
5286    }
5287}
5288
5289// ----------------------------------------------------------------------------
5290
5291AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5292        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5293    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5294                    systemReady, DUPLICATING),
5295        mWaitTimeMs(UINT_MAX)
5296{
5297    addOutputTrack(mainThread);
5298}
5299
5300AudioFlinger::DuplicatingThread::~DuplicatingThread()
5301{
5302    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5303        mOutputTracks[i]->destroy();
5304    }
5305}
5306
5307void AudioFlinger::DuplicatingThread::threadLoop_mix()
5308{
5309    // mix buffers...
5310    if (outputsReady(outputTracks)) {
5311        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5312    } else {
5313        if (mMixerBufferValid) {
5314            memset(mMixerBuffer, 0, mMixerBufferSize);
5315        } else {
5316            memset(mSinkBuffer, 0, mSinkBufferSize);
5317        }
5318    }
5319    mSleepTimeUs = 0;
5320    writeFrames = mNormalFrameCount;
5321    mCurrentWriteLength = mSinkBufferSize;
5322    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5323}
5324
5325void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5326{
5327    if (mSleepTimeUs == 0) {
5328        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5329            mSleepTimeUs = mActiveSleepTimeUs;
5330        } else {
5331            mSleepTimeUs = mIdleSleepTimeUs;
5332        }
5333    } else if (mBytesWritten != 0) {
5334        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5335            writeFrames = mNormalFrameCount;
5336            memset(mSinkBuffer, 0, mSinkBufferSize);
5337        } else {
5338            // flush remaining overflow buffers in output tracks
5339            writeFrames = 0;
5340        }
5341        mSleepTimeUs = 0;
5342    }
5343}
5344
5345ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5346{
5347    for (size_t i = 0; i < outputTracks.size(); i++) {
5348        outputTracks[i]->write(mSinkBuffer, writeFrames);
5349    }
5350    mStandby = false;
5351    return (ssize_t)mSinkBufferSize;
5352}
5353
5354void AudioFlinger::DuplicatingThread::threadLoop_standby()
5355{
5356    // DuplicatingThread implements standby by stopping all tracks
5357    for (size_t i = 0; i < outputTracks.size(); i++) {
5358        outputTracks[i]->stop();
5359    }
5360}
5361
5362void AudioFlinger::DuplicatingThread::saveOutputTracks()
5363{
5364    outputTracks = mOutputTracks;
5365}
5366
5367void AudioFlinger::DuplicatingThread::clearOutputTracks()
5368{
5369    outputTracks.clear();
5370}
5371
5372void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5373{
5374    Mutex::Autolock _l(mLock);
5375    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5376    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5377    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5378    const size_t frameCount =
5379            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5380    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5381    // from different OutputTracks and their associated MixerThreads (e.g. one may
5382    // nearly empty and the other may be dropping data).
5383
5384    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5385                                            this,
5386                                            mSampleRate,
5387                                            mFormat,
5388                                            mChannelMask,
5389                                            frameCount,
5390                                            IPCThreadState::self()->getCallingUid());
5391    if (outputTrack->cblk() != NULL) {
5392        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5393        mOutputTracks.add(outputTrack);
5394        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5395        updateWaitTime_l();
5396    }
5397}
5398
5399void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5400{
5401    Mutex::Autolock _l(mLock);
5402    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5403        if (mOutputTracks[i]->thread() == thread) {
5404            mOutputTracks[i]->destroy();
5405            mOutputTracks.removeAt(i);
5406            updateWaitTime_l();
5407            if (thread->getOutput() == mOutput) {
5408                mOutput = NULL;
5409            }
5410            return;
5411        }
5412    }
5413    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5414}
5415
5416// caller must hold mLock
5417void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5418{
5419    mWaitTimeMs = UINT_MAX;
5420    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5421        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5422        if (strong != 0) {
5423            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5424            if (waitTimeMs < mWaitTimeMs) {
5425                mWaitTimeMs = waitTimeMs;
5426            }
5427        }
5428    }
5429}
5430
5431
5432bool AudioFlinger::DuplicatingThread::outputsReady(
5433        const SortedVector< sp<OutputTrack> > &outputTracks)
5434{
5435    for (size_t i = 0; i < outputTracks.size(); i++) {
5436        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5437        if (thread == 0) {
5438            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5439                    outputTracks[i].get());
5440            return false;
5441        }
5442        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5443        // see note at standby() declaration
5444        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5445            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5446                    thread.get());
5447            return false;
5448        }
5449    }
5450    return true;
5451}
5452
5453uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5454{
5455    return (mWaitTimeMs * 1000) / 2;
5456}
5457
5458void AudioFlinger::DuplicatingThread::cacheParameters_l()
5459{
5460    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5461    updateWaitTime_l();
5462
5463    MixerThread::cacheParameters_l();
5464}
5465
5466// ----------------------------------------------------------------------------
5467//      Record
5468// ----------------------------------------------------------------------------
5469
5470AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5471                                         AudioStreamIn *input,
5472                                         audio_io_handle_t id,
5473                                         audio_devices_t outDevice,
5474                                         audio_devices_t inDevice,
5475                                         bool systemReady
5476#ifdef TEE_SINK
5477                                         , const sp<NBAIO_Sink>& teeSink
5478#endif
5479                                         ) :
5480    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5481    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5482    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5483    mRsmpInRear(0)
5484#ifdef TEE_SINK
5485    , mTeeSink(teeSink)
5486#endif
5487    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5488            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5489    // mFastCapture below
5490    , mFastCaptureFutex(0)
5491    // mInputSource
5492    // mPipeSink
5493    // mPipeSource
5494    , mPipeFramesP2(0)
5495    // mPipeMemory
5496    // mFastCaptureNBLogWriter
5497    , mFastTrackAvail(false)
5498{
5499    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5500    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5501
5502    readInputParameters_l();
5503
5504    // create an NBAIO source for the HAL input stream, and negotiate
5505    mInputSource = new AudioStreamInSource(input->stream);
5506    size_t numCounterOffers = 0;
5507    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5508    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5509    ALOG_ASSERT(index == 0);
5510
5511    // initialize fast capture depending on configuration
5512    bool initFastCapture;
5513    switch (kUseFastCapture) {
5514    case FastCapture_Never:
5515        initFastCapture = false;
5516        break;
5517    case FastCapture_Always:
5518        initFastCapture = true;
5519        break;
5520    case FastCapture_Static:
5521        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5522        break;
5523    // case FastCapture_Dynamic:
5524    }
5525
5526    if (initFastCapture) {
5527        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5528        NBAIO_Format format = mInputSource->format();
5529        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5530        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5531        void *pipeBuffer;
5532        const sp<MemoryDealer> roHeap(readOnlyHeap());
5533        sp<IMemory> pipeMemory;
5534        if ((roHeap == 0) ||
5535                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5536                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5537            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5538            goto failed;
5539        }
5540        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5541        memset(pipeBuffer, 0, pipeSize);
5542        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5543        const NBAIO_Format offers[1] = {format};
5544        size_t numCounterOffers = 0;
5545        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5546        ALOG_ASSERT(index == 0);
5547        mPipeSink = pipe;
5548        PipeReader *pipeReader = new PipeReader(*pipe);
5549        numCounterOffers = 0;
5550        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5551        ALOG_ASSERT(index == 0);
5552        mPipeSource = pipeReader;
5553        mPipeFramesP2 = pipeFramesP2;
5554        mPipeMemory = pipeMemory;
5555
5556        // create fast capture
5557        mFastCapture = new FastCapture();
5558        FastCaptureStateQueue *sq = mFastCapture->sq();
5559#ifdef STATE_QUEUE_DUMP
5560        // FIXME
5561#endif
5562        FastCaptureState *state = sq->begin();
5563        state->mCblk = NULL;
5564        state->mInputSource = mInputSource.get();
5565        state->mInputSourceGen++;
5566        state->mPipeSink = pipe;
5567        state->mPipeSinkGen++;
5568        state->mFrameCount = mFrameCount;
5569        state->mCommand = FastCaptureState::COLD_IDLE;
5570        // already done in constructor initialization list
5571        //mFastCaptureFutex = 0;
5572        state->mColdFutexAddr = &mFastCaptureFutex;
5573        state->mColdGen++;
5574        state->mDumpState = &mFastCaptureDumpState;
5575#ifdef TEE_SINK
5576        // FIXME
5577#endif
5578        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5579        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5580        sq->end();
5581        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5582
5583        // start the fast capture
5584        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5585        pid_t tid = mFastCapture->getTid();
5586        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5587#ifdef AUDIO_WATCHDOG
5588        // FIXME
5589#endif
5590
5591        mFastTrackAvail = true;
5592    }
5593failed: ;
5594
5595    // FIXME mNormalSource
5596}
5597
5598AudioFlinger::RecordThread::~RecordThread()
5599{
5600    if (mFastCapture != 0) {
5601        FastCaptureStateQueue *sq = mFastCapture->sq();
5602        FastCaptureState *state = sq->begin();
5603        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5604            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5605            if (old == -1) {
5606                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5607            }
5608        }
5609        state->mCommand = FastCaptureState::EXIT;
5610        sq->end();
5611        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5612        mFastCapture->join();
5613        mFastCapture.clear();
5614    }
5615    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5616    mAudioFlinger->unregisterWriter(mNBLogWriter);
5617    free(mRsmpInBuffer);
5618}
5619
5620void AudioFlinger::RecordThread::onFirstRef()
5621{
5622    run(mThreadName, PRIORITY_URGENT_AUDIO);
5623}
5624
5625bool AudioFlinger::RecordThread::threadLoop()
5626{
5627    nsecs_t lastWarning = 0;
5628
5629    inputStandBy();
5630
5631reacquire_wakelock:
5632    sp<RecordTrack> activeTrack;
5633    int activeTracksGen;
5634    {
5635        Mutex::Autolock _l(mLock);
5636        size_t size = mActiveTracks.size();
5637        activeTracksGen = mActiveTracksGen;
5638        if (size > 0) {
5639            // FIXME an arbitrary choice
5640            activeTrack = mActiveTracks[0];
5641            acquireWakeLock_l(activeTrack->uid());
5642            if (size > 1) {
5643                SortedVector<int> tmp;
5644                for (size_t i = 0; i < size; i++) {
5645                    tmp.add(mActiveTracks[i]->uid());
5646                }
5647                updateWakeLockUids_l(tmp);
5648            }
5649        } else {
5650            acquireWakeLock_l(-1);
5651        }
5652    }
5653
5654    // used to request a deferred sleep, to be executed later while mutex is unlocked
5655    uint32_t sleepUs = 0;
5656
5657    // loop while there is work to do
5658    for (;;) {
5659        Vector< sp<EffectChain> > effectChains;
5660
5661        // sleep with mutex unlocked
5662        if (sleepUs > 0) {
5663            ATRACE_BEGIN("sleep");
5664            usleep(sleepUs);
5665            ATRACE_END();
5666            sleepUs = 0;
5667        }
5668
5669        // activeTracks accumulates a copy of a subset of mActiveTracks
5670        Vector< sp<RecordTrack> > activeTracks;
5671
5672        // reference to the (first and only) active fast track
5673        sp<RecordTrack> fastTrack;
5674
5675        // reference to a fast track which is about to be removed
5676        sp<RecordTrack> fastTrackToRemove;
5677
5678        { // scope for mLock
5679            Mutex::Autolock _l(mLock);
5680
5681            processConfigEvents_l();
5682
5683            // check exitPending here because checkForNewParameters_l() and
5684            // checkForNewParameters_l() can temporarily release mLock
5685            if (exitPending()) {
5686                break;
5687            }
5688
5689            // if no active track(s), then standby and release wakelock
5690            size_t size = mActiveTracks.size();
5691            if (size == 0) {
5692                standbyIfNotAlreadyInStandby();
5693                // exitPending() can't become true here
5694                releaseWakeLock_l();
5695                ALOGV("RecordThread: loop stopping");
5696                // go to sleep
5697                mWaitWorkCV.wait(mLock);
5698                ALOGV("RecordThread: loop starting");
5699                goto reacquire_wakelock;
5700            }
5701
5702            if (mActiveTracksGen != activeTracksGen) {
5703                activeTracksGen = mActiveTracksGen;
5704                SortedVector<int> tmp;
5705                for (size_t i = 0; i < size; i++) {
5706                    tmp.add(mActiveTracks[i]->uid());
5707                }
5708                updateWakeLockUids_l(tmp);
5709            }
5710
5711            bool doBroadcast = false;
5712            for (size_t i = 0; i < size; ) {
5713
5714                activeTrack = mActiveTracks[i];
5715                if (activeTrack->isTerminated()) {
5716                    if (activeTrack->isFastTrack()) {
5717                        ALOG_ASSERT(fastTrackToRemove == 0);
5718                        fastTrackToRemove = activeTrack;
5719                    }
5720                    removeTrack_l(activeTrack);
5721                    mActiveTracks.remove(activeTrack);
5722                    mActiveTracksGen++;
5723                    size--;
5724                    continue;
5725                }
5726
5727                TrackBase::track_state activeTrackState = activeTrack->mState;
5728                switch (activeTrackState) {
5729
5730                case TrackBase::PAUSING:
5731                    mActiveTracks.remove(activeTrack);
5732                    mActiveTracksGen++;
5733                    doBroadcast = true;
5734                    size--;
5735                    continue;
5736
5737                case TrackBase::STARTING_1:
5738                    sleepUs = 10000;
5739                    i++;
5740                    continue;
5741
5742                case TrackBase::STARTING_2:
5743                    doBroadcast = true;
5744                    mStandby = false;
5745                    activeTrack->mState = TrackBase::ACTIVE;
5746                    break;
5747
5748                case TrackBase::ACTIVE:
5749                    break;
5750
5751                case TrackBase::IDLE:
5752                    i++;
5753                    continue;
5754
5755                default:
5756                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5757                }
5758
5759                activeTracks.add(activeTrack);
5760                i++;
5761
5762                if (activeTrack->isFastTrack()) {
5763                    ALOG_ASSERT(!mFastTrackAvail);
5764                    ALOG_ASSERT(fastTrack == 0);
5765                    fastTrack = activeTrack;
5766                }
5767            }
5768            if (doBroadcast) {
5769                mStartStopCond.broadcast();
5770            }
5771
5772            // sleep if there are no active tracks to process
5773            if (activeTracks.size() == 0) {
5774                if (sleepUs == 0) {
5775                    sleepUs = kRecordThreadSleepUs;
5776                }
5777                continue;
5778            }
5779            sleepUs = 0;
5780
5781            lockEffectChains_l(effectChains);
5782        }
5783
5784        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5785
5786        size_t size = effectChains.size();
5787        for (size_t i = 0; i < size; i++) {
5788            // thread mutex is not locked, but effect chain is locked
5789            effectChains[i]->process_l();
5790        }
5791
5792        // Push a new fast capture state if fast capture is not already running, or cblk change
5793        if (mFastCapture != 0) {
5794            FastCaptureStateQueue *sq = mFastCapture->sq();
5795            FastCaptureState *state = sq->begin();
5796            bool didModify = false;
5797            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5798            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5799                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5800                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5801                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5802                    if (old == -1) {
5803                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5804                    }
5805                }
5806                state->mCommand = FastCaptureState::READ_WRITE;
5807#if 0   // FIXME
5808                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5809                        FastThreadDumpState::kSamplingNforLowRamDevice :
5810                        FastThreadDumpState::kSamplingN);
5811#endif
5812                didModify = true;
5813            }
5814            audio_track_cblk_t *cblkOld = state->mCblk;
5815            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5816            if (cblkNew != cblkOld) {
5817                state->mCblk = cblkNew;
5818                // block until acked if removing a fast track
5819                if (cblkOld != NULL) {
5820                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5821                }
5822                didModify = true;
5823            }
5824            sq->end(didModify);
5825            if (didModify) {
5826                sq->push(block);
5827#if 0
5828                if (kUseFastCapture == FastCapture_Dynamic) {
5829                    mNormalSource = mPipeSource;
5830                }
5831#endif
5832            }
5833        }
5834
5835        // now run the fast track destructor with thread mutex unlocked
5836        fastTrackToRemove.clear();
5837
5838        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5839        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5840        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5841        // If destination is non-contiguous, first read past the nominal end of buffer, then
5842        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5843
5844        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5845        ssize_t framesRead;
5846
5847        // If an NBAIO source is present, use it to read the normal capture's data
5848        if (mPipeSource != 0) {
5849            size_t framesToRead = mBufferSize / mFrameSize;
5850            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5851                    framesToRead, AudioBufferProvider::kInvalidPTS);
5852            if (framesRead == 0) {
5853                // since pipe is non-blocking, simulate blocking input
5854                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5855            }
5856        // otherwise use the HAL / AudioStreamIn directly
5857        } else {
5858            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5859                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5860            if (bytesRead < 0) {
5861                framesRead = bytesRead;
5862            } else {
5863                framesRead = bytesRead / mFrameSize;
5864            }
5865        }
5866
5867        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5868            ALOGE("read failed: framesRead=%d", framesRead);
5869            // Force input into standby so that it tries to recover at next read attempt
5870            inputStandBy();
5871            sleepUs = kRecordThreadSleepUs;
5872        }
5873        if (framesRead <= 0) {
5874            goto unlock;
5875        }
5876        ALOG_ASSERT(framesRead > 0);
5877
5878        if (mTeeSink != 0) {
5879            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
5880        }
5881        // If destination is non-contiguous, we now correct for reading past end of buffer.
5882        {
5883            size_t part1 = mRsmpInFramesP2 - rear;
5884            if ((size_t) framesRead > part1) {
5885                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
5886                        (framesRead - part1) * mFrameSize);
5887            }
5888        }
5889        rear = mRsmpInRear += framesRead;
5890
5891        size = activeTracks.size();
5892        // loop over each active track
5893        for (size_t i = 0; i < size; i++) {
5894            activeTrack = activeTracks[i];
5895
5896            // skip fast tracks, as those are handled directly by FastCapture
5897            if (activeTrack->isFastTrack()) {
5898                continue;
5899            }
5900
5901            // TODO: This code probably should be moved to RecordTrack.
5902            // TODO: Update the activeTrack buffer converter in case of reconfigure.
5903
5904            enum {
5905                OVERRUN_UNKNOWN,
5906                OVERRUN_TRUE,
5907                OVERRUN_FALSE
5908            } overrun = OVERRUN_UNKNOWN;
5909
5910            // loop over getNextBuffer to handle circular sink
5911            for (;;) {
5912
5913                activeTrack->mSink.frameCount = ~0;
5914                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5915                size_t framesOut = activeTrack->mSink.frameCount;
5916                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5917
5918                // check available frames and handle overrun conditions
5919                // if the record track isn't draining fast enough.
5920                bool hasOverrun;
5921                size_t framesIn;
5922                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5923                if (hasOverrun) {
5924                    overrun = OVERRUN_TRUE;
5925                }
5926                if (framesOut == 0 || framesIn == 0) {
5927                    break;
5928                }
5929
5930                // Don't allow framesOut to be larger than what is possible with resampling
5931                // from framesIn.
5932                // This isn't strictly necessary but helps limit buffer resizing in
5933                // RecordBufferConverter.  TODO: remove when no longer needed.
5934                framesOut = min(framesOut,
5935                        destinationFramesPossible(
5936                                framesIn, mSampleRate, activeTrack->mSampleRate));
5937                // process frames from the RecordThread buffer provider to the RecordTrack buffer
5938                framesOut = activeTrack->mRecordBufferConverter->convert(
5939                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5940
5941                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5942                    overrun = OVERRUN_FALSE;
5943                }
5944
5945                if (activeTrack->mFramesToDrop == 0) {
5946                    if (framesOut > 0) {
5947                        activeTrack->mSink.frameCount = framesOut;
5948                        activeTrack->releaseBuffer(&activeTrack->mSink);
5949                    }
5950                } else {
5951                    // FIXME could do a partial drop of framesOut
5952                    if (activeTrack->mFramesToDrop > 0) {
5953                        activeTrack->mFramesToDrop -= framesOut;
5954                        if (activeTrack->mFramesToDrop <= 0) {
5955                            activeTrack->clearSyncStartEvent();
5956                        }
5957                    } else {
5958                        activeTrack->mFramesToDrop += framesOut;
5959                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5960                                activeTrack->mSyncStartEvent->isCancelled()) {
5961                            ALOGW("Synced record %s, session %d, trigger session %d",
5962                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5963                                  activeTrack->sessionId(),
5964                                  (activeTrack->mSyncStartEvent != 0) ?
5965                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
5966                            activeTrack->clearSyncStartEvent();
5967                        }
5968                    }
5969                }
5970
5971                if (framesOut == 0) {
5972                    break;
5973                }
5974            }
5975
5976            switch (overrun) {
5977            case OVERRUN_TRUE:
5978                // client isn't retrieving buffers fast enough
5979                if (!activeTrack->setOverflow()) {
5980                    nsecs_t now = systemTime();
5981                    // FIXME should lastWarning per track?
5982                    if ((now - lastWarning) > kWarningThrottleNs) {
5983                        ALOGW("RecordThread: buffer overflow");
5984                        lastWarning = now;
5985                    }
5986                }
5987                break;
5988            case OVERRUN_FALSE:
5989                activeTrack->clearOverflow();
5990                break;
5991            case OVERRUN_UNKNOWN:
5992                break;
5993            }
5994
5995        }
5996
5997unlock:
5998        // enable changes in effect chain
5999        unlockEffectChains(effectChains);
6000        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6001    }
6002
6003    standbyIfNotAlreadyInStandby();
6004
6005    {
6006        Mutex::Autolock _l(mLock);
6007        for (size_t i = 0; i < mTracks.size(); i++) {
6008            sp<RecordTrack> track = mTracks[i];
6009            track->invalidate();
6010        }
6011        mActiveTracks.clear();
6012        mActiveTracksGen++;
6013        mStartStopCond.broadcast();
6014    }
6015
6016    releaseWakeLock();
6017
6018    ALOGV("RecordThread %p exiting", this);
6019    return false;
6020}
6021
6022void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6023{
6024    if (!mStandby) {
6025        inputStandBy();
6026        mStandby = true;
6027    }
6028}
6029
6030void AudioFlinger::RecordThread::inputStandBy()
6031{
6032    // Idle the fast capture if it's currently running
6033    if (mFastCapture != 0) {
6034        FastCaptureStateQueue *sq = mFastCapture->sq();
6035        FastCaptureState *state = sq->begin();
6036        if (!(state->mCommand & FastCaptureState::IDLE)) {
6037            state->mCommand = FastCaptureState::COLD_IDLE;
6038            state->mColdFutexAddr = &mFastCaptureFutex;
6039            state->mColdGen++;
6040            mFastCaptureFutex = 0;
6041            sq->end();
6042            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6043            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6044#if 0
6045            if (kUseFastCapture == FastCapture_Dynamic) {
6046                // FIXME
6047            }
6048#endif
6049#ifdef AUDIO_WATCHDOG
6050            // FIXME
6051#endif
6052        } else {
6053            sq->end(false /*didModify*/);
6054        }
6055    }
6056    mInput->stream->common.standby(&mInput->stream->common);
6057}
6058
6059// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6060sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6061        const sp<AudioFlinger::Client>& client,
6062        uint32_t sampleRate,
6063        audio_format_t format,
6064        audio_channel_mask_t channelMask,
6065        size_t *pFrameCount,
6066        int sessionId,
6067        size_t *notificationFrames,
6068        int uid,
6069        IAudioFlinger::track_flags_t *flags,
6070        pid_t tid,
6071        status_t *status)
6072{
6073    size_t frameCount = *pFrameCount;
6074    sp<RecordTrack> track;
6075    status_t lStatus;
6076
6077    // client expresses a preference for FAST, but we get the final say
6078    if (*flags & IAudioFlinger::TRACK_FAST) {
6079      if (
6080            // we formerly checked for a callback handler (non-0 tid),
6081            // but that is no longer required for TRANSFER_OBTAIN mode
6082            //
6083            // frame count is not specified, or is exactly the pipe depth
6084            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6085            // PCM data
6086            audio_is_linear_pcm(format) &&
6087            // native format
6088            (format == mFormat) &&
6089            // native channel mask
6090            (channelMask == mChannelMask) &&
6091            // native hardware sample rate
6092            (sampleRate == mSampleRate) &&
6093            // record thread has an associated fast capture
6094            hasFastCapture() &&
6095            // there are sufficient fast track slots available
6096            mFastTrackAvail
6097        ) {
6098        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6099                frameCount, mFrameCount);
6100      } else {
6101        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6102                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6103                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6104                frameCount, mFrameCount, mPipeFramesP2,
6105                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6106                hasFastCapture(), tid, mFastTrackAvail);
6107        *flags &= ~IAudioFlinger::TRACK_FAST;
6108      }
6109    }
6110
6111    // compute track buffer size in frames, and suggest the notification frame count
6112    if (*flags & IAudioFlinger::TRACK_FAST) {
6113        // fast track: frame count is exactly the pipe depth
6114        frameCount = mPipeFramesP2;
6115        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6116        *notificationFrames = mFrameCount;
6117    } else {
6118        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6119        //                 or 20 ms if there is a fast capture
6120        // TODO This could be a roundupRatio inline, and const
6121        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6122                * sampleRate + mSampleRate - 1) / mSampleRate;
6123        // minimum number of notification periods is at least kMinNotifications,
6124        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6125        static const size_t kMinNotifications = 3;
6126        static const uint32_t kMinMs = 30;
6127        // TODO This could be a roundupRatio inline
6128        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6129        // TODO This could be a roundupRatio inline
6130        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6131                maxNotificationFrames;
6132        const size_t minFrameCount = maxNotificationFrames *
6133                max(kMinNotifications, minNotificationsByMs);
6134        frameCount = max(frameCount, minFrameCount);
6135        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6136            *notificationFrames = maxNotificationFrames;
6137        }
6138    }
6139    *pFrameCount = frameCount;
6140
6141    lStatus = initCheck();
6142    if (lStatus != NO_ERROR) {
6143        ALOGE("createRecordTrack_l() audio driver not initialized");
6144        goto Exit;
6145    }
6146
6147    { // scope for mLock
6148        Mutex::Autolock _l(mLock);
6149
6150        track = new RecordTrack(this, client, sampleRate,
6151                      format, channelMask, frameCount, NULL, sessionId, uid,
6152                      *flags, TrackBase::TYPE_DEFAULT);
6153
6154        lStatus = track->initCheck();
6155        if (lStatus != NO_ERROR) {
6156            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6157            // track must be cleared from the caller as the caller has the AF lock
6158            goto Exit;
6159        }
6160        mTracks.add(track);
6161
6162        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6163        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6164                        mAudioFlinger->btNrecIsOff();
6165        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6166        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6167
6168        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6169            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6170            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6171            // so ask activity manager to do this on our behalf
6172            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6173        }
6174    }
6175
6176    lStatus = NO_ERROR;
6177
6178Exit:
6179    *status = lStatus;
6180    return track;
6181}
6182
6183status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6184                                           AudioSystem::sync_event_t event,
6185                                           int triggerSession)
6186{
6187    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6188    sp<ThreadBase> strongMe = this;
6189    status_t status = NO_ERROR;
6190
6191    if (event == AudioSystem::SYNC_EVENT_NONE) {
6192        recordTrack->clearSyncStartEvent();
6193    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6194        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6195                                       triggerSession,
6196                                       recordTrack->sessionId(),
6197                                       syncStartEventCallback,
6198                                       recordTrack);
6199        // Sync event can be cancelled by the trigger session if the track is not in a
6200        // compatible state in which case we start record immediately
6201        if (recordTrack->mSyncStartEvent->isCancelled()) {
6202            recordTrack->clearSyncStartEvent();
6203        } else {
6204            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6205            recordTrack->mFramesToDrop = -
6206                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6207        }
6208    }
6209
6210    {
6211        // This section is a rendezvous between binder thread executing start() and RecordThread
6212        AutoMutex lock(mLock);
6213        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6214            if (recordTrack->mState == TrackBase::PAUSING) {
6215                ALOGV("active record track PAUSING -> ACTIVE");
6216                recordTrack->mState = TrackBase::ACTIVE;
6217            } else {
6218                ALOGV("active record track state %d", recordTrack->mState);
6219            }
6220            return status;
6221        }
6222
6223        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6224        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6225        //      or using a separate command thread
6226        recordTrack->mState = TrackBase::STARTING_1;
6227        mActiveTracks.add(recordTrack);
6228        mActiveTracksGen++;
6229        status_t status = NO_ERROR;
6230        if (recordTrack->isExternalTrack()) {
6231            mLock.unlock();
6232            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6233            mLock.lock();
6234            // FIXME should verify that recordTrack is still in mActiveTracks
6235            if (status != NO_ERROR) {
6236                mActiveTracks.remove(recordTrack);
6237                mActiveTracksGen++;
6238                recordTrack->clearSyncStartEvent();
6239                ALOGV("RecordThread::start error %d", status);
6240                return status;
6241            }
6242        }
6243        // Catch up with current buffer indices if thread is already running.
6244        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6245        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6246        // see previously buffered data before it called start(), but with greater risk of overrun.
6247
6248        recordTrack->mResamplerBufferProvider->reset();
6249        // clear any converter state as new data will be discontinuous
6250        recordTrack->mRecordBufferConverter->reset();
6251        recordTrack->mState = TrackBase::STARTING_2;
6252        // signal thread to start
6253        mWaitWorkCV.broadcast();
6254        if (mActiveTracks.indexOf(recordTrack) < 0) {
6255            ALOGV("Record failed to start");
6256            status = BAD_VALUE;
6257            goto startError;
6258        }
6259        return status;
6260    }
6261
6262startError:
6263    if (recordTrack->isExternalTrack()) {
6264        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6265    }
6266    recordTrack->clearSyncStartEvent();
6267    // FIXME I wonder why we do not reset the state here?
6268    return status;
6269}
6270
6271void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6272{
6273    sp<SyncEvent> strongEvent = event.promote();
6274
6275    if (strongEvent != 0) {
6276        sp<RefBase> ptr = strongEvent->cookie().promote();
6277        if (ptr != 0) {
6278            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6279            recordTrack->handleSyncStartEvent(strongEvent);
6280        }
6281    }
6282}
6283
6284bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6285    ALOGV("RecordThread::stop");
6286    AutoMutex _l(mLock);
6287    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6288        return false;
6289    }
6290    // note that threadLoop may still be processing the track at this point [without lock]
6291    recordTrack->mState = TrackBase::PAUSING;
6292    // do not wait for mStartStopCond if exiting
6293    if (exitPending()) {
6294        return true;
6295    }
6296    // FIXME incorrect usage of wait: no explicit predicate or loop
6297    mStartStopCond.wait(mLock);
6298    // if we have been restarted, recordTrack is in mActiveTracks here
6299    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6300        ALOGV("Record stopped OK");
6301        return true;
6302    }
6303    return false;
6304}
6305
6306bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6307{
6308    return false;
6309}
6310
6311status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6312{
6313#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6314    if (!isValidSyncEvent(event)) {
6315        return BAD_VALUE;
6316    }
6317
6318    int eventSession = event->triggerSession();
6319    status_t ret = NAME_NOT_FOUND;
6320
6321    Mutex::Autolock _l(mLock);
6322
6323    for (size_t i = 0; i < mTracks.size(); i++) {
6324        sp<RecordTrack> track = mTracks[i];
6325        if (eventSession == track->sessionId()) {
6326            (void) track->setSyncEvent(event);
6327            ret = NO_ERROR;
6328        }
6329    }
6330    return ret;
6331#else
6332    return BAD_VALUE;
6333#endif
6334}
6335
6336// destroyTrack_l() must be called with ThreadBase::mLock held
6337void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6338{
6339    track->terminate();
6340    track->mState = TrackBase::STOPPED;
6341    // active tracks are removed by threadLoop()
6342    if (mActiveTracks.indexOf(track) < 0) {
6343        removeTrack_l(track);
6344    }
6345}
6346
6347void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6348{
6349    mTracks.remove(track);
6350    // need anything related to effects here?
6351    if (track->isFastTrack()) {
6352        ALOG_ASSERT(!mFastTrackAvail);
6353        mFastTrackAvail = true;
6354    }
6355}
6356
6357void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6358{
6359    dumpInternals(fd, args);
6360    dumpTracks(fd, args);
6361    dumpEffectChains(fd, args);
6362}
6363
6364void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6365{
6366    dprintf(fd, "\nInput thread %p:\n", this);
6367
6368    dumpBase(fd, args);
6369
6370    if (mActiveTracks.size() == 0) {
6371        dprintf(fd, "  No active record clients\n");
6372    }
6373    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6374    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6375
6376    //  Make a non-atomic copy of fast capture dump state so it won't change underneath us
6377    const FastCaptureDumpState copy(mFastCaptureDumpState);
6378    copy.dump(fd);
6379}
6380
6381void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6382{
6383    const size_t SIZE = 256;
6384    char buffer[SIZE];
6385    String8 result;
6386
6387    size_t numtracks = mTracks.size();
6388    size_t numactive = mActiveTracks.size();
6389    size_t numactiveseen = 0;
6390    dprintf(fd, "  %d Tracks", numtracks);
6391    if (numtracks) {
6392        dprintf(fd, " of which %d are active\n", numactive);
6393        RecordTrack::appendDumpHeader(result);
6394        for (size_t i = 0; i < numtracks ; ++i) {
6395            sp<RecordTrack> track = mTracks[i];
6396            if (track != 0) {
6397                bool active = mActiveTracks.indexOf(track) >= 0;
6398                if (active) {
6399                    numactiveseen++;
6400                }
6401                track->dump(buffer, SIZE, active);
6402                result.append(buffer);
6403            }
6404        }
6405    } else {
6406        dprintf(fd, "\n");
6407    }
6408
6409    if (numactiveseen != numactive) {
6410        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6411                " not in the track list\n");
6412        result.append(buffer);
6413        RecordTrack::appendDumpHeader(result);
6414        for (size_t i = 0; i < numactive; ++i) {
6415            sp<RecordTrack> track = mActiveTracks[i];
6416            if (mTracks.indexOf(track) < 0) {
6417                track->dump(buffer, SIZE, true);
6418                result.append(buffer);
6419            }
6420        }
6421
6422    }
6423    write(fd, result.string(), result.size());
6424}
6425
6426
6427void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6428{
6429    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6430    RecordThread *recordThread = (RecordThread *) threadBase.get();
6431    mRsmpInFront = recordThread->mRsmpInRear;
6432    mRsmpInUnrel = 0;
6433}
6434
6435void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6436        size_t *framesAvailable, bool *hasOverrun)
6437{
6438    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6439    RecordThread *recordThread = (RecordThread *) threadBase.get();
6440    const int32_t rear = recordThread->mRsmpInRear;
6441    const int32_t front = mRsmpInFront;
6442    const ssize_t filled = rear - front;
6443
6444    size_t framesIn;
6445    bool overrun = false;
6446    if (filled < 0) {
6447        // should not happen, but treat like a massive overrun and re-sync
6448        framesIn = 0;
6449        mRsmpInFront = rear;
6450        overrun = true;
6451    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6452        framesIn = (size_t) filled;
6453    } else {
6454        // client is not keeping up with server, but give it latest data
6455        framesIn = recordThread->mRsmpInFrames;
6456        mRsmpInFront = /* front = */ rear - framesIn;
6457        overrun = true;
6458    }
6459    if (framesAvailable != NULL) {
6460        *framesAvailable = framesIn;
6461    }
6462    if (hasOverrun != NULL) {
6463        *hasOverrun = overrun;
6464    }
6465}
6466
6467// AudioBufferProvider interface
6468status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6469        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6470{
6471    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6472    if (threadBase == 0) {
6473        buffer->frameCount = 0;
6474        buffer->raw = NULL;
6475        return NOT_ENOUGH_DATA;
6476    }
6477    RecordThread *recordThread = (RecordThread *) threadBase.get();
6478    int32_t rear = recordThread->mRsmpInRear;
6479    int32_t front = mRsmpInFront;
6480    ssize_t filled = rear - front;
6481    // FIXME should not be P2 (don't want to increase latency)
6482    // FIXME if client not keeping up, discard
6483    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6484    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6485    front &= recordThread->mRsmpInFramesP2 - 1;
6486    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6487    if (part1 > (size_t) filled) {
6488        part1 = filled;
6489    }
6490    size_t ask = buffer->frameCount;
6491    ALOG_ASSERT(ask > 0);
6492    if (part1 > ask) {
6493        part1 = ask;
6494    }
6495    if (part1 == 0) {
6496        // out of data is fine since the resampler will return a short-count.
6497        buffer->raw = NULL;
6498        buffer->frameCount = 0;
6499        mRsmpInUnrel = 0;
6500        return NOT_ENOUGH_DATA;
6501    }
6502
6503    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6504    buffer->frameCount = part1;
6505    mRsmpInUnrel = part1;
6506    return NO_ERROR;
6507}
6508
6509// AudioBufferProvider interface
6510void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6511        AudioBufferProvider::Buffer* buffer)
6512{
6513    size_t stepCount = buffer->frameCount;
6514    if (stepCount == 0) {
6515        return;
6516    }
6517    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6518    mRsmpInUnrel -= stepCount;
6519    mRsmpInFront += stepCount;
6520    buffer->raw = NULL;
6521    buffer->frameCount = 0;
6522}
6523
6524AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6525        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6526        uint32_t srcSampleRate,
6527        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6528        uint32_t dstSampleRate) :
6529            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6530            // mSrcFormat
6531            // mSrcSampleRate
6532            // mDstChannelMask
6533            // mDstFormat
6534            // mDstSampleRate
6535            // mSrcChannelCount
6536            // mDstChannelCount
6537            // mDstFrameSize
6538            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6539            mResampler(NULL),
6540            mIsLegacyDownmix(false),
6541            mIsLegacyUpmix(false),
6542            mRequiresFloat(false),
6543            mInputConverterProvider(NULL)
6544{
6545    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6546            dstChannelMask, dstFormat, dstSampleRate);
6547}
6548
6549AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6550    free(mBuf);
6551    delete mResampler;
6552    delete mInputConverterProvider;
6553}
6554
6555size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6556        AudioBufferProvider *provider, size_t frames)
6557{
6558    if (mInputConverterProvider != NULL) {
6559        mInputConverterProvider->setBufferProvider(provider);
6560        provider = mInputConverterProvider;
6561    }
6562
6563    if (mResampler == NULL) {
6564        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6565                mSrcSampleRate, mSrcFormat, mDstFormat);
6566
6567        AudioBufferProvider::Buffer buffer;
6568        for (size_t i = frames; i > 0; ) {
6569            buffer.frameCount = i;
6570            status_t status = provider->getNextBuffer(&buffer, 0);
6571            if (status != OK || buffer.frameCount == 0) {
6572                frames -= i; // cannot fill request.
6573                break;
6574            }
6575            // format convert to destination buffer
6576            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6577
6578            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6579            i -= buffer.frameCount;
6580            provider->releaseBuffer(&buffer);
6581        }
6582    } else {
6583         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6584                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6585
6586         // reallocate buffer if needed
6587         if (mBufFrameSize != 0 && mBufFrames < frames) {
6588             free(mBuf);
6589             mBufFrames = frames;
6590             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6591         }
6592        // resampler accumulates, but we only have one source track
6593        memset(mBuf, 0, frames * mBufFrameSize);
6594        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6595        // format convert to destination buffer
6596        convertResampler(dst, mBuf, frames);
6597    }
6598    return frames;
6599}
6600
6601status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6602        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6603        uint32_t srcSampleRate,
6604        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6605        uint32_t dstSampleRate)
6606{
6607    // quick evaluation if there is any change.
6608    if (mSrcFormat == srcFormat
6609            && mSrcChannelMask == srcChannelMask
6610            && mSrcSampleRate == srcSampleRate
6611            && mDstFormat == dstFormat
6612            && mDstChannelMask == dstChannelMask
6613            && mDstSampleRate == dstSampleRate) {
6614        return NO_ERROR;
6615    }
6616
6617    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6618            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6619            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6620    const bool valid =
6621            audio_is_input_channel(srcChannelMask)
6622            && audio_is_input_channel(dstChannelMask)
6623            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6624            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6625            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6626            ; // no upsampling checks for now
6627    if (!valid) {
6628        return BAD_VALUE;
6629    }
6630
6631    mSrcFormat = srcFormat;
6632    mSrcChannelMask = srcChannelMask;
6633    mSrcSampleRate = srcSampleRate;
6634    mDstFormat = dstFormat;
6635    mDstChannelMask = dstChannelMask;
6636    mDstSampleRate = dstSampleRate;
6637
6638    // compute derived parameters
6639    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6640    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6641    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6642
6643    // do we need to resample?
6644    delete mResampler;
6645    mResampler = NULL;
6646    if (mSrcSampleRate != mDstSampleRate) {
6647        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6648                mSrcChannelCount, mDstSampleRate);
6649        mResampler->setSampleRate(mSrcSampleRate);
6650        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6651    }
6652
6653    // are we running legacy channel conversion modes?
6654    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6655                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6656                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6657    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6658                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6659                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6660
6661    // do we need to process in float?
6662    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6663
6664    // do we need a staging buffer to convert for destination (we can still optimize this)?
6665    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6666    if (mResampler != NULL) {
6667        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6668                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6669    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6670        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6671    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6672        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6673    } else {
6674        mBufFrameSize = 0;
6675    }
6676    mBufFrames = 0; // force the buffer to be resized.
6677
6678    // do we need an input converter buffer provider to give us float?
6679    delete mInputConverterProvider;
6680    mInputConverterProvider = NULL;
6681    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6682        mInputConverterProvider = new ReformatBufferProvider(
6683                audio_channel_count_from_in_mask(mSrcChannelMask),
6684                mSrcFormat,
6685                AUDIO_FORMAT_PCM_FLOAT,
6686                256 /* provider buffer frame count */);
6687    }
6688
6689    // do we need a remixer to do channel mask conversion
6690    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6691        (void) memcpy_by_index_array_initialization_from_channel_mask(
6692                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6693    }
6694    return NO_ERROR;
6695}
6696
6697void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6698        void *dst, const void *src, size_t frames)
6699{
6700    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6701    if (mBufFrameSize != 0 && mBufFrames < frames) {
6702        free(mBuf);
6703        mBufFrames = frames;
6704        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6705    }
6706    // do we need to do legacy upmix and downmix?
6707    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6708        void *dstBuf = mBuf != NULL ? mBuf : dst;
6709        if (mIsLegacyUpmix) {
6710            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6711                    (const float *)src, frames);
6712        } else /*mIsLegacyDownmix */ {
6713            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6714                    (const float *)src, frames);
6715        }
6716        if (mBuf != NULL) {
6717            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6718                    frames * mDstChannelCount);
6719        }
6720        return;
6721    }
6722    // do we need to do channel mask conversion?
6723    if (mSrcChannelMask != mDstChannelMask) {
6724        void *dstBuf = mBuf != NULL ? mBuf : dst;
6725        memcpy_by_index_array(dstBuf, mDstChannelCount,
6726                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6727        if (dstBuf == dst) {
6728            return; // format is the same
6729        }
6730    }
6731    // convert to destination buffer
6732    const void *convertBuf = mBuf != NULL ? mBuf : src;
6733    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6734            frames * mDstChannelCount);
6735}
6736
6737void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6738        void *dst, /*not-a-const*/ void *src, size_t frames)
6739{
6740    // src buffer format is ALWAYS float when entering this routine
6741    if (mIsLegacyUpmix) {
6742        ; // mono to stereo already handled by resampler
6743    } else if (mIsLegacyDownmix
6744            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6745        // the resampler outputs stereo for mono input channel (a feature?)
6746        // must convert to mono
6747        downmix_to_mono_float_from_stereo_float((float *)src,
6748                (const float *)src, frames);
6749    } else if (mSrcChannelMask != mDstChannelMask) {
6750        // convert to mono channel again for channel mask conversion (could be skipped
6751        // with further optimization).
6752        if (mSrcChannelCount == 1) {
6753            downmix_to_mono_float_from_stereo_float((float *)src,
6754                (const float *)src, frames);
6755        }
6756        // convert to destination format (in place, OK as float is larger than other types)
6757        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6758            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6759                    frames * mSrcChannelCount);
6760        }
6761        // channel convert and save to dst
6762        memcpy_by_index_array(dst, mDstChannelCount,
6763                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6764        return;
6765    }
6766    // convert to destination format and save to dst
6767    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6768            frames * mDstChannelCount);
6769}
6770
6771bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6772                                                        status_t& status)
6773{
6774    bool reconfig = false;
6775
6776    status = NO_ERROR;
6777
6778    audio_format_t reqFormat = mFormat;
6779    uint32_t samplingRate = mSampleRate;
6780    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6781    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6782
6783    AudioParameter param = AudioParameter(keyValuePair);
6784    int value;
6785    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6786    //      channel count change can be requested. Do we mandate the first client defines the
6787    //      HAL sampling rate and channel count or do we allow changes on the fly?
6788    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6789        samplingRate = value;
6790        reconfig = true;
6791    }
6792    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6793        if (!audio_is_linear_pcm((audio_format_t) value)) {
6794            status = BAD_VALUE;
6795        } else {
6796            reqFormat = (audio_format_t) value;
6797            reconfig = true;
6798        }
6799    }
6800    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6801        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6802        if (!audio_is_input_channel(mask) ||
6803                audio_channel_count_from_in_mask(mask) > FCC_8) {
6804            status = BAD_VALUE;
6805        } else {
6806            channelMask = mask;
6807            reconfig = true;
6808        }
6809    }
6810    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6811        // do not accept frame count changes if tracks are open as the track buffer
6812        // size depends on frame count and correct behavior would not be guaranteed
6813        // if frame count is changed after track creation
6814        if (mActiveTracks.size() > 0) {
6815            status = INVALID_OPERATION;
6816        } else {
6817            reconfig = true;
6818        }
6819    }
6820    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6821        // forward device change to effects that have requested to be
6822        // aware of attached audio device.
6823        for (size_t i = 0; i < mEffectChains.size(); i++) {
6824            mEffectChains[i]->setDevice_l(value);
6825        }
6826
6827        // store input device and output device but do not forward output device to audio HAL.
6828        // Note that status is ignored by the caller for output device
6829        // (see AudioFlinger::setParameters()
6830        if (audio_is_output_devices(value)) {
6831            mOutDevice = value;
6832            status = BAD_VALUE;
6833        } else {
6834            mInDevice = value;
6835            if (value != AUDIO_DEVICE_NONE) {
6836                mPrevInDevice = value;
6837            }
6838            // disable AEC and NS if the device is a BT SCO headset supporting those
6839            // pre processings
6840            if (mTracks.size() > 0) {
6841                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6842                                    mAudioFlinger->btNrecIsOff();
6843                for (size_t i = 0; i < mTracks.size(); i++) {
6844                    sp<RecordTrack> track = mTracks[i];
6845                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6846                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6847                }
6848            }
6849        }
6850    }
6851    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6852            mAudioSource != (audio_source_t)value) {
6853        // forward device change to effects that have requested to be
6854        // aware of attached audio device.
6855        for (size_t i = 0; i < mEffectChains.size(); i++) {
6856            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6857        }
6858        mAudioSource = (audio_source_t)value;
6859    }
6860
6861    if (status == NO_ERROR) {
6862        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6863                keyValuePair.string());
6864        if (status == INVALID_OPERATION) {
6865            inputStandBy();
6866            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6867                    keyValuePair.string());
6868        }
6869        if (reconfig) {
6870            if (status == BAD_VALUE &&
6871                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6872                audio_is_linear_pcm(reqFormat) &&
6873                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6874                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6875                audio_channel_count_from_in_mask(
6876                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
6877                status = NO_ERROR;
6878            }
6879            if (status == NO_ERROR) {
6880                readInputParameters_l();
6881                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
6882            }
6883        }
6884    }
6885
6886    return reconfig;
6887}
6888
6889String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6890{
6891    Mutex::Autolock _l(mLock);
6892    if (initCheck() != NO_ERROR) {
6893        return String8();
6894    }
6895
6896    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6897    const String8 out_s8(s);
6898    free(s);
6899    return out_s8;
6900}
6901
6902void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
6903    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
6904
6905    desc->mIoHandle = mId;
6906
6907    switch (event) {
6908    case AUDIO_INPUT_OPENED:
6909    case AUDIO_INPUT_CONFIG_CHANGED:
6910        desc->mPatch = mPatch;
6911        desc->mChannelMask = mChannelMask;
6912        desc->mSamplingRate = mSampleRate;
6913        desc->mFormat = mFormat;
6914        desc->mFrameCount = mFrameCount;
6915        desc->mLatency = 0;
6916        break;
6917
6918    case AUDIO_INPUT_CLOSED:
6919    default:
6920        break;
6921    }
6922    mAudioFlinger->ioConfigChanged(event, desc, pid);
6923}
6924
6925void AudioFlinger::RecordThread::readInputParameters_l()
6926{
6927    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6928    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6929    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6930    if (mChannelCount > FCC_8) {
6931        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
6932    }
6933    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6934    mFormat = mHALFormat;
6935    if (!audio_is_linear_pcm(mFormat)) {
6936        ALOGE("HAL format %#x is not linear pcm", mFormat);
6937    }
6938    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6939    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6940    mFrameCount = mBufferSize / mFrameSize;
6941    // This is the formula for calculating the temporary buffer size.
6942    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6943    // 1 full output buffer, regardless of the alignment of the available input.
6944    // The value is somewhat arbitrary, and could probably be even larger.
6945    // A larger value should allow more old data to be read after a track calls start(),
6946    // without increasing latency.
6947    //
6948    // Note this is independent of the maximum downsampling ratio permitted for capture.
6949    mRsmpInFrames = mFrameCount * 7;
6950    mRsmpInFramesP2 = roundup(mRsmpInFrames);
6951    free(mRsmpInBuffer);
6952    mRsmpInBuffer = NULL;
6953
6954    // TODO optimize audio capture buffer sizes ...
6955    // Here we calculate the size of the sliding buffer used as a source
6956    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6957    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6958    // be better to have it derived from the pipe depth in the long term.
6959    // The current value is higher than necessary.  However it should not add to latency.
6960
6961    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6962    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
6963    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
6964    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
6965
6966    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6967    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6968}
6969
6970uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6971{
6972    Mutex::Autolock _l(mLock);
6973    if (initCheck() != NO_ERROR) {
6974        return 0;
6975    }
6976
6977    return mInput->stream->get_input_frames_lost(mInput->stream);
6978}
6979
6980uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6981{
6982    Mutex::Autolock _l(mLock);
6983    uint32_t result = 0;
6984    if (getEffectChain_l(sessionId) != 0) {
6985        result = EFFECT_SESSION;
6986    }
6987
6988    for (size_t i = 0; i < mTracks.size(); ++i) {
6989        if (sessionId == mTracks[i]->sessionId()) {
6990            result |= TRACK_SESSION;
6991            break;
6992        }
6993    }
6994
6995    return result;
6996}
6997
6998KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6999{
7000    KeyedVector<int, bool> ids;
7001    Mutex::Autolock _l(mLock);
7002    for (size_t j = 0; j < mTracks.size(); ++j) {
7003        sp<RecordThread::RecordTrack> track = mTracks[j];
7004        int sessionId = track->sessionId();
7005        if (ids.indexOfKey(sessionId) < 0) {
7006            ids.add(sessionId, true);
7007        }
7008    }
7009    return ids;
7010}
7011
7012AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7013{
7014    Mutex::Autolock _l(mLock);
7015    AudioStreamIn *input = mInput;
7016    mInput = NULL;
7017    return input;
7018}
7019
7020// this method must always be called either with ThreadBase mLock held or inside the thread loop
7021audio_stream_t* AudioFlinger::RecordThread::stream() const
7022{
7023    if (mInput == NULL) {
7024        return NULL;
7025    }
7026    return &mInput->stream->common;
7027}
7028
7029status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7030{
7031    // only one chain per input thread
7032    if (mEffectChains.size() != 0) {
7033        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7034        return INVALID_OPERATION;
7035    }
7036    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7037    chain->setThread(this);
7038    chain->setInBuffer(NULL);
7039    chain->setOutBuffer(NULL);
7040
7041    checkSuspendOnAddEffectChain_l(chain);
7042
7043    // make sure enabled pre processing effects state is communicated to the HAL as we
7044    // just moved them to a new input stream.
7045    chain->syncHalEffectsState();
7046
7047    mEffectChains.add(chain);
7048
7049    return NO_ERROR;
7050}
7051
7052size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7053{
7054    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7055    ALOGW_IF(mEffectChains.size() != 1,
7056            "removeEffectChain_l() %p invalid chain size %d on thread %p",
7057            chain.get(), mEffectChains.size(), this);
7058    if (mEffectChains.size() == 1) {
7059        mEffectChains.removeAt(0);
7060    }
7061    return 0;
7062}
7063
7064status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7065                                                          audio_patch_handle_t *handle)
7066{
7067    status_t status = NO_ERROR;
7068
7069    // store new device and send to effects
7070    mInDevice = patch->sources[0].ext.device.type;
7071    mPatch = *patch;
7072    for (size_t i = 0; i < mEffectChains.size(); i++) {
7073        mEffectChains[i]->setDevice_l(mInDevice);
7074    }
7075
7076    // disable AEC and NS if the device is a BT SCO headset supporting those
7077    // pre processings
7078    if (mTracks.size() > 0) {
7079        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7080                            mAudioFlinger->btNrecIsOff();
7081        for (size_t i = 0; i < mTracks.size(); i++) {
7082            sp<RecordTrack> track = mTracks[i];
7083            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7084            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7085        }
7086    }
7087
7088    // store new source and send to effects
7089    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7090        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7091        for (size_t i = 0; i < mEffectChains.size(); i++) {
7092            mEffectChains[i]->setAudioSource_l(mAudioSource);
7093        }
7094    }
7095
7096    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7097        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7098        status = hwDevice->create_audio_patch(hwDevice,
7099                                               patch->num_sources,
7100                                               patch->sources,
7101                                               patch->num_sinks,
7102                                               patch->sinks,
7103                                               handle);
7104    } else {
7105        char *address;
7106        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7107            address = audio_device_address_to_parameter(
7108                                                patch->sources[0].ext.device.type,
7109                                                patch->sources[0].ext.device.address);
7110        } else {
7111            address = (char *)calloc(1, 1);
7112        }
7113        AudioParameter param = AudioParameter(String8(address));
7114        free(address);
7115        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7116                     (int)patch->sources[0].ext.device.type);
7117        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7118                                         (int)patch->sinks[0].ext.mix.usecase.source);
7119        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7120                param.toString().string());
7121        *handle = AUDIO_PATCH_HANDLE_NONE;
7122    }
7123
7124    if (mInDevice != mPrevInDevice) {
7125        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7126        mPrevInDevice = mInDevice;
7127    }
7128
7129    return status;
7130}
7131
7132status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7133{
7134    status_t status = NO_ERROR;
7135
7136    mInDevice = AUDIO_DEVICE_NONE;
7137
7138    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7139        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7140        status = hwDevice->release_audio_patch(hwDevice, handle);
7141    } else {
7142        AudioParameter param;
7143        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7144        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7145                param.toString().string());
7146    }
7147    return status;
7148}
7149
7150void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7151{
7152    Mutex::Autolock _l(mLock);
7153    mTracks.add(record);
7154}
7155
7156void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7157{
7158    Mutex::Autolock _l(mLock);
7159    destroyTrack_l(record);
7160}
7161
7162void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7163{
7164    ThreadBase::getAudioPortConfig(config);
7165    config->role = AUDIO_PORT_ROLE_SINK;
7166    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7167    config->ext.mix.usecase.source = mAudioSource;
7168}
7169
7170} // namespace android
7171