Threads.cpp revision 438e7572c83674f4b9e6184f32f3dc94cd50524e
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/primitives.h>
40#include <audio_utils/format.h>
41#include <audio_utils/minifloat.h>
42
43// NBAIO implementations
44#include <media/nbaio/AudioStreamInSource.h>
45#include <media/nbaio/AudioStreamOutSink.h>
46#include <media/nbaio/MonoPipe.h>
47#include <media/nbaio/MonoPipeReader.h>
48#include <media/nbaio/Pipe.h>
49#include <media/nbaio/PipeReader.h>
50#include <media/nbaio/SourceAudioBufferProvider.h>
51#include <mediautils/BatteryNotifier.h>
52
53#include <powermanager/PowerManager.h>
54
55#include <common_time/cc_helper.h>
56#include <common_time/local_clock.h>
57
58#include "AudioFlinger.h"
59#include "AudioMixer.h"
60#include "BufferProviders.h"
61#include "FastMixer.h"
62#include "FastCapture.h"
63#include "ServiceUtilities.h"
64#include "mediautils/SchedulingPolicyService.h"
65
66#ifdef ADD_BATTERY_DATA
67#include <media/IMediaPlayerService.h>
68#include <media/IMediaDeathNotifier.h>
69#endif
70
71#ifdef DEBUG_CPU_USAGE
72#include <cpustats/CentralTendencyStatistics.h>
73#include <cpustats/ThreadCpuUsage.h>
74#endif
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113
114// don't warn about blocked writes or record buffer overflows more often than this
115static const nsecs_t kWarningThrottleNs = seconds(5);
116
117// RecordThread loop sleep time upon application overrun or audio HAL read error
118static const int kRecordThreadSleepUs = 5000;
119
120// maximum time to wait in sendConfigEvent_l() for a status to be received
121static const nsecs_t kConfigEventTimeoutNs = seconds(2);
122
123// minimum sleep time for the mixer thread loop when tracks are active but in underrun
124static const uint32_t kMinThreadSleepTimeUs = 5000;
125// maximum divider applied to the active sleep time in the mixer thread loop
126static const uint32_t kMaxThreadSleepTimeShift = 2;
127
128// minimum normal sink buffer size, expressed in milliseconds rather than frames
129// FIXME This should be based on experimentally observed scheduling jitter
130static const uint32_t kMinNormalSinkBufferSizeMs = 20;
131// maximum normal sink buffer size
132static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
133
134// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
135// FIXME This should be based on experimentally observed scheduling jitter
136static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
137
138// Offloaded output thread standby delay: allows track transition without going to standby
139static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
140
141// Whether to use fast mixer
142static const enum {
143    FastMixer_Never,    // never initialize or use: for debugging only
144    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
145                        // normal mixer multiplier is 1
146    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
147                        // multiplier is calculated based on min & max normal mixer buffer size
148    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
149                        // multiplier is calculated based on min & max normal mixer buffer size
150    // FIXME for FastMixer_Dynamic:
151    //  Supporting this option will require fixing HALs that can't handle large writes.
152    //  For example, one HAL implementation returns an error from a large write,
153    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
154    //  We could either fix the HAL implementations, or provide a wrapper that breaks
155    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
156} kUseFastMixer = FastMixer_Static;
157
158// Whether to use fast capture
159static const enum {
160    FastCapture_Never,  // never initialize or use: for debugging only
161    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
162    FastCapture_Static, // initialize if needed, then use all the time if initialized
163} kUseFastCapture = FastCapture_Static;
164
165// Priorities for requestPriority
166static const int kPriorityAudioApp = 2;
167static const int kPriorityFastMixer = 3;
168static const int kPriorityFastCapture = 3;
169
170// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
171// for the track.  The client then sub-divides this into smaller buffers for its use.
172// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
173// So for now we just assume that client is double-buffered for fast tracks.
174// FIXME It would be better for client to tell AudioFlinger the value of N,
175// so AudioFlinger could allocate the right amount of memory.
176// See the client's minBufCount and mNotificationFramesAct calculations for details.
177
178// This is the default value, if not specified by property.
179static const int kFastTrackMultiplier = 2;
180
181// The minimum and maximum allowed values
182static const int kFastTrackMultiplierMin = 1;
183static const int kFastTrackMultiplierMax = 2;
184
185// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
186static int sFastTrackMultiplier = kFastTrackMultiplier;
187
188// See Thread::readOnlyHeap().
189// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
190// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
191// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
192static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
193
194// ----------------------------------------------------------------------------
195
196static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
197
198static void sFastTrackMultiplierInit()
199{
200    char value[PROPERTY_VALUE_MAX];
201    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
202        char *endptr;
203        unsigned long ul = strtoul(value, &endptr, 0);
204        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
205            sFastTrackMultiplier = (int) ul;
206        }
207    }
208}
209
210// ----------------------------------------------------------------------------
211
212#ifdef ADD_BATTERY_DATA
213// To collect the amplifier usage
214static void addBatteryData(uint32_t params) {
215    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
216    if (service == NULL) {
217        // it already logged
218        return;
219    }
220
221    service->addBatteryData(params);
222}
223#endif
224
225
226// ----------------------------------------------------------------------------
227//      CPU Stats
228// ----------------------------------------------------------------------------
229
230class CpuStats {
231public:
232    CpuStats();
233    void sample(const String8 &title);
234#ifdef DEBUG_CPU_USAGE
235private:
236    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
237    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
238
239    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
240
241    int mCpuNum;                        // thread's current CPU number
242    int mCpukHz;                        // frequency of thread's current CPU in kHz
243#endif
244};
245
246CpuStats::CpuStats()
247#ifdef DEBUG_CPU_USAGE
248    : mCpuNum(-1), mCpukHz(-1)
249#endif
250{
251}
252
253void CpuStats::sample(const String8 &title
254#ifndef DEBUG_CPU_USAGE
255                __unused
256#endif
257        ) {
258#ifdef DEBUG_CPU_USAGE
259    // get current thread's delta CPU time in wall clock ns
260    double wcNs;
261    bool valid = mCpuUsage.sampleAndEnable(wcNs);
262
263    // record sample for wall clock statistics
264    if (valid) {
265        mWcStats.sample(wcNs);
266    }
267
268    // get the current CPU number
269    int cpuNum = sched_getcpu();
270
271    // get the current CPU frequency in kHz
272    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
273
274    // check if either CPU number or frequency changed
275    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
276        mCpuNum = cpuNum;
277        mCpukHz = cpukHz;
278        // ignore sample for purposes of cycles
279        valid = false;
280    }
281
282    // if no change in CPU number or frequency, then record sample for cycle statistics
283    if (valid && mCpukHz > 0) {
284        double cycles = wcNs * cpukHz * 0.000001;
285        mHzStats.sample(cycles);
286    }
287
288    unsigned n = mWcStats.n();
289    // mCpuUsage.elapsed() is expensive, so don't call it every loop
290    if ((n & 127) == 1) {
291        long long elapsed = mCpuUsage.elapsed();
292        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
293            double perLoop = elapsed / (double) n;
294            double perLoop100 = perLoop * 0.01;
295            double perLoop1k = perLoop * 0.001;
296            double mean = mWcStats.mean();
297            double stddev = mWcStats.stddev();
298            double minimum = mWcStats.minimum();
299            double maximum = mWcStats.maximum();
300            double meanCycles = mHzStats.mean();
301            double stddevCycles = mHzStats.stddev();
302            double minCycles = mHzStats.minimum();
303            double maxCycles = mHzStats.maximum();
304            mCpuUsage.resetElapsed();
305            mWcStats.reset();
306            mHzStats.reset();
307            ALOGD("CPU usage for %s over past %.1f secs\n"
308                "  (%u mixer loops at %.1f mean ms per loop):\n"
309                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
310                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
311                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
312                    title.string(),
313                    elapsed * .000000001, n, perLoop * .000001,
314                    mean * .001,
315                    stddev * .001,
316                    minimum * .001,
317                    maximum * .001,
318                    mean / perLoop100,
319                    stddev / perLoop100,
320                    minimum / perLoop100,
321                    maximum / perLoop100,
322                    meanCycles / perLoop1k,
323                    stddevCycles / perLoop1k,
324                    minCycles / perLoop1k,
325                    maxCycles / perLoop1k);
326
327        }
328    }
329#endif
330};
331
332// ----------------------------------------------------------------------------
333//      ThreadBase
334// ----------------------------------------------------------------------------
335
336// static
337const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
338{
339    switch (type) {
340    case MIXER:
341        return "MIXER";
342    case DIRECT:
343        return "DIRECT";
344    case DUPLICATING:
345        return "DUPLICATING";
346    case RECORD:
347        return "RECORD";
348    case OFFLOAD:
349        return "OFFLOAD";
350    default:
351        return "unknown";
352    }
353}
354
355String8 devicesToString(audio_devices_t devices)
356{
357    static const struct mapping {
358        audio_devices_t mDevices;
359        const char *    mString;
360    } mappingsOut[] = {
361        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
362        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
363        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
364        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
365        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
366        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
367        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
368        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
369        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
370        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
371        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
372        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
373        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
374        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
375        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
376        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
377        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
378        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
379        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
380        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
381        {AUDIO_DEVICE_OUT_FM,               "FM"},
382        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
383        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
384        {AUDIO_DEVICE_OUT_IP,               "IP"},
385        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
386    }, mappingsIn[] = {
387        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
388        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
389        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
390        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
391        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
392        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
393        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
394        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
395        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
396        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
397        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
398        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
399        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
400        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
401        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
402        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
403        {AUDIO_DEVICE_IN_LINE,              "LINE"},
404        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
405        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
406        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
407        {AUDIO_DEVICE_IN_IP,                "IP"},
408        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
409    };
410    String8 result;
411    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
412    const mapping *entry;
413    if (devices & AUDIO_DEVICE_BIT_IN) {
414        devices &= ~AUDIO_DEVICE_BIT_IN;
415        entry = mappingsIn;
416    } else {
417        entry = mappingsOut;
418    }
419    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
420        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
421        if (devices & entry->mDevices) {
422            if (!result.isEmpty()) {
423                result.append("|");
424            }
425            result.append(entry->mString);
426        }
427    }
428    if (devices & ~allDevices) {
429        if (!result.isEmpty()) {
430            result.append("|");
431        }
432        result.appendFormat("0x%X", devices & ~allDevices);
433    }
434    if (result.isEmpty()) {
435        result.append(entry->mString);
436    }
437    return result;
438}
439
440String8 inputFlagsToString(audio_input_flags_t flags)
441{
442    static const struct mapping {
443        audio_input_flags_t     mFlag;
444        const char *            mString;
445    } mappings[] = {
446        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
447        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
448        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
449        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
450        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
451    };
452    String8 result;
453    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
454    const mapping *entry;
455    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
456        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
457        if (flags & entry->mFlag) {
458            if (!result.isEmpty()) {
459                result.append("|");
460            }
461            result.append(entry->mString);
462        }
463    }
464    if (flags & ~allFlags) {
465        if (!result.isEmpty()) {
466            result.append("|");
467        }
468        result.appendFormat("0x%X", flags & ~allFlags);
469    }
470    if (result.isEmpty()) {
471        result.append(entry->mString);
472    }
473    return result;
474}
475
476String8 outputFlagsToString(audio_output_flags_t flags)
477{
478    static const struct mapping {
479        audio_output_flags_t    mFlag;
480        const char *            mString;
481    } mappings[] = {
482        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
483        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
484        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
485        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
486        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
487        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
488        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
489        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
490        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
491        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
492        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
493    };
494    String8 result;
495    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
496    const mapping *entry;
497    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
498        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
499        if (flags & entry->mFlag) {
500            if (!result.isEmpty()) {
501                result.append("|");
502            }
503            result.append(entry->mString);
504        }
505    }
506    if (flags & ~allFlags) {
507        if (!result.isEmpty()) {
508            result.append("|");
509        }
510        result.appendFormat("0x%X", flags & ~allFlags);
511    }
512    if (result.isEmpty()) {
513        result.append(entry->mString);
514    }
515    return result;
516}
517
518const char *sourceToString(audio_source_t source)
519{
520    switch (source) {
521    case AUDIO_SOURCE_DEFAULT:              return "default";
522    case AUDIO_SOURCE_MIC:                  return "mic";
523    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
524    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
525    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
526    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
527    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
528    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
529    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
530    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
531    case AUDIO_SOURCE_HOTWORD:              return "hotword";
532    default:                                return "unknown";
533    }
534}
535
536AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
537        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
538    :   Thread(false /*canCallJava*/),
539        mType(type),
540        mAudioFlinger(audioFlinger),
541        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
542        // are set by PlaybackThread::readOutputParameters_l() or
543        // RecordThread::readInputParameters_l()
544        //FIXME: mStandby should be true here. Is this some kind of hack?
545        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
546        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
547        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
548        // mName will be set by concrete (non-virtual) subclass
549        mDeathRecipient(new PMDeathRecipient(this)),
550        mSystemReady(systemReady),
551        mNotifiedBatteryStart(false)
552{
553    memset(&mPatch, 0, sizeof(struct audio_patch));
554}
555
556AudioFlinger::ThreadBase::~ThreadBase()
557{
558    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
559    mConfigEvents.clear();
560
561    // do not lock the mutex in destructor
562    releaseWakeLock_l();
563    if (mPowerManager != 0) {
564        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
565        binder->unlinkToDeath(mDeathRecipient);
566    }
567}
568
569status_t AudioFlinger::ThreadBase::readyToRun()
570{
571    status_t status = initCheck();
572    if (status == NO_ERROR) {
573        ALOGI("AudioFlinger's thread %p ready to run", this);
574    } else {
575        ALOGE("No working audio driver found.");
576    }
577    return status;
578}
579
580void AudioFlinger::ThreadBase::exit()
581{
582    ALOGV("ThreadBase::exit");
583    // do any cleanup required for exit to succeed
584    preExit();
585    {
586        // This lock prevents the following race in thread (uniprocessor for illustration):
587        //  if (!exitPending()) {
588        //      // context switch from here to exit()
589        //      // exit() calls requestExit(), what exitPending() observes
590        //      // exit() calls signal(), which is dropped since no waiters
591        //      // context switch back from exit() to here
592        //      mWaitWorkCV.wait(...);
593        //      // now thread is hung
594        //  }
595        AutoMutex lock(mLock);
596        requestExit();
597        mWaitWorkCV.broadcast();
598    }
599    // When Thread::requestExitAndWait is made virtual and this method is renamed to
600    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
601    requestExitAndWait();
602}
603
604status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
605{
606    status_t status;
607
608    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
609    Mutex::Autolock _l(mLock);
610
611    return sendSetParameterConfigEvent_l(keyValuePairs);
612}
613
614// sendConfigEvent_l() must be called with ThreadBase::mLock held
615// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
616status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
617{
618    status_t status = NO_ERROR;
619
620    if (event->mRequiresSystemReady && !mSystemReady) {
621        event->mWaitStatus = false;
622        mPendingConfigEvents.add(event);
623        return status;
624    }
625    mConfigEvents.add(event);
626    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
627    mWaitWorkCV.signal();
628    mLock.unlock();
629    {
630        Mutex::Autolock _l(event->mLock);
631        while (event->mWaitStatus) {
632            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
633                event->mStatus = TIMED_OUT;
634                event->mWaitStatus = false;
635            }
636        }
637        status = event->mStatus;
638    }
639    mLock.lock();
640    return status;
641}
642
643void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
644{
645    Mutex::Autolock _l(mLock);
646    sendIoConfigEvent_l(event, pid);
647}
648
649// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
650void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
651{
652    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
653    sendConfigEvent_l(configEvent);
654}
655
656void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
657{
658    Mutex::Autolock _l(mLock);
659    sendPrioConfigEvent_l(pid, tid, prio);
660}
661
662// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
663void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
664{
665    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
666    sendConfigEvent_l(configEvent);
667}
668
669// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
670status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
671{
672    sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
673    return sendConfigEvent_l(configEvent);
674}
675
676status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
677                                                        const struct audio_patch *patch,
678                                                        audio_patch_handle_t *handle)
679{
680    Mutex::Autolock _l(mLock);
681    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
682    status_t status = sendConfigEvent_l(configEvent);
683    if (status == NO_ERROR) {
684        CreateAudioPatchConfigEventData *data =
685                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
686        *handle = data->mHandle;
687    }
688    return status;
689}
690
691status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
692                                                                const audio_patch_handle_t handle)
693{
694    Mutex::Autolock _l(mLock);
695    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
696    return sendConfigEvent_l(configEvent);
697}
698
699
700// post condition: mConfigEvents.isEmpty()
701void AudioFlinger::ThreadBase::processConfigEvents_l()
702{
703    bool configChanged = false;
704
705    while (!mConfigEvents.isEmpty()) {
706        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
707        sp<ConfigEvent> event = mConfigEvents[0];
708        mConfigEvents.removeAt(0);
709        switch (event->mType) {
710        case CFG_EVENT_PRIO: {
711            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
712            // FIXME Need to understand why this has to be done asynchronously
713            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
714                    true /*asynchronous*/);
715            if (err != 0) {
716                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
717                      data->mPrio, data->mPid, data->mTid, err);
718            }
719        } break;
720        case CFG_EVENT_IO: {
721            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
722            ioConfigChanged(data->mEvent, data->mPid);
723        } break;
724        case CFG_EVENT_SET_PARAMETER: {
725            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
726            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
727                configChanged = true;
728            }
729        } break;
730        case CFG_EVENT_CREATE_AUDIO_PATCH: {
731            CreateAudioPatchConfigEventData *data =
732                                            (CreateAudioPatchConfigEventData *)event->mData.get();
733            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
734        } break;
735        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
736            ReleaseAudioPatchConfigEventData *data =
737                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
738            event->mStatus = releaseAudioPatch_l(data->mHandle);
739        } break;
740        default:
741            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
742            break;
743        }
744        {
745            Mutex::Autolock _l(event->mLock);
746            if (event->mWaitStatus) {
747                event->mWaitStatus = false;
748                event->mCond.signal();
749            }
750        }
751        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
752    }
753
754    if (configChanged) {
755        cacheParameters_l();
756    }
757}
758
759String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
760    String8 s;
761    const audio_channel_representation_t representation =
762            audio_channel_mask_get_representation(mask);
763
764    switch (representation) {
765    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
766        if (output) {
767            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
768            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
769            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
770            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
771            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
772            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
773            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
774            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
775            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
776            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
777            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
778            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
779            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
780            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
781            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
782            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
783            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
784            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
785            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
786        } else {
787            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
788            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
789            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
790            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
791            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
792            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
793            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
794            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
795            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
796            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
797            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
798            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
799            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
800            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
801            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
802        }
803        const int len = s.length();
804        if (len > 2) {
805            char *str = s.lockBuffer(len); // needed?
806            s.unlockBuffer(len - 2);       // remove trailing ", "
807        }
808        return s;
809    }
810    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
811        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
812        return s;
813    default:
814        s.appendFormat("unknown mask, representation:%d  bits:%#x",
815                representation, audio_channel_mask_get_bits(mask));
816        return s;
817    }
818}
819
820void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
821{
822    const size_t SIZE = 256;
823    char buffer[SIZE];
824    String8 result;
825
826    bool locked = AudioFlinger::dumpTryLock(mLock);
827    if (!locked) {
828        dprintf(fd, "thread %p may be deadlocked\n", this);
829    }
830
831    dprintf(fd, "  Thread name: %s\n", mThreadName);
832    dprintf(fd, "  I/O handle: %d\n", mId);
833    dprintf(fd, "  TID: %d\n", getTid());
834    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
835    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
836    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
837    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
838    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
839    dprintf(fd, "  Channel count: %u\n", mChannelCount);
840    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
841            channelMaskToString(mChannelMask, mType != RECORD).string());
842    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
843    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
844    dprintf(fd, "  Pending config events:");
845    size_t numConfig = mConfigEvents.size();
846    if (numConfig) {
847        for (size_t i = 0; i < numConfig; i++) {
848            mConfigEvents[i]->dump(buffer, SIZE);
849            dprintf(fd, "\n    %s", buffer);
850        }
851        dprintf(fd, "\n");
852    } else {
853        dprintf(fd, " none\n");
854    }
855    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
856    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
857    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
858
859    if (locked) {
860        mLock.unlock();
861    }
862}
863
864void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
865{
866    const size_t SIZE = 256;
867    char buffer[SIZE];
868    String8 result;
869
870    size_t numEffectChains = mEffectChains.size();
871    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
872    write(fd, buffer, strlen(buffer));
873
874    for (size_t i = 0; i < numEffectChains; ++i) {
875        sp<EffectChain> chain = mEffectChains[i];
876        if (chain != 0) {
877            chain->dump(fd, args);
878        }
879    }
880}
881
882void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
883{
884    Mutex::Autolock _l(mLock);
885    acquireWakeLock_l(uid);
886}
887
888String16 AudioFlinger::ThreadBase::getWakeLockTag()
889{
890    switch (mType) {
891    case MIXER:
892        return String16("AudioMix");
893    case DIRECT:
894        return String16("AudioDirectOut");
895    case DUPLICATING:
896        return String16("AudioDup");
897    case RECORD:
898        return String16("AudioIn");
899    case OFFLOAD:
900        return String16("AudioOffload");
901    default:
902        ALOG_ASSERT(false);
903        return String16("AudioUnknown");
904    }
905}
906
907void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
908{
909    getPowerManager_l();
910    if (mPowerManager != 0) {
911        sp<IBinder> binder = new BBinder();
912        status_t status;
913        if (uid >= 0) {
914            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
915                    binder,
916                    getWakeLockTag(),
917                    String16("audioserver"),
918                    uid,
919                    true /* FIXME force oneway contrary to .aidl */);
920        } else {
921            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
922                    binder,
923                    getWakeLockTag(),
924                    String16("audioserver"),
925                    true /* FIXME force oneway contrary to .aidl */);
926        }
927        if (status == NO_ERROR) {
928            mWakeLockToken = binder;
929        }
930        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
931    }
932
933    if (!mNotifiedBatteryStart) {
934        BatteryNotifier::getInstance().noteStartAudio();
935        mNotifiedBatteryStart = true;
936    }
937}
938
939void AudioFlinger::ThreadBase::releaseWakeLock()
940{
941    Mutex::Autolock _l(mLock);
942    releaseWakeLock_l();
943}
944
945void AudioFlinger::ThreadBase::releaseWakeLock_l()
946{
947    if (mWakeLockToken != 0) {
948        ALOGV("releaseWakeLock_l() %s", mThreadName);
949        if (mPowerManager != 0) {
950            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
951                    true /* FIXME force oneway contrary to .aidl */);
952        }
953        mWakeLockToken.clear();
954    }
955
956    if (mNotifiedBatteryStart) {
957        BatteryNotifier::getInstance().noteStopAudio();
958        mNotifiedBatteryStart = false;
959    }
960}
961
962void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
963    Mutex::Autolock _l(mLock);
964    updateWakeLockUids_l(uids);
965}
966
967void AudioFlinger::ThreadBase::getPowerManager_l() {
968    if (mSystemReady && mPowerManager == 0) {
969        // use checkService() to avoid blocking if power service is not up yet
970        sp<IBinder> binder =
971            defaultServiceManager()->checkService(String16("power"));
972        if (binder == 0) {
973            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
974        } else {
975            mPowerManager = interface_cast<IPowerManager>(binder);
976            binder->linkToDeath(mDeathRecipient);
977        }
978    }
979}
980
981void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
982    getPowerManager_l();
983    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
984        if (mSystemReady) {
985            ALOGE("no wake lock to update, but system ready!");
986        } else {
987            ALOGW("no wake lock to update, system not ready yet");
988        }
989        return;
990    }
991    if (mPowerManager != 0) {
992        sp<IBinder> binder = new BBinder();
993        status_t status;
994        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
995                    true /* FIXME force oneway contrary to .aidl */);
996        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
997    }
998}
999
1000void AudioFlinger::ThreadBase::clearPowerManager()
1001{
1002    Mutex::Autolock _l(mLock);
1003    releaseWakeLock_l();
1004    mPowerManager.clear();
1005}
1006
1007void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1008{
1009    sp<ThreadBase> thread = mThread.promote();
1010    if (thread != 0) {
1011        thread->clearPowerManager();
1012    }
1013    ALOGW("power manager service died !!!");
1014}
1015
1016void AudioFlinger::ThreadBase::setEffectSuspended(
1017        const effect_uuid_t *type, bool suspend, int sessionId)
1018{
1019    Mutex::Autolock _l(mLock);
1020    setEffectSuspended_l(type, suspend, sessionId);
1021}
1022
1023void AudioFlinger::ThreadBase::setEffectSuspended_l(
1024        const effect_uuid_t *type, bool suspend, int sessionId)
1025{
1026    sp<EffectChain> chain = getEffectChain_l(sessionId);
1027    if (chain != 0) {
1028        if (type != NULL) {
1029            chain->setEffectSuspended_l(type, suspend);
1030        } else {
1031            chain->setEffectSuspendedAll_l(suspend);
1032        }
1033    }
1034
1035    updateSuspendedSessions_l(type, suspend, sessionId);
1036}
1037
1038void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1039{
1040    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1041    if (index < 0) {
1042        return;
1043    }
1044
1045    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1046            mSuspendedSessions.valueAt(index);
1047
1048    for (size_t i = 0; i < sessionEffects.size(); i++) {
1049        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1050        for (int j = 0; j < desc->mRefCount; j++) {
1051            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1052                chain->setEffectSuspendedAll_l(true);
1053            } else {
1054                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1055                    desc->mType.timeLow);
1056                chain->setEffectSuspended_l(&desc->mType, true);
1057            }
1058        }
1059    }
1060}
1061
1062void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1063                                                         bool suspend,
1064                                                         int sessionId)
1065{
1066    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1067
1068    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1069
1070    if (suspend) {
1071        if (index >= 0) {
1072            sessionEffects = mSuspendedSessions.valueAt(index);
1073        } else {
1074            mSuspendedSessions.add(sessionId, sessionEffects);
1075        }
1076    } else {
1077        if (index < 0) {
1078            return;
1079        }
1080        sessionEffects = mSuspendedSessions.valueAt(index);
1081    }
1082
1083
1084    int key = EffectChain::kKeyForSuspendAll;
1085    if (type != NULL) {
1086        key = type->timeLow;
1087    }
1088    index = sessionEffects.indexOfKey(key);
1089
1090    sp<SuspendedSessionDesc> desc;
1091    if (suspend) {
1092        if (index >= 0) {
1093            desc = sessionEffects.valueAt(index);
1094        } else {
1095            desc = new SuspendedSessionDesc();
1096            if (type != NULL) {
1097                desc->mType = *type;
1098            }
1099            sessionEffects.add(key, desc);
1100            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1101        }
1102        desc->mRefCount++;
1103    } else {
1104        if (index < 0) {
1105            return;
1106        }
1107        desc = sessionEffects.valueAt(index);
1108        if (--desc->mRefCount == 0) {
1109            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1110            sessionEffects.removeItemsAt(index);
1111            if (sessionEffects.isEmpty()) {
1112                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1113                                 sessionId);
1114                mSuspendedSessions.removeItem(sessionId);
1115            }
1116        }
1117    }
1118    if (!sessionEffects.isEmpty()) {
1119        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1120    }
1121}
1122
1123void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1124                                                            bool enabled,
1125                                                            int sessionId)
1126{
1127    Mutex::Autolock _l(mLock);
1128    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1129}
1130
1131void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1132                                                            bool enabled,
1133                                                            int sessionId)
1134{
1135    if (mType != RECORD) {
1136        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1137        // another session. This gives the priority to well behaved effect control panels
1138        // and applications not using global effects.
1139        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1140        // global effects
1141        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1142            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1143        }
1144    }
1145
1146    sp<EffectChain> chain = getEffectChain_l(sessionId);
1147    if (chain != 0) {
1148        chain->checkSuspendOnEffectEnabled(effect, enabled);
1149    }
1150}
1151
1152// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1153sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1154        const sp<AudioFlinger::Client>& client,
1155        const sp<IEffectClient>& effectClient,
1156        int32_t priority,
1157        int sessionId,
1158        effect_descriptor_t *desc,
1159        int *enabled,
1160        status_t *status)
1161{
1162    sp<EffectModule> effect;
1163    sp<EffectHandle> handle;
1164    status_t lStatus;
1165    sp<EffectChain> chain;
1166    bool chainCreated = false;
1167    bool effectCreated = false;
1168    bool effectRegistered = false;
1169
1170    lStatus = initCheck();
1171    if (lStatus != NO_ERROR) {
1172        ALOGW("createEffect_l() Audio driver not initialized.");
1173        goto Exit;
1174    }
1175
1176    // Reject any effect on Direct output threads for now, since the format of
1177    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1178    if (mType == DIRECT) {
1179        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1180                desc->name, mThreadName);
1181        lStatus = BAD_VALUE;
1182        goto Exit;
1183    }
1184
1185    // Reject any effect on mixer or duplicating multichannel sinks.
1186    // TODO: fix both format and multichannel issues with effects.
1187    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1188        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1189                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1190        lStatus = BAD_VALUE;
1191        goto Exit;
1192    }
1193
1194    // Allow global effects only on offloaded and mixer threads
1195    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1196        switch (mType) {
1197        case MIXER:
1198        case OFFLOAD:
1199            break;
1200        case DIRECT:
1201        case DUPLICATING:
1202        case RECORD:
1203        default:
1204            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1205                    desc->name, mThreadName);
1206            lStatus = BAD_VALUE;
1207            goto Exit;
1208        }
1209    }
1210
1211    // Only Pre processor effects are allowed on input threads and only on input threads
1212    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1213        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1214                desc->name, desc->flags, mType);
1215        lStatus = BAD_VALUE;
1216        goto Exit;
1217    }
1218
1219    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1220
1221    { // scope for mLock
1222        Mutex::Autolock _l(mLock);
1223
1224        // check for existing effect chain with the requested audio session
1225        chain = getEffectChain_l(sessionId);
1226        if (chain == 0) {
1227            // create a new chain for this session
1228            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1229            chain = new EffectChain(this, sessionId);
1230            addEffectChain_l(chain);
1231            chain->setStrategy(getStrategyForSession_l(sessionId));
1232            chainCreated = true;
1233        } else {
1234            effect = chain->getEffectFromDesc_l(desc);
1235        }
1236
1237        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1238
1239        if (effect == 0) {
1240            int id = mAudioFlinger->nextUniqueId();
1241            // Check CPU and memory usage
1242            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1243            if (lStatus != NO_ERROR) {
1244                goto Exit;
1245            }
1246            effectRegistered = true;
1247            // create a new effect module if none present in the chain
1248            effect = new EffectModule(this, chain, desc, id, sessionId);
1249            lStatus = effect->status();
1250            if (lStatus != NO_ERROR) {
1251                goto Exit;
1252            }
1253            effect->setOffloaded(mType == OFFLOAD, mId);
1254
1255            lStatus = chain->addEffect_l(effect);
1256            if (lStatus != NO_ERROR) {
1257                goto Exit;
1258            }
1259            effectCreated = true;
1260
1261            effect->setDevice(mOutDevice);
1262            effect->setDevice(mInDevice);
1263            effect->setMode(mAudioFlinger->getMode());
1264            effect->setAudioSource(mAudioSource);
1265        }
1266        // create effect handle and connect it to effect module
1267        handle = new EffectHandle(effect, client, effectClient, priority);
1268        lStatus = handle->initCheck();
1269        if (lStatus == OK) {
1270            lStatus = effect->addHandle(handle.get());
1271        }
1272        if (enabled != NULL) {
1273            *enabled = (int)effect->isEnabled();
1274        }
1275    }
1276
1277Exit:
1278    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1279        Mutex::Autolock _l(mLock);
1280        if (effectCreated) {
1281            chain->removeEffect_l(effect);
1282        }
1283        if (effectRegistered) {
1284            AudioSystem::unregisterEffect(effect->id());
1285        }
1286        if (chainCreated) {
1287            removeEffectChain_l(chain);
1288        }
1289        handle.clear();
1290    }
1291
1292    *status = lStatus;
1293    return handle;
1294}
1295
1296sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1297{
1298    Mutex::Autolock _l(mLock);
1299    return getEffect_l(sessionId, effectId);
1300}
1301
1302sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1303{
1304    sp<EffectChain> chain = getEffectChain_l(sessionId);
1305    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1306}
1307
1308// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1309// PlaybackThread::mLock held
1310status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1311{
1312    // check for existing effect chain with the requested audio session
1313    int sessionId = effect->sessionId();
1314    sp<EffectChain> chain = getEffectChain_l(sessionId);
1315    bool chainCreated = false;
1316
1317    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1318             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1319                    this, effect->desc().name, effect->desc().flags);
1320
1321    if (chain == 0) {
1322        // create a new chain for this session
1323        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1324        chain = new EffectChain(this, sessionId);
1325        addEffectChain_l(chain);
1326        chain->setStrategy(getStrategyForSession_l(sessionId));
1327        chainCreated = true;
1328    }
1329    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1330
1331    if (chain->getEffectFromId_l(effect->id()) != 0) {
1332        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1333                this, effect->desc().name, chain.get());
1334        return BAD_VALUE;
1335    }
1336
1337    effect->setOffloaded(mType == OFFLOAD, mId);
1338
1339    status_t status = chain->addEffect_l(effect);
1340    if (status != NO_ERROR) {
1341        if (chainCreated) {
1342            removeEffectChain_l(chain);
1343        }
1344        return status;
1345    }
1346
1347    effect->setDevice(mOutDevice);
1348    effect->setDevice(mInDevice);
1349    effect->setMode(mAudioFlinger->getMode());
1350    effect->setAudioSource(mAudioSource);
1351    return NO_ERROR;
1352}
1353
1354void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1355
1356    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1357    effect_descriptor_t desc = effect->desc();
1358    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1359        detachAuxEffect_l(effect->id());
1360    }
1361
1362    sp<EffectChain> chain = effect->chain().promote();
1363    if (chain != 0) {
1364        // remove effect chain if removing last effect
1365        if (chain->removeEffect_l(effect) == 0) {
1366            removeEffectChain_l(chain);
1367        }
1368    } else {
1369        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1370    }
1371}
1372
1373void AudioFlinger::ThreadBase::lockEffectChains_l(
1374        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1375{
1376    effectChains = mEffectChains;
1377    for (size_t i = 0; i < mEffectChains.size(); i++) {
1378        mEffectChains[i]->lock();
1379    }
1380}
1381
1382void AudioFlinger::ThreadBase::unlockEffectChains(
1383        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1384{
1385    for (size_t i = 0; i < effectChains.size(); i++) {
1386        effectChains[i]->unlock();
1387    }
1388}
1389
1390sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1391{
1392    Mutex::Autolock _l(mLock);
1393    return getEffectChain_l(sessionId);
1394}
1395
1396sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1397{
1398    size_t size = mEffectChains.size();
1399    for (size_t i = 0; i < size; i++) {
1400        if (mEffectChains[i]->sessionId() == sessionId) {
1401            return mEffectChains[i];
1402        }
1403    }
1404    return 0;
1405}
1406
1407void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1408{
1409    Mutex::Autolock _l(mLock);
1410    size_t size = mEffectChains.size();
1411    for (size_t i = 0; i < size; i++) {
1412        mEffectChains[i]->setMode_l(mode);
1413    }
1414}
1415
1416void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1417{
1418    config->type = AUDIO_PORT_TYPE_MIX;
1419    config->ext.mix.handle = mId;
1420    config->sample_rate = mSampleRate;
1421    config->format = mFormat;
1422    config->channel_mask = mChannelMask;
1423    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1424                            AUDIO_PORT_CONFIG_FORMAT;
1425}
1426
1427void AudioFlinger::ThreadBase::systemReady()
1428{
1429    Mutex::Autolock _l(mLock);
1430    if (mSystemReady) {
1431        return;
1432    }
1433    mSystemReady = true;
1434
1435    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1436        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1437    }
1438    mPendingConfigEvents.clear();
1439}
1440
1441
1442// ----------------------------------------------------------------------------
1443//      Playback
1444// ----------------------------------------------------------------------------
1445
1446AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1447                                             AudioStreamOut* output,
1448                                             audio_io_handle_t id,
1449                                             audio_devices_t device,
1450                                             type_t type,
1451                                             bool systemReady)
1452    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1453        mNormalFrameCount(0), mSinkBuffer(NULL),
1454        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1455        mMixerBuffer(NULL),
1456        mMixerBufferSize(0),
1457        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1458        mMixerBufferValid(false),
1459        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1460        mEffectBuffer(NULL),
1461        mEffectBufferSize(0),
1462        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1463        mEffectBufferValid(false),
1464        mSuspended(0), mBytesWritten(0),
1465        mActiveTracksGeneration(0),
1466        // mStreamTypes[] initialized in constructor body
1467        mOutput(output),
1468        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1469        mMixerStatus(MIXER_IDLE),
1470        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1471        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1472        mBytesRemaining(0),
1473        mCurrentWriteLength(0),
1474        mUseAsyncWrite(false),
1475        mWriteAckSequence(0),
1476        mDrainSequence(0),
1477        mSignalPending(false),
1478        mScreenState(AudioFlinger::mScreenState),
1479        // index 0 is reserved for normal mixer's submix
1480        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1481        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1482        // mLatchD, mLatchQ,
1483        mLatchDValid(false), mLatchQValid(false)
1484{
1485    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1486    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1487
1488    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1489    // it would be safer to explicitly pass initial masterVolume/masterMute as
1490    // parameter.
1491    //
1492    // If the HAL we are using has support for master volume or master mute,
1493    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1494    // and the mute set to false).
1495    mMasterVolume = audioFlinger->masterVolume_l();
1496    mMasterMute = audioFlinger->masterMute_l();
1497    if (mOutput && mOutput->audioHwDev) {
1498        if (mOutput->audioHwDev->canSetMasterVolume()) {
1499            mMasterVolume = 1.0;
1500        }
1501
1502        if (mOutput->audioHwDev->canSetMasterMute()) {
1503            mMasterMute = false;
1504        }
1505    }
1506
1507    readOutputParameters_l();
1508
1509    // ++ operator does not compile
1510    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1511            stream = (audio_stream_type_t) (stream + 1)) {
1512        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1513        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1514    }
1515}
1516
1517AudioFlinger::PlaybackThread::~PlaybackThread()
1518{
1519    mAudioFlinger->unregisterWriter(mNBLogWriter);
1520    free(mSinkBuffer);
1521    free(mMixerBuffer);
1522    free(mEffectBuffer);
1523}
1524
1525void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1526{
1527    dumpInternals(fd, args);
1528    dumpTracks(fd, args);
1529    dumpEffectChains(fd, args);
1530}
1531
1532void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1533{
1534    const size_t SIZE = 256;
1535    char buffer[SIZE];
1536    String8 result;
1537
1538    result.appendFormat("  Stream volumes in dB: ");
1539    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1540        const stream_type_t *st = &mStreamTypes[i];
1541        if (i > 0) {
1542            result.appendFormat(", ");
1543        }
1544        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1545        if (st->mute) {
1546            result.append("M");
1547        }
1548    }
1549    result.append("\n");
1550    write(fd, result.string(), result.length());
1551    result.clear();
1552
1553    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1554    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1555    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1556            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1557
1558    size_t numtracks = mTracks.size();
1559    size_t numactive = mActiveTracks.size();
1560    dprintf(fd, "  %d Tracks", numtracks);
1561    size_t numactiveseen = 0;
1562    if (numtracks) {
1563        dprintf(fd, " of which %d are active\n", numactive);
1564        Track::appendDumpHeader(result);
1565        for (size_t i = 0; i < numtracks; ++i) {
1566            sp<Track> track = mTracks[i];
1567            if (track != 0) {
1568                bool active = mActiveTracks.indexOf(track) >= 0;
1569                if (active) {
1570                    numactiveseen++;
1571                }
1572                track->dump(buffer, SIZE, active);
1573                result.append(buffer);
1574            }
1575        }
1576    } else {
1577        result.append("\n");
1578    }
1579    if (numactiveseen != numactive) {
1580        // some tracks in the active list were not in the tracks list
1581        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1582                " not in the track list\n");
1583        result.append(buffer);
1584        Track::appendDumpHeader(result);
1585        for (size_t i = 0; i < numactive; ++i) {
1586            sp<Track> track = mActiveTracks[i].promote();
1587            if (track != 0 && mTracks.indexOf(track) < 0) {
1588                track->dump(buffer, SIZE, true);
1589                result.append(buffer);
1590            }
1591        }
1592    }
1593
1594    write(fd, result.string(), result.size());
1595}
1596
1597void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1598{
1599    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1600
1601    dumpBase(fd, args);
1602
1603    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1604    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1605    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1606    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1607    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1608    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1609    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1610    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1611    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1612    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1613    AudioStreamOut *output = mOutput;
1614    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1615    String8 flagsAsString = outputFlagsToString(flags);
1616    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1617}
1618
1619// Thread virtuals
1620
1621void AudioFlinger::PlaybackThread::onFirstRef()
1622{
1623    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1624}
1625
1626// ThreadBase virtuals
1627void AudioFlinger::PlaybackThread::preExit()
1628{
1629    ALOGV("  preExit()");
1630    // FIXME this is using hard-coded strings but in the future, this functionality will be
1631    //       converted to use audio HAL extensions required to support tunneling
1632    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1633}
1634
1635// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1636sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1637        const sp<AudioFlinger::Client>& client,
1638        audio_stream_type_t streamType,
1639        uint32_t sampleRate,
1640        audio_format_t format,
1641        audio_channel_mask_t channelMask,
1642        size_t *pFrameCount,
1643        const sp<IMemory>& sharedBuffer,
1644        int sessionId,
1645        IAudioFlinger::track_flags_t *flags,
1646        pid_t tid,
1647        int uid,
1648        status_t *status)
1649{
1650    size_t frameCount = *pFrameCount;
1651    sp<Track> track;
1652    status_t lStatus;
1653
1654    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1655
1656    // client expresses a preference for FAST, but we get the final say
1657    if (*flags & IAudioFlinger::TRACK_FAST) {
1658      if (
1659            // not timed
1660            (!isTimed) &&
1661            // either of these use cases:
1662            (
1663              // use case 1: shared buffer with any frame count
1664              (
1665                (sharedBuffer != 0)
1666              ) ||
1667              // use case 2: frame count is default or at least as large as HAL
1668              (
1669                // we formerly checked for a callback handler (non-0 tid),
1670                // but that is no longer required for TRANSFER_OBTAIN mode
1671                ((frameCount == 0) ||
1672                (frameCount >= mFrameCount))
1673              )
1674            ) &&
1675            // PCM data
1676            audio_is_linear_pcm(format) &&
1677            // TODO: extract as a data library function that checks that a computationally
1678            // expensive downmixer is not required: isFastOutputChannelConversion()
1679            (channelMask == mChannelMask ||
1680                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1681                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1682                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1683            // hardware sample rate
1684            (sampleRate == mSampleRate) &&
1685            // normal mixer has an associated fast mixer
1686            hasFastMixer() &&
1687            // there are sufficient fast track slots available
1688            (mFastTrackAvailMask != 0)
1689            // FIXME test that MixerThread for this fast track has a capable output HAL
1690            // FIXME add a permission test also?
1691        ) {
1692        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1693        if (frameCount == 0) {
1694            // read the fast track multiplier property the first time it is needed
1695            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1696            if (ok != 0) {
1697                ALOGE("%s pthread_once failed: %d", __func__, ok);
1698            }
1699            frameCount = mFrameCount * sFastTrackMultiplier;
1700        }
1701        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1702                frameCount, mFrameCount);
1703      } else {
1704        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1705                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1706                "sampleRate=%u mSampleRate=%u "
1707                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1708                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1709                audio_is_linear_pcm(format),
1710                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1711        *flags &= ~IAudioFlinger::TRACK_FAST;
1712      }
1713    }
1714    // For normal PCM streaming tracks, update minimum frame count.
1715    // For compatibility with AudioTrack calculation, buffer depth is forced
1716    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1717    // This is probably too conservative, but legacy application code may depend on it.
1718    // If you change this calculation, also review the start threshold which is related.
1719    if (!(*flags & IAudioFlinger::TRACK_FAST)
1720            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1721        // this must match AudioTrack.cpp calculateMinFrameCount().
1722        // TODO: Move to a common library
1723        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1724        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1725        if (minBufCount < 2) {
1726            minBufCount = 2;
1727        }
1728        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1729        // or the client should compute and pass in a larger buffer request.
1730        size_t minFrameCount =
1731                minBufCount * sourceFramesNeededWithTimestretch(
1732                        sampleRate, mNormalFrameCount,
1733                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1734        if (frameCount < minFrameCount) { // including frameCount == 0
1735            frameCount = minFrameCount;
1736        }
1737    }
1738    *pFrameCount = frameCount;
1739
1740    switch (mType) {
1741
1742    case DIRECT:
1743        if (audio_is_linear_pcm(format)) {
1744            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1745                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1746                        "for output %p with format %#x",
1747                        sampleRate, format, channelMask, mOutput, mFormat);
1748                lStatus = BAD_VALUE;
1749                goto Exit;
1750            }
1751        }
1752        break;
1753
1754    case OFFLOAD:
1755        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1756            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1757                    "for output %p with format %#x",
1758                    sampleRate, format, channelMask, mOutput, mFormat);
1759            lStatus = BAD_VALUE;
1760            goto Exit;
1761        }
1762        break;
1763
1764    default:
1765        if (!audio_is_linear_pcm(format)) {
1766                ALOGE("createTrack_l() Bad parameter: format %#x \""
1767                        "for output %p with format %#x",
1768                        format, mOutput, mFormat);
1769                lStatus = BAD_VALUE;
1770                goto Exit;
1771        }
1772        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1773            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1774            lStatus = BAD_VALUE;
1775            goto Exit;
1776        }
1777        break;
1778
1779    }
1780
1781    lStatus = initCheck();
1782    if (lStatus != NO_ERROR) {
1783        ALOGE("createTrack_l() audio driver not initialized");
1784        goto Exit;
1785    }
1786
1787    { // scope for mLock
1788        Mutex::Autolock _l(mLock);
1789
1790        // all tracks in same audio session must share the same routing strategy otherwise
1791        // conflicts will happen when tracks are moved from one output to another by audio policy
1792        // manager
1793        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1794        for (size_t i = 0; i < mTracks.size(); ++i) {
1795            sp<Track> t = mTracks[i];
1796            if (t != 0 && t->isExternalTrack()) {
1797                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1798                if (sessionId == t->sessionId() && strategy != actual) {
1799                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1800                            strategy, actual);
1801                    lStatus = BAD_VALUE;
1802                    goto Exit;
1803                }
1804            }
1805        }
1806
1807        if (!isTimed) {
1808            track = new Track(this, client, streamType, sampleRate, format,
1809                              channelMask, frameCount, NULL, sharedBuffer,
1810                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1811        } else {
1812            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1813                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1814        }
1815
1816        // new Track always returns non-NULL,
1817        // but TimedTrack::create() is a factory that could fail by returning NULL
1818        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1819        if (lStatus != NO_ERROR) {
1820            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1821            // track must be cleared from the caller as the caller has the AF lock
1822            goto Exit;
1823        }
1824        mTracks.add(track);
1825
1826        sp<EffectChain> chain = getEffectChain_l(sessionId);
1827        if (chain != 0) {
1828            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1829            track->setMainBuffer(chain->inBuffer());
1830            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1831            chain->incTrackCnt();
1832        }
1833
1834        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1835            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1836            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1837            // so ask activity manager to do this on our behalf
1838            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1839        }
1840    }
1841
1842    lStatus = NO_ERROR;
1843
1844Exit:
1845    *status = lStatus;
1846    return track;
1847}
1848
1849uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1850{
1851    return latency;
1852}
1853
1854uint32_t AudioFlinger::PlaybackThread::latency() const
1855{
1856    Mutex::Autolock _l(mLock);
1857    return latency_l();
1858}
1859uint32_t AudioFlinger::PlaybackThread::latency_l() const
1860{
1861    if (initCheck() == NO_ERROR) {
1862        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1863    } else {
1864        return 0;
1865    }
1866}
1867
1868void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1869{
1870    Mutex::Autolock _l(mLock);
1871    // Don't apply master volume in SW if our HAL can do it for us.
1872    if (mOutput && mOutput->audioHwDev &&
1873        mOutput->audioHwDev->canSetMasterVolume()) {
1874        mMasterVolume = 1.0;
1875    } else {
1876        mMasterVolume = value;
1877    }
1878}
1879
1880void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1881{
1882    Mutex::Autolock _l(mLock);
1883    // Don't apply master mute in SW if our HAL can do it for us.
1884    if (mOutput && mOutput->audioHwDev &&
1885        mOutput->audioHwDev->canSetMasterMute()) {
1886        mMasterMute = false;
1887    } else {
1888        mMasterMute = muted;
1889    }
1890}
1891
1892void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1893{
1894    Mutex::Autolock _l(mLock);
1895    mStreamTypes[stream].volume = value;
1896    broadcast_l();
1897}
1898
1899void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1900{
1901    Mutex::Autolock _l(mLock);
1902    mStreamTypes[stream].mute = muted;
1903    broadcast_l();
1904}
1905
1906float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1907{
1908    Mutex::Autolock _l(mLock);
1909    return mStreamTypes[stream].volume;
1910}
1911
1912// addTrack_l() must be called with ThreadBase::mLock held
1913status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1914{
1915    status_t status = ALREADY_EXISTS;
1916
1917    // set retry count for buffer fill
1918    track->mRetryCount = kMaxTrackStartupRetries;
1919    if (mActiveTracks.indexOf(track) < 0) {
1920        // the track is newly added, make sure it fills up all its
1921        // buffers before playing. This is to ensure the client will
1922        // effectively get the latency it requested.
1923        if (track->isExternalTrack()) {
1924            TrackBase::track_state state = track->mState;
1925            mLock.unlock();
1926            status = AudioSystem::startOutput(mId, track->streamType(),
1927                                              (audio_session_t)track->sessionId());
1928            mLock.lock();
1929            // abort track was stopped/paused while we released the lock
1930            if (state != track->mState) {
1931                if (status == NO_ERROR) {
1932                    mLock.unlock();
1933                    AudioSystem::stopOutput(mId, track->streamType(),
1934                                            (audio_session_t)track->sessionId());
1935                    mLock.lock();
1936                }
1937                return INVALID_OPERATION;
1938            }
1939            // abort if start is rejected by audio policy manager
1940            if (status != NO_ERROR) {
1941                return PERMISSION_DENIED;
1942            }
1943#ifdef ADD_BATTERY_DATA
1944            // to track the speaker usage
1945            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1946#endif
1947        }
1948
1949        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1950        track->mResetDone = false;
1951        track->mPresentationCompleteFrames = 0;
1952        mActiveTracks.add(track);
1953        mWakeLockUids.add(track->uid());
1954        mActiveTracksGeneration++;
1955        mLatestActiveTrack = track;
1956        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1957        if (chain != 0) {
1958            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1959                    track->sessionId());
1960            chain->incActiveTrackCnt();
1961        }
1962
1963        status = NO_ERROR;
1964    }
1965
1966    onAddNewTrack_l();
1967    return status;
1968}
1969
1970bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1971{
1972    track->terminate();
1973    // active tracks are removed by threadLoop()
1974    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1975    track->mState = TrackBase::STOPPED;
1976    if (!trackActive) {
1977        removeTrack_l(track);
1978    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1979        track->mState = TrackBase::STOPPING_1;
1980    }
1981
1982    return trackActive;
1983}
1984
1985void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1986{
1987    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1988    mTracks.remove(track);
1989    deleteTrackName_l(track->name());
1990    // redundant as track is about to be destroyed, for dumpsys only
1991    track->mName = -1;
1992    if (track->isFastTrack()) {
1993        int index = track->mFastIndex;
1994        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1995        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1996        mFastTrackAvailMask |= 1 << index;
1997        // redundant as track is about to be destroyed, for dumpsys only
1998        track->mFastIndex = -1;
1999    }
2000    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2001    if (chain != 0) {
2002        chain->decTrackCnt();
2003    }
2004}
2005
2006void AudioFlinger::PlaybackThread::broadcast_l()
2007{
2008    // Thread could be blocked waiting for async
2009    // so signal it to handle state changes immediately
2010    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2011    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2012    mSignalPending = true;
2013    mWaitWorkCV.broadcast();
2014}
2015
2016String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2017{
2018    Mutex::Autolock _l(mLock);
2019    if (initCheck() != NO_ERROR) {
2020        return String8();
2021    }
2022
2023    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2024    const String8 out_s8(s);
2025    free(s);
2026    return out_s8;
2027}
2028
2029void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2030    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2031    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2032
2033    desc->mIoHandle = mId;
2034
2035    switch (event) {
2036    case AUDIO_OUTPUT_OPENED:
2037    case AUDIO_OUTPUT_CONFIG_CHANGED:
2038        desc->mPatch = mPatch;
2039        desc->mChannelMask = mChannelMask;
2040        desc->mSamplingRate = mSampleRate;
2041        desc->mFormat = mFormat;
2042        desc->mFrameCount = mNormalFrameCount; // FIXME see
2043                                             // AudioFlinger::frameCount(audio_io_handle_t)
2044        desc->mLatency = latency_l();
2045        break;
2046
2047    case AUDIO_OUTPUT_CLOSED:
2048    default:
2049        break;
2050    }
2051    mAudioFlinger->ioConfigChanged(event, desc, pid);
2052}
2053
2054void AudioFlinger::PlaybackThread::writeCallback()
2055{
2056    ALOG_ASSERT(mCallbackThread != 0);
2057    mCallbackThread->resetWriteBlocked();
2058}
2059
2060void AudioFlinger::PlaybackThread::drainCallback()
2061{
2062    ALOG_ASSERT(mCallbackThread != 0);
2063    mCallbackThread->resetDraining();
2064}
2065
2066void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2067{
2068    Mutex::Autolock _l(mLock);
2069    // reject out of sequence requests
2070    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2071        mWriteAckSequence &= ~1;
2072        mWaitWorkCV.signal();
2073    }
2074}
2075
2076void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2077{
2078    Mutex::Autolock _l(mLock);
2079    // reject out of sequence requests
2080    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2081        mDrainSequence &= ~1;
2082        mWaitWorkCV.signal();
2083    }
2084}
2085
2086// static
2087int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2088                                                void *param __unused,
2089                                                void *cookie)
2090{
2091    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2092    ALOGV("asyncCallback() event %d", event);
2093    switch (event) {
2094    case STREAM_CBK_EVENT_WRITE_READY:
2095        me->writeCallback();
2096        break;
2097    case STREAM_CBK_EVENT_DRAIN_READY:
2098        me->drainCallback();
2099        break;
2100    default:
2101        ALOGW("asyncCallback() unknown event %d", event);
2102        break;
2103    }
2104    return 0;
2105}
2106
2107void AudioFlinger::PlaybackThread::readOutputParameters_l()
2108{
2109    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2110    mSampleRate = mOutput->getSampleRate();
2111    mChannelMask = mOutput->getChannelMask();
2112    if (!audio_is_output_channel(mChannelMask)) {
2113        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2114    }
2115    if ((mType == MIXER || mType == DUPLICATING)
2116            && !isValidPcmSinkChannelMask(mChannelMask)) {
2117        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2118                mChannelMask);
2119    }
2120    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2121
2122    // Get actual HAL format.
2123    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2124    // Get format from the shim, which will be different than the HAL format
2125    // if playing compressed audio over HDMI passthrough.
2126    mFormat = mOutput->getFormat();
2127    if (!audio_is_valid_format(mFormat)) {
2128        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2129    }
2130    if ((mType == MIXER || mType == DUPLICATING)
2131            && !isValidPcmSinkFormat(mFormat)) {
2132        LOG_FATAL("HAL format %#x not supported for mixed output",
2133                mFormat);
2134    }
2135    mFrameSize = mOutput->getFrameSize();
2136    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2137    mFrameCount = mBufferSize / mFrameSize;
2138    if (mFrameCount & 15) {
2139        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2140                mFrameCount);
2141    }
2142
2143    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2144            (mOutput->stream->set_callback != NULL)) {
2145        if (mOutput->stream->set_callback(mOutput->stream,
2146                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2147            mUseAsyncWrite = true;
2148            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2149        }
2150    }
2151
2152    mHwSupportsPause = false;
2153    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2154        if (mOutput->stream->pause != NULL) {
2155            if (mOutput->stream->resume != NULL) {
2156                mHwSupportsPause = true;
2157            } else {
2158                ALOGW("direct output implements pause but not resume");
2159            }
2160        } else if (mOutput->stream->resume != NULL) {
2161            ALOGW("direct output implements resume but not pause");
2162        }
2163    }
2164    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2165        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2166    }
2167
2168    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2169        // For best precision, we use float instead of the associated output
2170        // device format (typically PCM 16 bit).
2171
2172        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2173        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2174        mBufferSize = mFrameSize * mFrameCount;
2175
2176        // TODO: We currently use the associated output device channel mask and sample rate.
2177        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2178        // (if a valid mask) to avoid premature downmix.
2179        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2180        // instead of the output device sample rate to avoid loss of high frequency information.
2181        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2182    }
2183
2184    // Calculate size of normal sink buffer relative to the HAL output buffer size
2185    double multiplier = 1.0;
2186    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2187            kUseFastMixer == FastMixer_Dynamic)) {
2188        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2189        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2190        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2191        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2192        maxNormalFrameCount = maxNormalFrameCount & ~15;
2193        if (maxNormalFrameCount < minNormalFrameCount) {
2194            maxNormalFrameCount = minNormalFrameCount;
2195        }
2196        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2197        if (multiplier <= 1.0) {
2198            multiplier = 1.0;
2199        } else if (multiplier <= 2.0) {
2200            if (2 * mFrameCount <= maxNormalFrameCount) {
2201                multiplier = 2.0;
2202            } else {
2203                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2204            }
2205        } else {
2206            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2207            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2208            // track, but we sometimes have to do this to satisfy the maximum frame count
2209            // constraint)
2210            // FIXME this rounding up should not be done if no HAL SRC
2211            uint32_t truncMult = (uint32_t) multiplier;
2212            if ((truncMult & 1)) {
2213                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2214                    ++truncMult;
2215                }
2216            }
2217            multiplier = (double) truncMult;
2218        }
2219    }
2220    mNormalFrameCount = multiplier * mFrameCount;
2221    // round up to nearest 16 frames to satisfy AudioMixer
2222    if (mType == MIXER || mType == DUPLICATING) {
2223        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2224    }
2225    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2226            mNormalFrameCount);
2227
2228    // Check if we want to throttle the processing to no more than 2x normal rate
2229    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2230    mThreadThrottleTimeMs = 0;
2231    mThreadThrottleEndMs = 0;
2232    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2233
2234    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2235    // Originally this was int16_t[] array, need to remove legacy implications.
2236    free(mSinkBuffer);
2237    mSinkBuffer = NULL;
2238    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2239    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2240    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2241    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2242
2243    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2244    // drives the output.
2245    free(mMixerBuffer);
2246    mMixerBuffer = NULL;
2247    if (mMixerBufferEnabled) {
2248        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2249        mMixerBufferSize = mNormalFrameCount * mChannelCount
2250                * audio_bytes_per_sample(mMixerBufferFormat);
2251        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2252    }
2253    free(mEffectBuffer);
2254    mEffectBuffer = NULL;
2255    if (mEffectBufferEnabled) {
2256        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2257        mEffectBufferSize = mNormalFrameCount * mChannelCount
2258                * audio_bytes_per_sample(mEffectBufferFormat);
2259        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2260    }
2261
2262    // force reconfiguration of effect chains and engines to take new buffer size and audio
2263    // parameters into account
2264    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2265    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2266    // matter.
2267    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2268    Vector< sp<EffectChain> > effectChains = mEffectChains;
2269    for (size_t i = 0; i < effectChains.size(); i ++) {
2270        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2271    }
2272}
2273
2274
2275status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2276{
2277    if (halFrames == NULL || dspFrames == NULL) {
2278        return BAD_VALUE;
2279    }
2280    Mutex::Autolock _l(mLock);
2281    if (initCheck() != NO_ERROR) {
2282        return INVALID_OPERATION;
2283    }
2284    size_t framesWritten = mBytesWritten / mFrameSize;
2285    *halFrames = framesWritten;
2286
2287    if (isSuspended()) {
2288        // return an estimation of rendered frames when the output is suspended
2289        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2290        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2291        return NO_ERROR;
2292    } else {
2293        status_t status;
2294        uint32_t frames;
2295        status = mOutput->getRenderPosition(&frames);
2296        *dspFrames = (size_t)frames;
2297        return status;
2298    }
2299}
2300
2301uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2302{
2303    Mutex::Autolock _l(mLock);
2304    uint32_t result = 0;
2305    if (getEffectChain_l(sessionId) != 0) {
2306        result = EFFECT_SESSION;
2307    }
2308
2309    for (size_t i = 0; i < mTracks.size(); ++i) {
2310        sp<Track> track = mTracks[i];
2311        if (sessionId == track->sessionId() && !track->isInvalid()) {
2312            result |= TRACK_SESSION;
2313            break;
2314        }
2315    }
2316
2317    return result;
2318}
2319
2320uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2321{
2322    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2323    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2324    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2325        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2326    }
2327    for (size_t i = 0; i < mTracks.size(); i++) {
2328        sp<Track> track = mTracks[i];
2329        if (sessionId == track->sessionId() && !track->isInvalid()) {
2330            return AudioSystem::getStrategyForStream(track->streamType());
2331        }
2332    }
2333    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2334}
2335
2336
2337AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2338{
2339    Mutex::Autolock _l(mLock);
2340    return mOutput;
2341}
2342
2343AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2344{
2345    Mutex::Autolock _l(mLock);
2346    AudioStreamOut *output = mOutput;
2347    mOutput = NULL;
2348    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2349    //       must push a NULL and wait for ack
2350    mOutputSink.clear();
2351    mPipeSink.clear();
2352    mNormalSink.clear();
2353    return output;
2354}
2355
2356// this method must always be called either with ThreadBase mLock held or inside the thread loop
2357audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2358{
2359    if (mOutput == NULL) {
2360        return NULL;
2361    }
2362    return &mOutput->stream->common;
2363}
2364
2365uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2366{
2367    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2368}
2369
2370status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2371{
2372    if (!isValidSyncEvent(event)) {
2373        return BAD_VALUE;
2374    }
2375
2376    Mutex::Autolock _l(mLock);
2377
2378    for (size_t i = 0; i < mTracks.size(); ++i) {
2379        sp<Track> track = mTracks[i];
2380        if (event->triggerSession() == track->sessionId()) {
2381            (void) track->setSyncEvent(event);
2382            return NO_ERROR;
2383        }
2384    }
2385
2386    return NAME_NOT_FOUND;
2387}
2388
2389bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2390{
2391    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2392}
2393
2394void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2395        const Vector< sp<Track> >& tracksToRemove)
2396{
2397    size_t count = tracksToRemove.size();
2398    if (count > 0) {
2399        for (size_t i = 0 ; i < count ; i++) {
2400            const sp<Track>& track = tracksToRemove.itemAt(i);
2401            if (track->isExternalTrack()) {
2402                AudioSystem::stopOutput(mId, track->streamType(),
2403                                        (audio_session_t)track->sessionId());
2404#ifdef ADD_BATTERY_DATA
2405                // to track the speaker usage
2406                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2407#endif
2408                if (track->isTerminated()) {
2409                    AudioSystem::releaseOutput(mId, track->streamType(),
2410                                               (audio_session_t)track->sessionId());
2411                }
2412            }
2413        }
2414    }
2415}
2416
2417void AudioFlinger::PlaybackThread::checkSilentMode_l()
2418{
2419    if (!mMasterMute) {
2420        char value[PROPERTY_VALUE_MAX];
2421        if (property_get("ro.audio.silent", value, "0") > 0) {
2422            char *endptr;
2423            unsigned long ul = strtoul(value, &endptr, 0);
2424            if (*endptr == '\0' && ul != 0) {
2425                ALOGD("Silence is golden");
2426                // The setprop command will not allow a property to be changed after
2427                // the first time it is set, so we don't have to worry about un-muting.
2428                setMasterMute_l(true);
2429            }
2430        }
2431    }
2432}
2433
2434// shared by MIXER and DIRECT, overridden by DUPLICATING
2435ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2436{
2437    // FIXME rewrite to reduce number of system calls
2438    mLastWriteTime = systemTime();
2439    mInWrite = true;
2440    ssize_t bytesWritten;
2441    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2442
2443    // If an NBAIO sink is present, use it to write the normal mixer's submix
2444    if (mNormalSink != 0) {
2445
2446        const size_t count = mBytesRemaining / mFrameSize;
2447
2448        ATRACE_BEGIN("write");
2449        // update the setpoint when AudioFlinger::mScreenState changes
2450        uint32_t screenState = AudioFlinger::mScreenState;
2451        if (screenState != mScreenState) {
2452            mScreenState = screenState;
2453            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2454            if (pipe != NULL) {
2455                pipe->setAvgFrames((mScreenState & 1) ?
2456                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2457            }
2458        }
2459        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2460        ATRACE_END();
2461        if (framesWritten > 0) {
2462            bytesWritten = framesWritten * mFrameSize;
2463        } else {
2464            bytesWritten = framesWritten;
2465        }
2466        mLatchDValid = false;
2467        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2468        if (status == NO_ERROR) {
2469            size_t totalFramesWritten = mNormalSink->framesWritten();
2470            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2471                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2472                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2473                mLatchDValid = true;
2474            }
2475        }
2476    // otherwise use the HAL / AudioStreamOut directly
2477    } else {
2478        // Direct output and offload threads
2479
2480        if (mUseAsyncWrite) {
2481            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2482            mWriteAckSequence += 2;
2483            mWriteAckSequence |= 1;
2484            ALOG_ASSERT(mCallbackThread != 0);
2485            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2486        }
2487        // FIXME We should have an implementation of timestamps for direct output threads.
2488        // They are used e.g for multichannel PCM playback over HDMI.
2489        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2490        if (mUseAsyncWrite &&
2491                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2492            // do not wait for async callback in case of error of full write
2493            mWriteAckSequence &= ~1;
2494            ALOG_ASSERT(mCallbackThread != 0);
2495            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2496        }
2497    }
2498
2499    mNumWrites++;
2500    mInWrite = false;
2501    mStandby = false;
2502    return bytesWritten;
2503}
2504
2505void AudioFlinger::PlaybackThread::threadLoop_drain()
2506{
2507    if (mOutput->stream->drain) {
2508        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2509        if (mUseAsyncWrite) {
2510            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2511            mDrainSequence |= 1;
2512            ALOG_ASSERT(mCallbackThread != 0);
2513            mCallbackThread->setDraining(mDrainSequence);
2514        }
2515        mOutput->stream->drain(mOutput->stream,
2516            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2517                                                : AUDIO_DRAIN_ALL);
2518    }
2519}
2520
2521void AudioFlinger::PlaybackThread::threadLoop_exit()
2522{
2523    {
2524        Mutex::Autolock _l(mLock);
2525        for (size_t i = 0; i < mTracks.size(); i++) {
2526            sp<Track> track = mTracks[i];
2527            track->invalidate();
2528        }
2529    }
2530}
2531
2532/*
2533The derived values that are cached:
2534 - mSinkBufferSize from frame count * frame size
2535 - mActiveSleepTimeUs from activeSleepTimeUs()
2536 - mIdleSleepTimeUs from idleSleepTimeUs()
2537 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only)
2538 - maxPeriod from frame count and sample rate (MIXER only)
2539
2540The parameters that affect these derived values are:
2541 - frame count
2542 - frame size
2543 - sample rate
2544 - device type: A2DP or not
2545 - device latency
2546 - format: PCM or not
2547 - active sleep time
2548 - idle sleep time
2549*/
2550
2551void AudioFlinger::PlaybackThread::cacheParameters_l()
2552{
2553    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2554    mActiveSleepTimeUs = activeSleepTimeUs();
2555    mIdleSleepTimeUs = idleSleepTimeUs();
2556}
2557
2558void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2559{
2560    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2561            this,  streamType, mTracks.size());
2562    Mutex::Autolock _l(mLock);
2563
2564    size_t size = mTracks.size();
2565    for (size_t i = 0; i < size; i++) {
2566        sp<Track> t = mTracks[i];
2567        if (t->streamType() == streamType && t->isExternalTrack()) {
2568            t->invalidate();
2569        }
2570    }
2571}
2572
2573status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2574{
2575    int session = chain->sessionId();
2576    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2577            ? mEffectBuffer : mSinkBuffer);
2578    bool ownsBuffer = false;
2579
2580    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2581    if (session > 0) {
2582        // Only one effect chain can be present in direct output thread and it uses
2583        // the sink buffer as input
2584        if (mType != DIRECT) {
2585            size_t numSamples = mNormalFrameCount * mChannelCount;
2586            buffer = new int16_t[numSamples];
2587            memset(buffer, 0, numSamples * sizeof(int16_t));
2588            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2589            ownsBuffer = true;
2590        }
2591
2592        // Attach all tracks with same session ID to this chain.
2593        for (size_t i = 0; i < mTracks.size(); ++i) {
2594            sp<Track> track = mTracks[i];
2595            if (session == track->sessionId()) {
2596                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2597                        buffer);
2598                track->setMainBuffer(buffer);
2599                chain->incTrackCnt();
2600            }
2601        }
2602
2603        // indicate all active tracks in the chain
2604        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2605            sp<Track> track = mActiveTracks[i].promote();
2606            if (track == 0) {
2607                continue;
2608            }
2609            if (session == track->sessionId()) {
2610                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2611                chain->incActiveTrackCnt();
2612            }
2613        }
2614    }
2615    chain->setThread(this);
2616    chain->setInBuffer(buffer, ownsBuffer);
2617    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2618            ? mEffectBuffer : mSinkBuffer));
2619    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2620    // chains list in order to be processed last as it contains output stage effects
2621    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2622    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2623    // after track specific effects and before output stage
2624    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2625    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2626    // Effect chain for other sessions are inserted at beginning of effect
2627    // chains list to be processed before output mix effects. Relative order between other
2628    // sessions is not important
2629    size_t size = mEffectChains.size();
2630    size_t i = 0;
2631    for (i = 0; i < size; i++) {
2632        if (mEffectChains[i]->sessionId() < session) {
2633            break;
2634        }
2635    }
2636    mEffectChains.insertAt(chain, i);
2637    checkSuspendOnAddEffectChain_l(chain);
2638
2639    return NO_ERROR;
2640}
2641
2642size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2643{
2644    int session = chain->sessionId();
2645
2646    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2647
2648    for (size_t i = 0; i < mEffectChains.size(); i++) {
2649        if (chain == mEffectChains[i]) {
2650            mEffectChains.removeAt(i);
2651            // detach all active tracks from the chain
2652            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2653                sp<Track> track = mActiveTracks[i].promote();
2654                if (track == 0) {
2655                    continue;
2656                }
2657                if (session == track->sessionId()) {
2658                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2659                            chain.get(), session);
2660                    chain->decActiveTrackCnt();
2661                }
2662            }
2663
2664            // detach all tracks with same session ID from this chain
2665            for (size_t i = 0; i < mTracks.size(); ++i) {
2666                sp<Track> track = mTracks[i];
2667                if (session == track->sessionId()) {
2668                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2669                    chain->decTrackCnt();
2670                }
2671            }
2672            break;
2673        }
2674    }
2675    return mEffectChains.size();
2676}
2677
2678status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2679        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2680{
2681    Mutex::Autolock _l(mLock);
2682    return attachAuxEffect_l(track, EffectId);
2683}
2684
2685status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2686        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2687{
2688    status_t status = NO_ERROR;
2689
2690    if (EffectId == 0) {
2691        track->setAuxBuffer(0, NULL);
2692    } else {
2693        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2694        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2695        if (effect != 0) {
2696            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2697                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2698            } else {
2699                status = INVALID_OPERATION;
2700            }
2701        } else {
2702            status = BAD_VALUE;
2703        }
2704    }
2705    return status;
2706}
2707
2708void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2709{
2710    for (size_t i = 0; i < mTracks.size(); ++i) {
2711        sp<Track> track = mTracks[i];
2712        if (track->auxEffectId() == effectId) {
2713            attachAuxEffect_l(track, 0);
2714        }
2715    }
2716}
2717
2718bool AudioFlinger::PlaybackThread::threadLoop()
2719{
2720    Vector< sp<Track> > tracksToRemove;
2721
2722    mStandbyTimeNs = systemTime();
2723
2724    // MIXER
2725    nsecs_t lastWarning = 0;
2726
2727    // DUPLICATING
2728    // FIXME could this be made local to while loop?
2729    writeFrames = 0;
2730
2731    int lastGeneration = 0;
2732
2733    cacheParameters_l();
2734    mSleepTimeUs = mIdleSleepTimeUs;
2735
2736    if (mType == MIXER) {
2737        sleepTimeShift = 0;
2738    }
2739
2740    CpuStats cpuStats;
2741    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2742
2743    acquireWakeLock();
2744
2745    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2746    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2747    // and then that string will be logged at the next convenient opportunity.
2748    const char *logString = NULL;
2749
2750    checkSilentMode_l();
2751
2752    while (!exitPending())
2753    {
2754        cpuStats.sample(myName);
2755
2756        Vector< sp<EffectChain> > effectChains;
2757
2758        { // scope for mLock
2759
2760            Mutex::Autolock _l(mLock);
2761
2762            processConfigEvents_l();
2763
2764            if (logString != NULL) {
2765                mNBLogWriter->logTimestamp();
2766                mNBLogWriter->log(logString);
2767                logString = NULL;
2768            }
2769
2770            // Gather the framesReleased counters for all active tracks,
2771            // and latch them atomically with the timestamp.
2772            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2773            mLatchD.mFramesReleased.clear();
2774            size_t size = mActiveTracks.size();
2775            for (size_t i = 0; i < size; i++) {
2776                sp<Track> t = mActiveTracks[i].promote();
2777                if (t != 0) {
2778                    mLatchD.mFramesReleased.add(t.get(),
2779                            t->mAudioTrackServerProxy->framesReleased());
2780                }
2781            }
2782            if (mLatchDValid) {
2783                mLatchQ = mLatchD;
2784                mLatchDValid = false;
2785                mLatchQValid = true;
2786            }
2787
2788            saveOutputTracks();
2789            if (mSignalPending) {
2790                // A signal was raised while we were unlocked
2791                mSignalPending = false;
2792            } else if (waitingAsyncCallback_l()) {
2793                if (exitPending()) {
2794                    break;
2795                }
2796                bool released = false;
2797                // The following works around a bug in the offload driver. Ideally we would release
2798                // the wake lock every time, but that causes the last offload buffer(s) to be
2799                // dropped while the device is on battery, so we need to hold a wake lock during
2800                // the drain phase.
2801                if (mBytesRemaining && !(mDrainSequence & 1)) {
2802                    releaseWakeLock_l();
2803                    released = true;
2804                }
2805                mWakeLockUids.clear();
2806                mActiveTracksGeneration++;
2807                ALOGV("wait async completion");
2808                mWaitWorkCV.wait(mLock);
2809                ALOGV("async completion/wake");
2810                if (released) {
2811                    acquireWakeLock_l();
2812                }
2813                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2814                mSleepTimeUs = 0;
2815
2816                continue;
2817            }
2818            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2819                                   isSuspended()) {
2820                // put audio hardware into standby after short delay
2821                if (shouldStandby_l()) {
2822
2823                    threadLoop_standby();
2824
2825                    mStandby = true;
2826                }
2827
2828                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2829                    // we're about to wait, flush the binder command buffer
2830                    IPCThreadState::self()->flushCommands();
2831
2832                    clearOutputTracks();
2833
2834                    if (exitPending()) {
2835                        break;
2836                    }
2837
2838                    releaseWakeLock_l();
2839                    mWakeLockUids.clear();
2840                    mActiveTracksGeneration++;
2841                    // wait until we have something to do...
2842                    ALOGV("%s going to sleep", myName.string());
2843                    mWaitWorkCV.wait(mLock);
2844                    ALOGV("%s waking up", myName.string());
2845                    acquireWakeLock_l();
2846
2847                    mMixerStatus = MIXER_IDLE;
2848                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2849                    mBytesWritten = 0;
2850                    mBytesRemaining = 0;
2851                    checkSilentMode_l();
2852
2853                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2854                    mSleepTimeUs = mIdleSleepTimeUs;
2855                    if (mType == MIXER) {
2856                        sleepTimeShift = 0;
2857                    }
2858
2859                    continue;
2860                }
2861            }
2862            // mMixerStatusIgnoringFastTracks is also updated internally
2863            mMixerStatus = prepareTracks_l(&tracksToRemove);
2864
2865            // compare with previously applied list
2866            if (lastGeneration != mActiveTracksGeneration) {
2867                // update wakelock
2868                updateWakeLockUids_l(mWakeLockUids);
2869                lastGeneration = mActiveTracksGeneration;
2870            }
2871
2872            // prevent any changes in effect chain list and in each effect chain
2873            // during mixing and effect process as the audio buffers could be deleted
2874            // or modified if an effect is created or deleted
2875            lockEffectChains_l(effectChains);
2876        } // mLock scope ends
2877
2878        if (mBytesRemaining == 0) {
2879            mCurrentWriteLength = 0;
2880            if (mMixerStatus == MIXER_TRACKS_READY) {
2881                // threadLoop_mix() sets mCurrentWriteLength
2882                threadLoop_mix();
2883            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2884                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2885                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
2886                // must be written to HAL
2887                threadLoop_sleepTime();
2888                if (mSleepTimeUs == 0) {
2889                    mCurrentWriteLength = mSinkBufferSize;
2890                }
2891            }
2892            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2893            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
2894            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2895            // or mSinkBuffer (if there are no effects).
2896            //
2897            // This is done pre-effects computation; if effects change to
2898            // support higher precision, this needs to move.
2899            //
2900            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2901            // TODO use mSleepTimeUs == 0 as an additional condition.
2902            if (mMixerBufferValid) {
2903                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2904                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2905
2906                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2907                        mNormalFrameCount * mChannelCount);
2908            }
2909
2910            mBytesRemaining = mCurrentWriteLength;
2911            if (isSuspended()) {
2912                mSleepTimeUs = suspendSleepTimeUs();
2913                // simulate write to HAL when suspended
2914                mBytesWritten += mSinkBufferSize;
2915                mBytesRemaining = 0;
2916            }
2917
2918            // only process effects if we're going to write
2919            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
2920                for (size_t i = 0; i < effectChains.size(); i ++) {
2921                    effectChains[i]->process_l();
2922                }
2923            }
2924        }
2925        // Process effect chains for offloaded thread even if no audio
2926        // was read from audio track: process only updates effect state
2927        // and thus does have to be synchronized with audio writes but may have
2928        // to be called while waiting for async write callback
2929        if (mType == OFFLOAD) {
2930            for (size_t i = 0; i < effectChains.size(); i ++) {
2931                effectChains[i]->process_l();
2932            }
2933        }
2934
2935        // Only if the Effects buffer is enabled and there is data in the
2936        // Effects buffer (buffer valid), we need to
2937        // copy into the sink buffer.
2938        // TODO use mSleepTimeUs == 0 as an additional condition.
2939        if (mEffectBufferValid) {
2940            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2941            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2942                    mNormalFrameCount * mChannelCount);
2943        }
2944
2945        // enable changes in effect chain
2946        unlockEffectChains(effectChains);
2947
2948        if (!waitingAsyncCallback()) {
2949            // mSleepTimeUs == 0 means we must write to audio hardware
2950            if (mSleepTimeUs == 0) {
2951                ssize_t ret = 0;
2952                if (mBytesRemaining) {
2953                    ret = threadLoop_write();
2954                    if (ret < 0) {
2955                        mBytesRemaining = 0;
2956                    } else {
2957                        mBytesWritten += ret;
2958                        mBytesRemaining -= ret;
2959                    }
2960                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2961                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2962                    threadLoop_drain();
2963                }
2964                if (mType == MIXER && !mStandby) {
2965                    // write blocked detection
2966                    nsecs_t now = systemTime();
2967                    nsecs_t delta = now - mLastWriteTime;
2968                    if (delta > maxPeriod) {
2969                        mNumDelayedWrites++;
2970                        if ((now - lastWarning) > kWarningThrottleNs) {
2971                            ATRACE_NAME("underrun");
2972                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2973                                    ns2ms(delta), mNumDelayedWrites, this);
2974                            lastWarning = now;
2975                        }
2976                    }
2977
2978                    if (mThreadThrottle
2979                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
2980                            && ret > 0) {                         // we wrote something
2981                        // Limit MixerThread data processing to no more than twice the
2982                        // expected processing rate.
2983                        //
2984                        // This helps prevent underruns with NuPlayer and other applications
2985                        // which may set up buffers that are close to the minimum size, or use
2986                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
2987                        //
2988                        // The throttle smooths out sudden large data drains from the device,
2989                        // e.g. when it comes out of standby, which often causes problems with
2990                        // (1) mixer threads without a fast mixer (which has its own warm-up)
2991                        // (2) minimum buffer sized tracks (even if the track is full,
2992                        //     the app won't fill fast enough to handle the sudden draw).
2993
2994                        const int32_t deltaMs = delta / 1000000;
2995                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
2996                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
2997                            usleep(throttleMs * 1000);
2998                            // notify of throttle start on verbose log
2999                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3000                                    "mixer(%p) throttle begin:"
3001                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3002                                    this, ret, deltaMs, throttleMs);
3003                            mThreadThrottleTimeMs += throttleMs;
3004                        } else {
3005                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3006                            if (diff > 0) {
3007                                // notify of throttle end on debug log
3008                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3009                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3010                            }
3011                        }
3012                    }
3013                }
3014
3015            } else {
3016                ATRACE_BEGIN("sleep");
3017                usleep(mSleepTimeUs);
3018                ATRACE_END();
3019            }
3020        }
3021
3022        // Finally let go of removed track(s), without the lock held
3023        // since we can't guarantee the destructors won't acquire that
3024        // same lock.  This will also mutate and push a new fast mixer state.
3025        threadLoop_removeTracks(tracksToRemove);
3026        tracksToRemove.clear();
3027
3028        // FIXME I don't understand the need for this here;
3029        //       it was in the original code but maybe the
3030        //       assignment in saveOutputTracks() makes this unnecessary?
3031        clearOutputTracks();
3032
3033        // Effect chains will be actually deleted here if they were removed from
3034        // mEffectChains list during mixing or effects processing
3035        effectChains.clear();
3036
3037        // FIXME Note that the above .clear() is no longer necessary since effectChains
3038        // is now local to this block, but will keep it for now (at least until merge done).
3039    }
3040
3041    threadLoop_exit();
3042
3043    if (!mStandby) {
3044        threadLoop_standby();
3045        mStandby = true;
3046    }
3047
3048    releaseWakeLock();
3049    mWakeLockUids.clear();
3050    mActiveTracksGeneration++;
3051
3052    ALOGV("Thread %p type %d exiting", this, mType);
3053    return false;
3054}
3055
3056// removeTracks_l() must be called with ThreadBase::mLock held
3057void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3058{
3059    size_t count = tracksToRemove.size();
3060    if (count > 0) {
3061        for (size_t i=0 ; i<count ; i++) {
3062            const sp<Track>& track = tracksToRemove.itemAt(i);
3063            mActiveTracks.remove(track);
3064            mWakeLockUids.remove(track->uid());
3065            mActiveTracksGeneration++;
3066            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3067            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3068            if (chain != 0) {
3069                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3070                        track->sessionId());
3071                chain->decActiveTrackCnt();
3072            }
3073            if (track->isTerminated()) {
3074                removeTrack_l(track);
3075            }
3076        }
3077    }
3078
3079}
3080
3081status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3082{
3083    if (mNormalSink != 0) {
3084        return mNormalSink->getTimestamp(timestamp);
3085    }
3086    if ((mType == OFFLOAD || mType == DIRECT)
3087            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3088        uint64_t position64;
3089        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3090        if (ret == 0) {
3091            timestamp.mPosition = (uint32_t)position64;
3092            return NO_ERROR;
3093        }
3094    }
3095    return INVALID_OPERATION;
3096}
3097
3098status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3099                                                          audio_patch_handle_t *handle)
3100{
3101    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3102    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3103    if (mFastMixer != 0) {
3104        FastMixerStateQueue *sq = mFastMixer->sq();
3105        FastMixerState *state = sq->begin();
3106        if (!(state->mCommand & FastMixerState::IDLE)) {
3107            previousCommand = state->mCommand;
3108            state->mCommand = FastMixerState::HOT_IDLE;
3109            sq->end();
3110            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3111        } else {
3112            sq->end(false /*didModify*/);
3113        }
3114    }
3115    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3116
3117    if (!(previousCommand & FastMixerState::IDLE)) {
3118        ALOG_ASSERT(mFastMixer != 0);
3119        FastMixerStateQueue *sq = mFastMixer->sq();
3120        FastMixerState *state = sq->begin();
3121        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3122        state->mCommand = previousCommand;
3123        sq->end();
3124        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3125    }
3126
3127    return status;
3128}
3129
3130status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3131                                                          audio_patch_handle_t *handle)
3132{
3133    status_t status = NO_ERROR;
3134
3135    // store new device and send to effects
3136    audio_devices_t type = AUDIO_DEVICE_NONE;
3137    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3138        type |= patch->sinks[i].ext.device.type;
3139    }
3140
3141#ifdef ADD_BATTERY_DATA
3142    // when changing the audio output device, call addBatteryData to notify
3143    // the change
3144    if (mOutDevice != type) {
3145        uint32_t params = 0;
3146        // check whether speaker is on
3147        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3148            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3149        }
3150
3151        audio_devices_t deviceWithoutSpeaker
3152            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3153        // check if any other device (except speaker) is on
3154        if (type & deviceWithoutSpeaker) {
3155            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3156        }
3157
3158        if (params != 0) {
3159            addBatteryData(params);
3160        }
3161    }
3162#endif
3163
3164    for (size_t i = 0; i < mEffectChains.size(); i++) {
3165        mEffectChains[i]->setDevice_l(type);
3166    }
3167
3168    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3169    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3170    bool configChanged = mPrevOutDevice != type;
3171    mOutDevice = type;
3172    mPatch = *patch;
3173
3174    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3175        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3176        status = hwDevice->create_audio_patch(hwDevice,
3177                                               patch->num_sources,
3178                                               patch->sources,
3179                                               patch->num_sinks,
3180                                               patch->sinks,
3181                                               handle);
3182    } else {
3183        char *address;
3184        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3185            //FIXME: we only support address on first sink with HAL version < 3.0
3186            address = audio_device_address_to_parameter(
3187                                                        patch->sinks[0].ext.device.type,
3188                                                        patch->sinks[0].ext.device.address);
3189        } else {
3190            address = (char *)calloc(1, 1);
3191        }
3192        AudioParameter param = AudioParameter(String8(address));
3193        free(address);
3194        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3195        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3196                param.toString().string());
3197        *handle = AUDIO_PATCH_HANDLE_NONE;
3198    }
3199    if (configChanged) {
3200        mPrevOutDevice = type;
3201        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3202    }
3203    return status;
3204}
3205
3206status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3207{
3208    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3209    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3210    if (mFastMixer != 0) {
3211        FastMixerStateQueue *sq = mFastMixer->sq();
3212        FastMixerState *state = sq->begin();
3213        if (!(state->mCommand & FastMixerState::IDLE)) {
3214            previousCommand = state->mCommand;
3215            state->mCommand = FastMixerState::HOT_IDLE;
3216            sq->end();
3217            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3218        } else {
3219            sq->end(false /*didModify*/);
3220        }
3221    }
3222
3223    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3224
3225    if (!(previousCommand & FastMixerState::IDLE)) {
3226        ALOG_ASSERT(mFastMixer != 0);
3227        FastMixerStateQueue *sq = mFastMixer->sq();
3228        FastMixerState *state = sq->begin();
3229        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3230        state->mCommand = previousCommand;
3231        sq->end();
3232        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3233    }
3234
3235    return status;
3236}
3237
3238status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3239{
3240    status_t status = NO_ERROR;
3241
3242    mOutDevice = AUDIO_DEVICE_NONE;
3243
3244    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3245        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3246        status = hwDevice->release_audio_patch(hwDevice, handle);
3247    } else {
3248        AudioParameter param;
3249        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3250        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3251                param.toString().string());
3252    }
3253    return status;
3254}
3255
3256void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3257{
3258    Mutex::Autolock _l(mLock);
3259    mTracks.add(track);
3260}
3261
3262void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3263{
3264    Mutex::Autolock _l(mLock);
3265    destroyTrack_l(track);
3266}
3267
3268void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3269{
3270    ThreadBase::getAudioPortConfig(config);
3271    config->role = AUDIO_PORT_ROLE_SOURCE;
3272    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3273    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3274}
3275
3276// ----------------------------------------------------------------------------
3277
3278AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3279        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3280    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3281        // mAudioMixer below
3282        // mFastMixer below
3283        mFastMixerFutex(0)
3284        // mOutputSink below
3285        // mPipeSink below
3286        // mNormalSink below
3287{
3288    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3289    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3290            "mFrameCount=%d, mNormalFrameCount=%d",
3291            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3292            mNormalFrameCount);
3293    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3294
3295    if (type == DUPLICATING) {
3296        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3297        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3298        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3299        return;
3300    }
3301    // create an NBAIO sink for the HAL output stream, and negotiate
3302    mOutputSink = new AudioStreamOutSink(output->stream);
3303    size_t numCounterOffers = 0;
3304    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3305    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3306    ALOG_ASSERT(index == 0);
3307
3308    // initialize fast mixer depending on configuration
3309    bool initFastMixer;
3310    switch (kUseFastMixer) {
3311    case FastMixer_Never:
3312        initFastMixer = false;
3313        break;
3314    case FastMixer_Always:
3315        initFastMixer = true;
3316        break;
3317    case FastMixer_Static:
3318    case FastMixer_Dynamic:
3319        initFastMixer = mFrameCount < mNormalFrameCount;
3320        break;
3321    }
3322    if (initFastMixer) {
3323        audio_format_t fastMixerFormat;
3324        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3325            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3326        } else {
3327            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3328        }
3329        if (mFormat != fastMixerFormat) {
3330            // change our Sink format to accept our intermediate precision
3331            mFormat = fastMixerFormat;
3332            free(mSinkBuffer);
3333            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3334            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3335            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3336        }
3337
3338        // create a MonoPipe to connect our submix to FastMixer
3339        NBAIO_Format format = mOutputSink->format();
3340        NBAIO_Format origformat = format;
3341        // adjust format to match that of the Fast Mixer
3342        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3343        format.mFormat = fastMixerFormat;
3344        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3345
3346        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3347        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3348        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3349        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3350        const NBAIO_Format offers[1] = {format};
3351        size_t numCounterOffers = 0;
3352        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3353        ALOG_ASSERT(index == 0);
3354        monoPipe->setAvgFrames((mScreenState & 1) ?
3355                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3356        mPipeSink = monoPipe;
3357
3358#ifdef TEE_SINK
3359        if (mTeeSinkOutputEnabled) {
3360            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3361            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3362            const NBAIO_Format offers2[1] = {origformat};
3363            numCounterOffers = 0;
3364            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3365            ALOG_ASSERT(index == 0);
3366            mTeeSink = teeSink;
3367            PipeReader *teeSource = new PipeReader(*teeSink);
3368            numCounterOffers = 0;
3369            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3370            ALOG_ASSERT(index == 0);
3371            mTeeSource = teeSource;
3372        }
3373#endif
3374
3375        // create fast mixer and configure it initially with just one fast track for our submix
3376        mFastMixer = new FastMixer();
3377        FastMixerStateQueue *sq = mFastMixer->sq();
3378#ifdef STATE_QUEUE_DUMP
3379        sq->setObserverDump(&mStateQueueObserverDump);
3380        sq->setMutatorDump(&mStateQueueMutatorDump);
3381#endif
3382        FastMixerState *state = sq->begin();
3383        FastTrack *fastTrack = &state->mFastTracks[0];
3384        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3385        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3386        fastTrack->mVolumeProvider = NULL;
3387        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3388        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3389        fastTrack->mGeneration++;
3390        state->mFastTracksGen++;
3391        state->mTrackMask = 1;
3392        // fast mixer will use the HAL output sink
3393        state->mOutputSink = mOutputSink.get();
3394        state->mOutputSinkGen++;
3395        state->mFrameCount = mFrameCount;
3396        state->mCommand = FastMixerState::COLD_IDLE;
3397        // already done in constructor initialization list
3398        //mFastMixerFutex = 0;
3399        state->mColdFutexAddr = &mFastMixerFutex;
3400        state->mColdGen++;
3401        state->mDumpState = &mFastMixerDumpState;
3402#ifdef TEE_SINK
3403        state->mTeeSink = mTeeSink.get();
3404#endif
3405        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3406        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3407        sq->end();
3408        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3409
3410        // start the fast mixer
3411        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3412        pid_t tid = mFastMixer->getTid();
3413        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3414
3415#ifdef AUDIO_WATCHDOG
3416        // create and start the watchdog
3417        mAudioWatchdog = new AudioWatchdog();
3418        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3419        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3420        tid = mAudioWatchdog->getTid();
3421        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3422#endif
3423
3424    }
3425
3426    switch (kUseFastMixer) {
3427    case FastMixer_Never:
3428    case FastMixer_Dynamic:
3429        mNormalSink = mOutputSink;
3430        break;
3431    case FastMixer_Always:
3432        mNormalSink = mPipeSink;
3433        break;
3434    case FastMixer_Static:
3435        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3436        break;
3437    }
3438}
3439
3440AudioFlinger::MixerThread::~MixerThread()
3441{
3442    if (mFastMixer != 0) {
3443        FastMixerStateQueue *sq = mFastMixer->sq();
3444        FastMixerState *state = sq->begin();
3445        if (state->mCommand == FastMixerState::COLD_IDLE) {
3446            int32_t old = android_atomic_inc(&mFastMixerFutex);
3447            if (old == -1) {
3448                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3449            }
3450        }
3451        state->mCommand = FastMixerState::EXIT;
3452        sq->end();
3453        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3454        mFastMixer->join();
3455        // Though the fast mixer thread has exited, it's state queue is still valid.
3456        // We'll use that extract the final state which contains one remaining fast track
3457        // corresponding to our sub-mix.
3458        state = sq->begin();
3459        ALOG_ASSERT(state->mTrackMask == 1);
3460        FastTrack *fastTrack = &state->mFastTracks[0];
3461        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3462        delete fastTrack->mBufferProvider;
3463        sq->end(false /*didModify*/);
3464        mFastMixer.clear();
3465#ifdef AUDIO_WATCHDOG
3466        if (mAudioWatchdog != 0) {
3467            mAudioWatchdog->requestExit();
3468            mAudioWatchdog->requestExitAndWait();
3469            mAudioWatchdog.clear();
3470        }
3471#endif
3472    }
3473    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3474    delete mAudioMixer;
3475}
3476
3477
3478uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3479{
3480    if (mFastMixer != 0) {
3481        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3482        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3483    }
3484    return latency;
3485}
3486
3487
3488void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3489{
3490    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3491}
3492
3493ssize_t AudioFlinger::MixerThread::threadLoop_write()
3494{
3495    // FIXME we should only do one push per cycle; confirm this is true
3496    // Start the fast mixer if it's not already running
3497    if (mFastMixer != 0) {
3498        FastMixerStateQueue *sq = mFastMixer->sq();
3499        FastMixerState *state = sq->begin();
3500        if (state->mCommand != FastMixerState::MIX_WRITE &&
3501                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3502            if (state->mCommand == FastMixerState::COLD_IDLE) {
3503
3504                // FIXME workaround for first HAL write being CPU bound on some devices
3505                ATRACE_BEGIN("write");
3506                mOutput->write((char *)mSinkBuffer, 0);
3507                ATRACE_END();
3508
3509                int32_t old = android_atomic_inc(&mFastMixerFutex);
3510                if (old == -1) {
3511                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3512                }
3513#ifdef AUDIO_WATCHDOG
3514                if (mAudioWatchdog != 0) {
3515                    mAudioWatchdog->resume();
3516                }
3517#endif
3518            }
3519            state->mCommand = FastMixerState::MIX_WRITE;
3520#ifdef FAST_THREAD_STATISTICS
3521            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3522                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3523#endif
3524            sq->end();
3525            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3526            if (kUseFastMixer == FastMixer_Dynamic) {
3527                mNormalSink = mPipeSink;
3528            }
3529        } else {
3530            sq->end(false /*didModify*/);
3531        }
3532    }
3533    return PlaybackThread::threadLoop_write();
3534}
3535
3536void AudioFlinger::MixerThread::threadLoop_standby()
3537{
3538    // Idle the fast mixer if it's currently running
3539    if (mFastMixer != 0) {
3540        FastMixerStateQueue *sq = mFastMixer->sq();
3541        FastMixerState *state = sq->begin();
3542        if (!(state->mCommand & FastMixerState::IDLE)) {
3543            state->mCommand = FastMixerState::COLD_IDLE;
3544            state->mColdFutexAddr = &mFastMixerFutex;
3545            state->mColdGen++;
3546            mFastMixerFutex = 0;
3547            sq->end();
3548            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3549            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3550            if (kUseFastMixer == FastMixer_Dynamic) {
3551                mNormalSink = mOutputSink;
3552            }
3553#ifdef AUDIO_WATCHDOG
3554            if (mAudioWatchdog != 0) {
3555                mAudioWatchdog->pause();
3556            }
3557#endif
3558        } else {
3559            sq->end(false /*didModify*/);
3560        }
3561    }
3562    PlaybackThread::threadLoop_standby();
3563}
3564
3565bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3566{
3567    return false;
3568}
3569
3570bool AudioFlinger::PlaybackThread::shouldStandby_l()
3571{
3572    return !mStandby;
3573}
3574
3575bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3576{
3577    Mutex::Autolock _l(mLock);
3578    return waitingAsyncCallback_l();
3579}
3580
3581// shared by MIXER and DIRECT, overridden by DUPLICATING
3582void AudioFlinger::PlaybackThread::threadLoop_standby()
3583{
3584    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3585    mOutput->standby();
3586    if (mUseAsyncWrite != 0) {
3587        // discard any pending drain or write ack by incrementing sequence
3588        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3589        mDrainSequence = (mDrainSequence + 2) & ~1;
3590        ALOG_ASSERT(mCallbackThread != 0);
3591        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3592        mCallbackThread->setDraining(mDrainSequence);
3593    }
3594    mHwPaused = false;
3595}
3596
3597void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3598{
3599    ALOGV("signal playback thread");
3600    broadcast_l();
3601}
3602
3603void AudioFlinger::MixerThread::threadLoop_mix()
3604{
3605    // obtain the presentation timestamp of the next output buffer
3606    int64_t pts;
3607    status_t status = INVALID_OPERATION;
3608
3609    if (mNormalSink != 0) {
3610        status = mNormalSink->getNextWriteTimestamp(&pts);
3611    } else {
3612        status = mOutputSink->getNextWriteTimestamp(&pts);
3613    }
3614
3615    if (status != NO_ERROR) {
3616        pts = AudioBufferProvider::kInvalidPTS;
3617    }
3618
3619    // mix buffers...
3620    mAudioMixer->process(pts);
3621    mCurrentWriteLength = mSinkBufferSize;
3622    // increase sleep time progressively when application underrun condition clears.
3623    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3624    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3625    // such that we would underrun the audio HAL.
3626    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3627        sleepTimeShift--;
3628    }
3629    mSleepTimeUs = 0;
3630    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3631    //TODO: delay standby when effects have a tail
3632
3633}
3634
3635void AudioFlinger::MixerThread::threadLoop_sleepTime()
3636{
3637    // If no tracks are ready, sleep once for the duration of an output
3638    // buffer size, then write 0s to the output
3639    if (mSleepTimeUs == 0) {
3640        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3641            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3642            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3643                mSleepTimeUs = kMinThreadSleepTimeUs;
3644            }
3645            // reduce sleep time in case of consecutive application underruns to avoid
3646            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3647            // duration we would end up writing less data than needed by the audio HAL if
3648            // the condition persists.
3649            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3650                sleepTimeShift++;
3651            }
3652        } else {
3653            mSleepTimeUs = mIdleSleepTimeUs;
3654        }
3655    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3656        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3657        // before effects processing or output.
3658        if (mMixerBufferValid) {
3659            memset(mMixerBuffer, 0, mMixerBufferSize);
3660        } else {
3661            memset(mSinkBuffer, 0, mSinkBufferSize);
3662        }
3663        mSleepTimeUs = 0;
3664        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3665                "anticipated start");
3666    }
3667    // TODO add standby time extension fct of effect tail
3668}
3669
3670// prepareTracks_l() must be called with ThreadBase::mLock held
3671AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3672        Vector< sp<Track> > *tracksToRemove)
3673{
3674
3675    mixer_state mixerStatus = MIXER_IDLE;
3676    // find out which tracks need to be processed
3677    size_t count = mActiveTracks.size();
3678    size_t mixedTracks = 0;
3679    size_t tracksWithEffect = 0;
3680    // counts only _active_ fast tracks
3681    size_t fastTracks = 0;
3682    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3683
3684    float masterVolume = mMasterVolume;
3685    bool masterMute = mMasterMute;
3686
3687    if (masterMute) {
3688        masterVolume = 0;
3689    }
3690    // Delegate master volume control to effect in output mix effect chain if needed
3691    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3692    if (chain != 0) {
3693        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3694        chain->setVolume_l(&v, &v);
3695        masterVolume = (float)((v + (1 << 23)) >> 24);
3696        chain.clear();
3697    }
3698
3699    // prepare a new state to push
3700    FastMixerStateQueue *sq = NULL;
3701    FastMixerState *state = NULL;
3702    bool didModify = false;
3703    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3704    if (mFastMixer != 0) {
3705        sq = mFastMixer->sq();
3706        state = sq->begin();
3707    }
3708
3709    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3710    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3711
3712    for (size_t i=0 ; i<count ; i++) {
3713        const sp<Track> t = mActiveTracks[i].promote();
3714        if (t == 0) {
3715            continue;
3716        }
3717
3718        // this const just means the local variable doesn't change
3719        Track* const track = t.get();
3720
3721        // process fast tracks
3722        if (track->isFastTrack()) {
3723
3724            // It's theoretically possible (though unlikely) for a fast track to be created
3725            // and then removed within the same normal mix cycle.  This is not a problem, as
3726            // the track never becomes active so it's fast mixer slot is never touched.
3727            // The converse, of removing an (active) track and then creating a new track
3728            // at the identical fast mixer slot within the same normal mix cycle,
3729            // is impossible because the slot isn't marked available until the end of each cycle.
3730            int j = track->mFastIndex;
3731            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3732            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3733            FastTrack *fastTrack = &state->mFastTracks[j];
3734
3735            // Determine whether the track is currently in underrun condition,
3736            // and whether it had a recent underrun.
3737            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3738            FastTrackUnderruns underruns = ftDump->mUnderruns;
3739            uint32_t recentFull = (underruns.mBitFields.mFull -
3740                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3741            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3742                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3743            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3744                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3745            uint32_t recentUnderruns = recentPartial + recentEmpty;
3746            track->mObservedUnderruns = underruns;
3747            // don't count underruns that occur while stopping or pausing
3748            // or stopped which can occur when flush() is called while active
3749            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3750                    recentUnderruns > 0) {
3751                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3752                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3753            }
3754
3755            // This is similar to the state machine for normal tracks,
3756            // with a few modifications for fast tracks.
3757            bool isActive = true;
3758            switch (track->mState) {
3759            case TrackBase::STOPPING_1:
3760                // track stays active in STOPPING_1 state until first underrun
3761                if (recentUnderruns > 0 || track->isTerminated()) {
3762                    track->mState = TrackBase::STOPPING_2;
3763                }
3764                break;
3765            case TrackBase::PAUSING:
3766                // ramp down is not yet implemented
3767                track->setPaused();
3768                break;
3769            case TrackBase::RESUMING:
3770                // ramp up is not yet implemented
3771                track->mState = TrackBase::ACTIVE;
3772                break;
3773            case TrackBase::ACTIVE:
3774                if (recentFull > 0 || recentPartial > 0) {
3775                    // track has provided at least some frames recently: reset retry count
3776                    track->mRetryCount = kMaxTrackRetries;
3777                }
3778                if (recentUnderruns == 0) {
3779                    // no recent underruns: stay active
3780                    break;
3781                }
3782                // there has recently been an underrun of some kind
3783                if (track->sharedBuffer() == 0) {
3784                    // were any of the recent underruns "empty" (no frames available)?
3785                    if (recentEmpty == 0) {
3786                        // no, then ignore the partial underruns as they are allowed indefinitely
3787                        break;
3788                    }
3789                    // there has recently been an "empty" underrun: decrement the retry counter
3790                    if (--(track->mRetryCount) > 0) {
3791                        break;
3792                    }
3793                    // indicate to client process that the track was disabled because of underrun;
3794                    // it will then automatically call start() when data is available
3795                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3796                    // remove from active list, but state remains ACTIVE [confusing but true]
3797                    isActive = false;
3798                    break;
3799                }
3800                // fall through
3801            case TrackBase::STOPPING_2:
3802            case TrackBase::PAUSED:
3803            case TrackBase::STOPPED:
3804            case TrackBase::FLUSHED:   // flush() while active
3805                // Check for presentation complete if track is inactive
3806                // We have consumed all the buffers of this track.
3807                // This would be incomplete if we auto-paused on underrun
3808                {
3809                    size_t audioHALFrames =
3810                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3811                    size_t framesWritten = mBytesWritten / mFrameSize;
3812                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3813                        // track stays in active list until presentation is complete
3814                        break;
3815                    }
3816                }
3817                if (track->isStopping_2()) {
3818                    track->mState = TrackBase::STOPPED;
3819                }
3820                if (track->isStopped()) {
3821                    // Can't reset directly, as fast mixer is still polling this track
3822                    //   track->reset();
3823                    // So instead mark this track as needing to be reset after push with ack
3824                    resetMask |= 1 << i;
3825                }
3826                isActive = false;
3827                break;
3828            case TrackBase::IDLE:
3829            default:
3830                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3831            }
3832
3833            if (isActive) {
3834                // was it previously inactive?
3835                if (!(state->mTrackMask & (1 << j))) {
3836                    ExtendedAudioBufferProvider *eabp = track;
3837                    VolumeProvider *vp = track;
3838                    fastTrack->mBufferProvider = eabp;
3839                    fastTrack->mVolumeProvider = vp;
3840                    fastTrack->mChannelMask = track->mChannelMask;
3841                    fastTrack->mFormat = track->mFormat;
3842                    fastTrack->mGeneration++;
3843                    state->mTrackMask |= 1 << j;
3844                    didModify = true;
3845                    // no acknowledgement required for newly active tracks
3846                }
3847                // cache the combined master volume and stream type volume for fast mixer; this
3848                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3849                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3850                ++fastTracks;
3851            } else {
3852                // was it previously active?
3853                if (state->mTrackMask & (1 << j)) {
3854                    fastTrack->mBufferProvider = NULL;
3855                    fastTrack->mGeneration++;
3856                    state->mTrackMask &= ~(1 << j);
3857                    didModify = true;
3858                    // If any fast tracks were removed, we must wait for acknowledgement
3859                    // because we're about to decrement the last sp<> on those tracks.
3860                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3861                } else {
3862                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
3863                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
3864                            j, track->mState, state->mTrackMask, recentUnderruns,
3865                            track->sharedBuffer() != 0);
3866                }
3867                tracksToRemove->add(track);
3868                // Avoids a misleading display in dumpsys
3869                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3870            }
3871            continue;
3872        }
3873
3874        {   // local variable scope to avoid goto warning
3875
3876        audio_track_cblk_t* cblk = track->cblk();
3877
3878        // The first time a track is added we wait
3879        // for all its buffers to be filled before processing it
3880        int name = track->name();
3881        // make sure that we have enough frames to mix one full buffer.
3882        // enforce this condition only once to enable draining the buffer in case the client
3883        // app does not call stop() and relies on underrun to stop:
3884        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3885        // during last round
3886        size_t desiredFrames;
3887        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3888        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3889
3890        desiredFrames = sourceFramesNeededWithTimestretch(
3891                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3892        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3893        // add frames already consumed but not yet released by the resampler
3894        // because mAudioTrackServerProxy->framesReady() will include these frames
3895        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3896
3897        uint32_t minFrames = 1;
3898        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3899                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3900            minFrames = desiredFrames;
3901        }
3902
3903        size_t framesReady = track->framesReady();
3904        if (ATRACE_ENABLED()) {
3905            // I wish we had formatted trace names
3906            char traceName[16];
3907            strcpy(traceName, "nRdy");
3908            int name = track->name();
3909            if (AudioMixer::TRACK0 <= name &&
3910                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3911                name -= AudioMixer::TRACK0;
3912                traceName[4] = (name / 10) + '0';
3913                traceName[5] = (name % 10) + '0';
3914            } else {
3915                traceName[4] = '?';
3916                traceName[5] = '?';
3917            }
3918            traceName[6] = '\0';
3919            ATRACE_INT(traceName, framesReady);
3920        }
3921        if ((framesReady >= minFrames) && track->isReady() &&
3922                !track->isPaused() && !track->isTerminated())
3923        {
3924            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3925
3926            mixedTracks++;
3927
3928            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3929            // there is an effect chain connected to the track
3930            chain.clear();
3931            if (track->mainBuffer() != mSinkBuffer &&
3932                    track->mainBuffer() != mMixerBuffer) {
3933                if (mEffectBufferEnabled) {
3934                    mEffectBufferValid = true; // Later can set directly.
3935                }
3936                chain = getEffectChain_l(track->sessionId());
3937                // Delegate volume control to effect in track effect chain if needed
3938                if (chain != 0) {
3939                    tracksWithEffect++;
3940                } else {
3941                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3942                            "session %d",
3943                            name, track->sessionId());
3944                }
3945            }
3946
3947
3948            int param = AudioMixer::VOLUME;
3949            if (track->mFillingUpStatus == Track::FS_FILLED) {
3950                // no ramp for the first volume setting
3951                track->mFillingUpStatus = Track::FS_ACTIVE;
3952                if (track->mState == TrackBase::RESUMING) {
3953                    track->mState = TrackBase::ACTIVE;
3954                    param = AudioMixer::RAMP_VOLUME;
3955                }
3956                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3957            // FIXME should not make a decision based on mServer
3958            } else if (cblk->mServer != 0) {
3959                // If the track is stopped before the first frame was mixed,
3960                // do not apply ramp
3961                param = AudioMixer::RAMP_VOLUME;
3962            }
3963
3964            // compute volume for this track
3965            uint32_t vl, vr;       // in U8.24 integer format
3966            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3967            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3968                vl = vr = 0;
3969                vlf = vrf = vaf = 0.;
3970                if (track->isPausing()) {
3971                    track->setPaused();
3972                }
3973            } else {
3974
3975                // read original volumes with volume control
3976                float typeVolume = mStreamTypes[track->streamType()].volume;
3977                float v = masterVolume * typeVolume;
3978                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3979                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3980                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3981                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3982                // track volumes come from shared memory, so can't be trusted and must be clamped
3983                if (vlf > GAIN_FLOAT_UNITY) {
3984                    ALOGV("Track left volume out of range: %.3g", vlf);
3985                    vlf = GAIN_FLOAT_UNITY;
3986                }
3987                if (vrf > GAIN_FLOAT_UNITY) {
3988                    ALOGV("Track right volume out of range: %.3g", vrf);
3989                    vrf = GAIN_FLOAT_UNITY;
3990                }
3991                // now apply the master volume and stream type volume
3992                vlf *= v;
3993                vrf *= v;
3994                // assuming master volume and stream type volume each go up to 1.0,
3995                // then derive vl and vr as U8.24 versions for the effect chain
3996                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3997                vl = (uint32_t) (scaleto8_24 * vlf);
3998                vr = (uint32_t) (scaleto8_24 * vrf);
3999                // vl and vr are now in U8.24 format
4000                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4001                // send level comes from shared memory and so may be corrupt
4002                if (sendLevel > MAX_GAIN_INT) {
4003                    ALOGV("Track send level out of range: %04X", sendLevel);
4004                    sendLevel = MAX_GAIN_INT;
4005                }
4006                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4007                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4008            }
4009
4010            // Delegate volume control to effect in track effect chain if needed
4011            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4012                // Do not ramp volume if volume is controlled by effect
4013                param = AudioMixer::VOLUME;
4014                // Update remaining floating point volume levels
4015                vlf = (float)vl / (1 << 24);
4016                vrf = (float)vr / (1 << 24);
4017                track->mHasVolumeController = true;
4018            } else {
4019                // force no volume ramp when volume controller was just disabled or removed
4020                // from effect chain to avoid volume spike
4021                if (track->mHasVolumeController) {
4022                    param = AudioMixer::VOLUME;
4023                }
4024                track->mHasVolumeController = false;
4025            }
4026
4027            // XXX: these things DON'T need to be done each time
4028            mAudioMixer->setBufferProvider(name, track);
4029            mAudioMixer->enable(name);
4030
4031            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4032            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4033            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4034            mAudioMixer->setParameter(
4035                name,
4036                AudioMixer::TRACK,
4037                AudioMixer::FORMAT, (void *)track->format());
4038            mAudioMixer->setParameter(
4039                name,
4040                AudioMixer::TRACK,
4041                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4042            mAudioMixer->setParameter(
4043                name,
4044                AudioMixer::TRACK,
4045                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4046            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4047            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4048            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4049            if (reqSampleRate == 0) {
4050                reqSampleRate = mSampleRate;
4051            } else if (reqSampleRate > maxSampleRate) {
4052                reqSampleRate = maxSampleRate;
4053            }
4054            mAudioMixer->setParameter(
4055                name,
4056                AudioMixer::RESAMPLE,
4057                AudioMixer::SAMPLE_RATE,
4058                (void *)(uintptr_t)reqSampleRate);
4059
4060            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4061            mAudioMixer->setParameter(
4062                name,
4063                AudioMixer::TIMESTRETCH,
4064                AudioMixer::PLAYBACK_RATE,
4065                &playbackRate);
4066
4067            /*
4068             * Select the appropriate output buffer for the track.
4069             *
4070             * Tracks with effects go into their own effects chain buffer
4071             * and from there into either mEffectBuffer or mSinkBuffer.
4072             *
4073             * Other tracks can use mMixerBuffer for higher precision
4074             * channel accumulation.  If this buffer is enabled
4075             * (mMixerBufferEnabled true), then selected tracks will accumulate
4076             * into it.
4077             *
4078             */
4079            if (mMixerBufferEnabled
4080                    && (track->mainBuffer() == mSinkBuffer
4081                            || track->mainBuffer() == mMixerBuffer)) {
4082                mAudioMixer->setParameter(
4083                        name,
4084                        AudioMixer::TRACK,
4085                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4086                mAudioMixer->setParameter(
4087                        name,
4088                        AudioMixer::TRACK,
4089                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4090                // TODO: override track->mainBuffer()?
4091                mMixerBufferValid = true;
4092            } else {
4093                mAudioMixer->setParameter(
4094                        name,
4095                        AudioMixer::TRACK,
4096                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4097                mAudioMixer->setParameter(
4098                        name,
4099                        AudioMixer::TRACK,
4100                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4101            }
4102            mAudioMixer->setParameter(
4103                name,
4104                AudioMixer::TRACK,
4105                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4106
4107            // reset retry count
4108            track->mRetryCount = kMaxTrackRetries;
4109
4110            // If one track is ready, set the mixer ready if:
4111            //  - the mixer was not ready during previous round OR
4112            //  - no other track is not ready
4113            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4114                    mixerStatus != MIXER_TRACKS_ENABLED) {
4115                mixerStatus = MIXER_TRACKS_READY;
4116            }
4117        } else {
4118            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4119                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4120                        track, framesReady, desiredFrames);
4121                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4122            }
4123            // clear effect chain input buffer if an active track underruns to avoid sending
4124            // previous audio buffer again to effects
4125            chain = getEffectChain_l(track->sessionId());
4126            if (chain != 0) {
4127                chain->clearInputBuffer();
4128            }
4129
4130            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4131            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4132                    track->isStopped() || track->isPaused()) {
4133                // We have consumed all the buffers of this track.
4134                // Remove it from the list of active tracks.
4135                // TODO: use actual buffer filling status instead of latency when available from
4136                // audio HAL
4137                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4138                size_t framesWritten = mBytesWritten / mFrameSize;
4139                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4140                    if (track->isStopped()) {
4141                        track->reset();
4142                    }
4143                    tracksToRemove->add(track);
4144                }
4145            } else {
4146                // No buffers for this track. Give it a few chances to
4147                // fill a buffer, then remove it from active list.
4148                if (--(track->mRetryCount) <= 0) {
4149                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4150                    tracksToRemove->add(track);
4151                    // indicate to client process that the track was disabled because of underrun;
4152                    // it will then automatically call start() when data is available
4153                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4154                // If one track is not ready, mark the mixer also not ready if:
4155                //  - the mixer was ready during previous round OR
4156                //  - no other track is ready
4157                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4158                                mixerStatus != MIXER_TRACKS_READY) {
4159                    mixerStatus = MIXER_TRACKS_ENABLED;
4160                }
4161            }
4162            mAudioMixer->disable(name);
4163        }
4164
4165        }   // local variable scope to avoid goto warning
4166track_is_ready: ;
4167
4168    }
4169
4170    // Push the new FastMixer state if necessary
4171    bool pauseAudioWatchdog = false;
4172    if (didModify) {
4173        state->mFastTracksGen++;
4174        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4175        if (kUseFastMixer == FastMixer_Dynamic &&
4176                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4177            state->mCommand = FastMixerState::COLD_IDLE;
4178            state->mColdFutexAddr = &mFastMixerFutex;
4179            state->mColdGen++;
4180            mFastMixerFutex = 0;
4181            if (kUseFastMixer == FastMixer_Dynamic) {
4182                mNormalSink = mOutputSink;
4183            }
4184            // If we go into cold idle, need to wait for acknowledgement
4185            // so that fast mixer stops doing I/O.
4186            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4187            pauseAudioWatchdog = true;
4188        }
4189    }
4190    if (sq != NULL) {
4191        sq->end(didModify);
4192        sq->push(block);
4193    }
4194#ifdef AUDIO_WATCHDOG
4195    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4196        mAudioWatchdog->pause();
4197    }
4198#endif
4199
4200    // Now perform the deferred reset on fast tracks that have stopped
4201    while (resetMask != 0) {
4202        size_t i = __builtin_ctz(resetMask);
4203        ALOG_ASSERT(i < count);
4204        resetMask &= ~(1 << i);
4205        sp<Track> t = mActiveTracks[i].promote();
4206        if (t == 0) {
4207            continue;
4208        }
4209        Track* track = t.get();
4210        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4211        track->reset();
4212    }
4213
4214    // remove all the tracks that need to be...
4215    removeTracks_l(*tracksToRemove);
4216
4217    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4218        mEffectBufferValid = true;
4219    }
4220
4221    if (mEffectBufferValid) {
4222        // as long as there are effects we should clear the effects buffer, to avoid
4223        // passing a non-clean buffer to the effect chain
4224        memset(mEffectBuffer, 0, mEffectBufferSize);
4225    }
4226    // sink or mix buffer must be cleared if all tracks are connected to an
4227    // effect chain as in this case the mixer will not write to the sink or mix buffer
4228    // and track effects will accumulate into it
4229    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4230            (mixedTracks == 0 && fastTracks > 0))) {
4231        // FIXME as a performance optimization, should remember previous zero status
4232        if (mMixerBufferValid) {
4233            memset(mMixerBuffer, 0, mMixerBufferSize);
4234            // TODO: In testing, mSinkBuffer below need not be cleared because
4235            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4236            // after mixing.
4237            //
4238            // To enforce this guarantee:
4239            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4240            // (mixedTracks == 0 && fastTracks > 0))
4241            // must imply MIXER_TRACKS_READY.
4242            // Later, we may clear buffers regardless, and skip much of this logic.
4243        }
4244        // FIXME as a performance optimization, should remember previous zero status
4245        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4246    }
4247
4248    // if any fast tracks, then status is ready
4249    mMixerStatusIgnoringFastTracks = mixerStatus;
4250    if (fastTracks > 0) {
4251        mixerStatus = MIXER_TRACKS_READY;
4252    }
4253    return mixerStatus;
4254}
4255
4256// getTrackName_l() must be called with ThreadBase::mLock held
4257int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4258        audio_format_t format, int sessionId)
4259{
4260    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4261}
4262
4263// deleteTrackName_l() must be called with ThreadBase::mLock held
4264void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4265{
4266    ALOGV("remove track (%d) and delete from mixer", name);
4267    mAudioMixer->deleteTrackName(name);
4268}
4269
4270// checkForNewParameter_l() must be called with ThreadBase::mLock held
4271bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4272                                                       status_t& status)
4273{
4274    bool reconfig = false;
4275
4276    status = NO_ERROR;
4277
4278    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4279    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4280    if (mFastMixer != 0) {
4281        FastMixerStateQueue *sq = mFastMixer->sq();
4282        FastMixerState *state = sq->begin();
4283        if (!(state->mCommand & FastMixerState::IDLE)) {
4284            previousCommand = state->mCommand;
4285            state->mCommand = FastMixerState::HOT_IDLE;
4286            sq->end();
4287            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4288        } else {
4289            sq->end(false /*didModify*/);
4290        }
4291    }
4292
4293    AudioParameter param = AudioParameter(keyValuePair);
4294    int value;
4295    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4296        reconfig = true;
4297    }
4298    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4299        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4300            status = BAD_VALUE;
4301        } else {
4302            // no need to save value, since it's constant
4303            reconfig = true;
4304        }
4305    }
4306    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4307        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4308            status = BAD_VALUE;
4309        } else {
4310            // no need to save value, since it's constant
4311            reconfig = true;
4312        }
4313    }
4314    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4315        // do not accept frame count changes if tracks are open as the track buffer
4316        // size depends on frame count and correct behavior would not be guaranteed
4317        // if frame count is changed after track creation
4318        if (!mTracks.isEmpty()) {
4319            status = INVALID_OPERATION;
4320        } else {
4321            reconfig = true;
4322        }
4323    }
4324    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4325#ifdef ADD_BATTERY_DATA
4326        // when changing the audio output device, call addBatteryData to notify
4327        // the change
4328        if (mOutDevice != value) {
4329            uint32_t params = 0;
4330            // check whether speaker is on
4331            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4332                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4333            }
4334
4335            audio_devices_t deviceWithoutSpeaker
4336                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4337            // check if any other device (except speaker) is on
4338            if (value & deviceWithoutSpeaker) {
4339                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4340            }
4341
4342            if (params != 0) {
4343                addBatteryData(params);
4344            }
4345        }
4346#endif
4347
4348        // forward device change to effects that have requested to be
4349        // aware of attached audio device.
4350        if (value != AUDIO_DEVICE_NONE) {
4351            mOutDevice = value;
4352            for (size_t i = 0; i < mEffectChains.size(); i++) {
4353                mEffectChains[i]->setDevice_l(mOutDevice);
4354            }
4355        }
4356    }
4357
4358    if (status == NO_ERROR) {
4359        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4360                                                keyValuePair.string());
4361        if (!mStandby && status == INVALID_OPERATION) {
4362            mOutput->standby();
4363            mStandby = true;
4364            mBytesWritten = 0;
4365            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4366                                                   keyValuePair.string());
4367        }
4368        if (status == NO_ERROR && reconfig) {
4369            readOutputParameters_l();
4370            delete mAudioMixer;
4371            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4372            for (size_t i = 0; i < mTracks.size() ; i++) {
4373                int name = getTrackName_l(mTracks[i]->mChannelMask,
4374                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4375                if (name < 0) {
4376                    break;
4377                }
4378                mTracks[i]->mName = name;
4379            }
4380            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4381        }
4382    }
4383
4384    if (!(previousCommand & FastMixerState::IDLE)) {
4385        ALOG_ASSERT(mFastMixer != 0);
4386        FastMixerStateQueue *sq = mFastMixer->sq();
4387        FastMixerState *state = sq->begin();
4388        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4389        state->mCommand = previousCommand;
4390        sq->end();
4391        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4392    }
4393
4394    return reconfig;
4395}
4396
4397
4398void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4399{
4400    const size_t SIZE = 256;
4401    char buffer[SIZE];
4402    String8 result;
4403
4404    PlaybackThread::dumpInternals(fd, args);
4405    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4406    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4407
4408    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4409    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4410    // This is a large object so we place it on the heap.
4411    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4412    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4413    copy->dump(fd);
4414    delete copy;
4415
4416#ifdef STATE_QUEUE_DUMP
4417    // Similar for state queue
4418    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4419    observerCopy.dump(fd);
4420    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4421    mutatorCopy.dump(fd);
4422#endif
4423
4424#ifdef TEE_SINK
4425    // Write the tee output to a .wav file
4426    dumpTee(fd, mTeeSource, mId);
4427#endif
4428
4429#ifdef AUDIO_WATCHDOG
4430    if (mAudioWatchdog != 0) {
4431        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4432        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4433        wdCopy.dump(fd);
4434    }
4435#endif
4436}
4437
4438uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4439{
4440    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4441}
4442
4443uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4444{
4445    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4446}
4447
4448void AudioFlinger::MixerThread::cacheParameters_l()
4449{
4450    PlaybackThread::cacheParameters_l();
4451
4452    // FIXME: Relaxed timing because of a certain device that can't meet latency
4453    // Should be reduced to 2x after the vendor fixes the driver issue
4454    // increase threshold again due to low power audio mode. The way this warning
4455    // threshold is calculated and its usefulness should be reconsidered anyway.
4456    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4457}
4458
4459// ----------------------------------------------------------------------------
4460
4461AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4462        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4463    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4464        // mLeftVolFloat, mRightVolFloat
4465{
4466}
4467
4468AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4469        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4470        ThreadBase::type_t type, bool systemReady)
4471    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4472        // mLeftVolFloat, mRightVolFloat
4473{
4474}
4475
4476AudioFlinger::DirectOutputThread::~DirectOutputThread()
4477{
4478}
4479
4480void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4481{
4482    audio_track_cblk_t* cblk = track->cblk();
4483    float left, right;
4484
4485    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4486        left = right = 0;
4487    } else {
4488        float typeVolume = mStreamTypes[track->streamType()].volume;
4489        float v = mMasterVolume * typeVolume;
4490        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4491        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4492        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4493        if (left > GAIN_FLOAT_UNITY) {
4494            left = GAIN_FLOAT_UNITY;
4495        }
4496        left *= v;
4497        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4498        if (right > GAIN_FLOAT_UNITY) {
4499            right = GAIN_FLOAT_UNITY;
4500        }
4501        right *= v;
4502    }
4503
4504    if (lastTrack) {
4505        if (left != mLeftVolFloat || right != mRightVolFloat) {
4506            mLeftVolFloat = left;
4507            mRightVolFloat = right;
4508
4509            // Convert volumes from float to 8.24
4510            uint32_t vl = (uint32_t)(left * (1 << 24));
4511            uint32_t vr = (uint32_t)(right * (1 << 24));
4512
4513            // Delegate volume control to effect in track effect chain if needed
4514            // only one effect chain can be present on DirectOutputThread, so if
4515            // there is one, the track is connected to it
4516            if (!mEffectChains.isEmpty()) {
4517                mEffectChains[0]->setVolume_l(&vl, &vr);
4518                left = (float)vl / (1 << 24);
4519                right = (float)vr / (1 << 24);
4520            }
4521            if (mOutput->stream->set_volume) {
4522                mOutput->stream->set_volume(mOutput->stream, left, right);
4523            }
4524        }
4525    }
4526}
4527
4528void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4529{
4530    sp<Track> previousTrack = mPreviousTrack.promote();
4531    sp<Track> latestTrack = mLatestActiveTrack.promote();
4532
4533    if (previousTrack != 0 && latestTrack != 0) {
4534        if (mType == DIRECT) {
4535            if (previousTrack.get() != latestTrack.get()) {
4536                mFlushPending = true;
4537            }
4538        } else /* mType == OFFLOAD */ {
4539            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4540                mFlushPending = true;
4541            }
4542        }
4543    }
4544    PlaybackThread::onAddNewTrack_l();
4545}
4546
4547AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4548    Vector< sp<Track> > *tracksToRemove
4549)
4550{
4551    size_t count = mActiveTracks.size();
4552    mixer_state mixerStatus = MIXER_IDLE;
4553    bool doHwPause = false;
4554    bool doHwResume = false;
4555
4556    // find out which tracks need to be processed
4557    for (size_t i = 0; i < count; i++) {
4558        sp<Track> t = mActiveTracks[i].promote();
4559        // The track died recently
4560        if (t == 0) {
4561            continue;
4562        }
4563
4564        if (t->isInvalid()) {
4565            ALOGW("An invalidated track shouldn't be in active list");
4566            tracksToRemove->add(t);
4567            continue;
4568        }
4569
4570        Track* const track = t.get();
4571        audio_track_cblk_t* cblk = track->cblk();
4572        // Only consider last track started for volume and mixer state control.
4573        // In theory an older track could underrun and restart after the new one starts
4574        // but as we only care about the transition phase between two tracks on a
4575        // direct output, it is not a problem to ignore the underrun case.
4576        sp<Track> l = mLatestActiveTrack.promote();
4577        bool last = l.get() == track;
4578
4579        if (track->isPausing()) {
4580            track->setPaused();
4581            if (mHwSupportsPause && last && !mHwPaused) {
4582                doHwPause = true;
4583                mHwPaused = true;
4584            }
4585            tracksToRemove->add(track);
4586        } else if (track->isFlushPending()) {
4587            track->flushAck();
4588            if (last) {
4589                mFlushPending = true;
4590            }
4591        } else if (track->isResumePending()) {
4592            track->resumeAck();
4593            if (last && mHwPaused) {
4594                doHwResume = true;
4595                mHwPaused = false;
4596            }
4597        }
4598
4599        // The first time a track is added we wait
4600        // for all its buffers to be filled before processing it.
4601        // Allow draining the buffer in case the client
4602        // app does not call stop() and relies on underrun to stop:
4603        // hence the test on (track->mRetryCount > 1).
4604        // If retryCount<=1 then track is about to underrun and be removed.
4605        // Do not use a high threshold for compressed audio.
4606        uint32_t minFrames;
4607        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4608            && (track->mRetryCount > 1) && audio_is_linear_pcm(mFormat)) {
4609            minFrames = mNormalFrameCount;
4610        } else {
4611            minFrames = 1;
4612        }
4613
4614        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4615                !track->isStopping_2() && !track->isStopped())
4616        {
4617            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4618
4619            if (track->mFillingUpStatus == Track::FS_FILLED) {
4620                track->mFillingUpStatus = Track::FS_ACTIVE;
4621                // make sure processVolume_l() will apply new volume even if 0
4622                mLeftVolFloat = mRightVolFloat = -1.0;
4623                if (!mHwSupportsPause) {
4624                    track->resumeAck();
4625                }
4626            }
4627
4628            // compute volume for this track
4629            processVolume_l(track, last);
4630            if (last) {
4631                sp<Track> previousTrack = mPreviousTrack.promote();
4632                if (previousTrack != 0) {
4633                    if (track != previousTrack.get()) {
4634                        // Flush any data still being written from last track
4635                        mBytesRemaining = 0;
4636                        // Invalidate previous track to force a seek when resuming.
4637                        previousTrack->invalidate();
4638                    }
4639                }
4640                mPreviousTrack = track;
4641
4642                // reset retry count
4643                track->mRetryCount = kMaxTrackRetriesDirect;
4644                mActiveTrack = t;
4645                mixerStatus = MIXER_TRACKS_READY;
4646                if (mHwPaused) {
4647                    doHwResume = true;
4648                    mHwPaused = false;
4649                }
4650            }
4651        } else {
4652            // clear effect chain input buffer if the last active track started underruns
4653            // to avoid sending previous audio buffer again to effects
4654            if (!mEffectChains.isEmpty() && last) {
4655                mEffectChains[0]->clearInputBuffer();
4656            }
4657            if (track->isStopping_1()) {
4658                track->mState = TrackBase::STOPPING_2;
4659                if (last && mHwPaused) {
4660                     doHwResume = true;
4661                     mHwPaused = false;
4662                 }
4663            }
4664            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4665                    track->isStopping_2() || track->isPaused()) {
4666                // We have consumed all the buffers of this track.
4667                // Remove it from the list of active tracks.
4668                size_t audioHALFrames;
4669                if (audio_is_linear_pcm(mFormat)) {
4670                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4671                } else {
4672                    audioHALFrames = 0;
4673                }
4674
4675                size_t framesWritten = mBytesWritten / mFrameSize;
4676                if (mStandby || !last ||
4677                        track->presentationComplete(framesWritten, audioHALFrames)) {
4678                    if (track->isStopping_2()) {
4679                        track->mState = TrackBase::STOPPED;
4680                    }
4681                    if (track->isStopped()) {
4682                        track->reset();
4683                    }
4684                    tracksToRemove->add(track);
4685                }
4686            } else {
4687                // No buffers for this track. Give it a few chances to
4688                // fill a buffer, then remove it from active list.
4689                // Only consider last track started for mixer state control
4690                if (--(track->mRetryCount) <= 0) {
4691                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4692                    tracksToRemove->add(track);
4693                    // indicate to client process that the track was disabled because of underrun;
4694                    // it will then automatically call start() when data is available
4695                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4696                } else if (last) {
4697                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4698                            "minFrames = %u, mFormat = %#x",
4699                            track->framesReady(), minFrames, mFormat);
4700                    mixerStatus = MIXER_TRACKS_ENABLED;
4701                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4702                        doHwPause = true;
4703                        mHwPaused = true;
4704                    }
4705                }
4706            }
4707        }
4708    }
4709
4710    // if an active track did not command a flush, check for pending flush on stopped tracks
4711    if (!mFlushPending) {
4712        for (size_t i = 0; i < mTracks.size(); i++) {
4713            if (mTracks[i]->isFlushPending()) {
4714                mTracks[i]->flushAck();
4715                mFlushPending = true;
4716            }
4717        }
4718    }
4719
4720    // make sure the pause/flush/resume sequence is executed in the right order.
4721    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4722    // before flush and then resume HW. This can happen in case of pause/flush/resume
4723    // if resume is received before pause is executed.
4724    if (mHwSupportsPause && !mStandby &&
4725            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4726        mOutput->stream->pause(mOutput->stream);
4727    }
4728    if (mFlushPending) {
4729        flushHw_l();
4730    }
4731    if (mHwSupportsPause && !mStandby && doHwResume) {
4732        mOutput->stream->resume(mOutput->stream);
4733    }
4734    // remove all the tracks that need to be...
4735    removeTracks_l(*tracksToRemove);
4736
4737    return mixerStatus;
4738}
4739
4740void AudioFlinger::DirectOutputThread::threadLoop_mix()
4741{
4742    size_t frameCount = mFrameCount;
4743    int8_t *curBuf = (int8_t *)mSinkBuffer;
4744    // output audio to hardware
4745    while (frameCount) {
4746        AudioBufferProvider::Buffer buffer;
4747        buffer.frameCount = frameCount;
4748        status_t status = mActiveTrack->getNextBuffer(&buffer);
4749        if (status != NO_ERROR || buffer.raw == NULL) {
4750            memset(curBuf, 0, frameCount * mFrameSize);
4751            break;
4752        }
4753        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4754        frameCount -= buffer.frameCount;
4755        curBuf += buffer.frameCount * mFrameSize;
4756        mActiveTrack->releaseBuffer(&buffer);
4757    }
4758    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4759    mSleepTimeUs = 0;
4760    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4761    mActiveTrack.clear();
4762}
4763
4764void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4765{
4766    // do not write to HAL when paused
4767    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4768        mSleepTimeUs = mIdleSleepTimeUs;
4769        return;
4770    }
4771    if (mSleepTimeUs == 0) {
4772        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4773            mSleepTimeUs = mActiveSleepTimeUs;
4774        } else {
4775            mSleepTimeUs = mIdleSleepTimeUs;
4776        }
4777    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4778        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4779        mSleepTimeUs = 0;
4780    }
4781}
4782
4783void AudioFlinger::DirectOutputThread::threadLoop_exit()
4784{
4785    {
4786        Mutex::Autolock _l(mLock);
4787        for (size_t i = 0; i < mTracks.size(); i++) {
4788            if (mTracks[i]->isFlushPending()) {
4789                mTracks[i]->flushAck();
4790                mFlushPending = true;
4791            }
4792        }
4793        if (mFlushPending) {
4794            flushHw_l();
4795        }
4796    }
4797    PlaybackThread::threadLoop_exit();
4798}
4799
4800// must be called with thread mutex locked
4801bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4802{
4803    bool trackPaused = false;
4804    bool trackStopped = false;
4805
4806    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4807    // after a timeout and we will enter standby then.
4808    if (mTracks.size() > 0) {
4809        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4810        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4811                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4812    }
4813
4814    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4815}
4816
4817// getTrackName_l() must be called with ThreadBase::mLock held
4818int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4819        audio_format_t format __unused, int sessionId __unused)
4820{
4821    return 0;
4822}
4823
4824// deleteTrackName_l() must be called with ThreadBase::mLock held
4825void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4826{
4827}
4828
4829// checkForNewParameter_l() must be called with ThreadBase::mLock held
4830bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4831                                                              status_t& status)
4832{
4833    bool reconfig = false;
4834
4835    status = NO_ERROR;
4836
4837    AudioParameter param = AudioParameter(keyValuePair);
4838    int value;
4839    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4840        // forward device change to effects that have requested to be
4841        // aware of attached audio device.
4842        if (value != AUDIO_DEVICE_NONE) {
4843            mOutDevice = value;
4844            for (size_t i = 0; i < mEffectChains.size(); i++) {
4845                mEffectChains[i]->setDevice_l(mOutDevice);
4846            }
4847        }
4848    }
4849    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4850        // do not accept frame count changes if tracks are open as the track buffer
4851        // size depends on frame count and correct behavior would not be garantied
4852        // if frame count is changed after track creation
4853        if (!mTracks.isEmpty()) {
4854            status = INVALID_OPERATION;
4855        } else {
4856            reconfig = true;
4857        }
4858    }
4859    if (status == NO_ERROR) {
4860        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4861                                                keyValuePair.string());
4862        if (!mStandby && status == INVALID_OPERATION) {
4863            mOutput->standby();
4864            mStandby = true;
4865            mBytesWritten = 0;
4866            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4867                                                   keyValuePair.string());
4868        }
4869        if (status == NO_ERROR && reconfig) {
4870            readOutputParameters_l();
4871            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4872        }
4873    }
4874
4875    return reconfig;
4876}
4877
4878uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4879{
4880    uint32_t time;
4881    if (audio_is_linear_pcm(mFormat)) {
4882        time = PlaybackThread::activeSleepTimeUs();
4883    } else {
4884        time = 10000;
4885    }
4886    return time;
4887}
4888
4889uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4890{
4891    uint32_t time;
4892    if (audio_is_linear_pcm(mFormat)) {
4893        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4894    } else {
4895        time = 10000;
4896    }
4897    return time;
4898}
4899
4900uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4901{
4902    uint32_t time;
4903    if (audio_is_linear_pcm(mFormat)) {
4904        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4905    } else {
4906        time = 10000;
4907    }
4908    return time;
4909}
4910
4911void AudioFlinger::DirectOutputThread::cacheParameters_l()
4912{
4913    PlaybackThread::cacheParameters_l();
4914
4915    // use shorter standby delay as on normal output to release
4916    // hardware resources as soon as possible
4917    // no delay on outputs with HW A/V sync
4918    if (usesHwAvSync()) {
4919        mStandbyDelayNs = 0;
4920    } else if ((mType == OFFLOAD) && !audio_is_linear_pcm(mFormat)) {
4921        mStandbyDelayNs = kOffloadStandbyDelayNs;
4922    } else {
4923        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
4924    }
4925}
4926
4927void AudioFlinger::DirectOutputThread::flushHw_l()
4928{
4929    mOutput->flush();
4930    mHwPaused = false;
4931    mFlushPending = false;
4932}
4933
4934// ----------------------------------------------------------------------------
4935
4936AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4937        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4938    :   Thread(false /*canCallJava*/),
4939        mPlaybackThread(playbackThread),
4940        mWriteAckSequence(0),
4941        mDrainSequence(0)
4942{
4943}
4944
4945AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4946{
4947}
4948
4949void AudioFlinger::AsyncCallbackThread::onFirstRef()
4950{
4951    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4952}
4953
4954bool AudioFlinger::AsyncCallbackThread::threadLoop()
4955{
4956    while (!exitPending()) {
4957        uint32_t writeAckSequence;
4958        uint32_t drainSequence;
4959
4960        {
4961            Mutex::Autolock _l(mLock);
4962            while (!((mWriteAckSequence & 1) ||
4963                     (mDrainSequence & 1) ||
4964                     exitPending())) {
4965                mWaitWorkCV.wait(mLock);
4966            }
4967
4968            if (exitPending()) {
4969                break;
4970            }
4971            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4972                  mWriteAckSequence, mDrainSequence);
4973            writeAckSequence = mWriteAckSequence;
4974            mWriteAckSequence &= ~1;
4975            drainSequence = mDrainSequence;
4976            mDrainSequence &= ~1;
4977        }
4978        {
4979            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4980            if (playbackThread != 0) {
4981                if (writeAckSequence & 1) {
4982                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4983                }
4984                if (drainSequence & 1) {
4985                    playbackThread->resetDraining(drainSequence >> 1);
4986                }
4987            }
4988        }
4989    }
4990    return false;
4991}
4992
4993void AudioFlinger::AsyncCallbackThread::exit()
4994{
4995    ALOGV("AsyncCallbackThread::exit");
4996    Mutex::Autolock _l(mLock);
4997    requestExit();
4998    mWaitWorkCV.broadcast();
4999}
5000
5001void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5002{
5003    Mutex::Autolock _l(mLock);
5004    // bit 0 is cleared
5005    mWriteAckSequence = sequence << 1;
5006}
5007
5008void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5009{
5010    Mutex::Autolock _l(mLock);
5011    // ignore unexpected callbacks
5012    if (mWriteAckSequence & 2) {
5013        mWriteAckSequence |= 1;
5014        mWaitWorkCV.signal();
5015    }
5016}
5017
5018void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5019{
5020    Mutex::Autolock _l(mLock);
5021    // bit 0 is cleared
5022    mDrainSequence = sequence << 1;
5023}
5024
5025void AudioFlinger::AsyncCallbackThread::resetDraining()
5026{
5027    Mutex::Autolock _l(mLock);
5028    // ignore unexpected callbacks
5029    if (mDrainSequence & 2) {
5030        mDrainSequence |= 1;
5031        mWaitWorkCV.signal();
5032    }
5033}
5034
5035
5036// ----------------------------------------------------------------------------
5037AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5038        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5039    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5040        mPausedBytesRemaining(0)
5041{
5042    //FIXME: mStandby should be set to true by ThreadBase constructor
5043    mStandby = true;
5044}
5045
5046void AudioFlinger::OffloadThread::threadLoop_exit()
5047{
5048    if (mFlushPending || mHwPaused) {
5049        // If a flush is pending or track was paused, just discard buffered data
5050        flushHw_l();
5051    } else {
5052        mMixerStatus = MIXER_DRAIN_ALL;
5053        threadLoop_drain();
5054    }
5055    if (mUseAsyncWrite) {
5056        ALOG_ASSERT(mCallbackThread != 0);
5057        mCallbackThread->exit();
5058    }
5059    PlaybackThread::threadLoop_exit();
5060}
5061
5062AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5063    Vector< sp<Track> > *tracksToRemove
5064)
5065{
5066    size_t count = mActiveTracks.size();
5067
5068    mixer_state mixerStatus = MIXER_IDLE;
5069    bool doHwPause = false;
5070    bool doHwResume = false;
5071
5072    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5073
5074    // find out which tracks need to be processed
5075    for (size_t i = 0; i < count; i++) {
5076        sp<Track> t = mActiveTracks[i].promote();
5077        // The track died recently
5078        if (t == 0) {
5079            continue;
5080        }
5081        Track* const track = t.get();
5082        audio_track_cblk_t* cblk = track->cblk();
5083        // Only consider last track started for volume and mixer state control.
5084        // In theory an older track could underrun and restart after the new one starts
5085        // but as we only care about the transition phase between two tracks on a
5086        // direct output, it is not a problem to ignore the underrun case.
5087        sp<Track> l = mLatestActiveTrack.promote();
5088        bool last = l.get() == track;
5089
5090        if (track->isInvalid()) {
5091            ALOGW("An invalidated track shouldn't be in active list");
5092            tracksToRemove->add(track);
5093            continue;
5094        }
5095
5096        if (track->mState == TrackBase::IDLE) {
5097            ALOGW("An idle track shouldn't be in active list");
5098            continue;
5099        }
5100
5101        if (track->isPausing()) {
5102            track->setPaused();
5103            if (last) {
5104                if (mHwSupportsPause && !mHwPaused) {
5105                    doHwPause = true;
5106                    mHwPaused = true;
5107                }
5108                // If we were part way through writing the mixbuffer to
5109                // the HAL we must save this until we resume
5110                // BUG - this will be wrong if a different track is made active,
5111                // in that case we want to discard the pending data in the
5112                // mixbuffer and tell the client to present it again when the
5113                // track is resumed
5114                mPausedWriteLength = mCurrentWriteLength;
5115                mPausedBytesRemaining = mBytesRemaining;
5116                mBytesRemaining = 0;    // stop writing
5117            }
5118            tracksToRemove->add(track);
5119        } else if (track->isFlushPending()) {
5120            track->flushAck();
5121            if (last) {
5122                mFlushPending = true;
5123            }
5124        } else if (track->isResumePending()){
5125            track->resumeAck();
5126            if (last) {
5127                if (mPausedBytesRemaining) {
5128                    // Need to continue write that was interrupted
5129                    mCurrentWriteLength = mPausedWriteLength;
5130                    mBytesRemaining = mPausedBytesRemaining;
5131                    mPausedBytesRemaining = 0;
5132                }
5133                if (mHwPaused) {
5134                    doHwResume = true;
5135                    mHwPaused = false;
5136                    // threadLoop_mix() will handle the case that we need to
5137                    // resume an interrupted write
5138                }
5139                // enable write to audio HAL
5140                mSleepTimeUs = 0;
5141
5142                // Do not handle new data in this iteration even if track->framesReady()
5143                mixerStatus = MIXER_TRACKS_ENABLED;
5144            }
5145        }  else if (track->framesReady() && track->isReady() &&
5146                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5147            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5148            if (track->mFillingUpStatus == Track::FS_FILLED) {
5149                track->mFillingUpStatus = Track::FS_ACTIVE;
5150                // make sure processVolume_l() will apply new volume even if 0
5151                mLeftVolFloat = mRightVolFloat = -1.0;
5152            }
5153
5154            if (last) {
5155                sp<Track> previousTrack = mPreviousTrack.promote();
5156                if (previousTrack != 0) {
5157                    if (track != previousTrack.get()) {
5158                        // Flush any data still being written from last track
5159                        mBytesRemaining = 0;
5160                        if (mPausedBytesRemaining) {
5161                            // Last track was paused so we also need to flush saved
5162                            // mixbuffer state and invalidate track so that it will
5163                            // re-submit that unwritten data when it is next resumed
5164                            mPausedBytesRemaining = 0;
5165                            // Invalidate is a bit drastic - would be more efficient
5166                            // to have a flag to tell client that some of the
5167                            // previously written data was lost
5168                            previousTrack->invalidate();
5169                        }
5170                        // flush data already sent to the DSP if changing audio session as audio
5171                        // comes from a different source. Also invalidate previous track to force a
5172                        // seek when resuming.
5173                        if (previousTrack->sessionId() != track->sessionId()) {
5174                            previousTrack->invalidate();
5175                        }
5176                    }
5177                }
5178                mPreviousTrack = track;
5179                // reset retry count
5180                track->mRetryCount = kMaxTrackRetriesOffload;
5181                mActiveTrack = t;
5182                mixerStatus = MIXER_TRACKS_READY;
5183            }
5184        } else {
5185            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5186            if (track->isStopping_1()) {
5187                // Hardware buffer can hold a large amount of audio so we must
5188                // wait for all current track's data to drain before we say
5189                // that the track is stopped.
5190                if (mBytesRemaining == 0) {
5191                    // Only start draining when all data in mixbuffer
5192                    // has been written
5193                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5194                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5195                    // do not drain if no data was ever sent to HAL (mStandby == true)
5196                    if (last && !mStandby) {
5197                        // do not modify drain sequence if we are already draining. This happens
5198                        // when resuming from pause after drain.
5199                        if ((mDrainSequence & 1) == 0) {
5200                            mSleepTimeUs = 0;
5201                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5202                            mixerStatus = MIXER_DRAIN_TRACK;
5203                            mDrainSequence += 2;
5204                        }
5205                        if (mHwPaused) {
5206                            // It is possible to move from PAUSED to STOPPING_1 without
5207                            // a resume so we must ensure hardware is running
5208                            doHwResume = true;
5209                            mHwPaused = false;
5210                        }
5211                    }
5212                }
5213            } else if (track->isStopping_2()) {
5214                // Drain has completed or we are in standby, signal presentation complete
5215                if (!(mDrainSequence & 1) || !last || mStandby) {
5216                    track->mState = TrackBase::STOPPED;
5217                    size_t audioHALFrames =
5218                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5219                    size_t framesWritten =
5220                            mBytesWritten / mOutput->getFrameSize();
5221                    track->presentationComplete(framesWritten, audioHALFrames);
5222                    track->reset();
5223                    tracksToRemove->add(track);
5224                }
5225            } else {
5226                // No buffers for this track. Give it a few chances to
5227                // fill a buffer, then remove it from active list.
5228                if (--(track->mRetryCount) <= 0) {
5229                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5230                          track->name());
5231                    tracksToRemove->add(track);
5232                    // indicate to client process that the track was disabled because of underrun;
5233                    // it will then automatically call start() when data is available
5234                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5235                } else if (last){
5236                    mixerStatus = MIXER_TRACKS_ENABLED;
5237                }
5238            }
5239        }
5240        // compute volume for this track
5241        processVolume_l(track, last);
5242    }
5243
5244    // make sure the pause/flush/resume sequence is executed in the right order.
5245    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5246    // before flush and then resume HW. This can happen in case of pause/flush/resume
5247    // if resume is received before pause is executed.
5248    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5249        mOutput->stream->pause(mOutput->stream);
5250    }
5251    if (mFlushPending) {
5252        flushHw_l();
5253    }
5254    if (!mStandby && doHwResume) {
5255        mOutput->stream->resume(mOutput->stream);
5256    }
5257
5258    // remove all the tracks that need to be...
5259    removeTracks_l(*tracksToRemove);
5260
5261    return mixerStatus;
5262}
5263
5264// must be called with thread mutex locked
5265bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5266{
5267    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5268          mWriteAckSequence, mDrainSequence);
5269    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5270        return true;
5271    }
5272    return false;
5273}
5274
5275bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5276{
5277    Mutex::Autolock _l(mLock);
5278    return waitingAsyncCallback_l();
5279}
5280
5281void AudioFlinger::OffloadThread::flushHw_l()
5282{
5283    DirectOutputThread::flushHw_l();
5284    // Flush anything still waiting in the mixbuffer
5285    mCurrentWriteLength = 0;
5286    mBytesRemaining = 0;
5287    mPausedWriteLength = 0;
5288    mPausedBytesRemaining = 0;
5289
5290    if (mUseAsyncWrite) {
5291        // discard any pending drain or write ack by incrementing sequence
5292        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5293        mDrainSequence = (mDrainSequence + 2) & ~1;
5294        ALOG_ASSERT(mCallbackThread != 0);
5295        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5296        mCallbackThread->setDraining(mDrainSequence);
5297    }
5298}
5299
5300// ----------------------------------------------------------------------------
5301
5302AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5303        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5304    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5305                    systemReady, DUPLICATING),
5306        mWaitTimeMs(UINT_MAX)
5307{
5308    addOutputTrack(mainThread);
5309}
5310
5311AudioFlinger::DuplicatingThread::~DuplicatingThread()
5312{
5313    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5314        mOutputTracks[i]->destroy();
5315    }
5316}
5317
5318void AudioFlinger::DuplicatingThread::threadLoop_mix()
5319{
5320    // mix buffers...
5321    if (outputsReady(outputTracks)) {
5322        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5323    } else {
5324        if (mMixerBufferValid) {
5325            memset(mMixerBuffer, 0, mMixerBufferSize);
5326        } else {
5327            memset(mSinkBuffer, 0, mSinkBufferSize);
5328        }
5329    }
5330    mSleepTimeUs = 0;
5331    writeFrames = mNormalFrameCount;
5332    mCurrentWriteLength = mSinkBufferSize;
5333    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5334}
5335
5336void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5337{
5338    if (mSleepTimeUs == 0) {
5339        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5340            mSleepTimeUs = mActiveSleepTimeUs;
5341        } else {
5342            mSleepTimeUs = mIdleSleepTimeUs;
5343        }
5344    } else if (mBytesWritten != 0) {
5345        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5346            writeFrames = mNormalFrameCount;
5347            memset(mSinkBuffer, 0, mSinkBufferSize);
5348        } else {
5349            // flush remaining overflow buffers in output tracks
5350            writeFrames = 0;
5351        }
5352        mSleepTimeUs = 0;
5353    }
5354}
5355
5356ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5357{
5358    for (size_t i = 0; i < outputTracks.size(); i++) {
5359        outputTracks[i]->write(mSinkBuffer, writeFrames);
5360    }
5361    mStandby = false;
5362    return (ssize_t)mSinkBufferSize;
5363}
5364
5365void AudioFlinger::DuplicatingThread::threadLoop_standby()
5366{
5367    // DuplicatingThread implements standby by stopping all tracks
5368    for (size_t i = 0; i < outputTracks.size(); i++) {
5369        outputTracks[i]->stop();
5370    }
5371}
5372
5373void AudioFlinger::DuplicatingThread::saveOutputTracks()
5374{
5375    outputTracks = mOutputTracks;
5376}
5377
5378void AudioFlinger::DuplicatingThread::clearOutputTracks()
5379{
5380    outputTracks.clear();
5381}
5382
5383void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5384{
5385    Mutex::Autolock _l(mLock);
5386    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5387    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5388    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5389    const size_t frameCount =
5390            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5391    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5392    // from different OutputTracks and their associated MixerThreads (e.g. one may
5393    // nearly empty and the other may be dropping data).
5394
5395    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5396                                            this,
5397                                            mSampleRate,
5398                                            mFormat,
5399                                            mChannelMask,
5400                                            frameCount,
5401                                            IPCThreadState::self()->getCallingUid());
5402    if (outputTrack->cblk() != NULL) {
5403        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5404        mOutputTracks.add(outputTrack);
5405        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5406        updateWaitTime_l();
5407    }
5408}
5409
5410void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5411{
5412    Mutex::Autolock _l(mLock);
5413    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5414        if (mOutputTracks[i]->thread() == thread) {
5415            mOutputTracks[i]->destroy();
5416            mOutputTracks.removeAt(i);
5417            updateWaitTime_l();
5418            if (thread->getOutput() == mOutput) {
5419                mOutput = NULL;
5420            }
5421            return;
5422        }
5423    }
5424    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5425}
5426
5427// caller must hold mLock
5428void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5429{
5430    mWaitTimeMs = UINT_MAX;
5431    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5432        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5433        if (strong != 0) {
5434            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5435            if (waitTimeMs < mWaitTimeMs) {
5436                mWaitTimeMs = waitTimeMs;
5437            }
5438        }
5439    }
5440}
5441
5442
5443bool AudioFlinger::DuplicatingThread::outputsReady(
5444        const SortedVector< sp<OutputTrack> > &outputTracks)
5445{
5446    for (size_t i = 0; i < outputTracks.size(); i++) {
5447        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5448        if (thread == 0) {
5449            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5450                    outputTracks[i].get());
5451            return false;
5452        }
5453        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5454        // see note at standby() declaration
5455        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5456            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5457                    thread.get());
5458            return false;
5459        }
5460    }
5461    return true;
5462}
5463
5464uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5465{
5466    return (mWaitTimeMs * 1000) / 2;
5467}
5468
5469void AudioFlinger::DuplicatingThread::cacheParameters_l()
5470{
5471    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5472    updateWaitTime_l();
5473
5474    MixerThread::cacheParameters_l();
5475}
5476
5477// ----------------------------------------------------------------------------
5478//      Record
5479// ----------------------------------------------------------------------------
5480
5481AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5482                                         AudioStreamIn *input,
5483                                         audio_io_handle_t id,
5484                                         audio_devices_t outDevice,
5485                                         audio_devices_t inDevice,
5486                                         bool systemReady
5487#ifdef TEE_SINK
5488                                         , const sp<NBAIO_Sink>& teeSink
5489#endif
5490                                         ) :
5491    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5492    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5493    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5494    mRsmpInRear(0)
5495#ifdef TEE_SINK
5496    , mTeeSink(teeSink)
5497#endif
5498    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5499            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5500    // mFastCapture below
5501    , mFastCaptureFutex(0)
5502    // mInputSource
5503    // mPipeSink
5504    // mPipeSource
5505    , mPipeFramesP2(0)
5506    // mPipeMemory
5507    // mFastCaptureNBLogWriter
5508    , mFastTrackAvail(false)
5509{
5510    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5511    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5512
5513    readInputParameters_l();
5514
5515    // create an NBAIO source for the HAL input stream, and negotiate
5516    mInputSource = new AudioStreamInSource(input->stream);
5517    size_t numCounterOffers = 0;
5518    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5519    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5520    ALOG_ASSERT(index == 0);
5521
5522    // initialize fast capture depending on configuration
5523    bool initFastCapture;
5524    switch (kUseFastCapture) {
5525    case FastCapture_Never:
5526        initFastCapture = false;
5527        break;
5528    case FastCapture_Always:
5529        initFastCapture = true;
5530        break;
5531    case FastCapture_Static:
5532        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5533        break;
5534    // case FastCapture_Dynamic:
5535    }
5536
5537    if (initFastCapture) {
5538        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5539        NBAIO_Format format = mInputSource->format();
5540        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5541        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5542        void *pipeBuffer;
5543        const sp<MemoryDealer> roHeap(readOnlyHeap());
5544        sp<IMemory> pipeMemory;
5545        if ((roHeap == 0) ||
5546                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5547                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5548            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5549            goto failed;
5550        }
5551        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5552        memset(pipeBuffer, 0, pipeSize);
5553        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5554        const NBAIO_Format offers[1] = {format};
5555        size_t numCounterOffers = 0;
5556        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5557        ALOG_ASSERT(index == 0);
5558        mPipeSink = pipe;
5559        PipeReader *pipeReader = new PipeReader(*pipe);
5560        numCounterOffers = 0;
5561        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5562        ALOG_ASSERT(index == 0);
5563        mPipeSource = pipeReader;
5564        mPipeFramesP2 = pipeFramesP2;
5565        mPipeMemory = pipeMemory;
5566
5567        // create fast capture
5568        mFastCapture = new FastCapture();
5569        FastCaptureStateQueue *sq = mFastCapture->sq();
5570#ifdef STATE_QUEUE_DUMP
5571        // FIXME
5572#endif
5573        FastCaptureState *state = sq->begin();
5574        state->mCblk = NULL;
5575        state->mInputSource = mInputSource.get();
5576        state->mInputSourceGen++;
5577        state->mPipeSink = pipe;
5578        state->mPipeSinkGen++;
5579        state->mFrameCount = mFrameCount;
5580        state->mCommand = FastCaptureState::COLD_IDLE;
5581        // already done in constructor initialization list
5582        //mFastCaptureFutex = 0;
5583        state->mColdFutexAddr = &mFastCaptureFutex;
5584        state->mColdGen++;
5585        state->mDumpState = &mFastCaptureDumpState;
5586#ifdef TEE_SINK
5587        // FIXME
5588#endif
5589        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5590        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5591        sq->end();
5592        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5593
5594        // start the fast capture
5595        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5596        pid_t tid = mFastCapture->getTid();
5597        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5598#ifdef AUDIO_WATCHDOG
5599        // FIXME
5600#endif
5601
5602        mFastTrackAvail = true;
5603    }
5604failed: ;
5605
5606    // FIXME mNormalSource
5607}
5608
5609AudioFlinger::RecordThread::~RecordThread()
5610{
5611    if (mFastCapture != 0) {
5612        FastCaptureStateQueue *sq = mFastCapture->sq();
5613        FastCaptureState *state = sq->begin();
5614        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5615            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5616            if (old == -1) {
5617                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5618            }
5619        }
5620        state->mCommand = FastCaptureState::EXIT;
5621        sq->end();
5622        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5623        mFastCapture->join();
5624        mFastCapture.clear();
5625    }
5626    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5627    mAudioFlinger->unregisterWriter(mNBLogWriter);
5628    free(mRsmpInBuffer);
5629}
5630
5631void AudioFlinger::RecordThread::onFirstRef()
5632{
5633    run(mThreadName, PRIORITY_URGENT_AUDIO);
5634}
5635
5636bool AudioFlinger::RecordThread::threadLoop()
5637{
5638    nsecs_t lastWarning = 0;
5639
5640    inputStandBy();
5641
5642reacquire_wakelock:
5643    sp<RecordTrack> activeTrack;
5644    int activeTracksGen;
5645    {
5646        Mutex::Autolock _l(mLock);
5647        size_t size = mActiveTracks.size();
5648        activeTracksGen = mActiveTracksGen;
5649        if (size > 0) {
5650            // FIXME an arbitrary choice
5651            activeTrack = mActiveTracks[0];
5652            acquireWakeLock_l(activeTrack->uid());
5653            if (size > 1) {
5654                SortedVector<int> tmp;
5655                for (size_t i = 0; i < size; i++) {
5656                    tmp.add(mActiveTracks[i]->uid());
5657                }
5658                updateWakeLockUids_l(tmp);
5659            }
5660        } else {
5661            acquireWakeLock_l(-1);
5662        }
5663    }
5664
5665    // used to request a deferred sleep, to be executed later while mutex is unlocked
5666    uint32_t sleepUs = 0;
5667
5668    // loop while there is work to do
5669    for (;;) {
5670        Vector< sp<EffectChain> > effectChains;
5671
5672        // sleep with mutex unlocked
5673        if (sleepUs > 0) {
5674            ATRACE_BEGIN("sleep");
5675            usleep(sleepUs);
5676            ATRACE_END();
5677            sleepUs = 0;
5678        }
5679
5680        // activeTracks accumulates a copy of a subset of mActiveTracks
5681        Vector< sp<RecordTrack> > activeTracks;
5682
5683        // reference to the (first and only) active fast track
5684        sp<RecordTrack> fastTrack;
5685
5686        // reference to a fast track which is about to be removed
5687        sp<RecordTrack> fastTrackToRemove;
5688
5689        { // scope for mLock
5690            Mutex::Autolock _l(mLock);
5691
5692            processConfigEvents_l();
5693
5694            // check exitPending here because checkForNewParameters_l() and
5695            // checkForNewParameters_l() can temporarily release mLock
5696            if (exitPending()) {
5697                break;
5698            }
5699
5700            // if no active track(s), then standby and release wakelock
5701            size_t size = mActiveTracks.size();
5702            if (size == 0) {
5703                standbyIfNotAlreadyInStandby();
5704                // exitPending() can't become true here
5705                releaseWakeLock_l();
5706                ALOGV("RecordThread: loop stopping");
5707                // go to sleep
5708                mWaitWorkCV.wait(mLock);
5709                ALOGV("RecordThread: loop starting");
5710                goto reacquire_wakelock;
5711            }
5712
5713            if (mActiveTracksGen != activeTracksGen) {
5714                activeTracksGen = mActiveTracksGen;
5715                SortedVector<int> tmp;
5716                for (size_t i = 0; i < size; i++) {
5717                    tmp.add(mActiveTracks[i]->uid());
5718                }
5719                updateWakeLockUids_l(tmp);
5720            }
5721
5722            bool doBroadcast = false;
5723            for (size_t i = 0; i < size; ) {
5724
5725                activeTrack = mActiveTracks[i];
5726                if (activeTrack->isTerminated()) {
5727                    if (activeTrack->isFastTrack()) {
5728                        ALOG_ASSERT(fastTrackToRemove == 0);
5729                        fastTrackToRemove = activeTrack;
5730                    }
5731                    removeTrack_l(activeTrack);
5732                    mActiveTracks.remove(activeTrack);
5733                    mActiveTracksGen++;
5734                    size--;
5735                    continue;
5736                }
5737
5738                TrackBase::track_state activeTrackState = activeTrack->mState;
5739                switch (activeTrackState) {
5740
5741                case TrackBase::PAUSING:
5742                    mActiveTracks.remove(activeTrack);
5743                    mActiveTracksGen++;
5744                    doBroadcast = true;
5745                    size--;
5746                    continue;
5747
5748                case TrackBase::STARTING_1:
5749                    sleepUs = 10000;
5750                    i++;
5751                    continue;
5752
5753                case TrackBase::STARTING_2:
5754                    doBroadcast = true;
5755                    mStandby = false;
5756                    activeTrack->mState = TrackBase::ACTIVE;
5757                    break;
5758
5759                case TrackBase::ACTIVE:
5760                    break;
5761
5762                case TrackBase::IDLE:
5763                    i++;
5764                    continue;
5765
5766                default:
5767                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5768                }
5769
5770                activeTracks.add(activeTrack);
5771                i++;
5772
5773                if (activeTrack->isFastTrack()) {
5774                    ALOG_ASSERT(!mFastTrackAvail);
5775                    ALOG_ASSERT(fastTrack == 0);
5776                    fastTrack = activeTrack;
5777                }
5778            }
5779            if (doBroadcast) {
5780                mStartStopCond.broadcast();
5781            }
5782
5783            // sleep if there are no active tracks to process
5784            if (activeTracks.size() == 0) {
5785                if (sleepUs == 0) {
5786                    sleepUs = kRecordThreadSleepUs;
5787                }
5788                continue;
5789            }
5790            sleepUs = 0;
5791
5792            lockEffectChains_l(effectChains);
5793        }
5794
5795        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5796
5797        size_t size = effectChains.size();
5798        for (size_t i = 0; i < size; i++) {
5799            // thread mutex is not locked, but effect chain is locked
5800            effectChains[i]->process_l();
5801        }
5802
5803        // Push a new fast capture state if fast capture is not already running, or cblk change
5804        if (mFastCapture != 0) {
5805            FastCaptureStateQueue *sq = mFastCapture->sq();
5806            FastCaptureState *state = sq->begin();
5807            bool didModify = false;
5808            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5809            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5810                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5811                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5812                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5813                    if (old == -1) {
5814                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5815                    }
5816                }
5817                state->mCommand = FastCaptureState::READ_WRITE;
5818#if 0   // FIXME
5819                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5820                        FastThreadDumpState::kSamplingNforLowRamDevice :
5821                        FastThreadDumpState::kSamplingN);
5822#endif
5823                didModify = true;
5824            }
5825            audio_track_cblk_t *cblkOld = state->mCblk;
5826            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5827            if (cblkNew != cblkOld) {
5828                state->mCblk = cblkNew;
5829                // block until acked if removing a fast track
5830                if (cblkOld != NULL) {
5831                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5832                }
5833                didModify = true;
5834            }
5835            sq->end(didModify);
5836            if (didModify) {
5837                sq->push(block);
5838#if 0
5839                if (kUseFastCapture == FastCapture_Dynamic) {
5840                    mNormalSource = mPipeSource;
5841                }
5842#endif
5843            }
5844        }
5845
5846        // now run the fast track destructor with thread mutex unlocked
5847        fastTrackToRemove.clear();
5848
5849        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5850        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5851        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5852        // If destination is non-contiguous, first read past the nominal end of buffer, then
5853        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5854
5855        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5856        ssize_t framesRead;
5857
5858        // If an NBAIO source is present, use it to read the normal capture's data
5859        if (mPipeSource != 0) {
5860            size_t framesToRead = mBufferSize / mFrameSize;
5861            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5862                    framesToRead, AudioBufferProvider::kInvalidPTS);
5863            if (framesRead == 0) {
5864                // since pipe is non-blocking, simulate blocking input
5865                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5866            }
5867        // otherwise use the HAL / AudioStreamIn directly
5868        } else {
5869            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5870                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5871            if (bytesRead < 0) {
5872                framesRead = bytesRead;
5873            } else {
5874                framesRead = bytesRead / mFrameSize;
5875            }
5876        }
5877
5878        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5879            ALOGE("read failed: framesRead=%d", framesRead);
5880            // Force input into standby so that it tries to recover at next read attempt
5881            inputStandBy();
5882            sleepUs = kRecordThreadSleepUs;
5883        }
5884        if (framesRead <= 0) {
5885            goto unlock;
5886        }
5887        ALOG_ASSERT(framesRead > 0);
5888
5889        if (mTeeSink != 0) {
5890            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
5891        }
5892        // If destination is non-contiguous, we now correct for reading past end of buffer.
5893        {
5894            size_t part1 = mRsmpInFramesP2 - rear;
5895            if ((size_t) framesRead > part1) {
5896                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
5897                        (framesRead - part1) * mFrameSize);
5898            }
5899        }
5900        rear = mRsmpInRear += framesRead;
5901
5902        size = activeTracks.size();
5903        // loop over each active track
5904        for (size_t i = 0; i < size; i++) {
5905            activeTrack = activeTracks[i];
5906
5907            // skip fast tracks, as those are handled directly by FastCapture
5908            if (activeTrack->isFastTrack()) {
5909                continue;
5910            }
5911
5912            // TODO: This code probably should be moved to RecordTrack.
5913            // TODO: Update the activeTrack buffer converter in case of reconfigure.
5914
5915            enum {
5916                OVERRUN_UNKNOWN,
5917                OVERRUN_TRUE,
5918                OVERRUN_FALSE
5919            } overrun = OVERRUN_UNKNOWN;
5920
5921            // loop over getNextBuffer to handle circular sink
5922            for (;;) {
5923
5924                activeTrack->mSink.frameCount = ~0;
5925                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5926                size_t framesOut = activeTrack->mSink.frameCount;
5927                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5928
5929                // check available frames and handle overrun conditions
5930                // if the record track isn't draining fast enough.
5931                bool hasOverrun;
5932                size_t framesIn;
5933                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5934                if (hasOverrun) {
5935                    overrun = OVERRUN_TRUE;
5936                }
5937                if (framesOut == 0 || framesIn == 0) {
5938                    break;
5939                }
5940
5941                // Don't allow framesOut to be larger than what is possible with resampling
5942                // from framesIn.
5943                // This isn't strictly necessary but helps limit buffer resizing in
5944                // RecordBufferConverter.  TODO: remove when no longer needed.
5945                framesOut = min(framesOut,
5946                        destinationFramesPossible(
5947                                framesIn, mSampleRate, activeTrack->mSampleRate));
5948                // process frames from the RecordThread buffer provider to the RecordTrack buffer
5949                framesOut = activeTrack->mRecordBufferConverter->convert(
5950                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5951
5952                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5953                    overrun = OVERRUN_FALSE;
5954                }
5955
5956                if (activeTrack->mFramesToDrop == 0) {
5957                    if (framesOut > 0) {
5958                        activeTrack->mSink.frameCount = framesOut;
5959                        activeTrack->releaseBuffer(&activeTrack->mSink);
5960                    }
5961                } else {
5962                    // FIXME could do a partial drop of framesOut
5963                    if (activeTrack->mFramesToDrop > 0) {
5964                        activeTrack->mFramesToDrop -= framesOut;
5965                        if (activeTrack->mFramesToDrop <= 0) {
5966                            activeTrack->clearSyncStartEvent();
5967                        }
5968                    } else {
5969                        activeTrack->mFramesToDrop += framesOut;
5970                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5971                                activeTrack->mSyncStartEvent->isCancelled()) {
5972                            ALOGW("Synced record %s, session %d, trigger session %d",
5973                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5974                                  activeTrack->sessionId(),
5975                                  (activeTrack->mSyncStartEvent != 0) ?
5976                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
5977                            activeTrack->clearSyncStartEvent();
5978                        }
5979                    }
5980                }
5981
5982                if (framesOut == 0) {
5983                    break;
5984                }
5985            }
5986
5987            switch (overrun) {
5988            case OVERRUN_TRUE:
5989                // client isn't retrieving buffers fast enough
5990                if (!activeTrack->setOverflow()) {
5991                    nsecs_t now = systemTime();
5992                    // FIXME should lastWarning per track?
5993                    if ((now - lastWarning) > kWarningThrottleNs) {
5994                        ALOGW("RecordThread: buffer overflow");
5995                        lastWarning = now;
5996                    }
5997                }
5998                break;
5999            case OVERRUN_FALSE:
6000                activeTrack->clearOverflow();
6001                break;
6002            case OVERRUN_UNKNOWN:
6003                break;
6004            }
6005
6006        }
6007
6008unlock:
6009        // enable changes in effect chain
6010        unlockEffectChains(effectChains);
6011        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6012    }
6013
6014    standbyIfNotAlreadyInStandby();
6015
6016    {
6017        Mutex::Autolock _l(mLock);
6018        for (size_t i = 0; i < mTracks.size(); i++) {
6019            sp<RecordTrack> track = mTracks[i];
6020            track->invalidate();
6021        }
6022        mActiveTracks.clear();
6023        mActiveTracksGen++;
6024        mStartStopCond.broadcast();
6025    }
6026
6027    releaseWakeLock();
6028
6029    ALOGV("RecordThread %p exiting", this);
6030    return false;
6031}
6032
6033void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6034{
6035    if (!mStandby) {
6036        inputStandBy();
6037        mStandby = true;
6038    }
6039}
6040
6041void AudioFlinger::RecordThread::inputStandBy()
6042{
6043    // Idle the fast capture if it's currently running
6044    if (mFastCapture != 0) {
6045        FastCaptureStateQueue *sq = mFastCapture->sq();
6046        FastCaptureState *state = sq->begin();
6047        if (!(state->mCommand & FastCaptureState::IDLE)) {
6048            state->mCommand = FastCaptureState::COLD_IDLE;
6049            state->mColdFutexAddr = &mFastCaptureFutex;
6050            state->mColdGen++;
6051            mFastCaptureFutex = 0;
6052            sq->end();
6053            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6054            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6055#if 0
6056            if (kUseFastCapture == FastCapture_Dynamic) {
6057                // FIXME
6058            }
6059#endif
6060#ifdef AUDIO_WATCHDOG
6061            // FIXME
6062#endif
6063        } else {
6064            sq->end(false /*didModify*/);
6065        }
6066    }
6067    mInput->stream->common.standby(&mInput->stream->common);
6068}
6069
6070// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6071sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6072        const sp<AudioFlinger::Client>& client,
6073        uint32_t sampleRate,
6074        audio_format_t format,
6075        audio_channel_mask_t channelMask,
6076        size_t *pFrameCount,
6077        int sessionId,
6078        size_t *notificationFrames,
6079        int uid,
6080        IAudioFlinger::track_flags_t *flags,
6081        pid_t tid,
6082        status_t *status)
6083{
6084    size_t frameCount = *pFrameCount;
6085    sp<RecordTrack> track;
6086    status_t lStatus;
6087
6088    // client expresses a preference for FAST, but we get the final say
6089    if (*flags & IAudioFlinger::TRACK_FAST) {
6090      if (
6091            // we formerly checked for a callback handler (non-0 tid),
6092            // but that is no longer required for TRANSFER_OBTAIN mode
6093            //
6094            // frame count is not specified, or is exactly the pipe depth
6095            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6096            // PCM data
6097            audio_is_linear_pcm(format) &&
6098            // native format
6099            (format == mFormat) &&
6100            // native channel mask
6101            (channelMask == mChannelMask) &&
6102            // native hardware sample rate
6103            (sampleRate == mSampleRate) &&
6104            // record thread has an associated fast capture
6105            hasFastCapture() &&
6106            // there are sufficient fast track slots available
6107            mFastTrackAvail
6108        ) {
6109        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6110                frameCount, mFrameCount);
6111      } else {
6112        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6113                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6114                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6115                frameCount, mFrameCount, mPipeFramesP2,
6116                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6117                hasFastCapture(), tid, mFastTrackAvail);
6118        *flags &= ~IAudioFlinger::TRACK_FAST;
6119      }
6120    }
6121
6122    // compute track buffer size in frames, and suggest the notification frame count
6123    if (*flags & IAudioFlinger::TRACK_FAST) {
6124        // fast track: frame count is exactly the pipe depth
6125        frameCount = mPipeFramesP2;
6126        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6127        *notificationFrames = mFrameCount;
6128    } else {
6129        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6130        //                 or 20 ms if there is a fast capture
6131        // TODO This could be a roundupRatio inline, and const
6132        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6133                * sampleRate + mSampleRate - 1) / mSampleRate;
6134        // minimum number of notification periods is at least kMinNotifications,
6135        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6136        static const size_t kMinNotifications = 3;
6137        static const uint32_t kMinMs = 30;
6138        // TODO This could be a roundupRatio inline
6139        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6140        // TODO This could be a roundupRatio inline
6141        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6142                maxNotificationFrames;
6143        const size_t minFrameCount = maxNotificationFrames *
6144                max(kMinNotifications, minNotificationsByMs);
6145        frameCount = max(frameCount, minFrameCount);
6146        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6147            *notificationFrames = maxNotificationFrames;
6148        }
6149    }
6150    *pFrameCount = frameCount;
6151
6152    lStatus = initCheck();
6153    if (lStatus != NO_ERROR) {
6154        ALOGE("createRecordTrack_l() audio driver not initialized");
6155        goto Exit;
6156    }
6157
6158    { // scope for mLock
6159        Mutex::Autolock _l(mLock);
6160
6161        track = new RecordTrack(this, client, sampleRate,
6162                      format, channelMask, frameCount, NULL, sessionId, uid,
6163                      *flags, TrackBase::TYPE_DEFAULT);
6164
6165        lStatus = track->initCheck();
6166        if (lStatus != NO_ERROR) {
6167            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6168            // track must be cleared from the caller as the caller has the AF lock
6169            goto Exit;
6170        }
6171        mTracks.add(track);
6172
6173        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6174        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6175                        mAudioFlinger->btNrecIsOff();
6176        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6177        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6178
6179        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6180            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6181            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6182            // so ask activity manager to do this on our behalf
6183            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6184        }
6185    }
6186
6187    lStatus = NO_ERROR;
6188
6189Exit:
6190    *status = lStatus;
6191    return track;
6192}
6193
6194status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6195                                           AudioSystem::sync_event_t event,
6196                                           int triggerSession)
6197{
6198    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6199    sp<ThreadBase> strongMe = this;
6200    status_t status = NO_ERROR;
6201
6202    if (event == AudioSystem::SYNC_EVENT_NONE) {
6203        recordTrack->clearSyncStartEvent();
6204    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6205        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6206                                       triggerSession,
6207                                       recordTrack->sessionId(),
6208                                       syncStartEventCallback,
6209                                       recordTrack);
6210        // Sync event can be cancelled by the trigger session if the track is not in a
6211        // compatible state in which case we start record immediately
6212        if (recordTrack->mSyncStartEvent->isCancelled()) {
6213            recordTrack->clearSyncStartEvent();
6214        } else {
6215            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6216            recordTrack->mFramesToDrop = -
6217                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6218        }
6219    }
6220
6221    {
6222        // This section is a rendezvous between binder thread executing start() and RecordThread
6223        AutoMutex lock(mLock);
6224        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6225            if (recordTrack->mState == TrackBase::PAUSING) {
6226                ALOGV("active record track PAUSING -> ACTIVE");
6227                recordTrack->mState = TrackBase::ACTIVE;
6228            } else {
6229                ALOGV("active record track state %d", recordTrack->mState);
6230            }
6231            return status;
6232        }
6233
6234        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6235        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6236        //      or using a separate command thread
6237        recordTrack->mState = TrackBase::STARTING_1;
6238        mActiveTracks.add(recordTrack);
6239        mActiveTracksGen++;
6240        status_t status = NO_ERROR;
6241        if (recordTrack->isExternalTrack()) {
6242            mLock.unlock();
6243            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6244            mLock.lock();
6245            // FIXME should verify that recordTrack is still in mActiveTracks
6246            if (status != NO_ERROR) {
6247                mActiveTracks.remove(recordTrack);
6248                mActiveTracksGen++;
6249                recordTrack->clearSyncStartEvent();
6250                ALOGV("RecordThread::start error %d", status);
6251                return status;
6252            }
6253        }
6254        // Catch up with current buffer indices if thread is already running.
6255        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6256        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6257        // see previously buffered data before it called start(), but with greater risk of overrun.
6258
6259        recordTrack->mResamplerBufferProvider->reset();
6260        // clear any converter state as new data will be discontinuous
6261        recordTrack->mRecordBufferConverter->reset();
6262        recordTrack->mState = TrackBase::STARTING_2;
6263        // signal thread to start
6264        mWaitWorkCV.broadcast();
6265        if (mActiveTracks.indexOf(recordTrack) < 0) {
6266            ALOGV("Record failed to start");
6267            status = BAD_VALUE;
6268            goto startError;
6269        }
6270        return status;
6271    }
6272
6273startError:
6274    if (recordTrack->isExternalTrack()) {
6275        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6276    }
6277    recordTrack->clearSyncStartEvent();
6278    // FIXME I wonder why we do not reset the state here?
6279    return status;
6280}
6281
6282void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6283{
6284    sp<SyncEvent> strongEvent = event.promote();
6285
6286    if (strongEvent != 0) {
6287        sp<RefBase> ptr = strongEvent->cookie().promote();
6288        if (ptr != 0) {
6289            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6290            recordTrack->handleSyncStartEvent(strongEvent);
6291        }
6292    }
6293}
6294
6295bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6296    ALOGV("RecordThread::stop");
6297    AutoMutex _l(mLock);
6298    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6299        return false;
6300    }
6301    // note that threadLoop may still be processing the track at this point [without lock]
6302    recordTrack->mState = TrackBase::PAUSING;
6303    // do not wait for mStartStopCond if exiting
6304    if (exitPending()) {
6305        return true;
6306    }
6307    // FIXME incorrect usage of wait: no explicit predicate or loop
6308    mStartStopCond.wait(mLock);
6309    // if we have been restarted, recordTrack is in mActiveTracks here
6310    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6311        ALOGV("Record stopped OK");
6312        return true;
6313    }
6314    return false;
6315}
6316
6317bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6318{
6319    return false;
6320}
6321
6322status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6323{
6324#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6325    if (!isValidSyncEvent(event)) {
6326        return BAD_VALUE;
6327    }
6328
6329    int eventSession = event->triggerSession();
6330    status_t ret = NAME_NOT_FOUND;
6331
6332    Mutex::Autolock _l(mLock);
6333
6334    for (size_t i = 0; i < mTracks.size(); i++) {
6335        sp<RecordTrack> track = mTracks[i];
6336        if (eventSession == track->sessionId()) {
6337            (void) track->setSyncEvent(event);
6338            ret = NO_ERROR;
6339        }
6340    }
6341    return ret;
6342#else
6343    return BAD_VALUE;
6344#endif
6345}
6346
6347// destroyTrack_l() must be called with ThreadBase::mLock held
6348void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6349{
6350    track->terminate();
6351    track->mState = TrackBase::STOPPED;
6352    // active tracks are removed by threadLoop()
6353    if (mActiveTracks.indexOf(track) < 0) {
6354        removeTrack_l(track);
6355    }
6356}
6357
6358void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6359{
6360    mTracks.remove(track);
6361    // need anything related to effects here?
6362    if (track->isFastTrack()) {
6363        ALOG_ASSERT(!mFastTrackAvail);
6364        mFastTrackAvail = true;
6365    }
6366}
6367
6368void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6369{
6370    dumpInternals(fd, args);
6371    dumpTracks(fd, args);
6372    dumpEffectChains(fd, args);
6373}
6374
6375void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6376{
6377    dprintf(fd, "\nInput thread %p:\n", this);
6378
6379    dumpBase(fd, args);
6380
6381    if (mActiveTracks.size() == 0) {
6382        dprintf(fd, "  No active record clients\n");
6383    }
6384    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6385    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6386
6387    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6388    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6389    // This is a large object so we place it on the heap.
6390    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6391    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6392    copy->dump(fd);
6393    delete copy;
6394}
6395
6396void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6397{
6398    const size_t SIZE = 256;
6399    char buffer[SIZE];
6400    String8 result;
6401
6402    size_t numtracks = mTracks.size();
6403    size_t numactive = mActiveTracks.size();
6404    size_t numactiveseen = 0;
6405    dprintf(fd, "  %d Tracks", numtracks);
6406    if (numtracks) {
6407        dprintf(fd, " of which %d are active\n", numactive);
6408        RecordTrack::appendDumpHeader(result);
6409        for (size_t i = 0; i < numtracks ; ++i) {
6410            sp<RecordTrack> track = mTracks[i];
6411            if (track != 0) {
6412                bool active = mActiveTracks.indexOf(track) >= 0;
6413                if (active) {
6414                    numactiveseen++;
6415                }
6416                track->dump(buffer, SIZE, active);
6417                result.append(buffer);
6418            }
6419        }
6420    } else {
6421        dprintf(fd, "\n");
6422    }
6423
6424    if (numactiveseen != numactive) {
6425        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6426                " not in the track list\n");
6427        result.append(buffer);
6428        RecordTrack::appendDumpHeader(result);
6429        for (size_t i = 0; i < numactive; ++i) {
6430            sp<RecordTrack> track = mActiveTracks[i];
6431            if (mTracks.indexOf(track) < 0) {
6432                track->dump(buffer, SIZE, true);
6433                result.append(buffer);
6434            }
6435        }
6436
6437    }
6438    write(fd, result.string(), result.size());
6439}
6440
6441
6442void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6443{
6444    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6445    RecordThread *recordThread = (RecordThread *) threadBase.get();
6446    mRsmpInFront = recordThread->mRsmpInRear;
6447    mRsmpInUnrel = 0;
6448}
6449
6450void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6451        size_t *framesAvailable, bool *hasOverrun)
6452{
6453    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6454    RecordThread *recordThread = (RecordThread *) threadBase.get();
6455    const int32_t rear = recordThread->mRsmpInRear;
6456    const int32_t front = mRsmpInFront;
6457    const ssize_t filled = rear - front;
6458
6459    size_t framesIn;
6460    bool overrun = false;
6461    if (filled < 0) {
6462        // should not happen, but treat like a massive overrun and re-sync
6463        framesIn = 0;
6464        mRsmpInFront = rear;
6465        overrun = true;
6466    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6467        framesIn = (size_t) filled;
6468    } else {
6469        // client is not keeping up with server, but give it latest data
6470        framesIn = recordThread->mRsmpInFrames;
6471        mRsmpInFront = /* front = */ rear - framesIn;
6472        overrun = true;
6473    }
6474    if (framesAvailable != NULL) {
6475        *framesAvailable = framesIn;
6476    }
6477    if (hasOverrun != NULL) {
6478        *hasOverrun = overrun;
6479    }
6480}
6481
6482// AudioBufferProvider interface
6483status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6484        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6485{
6486    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6487    if (threadBase == 0) {
6488        buffer->frameCount = 0;
6489        buffer->raw = NULL;
6490        return NOT_ENOUGH_DATA;
6491    }
6492    RecordThread *recordThread = (RecordThread *) threadBase.get();
6493    int32_t rear = recordThread->mRsmpInRear;
6494    int32_t front = mRsmpInFront;
6495    ssize_t filled = rear - front;
6496    // FIXME should not be P2 (don't want to increase latency)
6497    // FIXME if client not keeping up, discard
6498    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6499    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6500    front &= recordThread->mRsmpInFramesP2 - 1;
6501    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6502    if (part1 > (size_t) filled) {
6503        part1 = filled;
6504    }
6505    size_t ask = buffer->frameCount;
6506    ALOG_ASSERT(ask > 0);
6507    if (part1 > ask) {
6508        part1 = ask;
6509    }
6510    if (part1 == 0) {
6511        // out of data is fine since the resampler will return a short-count.
6512        buffer->raw = NULL;
6513        buffer->frameCount = 0;
6514        mRsmpInUnrel = 0;
6515        return NOT_ENOUGH_DATA;
6516    }
6517
6518    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6519    buffer->frameCount = part1;
6520    mRsmpInUnrel = part1;
6521    return NO_ERROR;
6522}
6523
6524// AudioBufferProvider interface
6525void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6526        AudioBufferProvider::Buffer* buffer)
6527{
6528    size_t stepCount = buffer->frameCount;
6529    if (stepCount == 0) {
6530        return;
6531    }
6532    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6533    mRsmpInUnrel -= stepCount;
6534    mRsmpInFront += stepCount;
6535    buffer->raw = NULL;
6536    buffer->frameCount = 0;
6537}
6538
6539AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6540        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6541        uint32_t srcSampleRate,
6542        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6543        uint32_t dstSampleRate) :
6544            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6545            // mSrcFormat
6546            // mSrcSampleRate
6547            // mDstChannelMask
6548            // mDstFormat
6549            // mDstSampleRate
6550            // mSrcChannelCount
6551            // mDstChannelCount
6552            // mDstFrameSize
6553            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6554            mResampler(NULL),
6555            mIsLegacyDownmix(false),
6556            mIsLegacyUpmix(false),
6557            mRequiresFloat(false),
6558            mInputConverterProvider(NULL)
6559{
6560    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6561            dstChannelMask, dstFormat, dstSampleRate);
6562}
6563
6564AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6565    free(mBuf);
6566    delete mResampler;
6567    delete mInputConverterProvider;
6568}
6569
6570size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6571        AudioBufferProvider *provider, size_t frames)
6572{
6573    if (mInputConverterProvider != NULL) {
6574        mInputConverterProvider->setBufferProvider(provider);
6575        provider = mInputConverterProvider;
6576    }
6577
6578    if (mResampler == NULL) {
6579        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6580                mSrcSampleRate, mSrcFormat, mDstFormat);
6581
6582        AudioBufferProvider::Buffer buffer;
6583        for (size_t i = frames; i > 0; ) {
6584            buffer.frameCount = i;
6585            status_t status = provider->getNextBuffer(&buffer, 0);
6586            if (status != OK || buffer.frameCount == 0) {
6587                frames -= i; // cannot fill request.
6588                break;
6589            }
6590            // format convert to destination buffer
6591            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6592
6593            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6594            i -= buffer.frameCount;
6595            provider->releaseBuffer(&buffer);
6596        }
6597    } else {
6598         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6599                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6600
6601         // reallocate buffer if needed
6602         if (mBufFrameSize != 0 && mBufFrames < frames) {
6603             free(mBuf);
6604             mBufFrames = frames;
6605             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6606         }
6607        // resampler accumulates, but we only have one source track
6608        memset(mBuf, 0, frames * mBufFrameSize);
6609        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6610        // format convert to destination buffer
6611        convertResampler(dst, mBuf, frames);
6612    }
6613    return frames;
6614}
6615
6616status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6617        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6618        uint32_t srcSampleRate,
6619        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6620        uint32_t dstSampleRate)
6621{
6622    // quick evaluation if there is any change.
6623    if (mSrcFormat == srcFormat
6624            && mSrcChannelMask == srcChannelMask
6625            && mSrcSampleRate == srcSampleRate
6626            && mDstFormat == dstFormat
6627            && mDstChannelMask == dstChannelMask
6628            && mDstSampleRate == dstSampleRate) {
6629        return NO_ERROR;
6630    }
6631
6632    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6633            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6634            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6635    const bool valid =
6636            audio_is_input_channel(srcChannelMask)
6637            && audio_is_input_channel(dstChannelMask)
6638            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6639            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6640            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6641            ; // no upsampling checks for now
6642    if (!valid) {
6643        return BAD_VALUE;
6644    }
6645
6646    mSrcFormat = srcFormat;
6647    mSrcChannelMask = srcChannelMask;
6648    mSrcSampleRate = srcSampleRate;
6649    mDstFormat = dstFormat;
6650    mDstChannelMask = dstChannelMask;
6651    mDstSampleRate = dstSampleRate;
6652
6653    // compute derived parameters
6654    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6655    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6656    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6657
6658    // do we need to resample?
6659    delete mResampler;
6660    mResampler = NULL;
6661    if (mSrcSampleRate != mDstSampleRate) {
6662        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6663                mSrcChannelCount, mDstSampleRate);
6664        mResampler->setSampleRate(mSrcSampleRate);
6665        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6666    }
6667
6668    // are we running legacy channel conversion modes?
6669    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6670                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6671                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6672    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6673                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6674                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6675
6676    // do we need to process in float?
6677    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6678
6679    // do we need a staging buffer to convert for destination (we can still optimize this)?
6680    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6681    if (mResampler != NULL) {
6682        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6683                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6684    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6685        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6686    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6687        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6688    } else {
6689        mBufFrameSize = 0;
6690    }
6691    mBufFrames = 0; // force the buffer to be resized.
6692
6693    // do we need an input converter buffer provider to give us float?
6694    delete mInputConverterProvider;
6695    mInputConverterProvider = NULL;
6696    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6697        mInputConverterProvider = new ReformatBufferProvider(
6698                audio_channel_count_from_in_mask(mSrcChannelMask),
6699                mSrcFormat,
6700                AUDIO_FORMAT_PCM_FLOAT,
6701                256 /* provider buffer frame count */);
6702    }
6703
6704    // do we need a remixer to do channel mask conversion
6705    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6706        (void) memcpy_by_index_array_initialization_from_channel_mask(
6707                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6708    }
6709    return NO_ERROR;
6710}
6711
6712void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6713        void *dst, const void *src, size_t frames)
6714{
6715    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6716    if (mBufFrameSize != 0 && mBufFrames < frames) {
6717        free(mBuf);
6718        mBufFrames = frames;
6719        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6720    }
6721    // do we need to do legacy upmix and downmix?
6722    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6723        void *dstBuf = mBuf != NULL ? mBuf : dst;
6724        if (mIsLegacyUpmix) {
6725            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6726                    (const float *)src, frames);
6727        } else /*mIsLegacyDownmix */ {
6728            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6729                    (const float *)src, frames);
6730        }
6731        if (mBuf != NULL) {
6732            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6733                    frames * mDstChannelCount);
6734        }
6735        return;
6736    }
6737    // do we need to do channel mask conversion?
6738    if (mSrcChannelMask != mDstChannelMask) {
6739        void *dstBuf = mBuf != NULL ? mBuf : dst;
6740        memcpy_by_index_array(dstBuf, mDstChannelCount,
6741                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6742        if (dstBuf == dst) {
6743            return; // format is the same
6744        }
6745    }
6746    // convert to destination buffer
6747    const void *convertBuf = mBuf != NULL ? mBuf : src;
6748    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6749            frames * mDstChannelCount);
6750}
6751
6752void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6753        void *dst, /*not-a-const*/ void *src, size_t frames)
6754{
6755    // src buffer format is ALWAYS float when entering this routine
6756    if (mIsLegacyUpmix) {
6757        ; // mono to stereo already handled by resampler
6758    } else if (mIsLegacyDownmix
6759            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6760        // the resampler outputs stereo for mono input channel (a feature?)
6761        // must convert to mono
6762        downmix_to_mono_float_from_stereo_float((float *)src,
6763                (const float *)src, frames);
6764    } else if (mSrcChannelMask != mDstChannelMask) {
6765        // convert to mono channel again for channel mask conversion (could be skipped
6766        // with further optimization).
6767        if (mSrcChannelCount == 1) {
6768            downmix_to_mono_float_from_stereo_float((float *)src,
6769                (const float *)src, frames);
6770        }
6771        // convert to destination format (in place, OK as float is larger than other types)
6772        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6773            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6774                    frames * mSrcChannelCount);
6775        }
6776        // channel convert and save to dst
6777        memcpy_by_index_array(dst, mDstChannelCount,
6778                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6779        return;
6780    }
6781    // convert to destination format and save to dst
6782    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6783            frames * mDstChannelCount);
6784}
6785
6786bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6787                                                        status_t& status)
6788{
6789    bool reconfig = false;
6790
6791    status = NO_ERROR;
6792
6793    audio_format_t reqFormat = mFormat;
6794    uint32_t samplingRate = mSampleRate;
6795    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6796    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6797
6798    AudioParameter param = AudioParameter(keyValuePair);
6799    int value;
6800    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6801    //      channel count change can be requested. Do we mandate the first client defines the
6802    //      HAL sampling rate and channel count or do we allow changes on the fly?
6803    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6804        samplingRate = value;
6805        reconfig = true;
6806    }
6807    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6808        if (!audio_is_linear_pcm((audio_format_t) value)) {
6809            status = BAD_VALUE;
6810        } else {
6811            reqFormat = (audio_format_t) value;
6812            reconfig = true;
6813        }
6814    }
6815    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6816        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6817        if (!audio_is_input_channel(mask) ||
6818                audio_channel_count_from_in_mask(mask) > FCC_8) {
6819            status = BAD_VALUE;
6820        } else {
6821            channelMask = mask;
6822            reconfig = true;
6823        }
6824    }
6825    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6826        // do not accept frame count changes if tracks are open as the track buffer
6827        // size depends on frame count and correct behavior would not be guaranteed
6828        // if frame count is changed after track creation
6829        if (mActiveTracks.size() > 0) {
6830            status = INVALID_OPERATION;
6831        } else {
6832            reconfig = true;
6833        }
6834    }
6835    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6836        // forward device change to effects that have requested to be
6837        // aware of attached audio device.
6838        for (size_t i = 0; i < mEffectChains.size(); i++) {
6839            mEffectChains[i]->setDevice_l(value);
6840        }
6841
6842        // store input device and output device but do not forward output device to audio HAL.
6843        // Note that status is ignored by the caller for output device
6844        // (see AudioFlinger::setParameters()
6845        if (audio_is_output_devices(value)) {
6846            mOutDevice = value;
6847            status = BAD_VALUE;
6848        } else {
6849            mInDevice = value;
6850            if (value != AUDIO_DEVICE_NONE) {
6851                mPrevInDevice = value;
6852            }
6853            // disable AEC and NS if the device is a BT SCO headset supporting those
6854            // pre processings
6855            if (mTracks.size() > 0) {
6856                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6857                                    mAudioFlinger->btNrecIsOff();
6858                for (size_t i = 0; i < mTracks.size(); i++) {
6859                    sp<RecordTrack> track = mTracks[i];
6860                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6861                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6862                }
6863            }
6864        }
6865    }
6866    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6867            mAudioSource != (audio_source_t)value) {
6868        // forward device change to effects that have requested to be
6869        // aware of attached audio device.
6870        for (size_t i = 0; i < mEffectChains.size(); i++) {
6871            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6872        }
6873        mAudioSource = (audio_source_t)value;
6874    }
6875
6876    if (status == NO_ERROR) {
6877        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6878                keyValuePair.string());
6879        if (status == INVALID_OPERATION) {
6880            inputStandBy();
6881            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6882                    keyValuePair.string());
6883        }
6884        if (reconfig) {
6885            if (status == BAD_VALUE &&
6886                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6887                audio_is_linear_pcm(reqFormat) &&
6888                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6889                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6890                audio_channel_count_from_in_mask(
6891                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
6892                status = NO_ERROR;
6893            }
6894            if (status == NO_ERROR) {
6895                readInputParameters_l();
6896                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
6897            }
6898        }
6899    }
6900
6901    return reconfig;
6902}
6903
6904String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6905{
6906    Mutex::Autolock _l(mLock);
6907    if (initCheck() != NO_ERROR) {
6908        return String8();
6909    }
6910
6911    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6912    const String8 out_s8(s);
6913    free(s);
6914    return out_s8;
6915}
6916
6917void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
6918    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
6919
6920    desc->mIoHandle = mId;
6921
6922    switch (event) {
6923    case AUDIO_INPUT_OPENED:
6924    case AUDIO_INPUT_CONFIG_CHANGED:
6925        desc->mPatch = mPatch;
6926        desc->mChannelMask = mChannelMask;
6927        desc->mSamplingRate = mSampleRate;
6928        desc->mFormat = mFormat;
6929        desc->mFrameCount = mFrameCount;
6930        desc->mLatency = 0;
6931        break;
6932
6933    case AUDIO_INPUT_CLOSED:
6934    default:
6935        break;
6936    }
6937    mAudioFlinger->ioConfigChanged(event, desc, pid);
6938}
6939
6940void AudioFlinger::RecordThread::readInputParameters_l()
6941{
6942    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6943    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6944    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6945    if (mChannelCount > FCC_8) {
6946        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
6947    }
6948    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6949    mFormat = mHALFormat;
6950    if (!audio_is_linear_pcm(mFormat)) {
6951        ALOGE("HAL format %#x is not linear pcm", mFormat);
6952    }
6953    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6954    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6955    mFrameCount = mBufferSize / mFrameSize;
6956    // This is the formula for calculating the temporary buffer size.
6957    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6958    // 1 full output buffer, regardless of the alignment of the available input.
6959    // The value is somewhat arbitrary, and could probably be even larger.
6960    // A larger value should allow more old data to be read after a track calls start(),
6961    // without increasing latency.
6962    //
6963    // Note this is independent of the maximum downsampling ratio permitted for capture.
6964    mRsmpInFrames = mFrameCount * 7;
6965    mRsmpInFramesP2 = roundup(mRsmpInFrames);
6966    free(mRsmpInBuffer);
6967    mRsmpInBuffer = NULL;
6968
6969    // TODO optimize audio capture buffer sizes ...
6970    // Here we calculate the size of the sliding buffer used as a source
6971    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6972    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6973    // be better to have it derived from the pipe depth in the long term.
6974    // The current value is higher than necessary.  However it should not add to latency.
6975
6976    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6977    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
6978    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
6979    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
6980
6981    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6982    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6983}
6984
6985uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6986{
6987    Mutex::Autolock _l(mLock);
6988    if (initCheck() != NO_ERROR) {
6989        return 0;
6990    }
6991
6992    return mInput->stream->get_input_frames_lost(mInput->stream);
6993}
6994
6995uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6996{
6997    Mutex::Autolock _l(mLock);
6998    uint32_t result = 0;
6999    if (getEffectChain_l(sessionId) != 0) {
7000        result = EFFECT_SESSION;
7001    }
7002
7003    for (size_t i = 0; i < mTracks.size(); ++i) {
7004        if (sessionId == mTracks[i]->sessionId()) {
7005            result |= TRACK_SESSION;
7006            break;
7007        }
7008    }
7009
7010    return result;
7011}
7012
7013KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
7014{
7015    KeyedVector<int, bool> ids;
7016    Mutex::Autolock _l(mLock);
7017    for (size_t j = 0; j < mTracks.size(); ++j) {
7018        sp<RecordThread::RecordTrack> track = mTracks[j];
7019        int sessionId = track->sessionId();
7020        if (ids.indexOfKey(sessionId) < 0) {
7021            ids.add(sessionId, true);
7022        }
7023    }
7024    return ids;
7025}
7026
7027AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7028{
7029    Mutex::Autolock _l(mLock);
7030    AudioStreamIn *input = mInput;
7031    mInput = NULL;
7032    return input;
7033}
7034
7035// this method must always be called either with ThreadBase mLock held or inside the thread loop
7036audio_stream_t* AudioFlinger::RecordThread::stream() const
7037{
7038    if (mInput == NULL) {
7039        return NULL;
7040    }
7041    return &mInput->stream->common;
7042}
7043
7044status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7045{
7046    // only one chain per input thread
7047    if (mEffectChains.size() != 0) {
7048        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7049        return INVALID_OPERATION;
7050    }
7051    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7052    chain->setThread(this);
7053    chain->setInBuffer(NULL);
7054    chain->setOutBuffer(NULL);
7055
7056    checkSuspendOnAddEffectChain_l(chain);
7057
7058    // make sure enabled pre processing effects state is communicated to the HAL as we
7059    // just moved them to a new input stream.
7060    chain->syncHalEffectsState();
7061
7062    mEffectChains.add(chain);
7063
7064    return NO_ERROR;
7065}
7066
7067size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7068{
7069    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7070    ALOGW_IF(mEffectChains.size() != 1,
7071            "removeEffectChain_l() %p invalid chain size %d on thread %p",
7072            chain.get(), mEffectChains.size(), this);
7073    if (mEffectChains.size() == 1) {
7074        mEffectChains.removeAt(0);
7075    }
7076    return 0;
7077}
7078
7079status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7080                                                          audio_patch_handle_t *handle)
7081{
7082    status_t status = NO_ERROR;
7083
7084    // store new device and send to effects
7085    mInDevice = patch->sources[0].ext.device.type;
7086    mPatch = *patch;
7087    for (size_t i = 0; i < mEffectChains.size(); i++) {
7088        mEffectChains[i]->setDevice_l(mInDevice);
7089    }
7090
7091    // disable AEC and NS if the device is a BT SCO headset supporting those
7092    // pre processings
7093    if (mTracks.size() > 0) {
7094        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7095                            mAudioFlinger->btNrecIsOff();
7096        for (size_t i = 0; i < mTracks.size(); i++) {
7097            sp<RecordTrack> track = mTracks[i];
7098            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7099            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7100        }
7101    }
7102
7103    // store new source and send to effects
7104    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7105        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7106        for (size_t i = 0; i < mEffectChains.size(); i++) {
7107            mEffectChains[i]->setAudioSource_l(mAudioSource);
7108        }
7109    }
7110
7111    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7112        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7113        status = hwDevice->create_audio_patch(hwDevice,
7114                                               patch->num_sources,
7115                                               patch->sources,
7116                                               patch->num_sinks,
7117                                               patch->sinks,
7118                                               handle);
7119    } else {
7120        char *address;
7121        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7122            address = audio_device_address_to_parameter(
7123                                                patch->sources[0].ext.device.type,
7124                                                patch->sources[0].ext.device.address);
7125        } else {
7126            address = (char *)calloc(1, 1);
7127        }
7128        AudioParameter param = AudioParameter(String8(address));
7129        free(address);
7130        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7131                     (int)patch->sources[0].ext.device.type);
7132        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7133                                         (int)patch->sinks[0].ext.mix.usecase.source);
7134        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7135                param.toString().string());
7136        *handle = AUDIO_PATCH_HANDLE_NONE;
7137    }
7138
7139    if (mInDevice != mPrevInDevice) {
7140        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7141        mPrevInDevice = mInDevice;
7142    }
7143
7144    return status;
7145}
7146
7147status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7148{
7149    status_t status = NO_ERROR;
7150
7151    mInDevice = AUDIO_DEVICE_NONE;
7152
7153    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7154        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7155        status = hwDevice->release_audio_patch(hwDevice, handle);
7156    } else {
7157        AudioParameter param;
7158        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7159        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7160                param.toString().string());
7161    }
7162    return status;
7163}
7164
7165void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7166{
7167    Mutex::Autolock _l(mLock);
7168    mTracks.add(record);
7169}
7170
7171void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7172{
7173    Mutex::Autolock _l(mLock);
7174    destroyTrack_l(record);
7175}
7176
7177void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7178{
7179    ThreadBase::getAudioPortConfig(config);
7180    config->role = AUDIO_PORT_ROLE_SINK;
7181    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7182    config->ext.mix.usecase.source = mAudioSource;
7183}
7184
7185} // namespace android
7186