Threads.cpp revision bf6dc1af5bd88135f47c2489c03cdb9f95d57927
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74#include "AutoPark.h"
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113
114
115
116// don't warn about blocked writes or record buffer overflows more often than this
117static const nsecs_t kWarningThrottleNs = seconds(5);
118
119// RecordThread loop sleep time upon application overrun or audio HAL read error
120static const int kRecordThreadSleepUs = 5000;
121
122// maximum time to wait in sendConfigEvent_l() for a status to be received
123static const nsecs_t kConfigEventTimeoutNs = seconds(2);
124
125// minimum sleep time for the mixer thread loop when tracks are active but in underrun
126static const uint32_t kMinThreadSleepTimeUs = 5000;
127// maximum divider applied to the active sleep time in the mixer thread loop
128static const uint32_t kMaxThreadSleepTimeShift = 2;
129
130// minimum normal sink buffer size, expressed in milliseconds rather than frames
131// FIXME This should be based on experimentally observed scheduling jitter
132static const uint32_t kMinNormalSinkBufferSizeMs = 20;
133// maximum normal sink buffer size
134static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
135
136// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
137// FIXME This should be based on experimentally observed scheduling jitter
138static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
139
140// Offloaded output thread standby delay: allows track transition without going to standby
141static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
142
143// Direct output thread minimum sleep time in idle or active(underrun) state
144static const nsecs_t kDirectMinSleepTimeUs = 10000;
145
146
147// Whether to use fast mixer
148static const enum {
149    FastMixer_Never,    // never initialize or use: for debugging only
150    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
151                        // normal mixer multiplier is 1
152    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
153                        // multiplier is calculated based on min & max normal mixer buffer size
154    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
155                        // multiplier is calculated based on min & max normal mixer buffer size
156    // FIXME for FastMixer_Dynamic:
157    //  Supporting this option will require fixing HALs that can't handle large writes.
158    //  For example, one HAL implementation returns an error from a large write,
159    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
160    //  We could either fix the HAL implementations, or provide a wrapper that breaks
161    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
162} kUseFastMixer = FastMixer_Static;
163
164// Whether to use fast capture
165static const enum {
166    FastCapture_Never,  // never initialize or use: for debugging only
167    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
168    FastCapture_Static, // initialize if needed, then use all the time if initialized
169} kUseFastCapture = FastCapture_Static;
170
171// Priorities for requestPriority
172static const int kPriorityAudioApp = 2;
173static const int kPriorityFastMixer = 3;
174static const int kPriorityFastCapture = 3;
175
176// IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
177// track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
178// AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
179
180// This is the default value, if not specified by property.
181static const int kFastTrackMultiplier = 2;
182
183// The minimum and maximum allowed values
184static const int kFastTrackMultiplierMin = 1;
185static const int kFastTrackMultiplierMax = 2;
186
187// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
188static int sFastTrackMultiplier = kFastTrackMultiplier;
189
190// See Thread::readOnlyHeap().
191// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
192// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
193// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
194static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
195
196// ----------------------------------------------------------------------------
197
198static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
199
200static void sFastTrackMultiplierInit()
201{
202    char value[PROPERTY_VALUE_MAX];
203    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
204        char *endptr;
205        unsigned long ul = strtoul(value, &endptr, 0);
206        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
207            sFastTrackMultiplier = (int) ul;
208        }
209    }
210}
211
212// ----------------------------------------------------------------------------
213
214#ifdef ADD_BATTERY_DATA
215// To collect the amplifier usage
216static void addBatteryData(uint32_t params) {
217    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
218    if (service == NULL) {
219        // it already logged
220        return;
221    }
222
223    service->addBatteryData(params);
224}
225#endif
226
227// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
228struct {
229    // call when you acquire a partial wakelock
230    void acquire(const sp<IBinder> &wakeLockToken) {
231        pthread_mutex_lock(&mLock);
232        if (wakeLockToken.get() == nullptr) {
233            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
234        } else {
235            if (mCount == 0) {
236                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
237            }
238            ++mCount;
239        }
240        pthread_mutex_unlock(&mLock);
241    }
242
243    // call when you release a partial wakelock.
244    void release(const sp<IBinder> &wakeLockToken) {
245        if (wakeLockToken.get() == nullptr) {
246            return;
247        }
248        pthread_mutex_lock(&mLock);
249        if (--mCount < 0) {
250            ALOGE("negative wakelock count");
251            mCount = 0;
252        }
253        pthread_mutex_unlock(&mLock);
254    }
255
256    // retrieves the boottime timebase offset from monotonic.
257    int64_t getBoottimeOffset() {
258        pthread_mutex_lock(&mLock);
259        int64_t boottimeOffset = mBoottimeOffset;
260        pthread_mutex_unlock(&mLock);
261        return boottimeOffset;
262    }
263
264    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
265    // and the selected timebase.
266    // Currently only TIMEBASE_BOOTTIME is allowed.
267    //
268    // This only needs to be called upon acquiring the first partial wakelock
269    // after all other partial wakelocks are released.
270    //
271    // We do an empirical measurement of the offset rather than parsing
272    // /proc/timer_list since the latter is not a formal kernel ABI.
273    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
274        int clockbase;
275        switch (timebase) {
276        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
277            clockbase = SYSTEM_TIME_BOOTTIME;
278            break;
279        default:
280            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
281            break;
282        }
283        // try three times to get the clock offset, choose the one
284        // with the minimum gap in measurements.
285        const int tries = 3;
286        nsecs_t bestGap, measured;
287        for (int i = 0; i < tries; ++i) {
288            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
289            const nsecs_t tbase = systemTime(clockbase);
290            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
291            const nsecs_t gap = tmono2 - tmono;
292            if (i == 0 || gap < bestGap) {
293                bestGap = gap;
294                measured = tbase - ((tmono + tmono2) >> 1);
295            }
296        }
297
298        // to avoid micro-adjusting, we don't change the timebase
299        // unless it is significantly different.
300        //
301        // Assumption: It probably takes more than toleranceNs to
302        // suspend and resume the device.
303        static int64_t toleranceNs = 10000; // 10 us
304        if (llabs(*offset - measured) > toleranceNs) {
305            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
306                    (long long)*offset, (long long)measured);
307            *offset = measured;
308        }
309    }
310
311    pthread_mutex_t mLock;
312    int32_t mCount;
313    int64_t mBoottimeOffset;
314} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
315
316// ----------------------------------------------------------------------------
317//      CPU Stats
318// ----------------------------------------------------------------------------
319
320class CpuStats {
321public:
322    CpuStats();
323    void sample(const String8 &title);
324#ifdef DEBUG_CPU_USAGE
325private:
326    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
327    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
328
329    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
330
331    int mCpuNum;                        // thread's current CPU number
332    int mCpukHz;                        // frequency of thread's current CPU in kHz
333#endif
334};
335
336CpuStats::CpuStats()
337#ifdef DEBUG_CPU_USAGE
338    : mCpuNum(-1), mCpukHz(-1)
339#endif
340{
341}
342
343void CpuStats::sample(const String8 &title
344#ifndef DEBUG_CPU_USAGE
345                __unused
346#endif
347        ) {
348#ifdef DEBUG_CPU_USAGE
349    // get current thread's delta CPU time in wall clock ns
350    double wcNs;
351    bool valid = mCpuUsage.sampleAndEnable(wcNs);
352
353    // record sample for wall clock statistics
354    if (valid) {
355        mWcStats.sample(wcNs);
356    }
357
358    // get the current CPU number
359    int cpuNum = sched_getcpu();
360
361    // get the current CPU frequency in kHz
362    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
363
364    // check if either CPU number or frequency changed
365    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
366        mCpuNum = cpuNum;
367        mCpukHz = cpukHz;
368        // ignore sample for purposes of cycles
369        valid = false;
370    }
371
372    // if no change in CPU number or frequency, then record sample for cycle statistics
373    if (valid && mCpukHz > 0) {
374        double cycles = wcNs * cpukHz * 0.000001;
375        mHzStats.sample(cycles);
376    }
377
378    unsigned n = mWcStats.n();
379    // mCpuUsage.elapsed() is expensive, so don't call it every loop
380    if ((n & 127) == 1) {
381        long long elapsed = mCpuUsage.elapsed();
382        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
383            double perLoop = elapsed / (double) n;
384            double perLoop100 = perLoop * 0.01;
385            double perLoop1k = perLoop * 0.001;
386            double mean = mWcStats.mean();
387            double stddev = mWcStats.stddev();
388            double minimum = mWcStats.minimum();
389            double maximum = mWcStats.maximum();
390            double meanCycles = mHzStats.mean();
391            double stddevCycles = mHzStats.stddev();
392            double minCycles = mHzStats.minimum();
393            double maxCycles = mHzStats.maximum();
394            mCpuUsage.resetElapsed();
395            mWcStats.reset();
396            mHzStats.reset();
397            ALOGD("CPU usage for %s over past %.1f secs\n"
398                "  (%u mixer loops at %.1f mean ms per loop):\n"
399                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
400                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
401                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
402                    title.string(),
403                    elapsed * .000000001, n, perLoop * .000001,
404                    mean * .001,
405                    stddev * .001,
406                    minimum * .001,
407                    maximum * .001,
408                    mean / perLoop100,
409                    stddev / perLoop100,
410                    minimum / perLoop100,
411                    maximum / perLoop100,
412                    meanCycles / perLoop1k,
413                    stddevCycles / perLoop1k,
414                    minCycles / perLoop1k,
415                    maxCycles / perLoop1k);
416
417        }
418    }
419#endif
420};
421
422// ----------------------------------------------------------------------------
423//      ThreadBase
424// ----------------------------------------------------------------------------
425
426// static
427const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
428{
429    switch (type) {
430    case MIXER:
431        return "MIXER";
432    case DIRECT:
433        return "DIRECT";
434    case DUPLICATING:
435        return "DUPLICATING";
436    case RECORD:
437        return "RECORD";
438    case OFFLOAD:
439        return "OFFLOAD";
440    default:
441        return "unknown";
442    }
443}
444
445String8 devicesToString(audio_devices_t devices)
446{
447    static const struct mapping {
448        audio_devices_t mDevices;
449        const char *    mString;
450    } mappingsOut[] = {
451        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
452        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
453        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
454        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
455        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
456        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
457        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
458        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
459        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
460        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
461        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
462        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
463        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
464        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
465        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
466        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
467        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
468        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
469        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
470        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
471        {AUDIO_DEVICE_OUT_FM,               "FM"},
472        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
473        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
474        {AUDIO_DEVICE_OUT_IP,               "IP"},
475        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
476        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
477    }, mappingsIn[] = {
478        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
479        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
480        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
481        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
482        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
483        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
484        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
485        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
486        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
487        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
488        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
489        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
490        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
491        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
492        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
493        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
494        {AUDIO_DEVICE_IN_LINE,              "LINE"},
495        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
496        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
497        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
498        {AUDIO_DEVICE_IN_IP,                "IP"},
499        {AUDIO_DEVICE_IN_BUS,               "BUS"},
500        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
501    };
502    String8 result;
503    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
504    const mapping *entry;
505    if (devices & AUDIO_DEVICE_BIT_IN) {
506        devices &= ~AUDIO_DEVICE_BIT_IN;
507        entry = mappingsIn;
508    } else {
509        entry = mappingsOut;
510    }
511    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
512        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
513        if (devices & entry->mDevices) {
514            if (!result.isEmpty()) {
515                result.append("|");
516            }
517            result.append(entry->mString);
518        }
519    }
520    if (devices & ~allDevices) {
521        if (!result.isEmpty()) {
522            result.append("|");
523        }
524        result.appendFormat("0x%X", devices & ~allDevices);
525    }
526    if (result.isEmpty()) {
527        result.append(entry->mString);
528    }
529    return result;
530}
531
532String8 inputFlagsToString(audio_input_flags_t flags)
533{
534    static const struct mapping {
535        audio_input_flags_t     mFlag;
536        const char *            mString;
537    } mappings[] = {
538        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
539        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
540        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
541        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
542        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
543    };
544    String8 result;
545    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
546    const mapping *entry;
547    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
548        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
549        if (flags & entry->mFlag) {
550            if (!result.isEmpty()) {
551                result.append("|");
552            }
553            result.append(entry->mString);
554        }
555    }
556    if (flags & ~allFlags) {
557        if (!result.isEmpty()) {
558            result.append("|");
559        }
560        result.appendFormat("0x%X", flags & ~allFlags);
561    }
562    if (result.isEmpty()) {
563        result.append(entry->mString);
564    }
565    return result;
566}
567
568String8 outputFlagsToString(audio_output_flags_t flags)
569{
570    static const struct mapping {
571        audio_output_flags_t    mFlag;
572        const char *            mString;
573    } mappings[] = {
574        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
575        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
576        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
577        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
578        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
579        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
580        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
581        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
582        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
583        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
584        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
585    };
586    String8 result;
587    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
588    const mapping *entry;
589    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
590        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
591        if (flags & entry->mFlag) {
592            if (!result.isEmpty()) {
593                result.append("|");
594            }
595            result.append(entry->mString);
596        }
597    }
598    if (flags & ~allFlags) {
599        if (!result.isEmpty()) {
600            result.append("|");
601        }
602        result.appendFormat("0x%X", flags & ~allFlags);
603    }
604    if (result.isEmpty()) {
605        result.append(entry->mString);
606    }
607    return result;
608}
609
610const char *sourceToString(audio_source_t source)
611{
612    switch (source) {
613    case AUDIO_SOURCE_DEFAULT:              return "default";
614    case AUDIO_SOURCE_MIC:                  return "mic";
615    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
616    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
617    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
618    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
619    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
620    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
621    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
622    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
623    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
624    case AUDIO_SOURCE_HOTWORD:              return "hotword";
625    default:                                return "unknown";
626    }
627}
628
629AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
630        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
631    :   Thread(false /*canCallJava*/),
632        mType(type),
633        mAudioFlinger(audioFlinger),
634        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
635        // are set by PlaybackThread::readOutputParameters_l() or
636        // RecordThread::readInputParameters_l()
637        //FIXME: mStandby should be true here. Is this some kind of hack?
638        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
639        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
640        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
641        // mName will be set by concrete (non-virtual) subclass
642        mDeathRecipient(new PMDeathRecipient(this)),
643        mSystemReady(systemReady),
644        mNotifiedBatteryStart(false)
645{
646    memset(&mPatch, 0, sizeof(struct audio_patch));
647}
648
649AudioFlinger::ThreadBase::~ThreadBase()
650{
651    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
652    mConfigEvents.clear();
653
654    // do not lock the mutex in destructor
655    releaseWakeLock_l();
656    if (mPowerManager != 0) {
657        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
658        binder->unlinkToDeath(mDeathRecipient);
659    }
660}
661
662status_t AudioFlinger::ThreadBase::readyToRun()
663{
664    status_t status = initCheck();
665    if (status == NO_ERROR) {
666        ALOGI("AudioFlinger's thread %p ready to run", this);
667    } else {
668        ALOGE("No working audio driver found.");
669    }
670    return status;
671}
672
673void AudioFlinger::ThreadBase::exit()
674{
675    ALOGV("ThreadBase::exit");
676    // do any cleanup required for exit to succeed
677    preExit();
678    {
679        // This lock prevents the following race in thread (uniprocessor for illustration):
680        //  if (!exitPending()) {
681        //      // context switch from here to exit()
682        //      // exit() calls requestExit(), what exitPending() observes
683        //      // exit() calls signal(), which is dropped since no waiters
684        //      // context switch back from exit() to here
685        //      mWaitWorkCV.wait(...);
686        //      // now thread is hung
687        //  }
688        AutoMutex lock(mLock);
689        requestExit();
690        mWaitWorkCV.broadcast();
691    }
692    // When Thread::requestExitAndWait is made virtual and this method is renamed to
693    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
694    requestExitAndWait();
695}
696
697status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
698{
699    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
700    Mutex::Autolock _l(mLock);
701
702    return sendSetParameterConfigEvent_l(keyValuePairs);
703}
704
705// sendConfigEvent_l() must be called with ThreadBase::mLock held
706// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
707status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
708{
709    status_t status = NO_ERROR;
710
711    if (event->mRequiresSystemReady && !mSystemReady) {
712        event->mWaitStatus = false;
713        mPendingConfigEvents.add(event);
714        return status;
715    }
716    mConfigEvents.add(event);
717    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
718    mWaitWorkCV.signal();
719    mLock.unlock();
720    {
721        Mutex::Autolock _l(event->mLock);
722        while (event->mWaitStatus) {
723            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
724                event->mStatus = TIMED_OUT;
725                event->mWaitStatus = false;
726            }
727        }
728        status = event->mStatus;
729    }
730    mLock.lock();
731    return status;
732}
733
734void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
735{
736    Mutex::Autolock _l(mLock);
737    sendIoConfigEvent_l(event, pid);
738}
739
740// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
741void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
742{
743    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
744    sendConfigEvent_l(configEvent);
745}
746
747void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
748{
749    Mutex::Autolock _l(mLock);
750    sendPrioConfigEvent_l(pid, tid, prio);
751}
752
753// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
754void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
755{
756    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
757    sendConfigEvent_l(configEvent);
758}
759
760// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
761status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
762{
763    sp<ConfigEvent> configEvent;
764    AudioParameter param(keyValuePair);
765    int value;
766    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
767        setMasterMono_l(value != 0);
768        if (param.size() == 1) {
769            return NO_ERROR; // should be a solo parameter - we don't pass down
770        }
771        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
772        configEvent = new SetParameterConfigEvent(param.toString());
773    } else {
774        configEvent = new SetParameterConfigEvent(keyValuePair);
775    }
776    return sendConfigEvent_l(configEvent);
777}
778
779status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
780                                                        const struct audio_patch *patch,
781                                                        audio_patch_handle_t *handle)
782{
783    Mutex::Autolock _l(mLock);
784    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
785    status_t status = sendConfigEvent_l(configEvent);
786    if (status == NO_ERROR) {
787        CreateAudioPatchConfigEventData *data =
788                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
789        *handle = data->mHandle;
790    }
791    return status;
792}
793
794status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
795                                                                const audio_patch_handle_t handle)
796{
797    Mutex::Autolock _l(mLock);
798    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
799    return sendConfigEvent_l(configEvent);
800}
801
802
803// post condition: mConfigEvents.isEmpty()
804void AudioFlinger::ThreadBase::processConfigEvents_l()
805{
806    bool configChanged = false;
807
808    while (!mConfigEvents.isEmpty()) {
809        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
810        sp<ConfigEvent> event = mConfigEvents[0];
811        mConfigEvents.removeAt(0);
812        switch (event->mType) {
813        case CFG_EVENT_PRIO: {
814            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
815            // FIXME Need to understand why this has to be done asynchronously
816            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
817                    true /*asynchronous*/);
818            if (err != 0) {
819                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
820                      data->mPrio, data->mPid, data->mTid, err);
821            }
822        } break;
823        case CFG_EVENT_IO: {
824            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
825            ioConfigChanged(data->mEvent, data->mPid);
826        } break;
827        case CFG_EVENT_SET_PARAMETER: {
828            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
829            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
830                configChanged = true;
831            }
832        } break;
833        case CFG_EVENT_CREATE_AUDIO_PATCH: {
834            CreateAudioPatchConfigEventData *data =
835                                            (CreateAudioPatchConfigEventData *)event->mData.get();
836            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
837        } break;
838        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
839            ReleaseAudioPatchConfigEventData *data =
840                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
841            event->mStatus = releaseAudioPatch_l(data->mHandle);
842        } break;
843        default:
844            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
845            break;
846        }
847        {
848            Mutex::Autolock _l(event->mLock);
849            if (event->mWaitStatus) {
850                event->mWaitStatus = false;
851                event->mCond.signal();
852            }
853        }
854        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
855    }
856
857    if (configChanged) {
858        cacheParameters_l();
859    }
860}
861
862String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
863    String8 s;
864    const audio_channel_representation_t representation =
865            audio_channel_mask_get_representation(mask);
866
867    switch (representation) {
868    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
869        if (output) {
870            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
871            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
872            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
873            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
874            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
875            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
876            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
877            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
878            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
879            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
880            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
881            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
882            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
883            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
884            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
885            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
886            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
887            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
888            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
889        } else {
890            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
891            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
892            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
893            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
894            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
895            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
896            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
897            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
898            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
899            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
900            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
901            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
902            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
903            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
904            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
905        }
906        const int len = s.length();
907        if (len > 2) {
908            (void) s.lockBuffer(len);      // needed?
909            s.unlockBuffer(len - 2);       // remove trailing ", "
910        }
911        return s;
912    }
913    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
914        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
915        return s;
916    default:
917        s.appendFormat("unknown mask, representation:%d  bits:%#x",
918                representation, audio_channel_mask_get_bits(mask));
919        return s;
920    }
921}
922
923void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
924{
925    const size_t SIZE = 256;
926    char buffer[SIZE];
927    String8 result;
928
929    bool locked = AudioFlinger::dumpTryLock(mLock);
930    if (!locked) {
931        dprintf(fd, "thread %p may be deadlocked\n", this);
932    }
933
934    dprintf(fd, "  Thread name: %s\n", mThreadName);
935    dprintf(fd, "  I/O handle: %d\n", mId);
936    dprintf(fd, "  TID: %d\n", getTid());
937    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
938    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
939    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
940    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
941    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
942    dprintf(fd, "  Channel count: %u\n", mChannelCount);
943    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
944            channelMaskToString(mChannelMask, mType != RECORD).string());
945    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
946    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
947    dprintf(fd, "  Pending config events:");
948    size_t numConfig = mConfigEvents.size();
949    if (numConfig) {
950        for (size_t i = 0; i < numConfig; i++) {
951            mConfigEvents[i]->dump(buffer, SIZE);
952            dprintf(fd, "\n    %s", buffer);
953        }
954        dprintf(fd, "\n");
955    } else {
956        dprintf(fd, " none\n");
957    }
958    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
959    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
960    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
961
962    if (locked) {
963        mLock.unlock();
964    }
965}
966
967void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
968{
969    const size_t SIZE = 256;
970    char buffer[SIZE];
971    String8 result;
972
973    size_t numEffectChains = mEffectChains.size();
974    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
975    write(fd, buffer, strlen(buffer));
976
977    for (size_t i = 0; i < numEffectChains; ++i) {
978        sp<EffectChain> chain = mEffectChains[i];
979        if (chain != 0) {
980            chain->dump(fd, args);
981        }
982    }
983}
984
985void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
986{
987    Mutex::Autolock _l(mLock);
988    acquireWakeLock_l(uid);
989}
990
991String16 AudioFlinger::ThreadBase::getWakeLockTag()
992{
993    switch (mType) {
994    case MIXER:
995        return String16("AudioMix");
996    case DIRECT:
997        return String16("AudioDirectOut");
998    case DUPLICATING:
999        return String16("AudioDup");
1000    case RECORD:
1001        return String16("AudioIn");
1002    case OFFLOAD:
1003        return String16("AudioOffload");
1004    default:
1005        ALOG_ASSERT(false);
1006        return String16("AudioUnknown");
1007    }
1008}
1009
1010void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1011{
1012    getPowerManager_l();
1013    if (mPowerManager != 0) {
1014        sp<IBinder> binder = new BBinder();
1015        status_t status;
1016        if (uid >= 0) {
1017            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1018                    binder,
1019                    getWakeLockTag(),
1020                    String16("audioserver"),
1021                    uid,
1022                    true /* FIXME force oneway contrary to .aidl */);
1023        } else {
1024            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1025                    binder,
1026                    getWakeLockTag(),
1027                    String16("audioserver"),
1028                    true /* FIXME force oneway contrary to .aidl */);
1029        }
1030        if (status == NO_ERROR) {
1031            mWakeLockToken = binder;
1032        }
1033        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1034    }
1035
1036    if (!mNotifiedBatteryStart) {
1037        BatteryNotifier::getInstance().noteStartAudio();
1038        mNotifiedBatteryStart = true;
1039    }
1040    gBoottime.acquire(mWakeLockToken);
1041    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1042            gBoottime.getBoottimeOffset();
1043}
1044
1045void AudioFlinger::ThreadBase::releaseWakeLock()
1046{
1047    Mutex::Autolock _l(mLock);
1048    releaseWakeLock_l();
1049}
1050
1051void AudioFlinger::ThreadBase::releaseWakeLock_l()
1052{
1053    gBoottime.release(mWakeLockToken);
1054    if (mWakeLockToken != 0) {
1055        ALOGV("releaseWakeLock_l() %s", mThreadName);
1056        if (mPowerManager != 0) {
1057            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1058                    true /* FIXME force oneway contrary to .aidl */);
1059        }
1060        mWakeLockToken.clear();
1061    }
1062
1063    if (mNotifiedBatteryStart) {
1064        BatteryNotifier::getInstance().noteStopAudio();
1065        mNotifiedBatteryStart = false;
1066    }
1067}
1068
1069void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1070    Mutex::Autolock _l(mLock);
1071    updateWakeLockUids_l(uids);
1072}
1073
1074void AudioFlinger::ThreadBase::getPowerManager_l() {
1075    if (mSystemReady && mPowerManager == 0) {
1076        // use checkService() to avoid blocking if power service is not up yet
1077        sp<IBinder> binder =
1078            defaultServiceManager()->checkService(String16("power"));
1079        if (binder == 0) {
1080            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1081        } else {
1082            mPowerManager = interface_cast<IPowerManager>(binder);
1083            binder->linkToDeath(mDeathRecipient);
1084        }
1085    }
1086}
1087
1088void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1089    getPowerManager_l();
1090    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1091        if (mSystemReady) {
1092            ALOGE("no wake lock to update, but system ready!");
1093        } else {
1094            ALOGW("no wake lock to update, system not ready yet");
1095        }
1096        return;
1097    }
1098    if (mPowerManager != 0) {
1099        sp<IBinder> binder = new BBinder();
1100        status_t status;
1101        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1102                    true /* FIXME force oneway contrary to .aidl */);
1103        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1104    }
1105}
1106
1107void AudioFlinger::ThreadBase::clearPowerManager()
1108{
1109    Mutex::Autolock _l(mLock);
1110    releaseWakeLock_l();
1111    mPowerManager.clear();
1112}
1113
1114void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1115{
1116    sp<ThreadBase> thread = mThread.promote();
1117    if (thread != 0) {
1118        thread->clearPowerManager();
1119    }
1120    ALOGW("power manager service died !!!");
1121}
1122
1123void AudioFlinger::ThreadBase::setEffectSuspended(
1124        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1125{
1126    Mutex::Autolock _l(mLock);
1127    setEffectSuspended_l(type, suspend, sessionId);
1128}
1129
1130void AudioFlinger::ThreadBase::setEffectSuspended_l(
1131        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1132{
1133    sp<EffectChain> chain = getEffectChain_l(sessionId);
1134    if (chain != 0) {
1135        if (type != NULL) {
1136            chain->setEffectSuspended_l(type, suspend);
1137        } else {
1138            chain->setEffectSuspendedAll_l(suspend);
1139        }
1140    }
1141
1142    updateSuspendedSessions_l(type, suspend, sessionId);
1143}
1144
1145void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1146{
1147    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1148    if (index < 0) {
1149        return;
1150    }
1151
1152    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1153            mSuspendedSessions.valueAt(index);
1154
1155    for (size_t i = 0; i < sessionEffects.size(); i++) {
1156        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1157        for (int j = 0; j < desc->mRefCount; j++) {
1158            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1159                chain->setEffectSuspendedAll_l(true);
1160            } else {
1161                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1162                    desc->mType.timeLow);
1163                chain->setEffectSuspended_l(&desc->mType, true);
1164            }
1165        }
1166    }
1167}
1168
1169void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1170                                                         bool suspend,
1171                                                         audio_session_t sessionId)
1172{
1173    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1174
1175    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1176
1177    if (suspend) {
1178        if (index >= 0) {
1179            sessionEffects = mSuspendedSessions.valueAt(index);
1180        } else {
1181            mSuspendedSessions.add(sessionId, sessionEffects);
1182        }
1183    } else {
1184        if (index < 0) {
1185            return;
1186        }
1187        sessionEffects = mSuspendedSessions.valueAt(index);
1188    }
1189
1190
1191    int key = EffectChain::kKeyForSuspendAll;
1192    if (type != NULL) {
1193        key = type->timeLow;
1194    }
1195    index = sessionEffects.indexOfKey(key);
1196
1197    sp<SuspendedSessionDesc> desc;
1198    if (suspend) {
1199        if (index >= 0) {
1200            desc = sessionEffects.valueAt(index);
1201        } else {
1202            desc = new SuspendedSessionDesc();
1203            if (type != NULL) {
1204                desc->mType = *type;
1205            }
1206            sessionEffects.add(key, desc);
1207            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1208        }
1209        desc->mRefCount++;
1210    } else {
1211        if (index < 0) {
1212            return;
1213        }
1214        desc = sessionEffects.valueAt(index);
1215        if (--desc->mRefCount == 0) {
1216            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1217            sessionEffects.removeItemsAt(index);
1218            if (sessionEffects.isEmpty()) {
1219                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1220                                 sessionId);
1221                mSuspendedSessions.removeItem(sessionId);
1222            }
1223        }
1224    }
1225    if (!sessionEffects.isEmpty()) {
1226        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1227    }
1228}
1229
1230void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1231                                                            bool enabled,
1232                                                            audio_session_t sessionId)
1233{
1234    Mutex::Autolock _l(mLock);
1235    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1236}
1237
1238void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1239                                                            bool enabled,
1240                                                            audio_session_t sessionId)
1241{
1242    if (mType != RECORD) {
1243        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1244        // another session. This gives the priority to well behaved effect control panels
1245        // and applications not using global effects.
1246        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1247        // global effects
1248        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1249            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1250        }
1251    }
1252
1253    sp<EffectChain> chain = getEffectChain_l(sessionId);
1254    if (chain != 0) {
1255        chain->checkSuspendOnEffectEnabled(effect, enabled);
1256    }
1257}
1258
1259// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1260status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1261        const effect_descriptor_t *desc, audio_session_t sessionId)
1262{
1263    // No global effect sessions on record threads
1264    if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1265        ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1266                desc->name, mThreadName);
1267        return BAD_VALUE;
1268    }
1269    // only pre processing effects on record thread
1270    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1271        ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1272                desc->name, mThreadName);
1273        return BAD_VALUE;
1274    }
1275    audio_input_flags_t flags = mInput->flags;
1276    if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1277        if (flags & AUDIO_INPUT_FLAG_RAW) {
1278            ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1279                  desc->name, mThreadName);
1280            return BAD_VALUE;
1281        }
1282        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1283            ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1284                  desc->name, mThreadName);
1285            return BAD_VALUE;
1286        }
1287    }
1288    return NO_ERROR;
1289}
1290
1291// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1292status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1293        const effect_descriptor_t *desc, audio_session_t sessionId)
1294{
1295    // no preprocessing on playback threads
1296    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1297        ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1298                " thread %s", desc->name, mThreadName);
1299        return BAD_VALUE;
1300    }
1301
1302    switch (mType) {
1303    case MIXER: {
1304        // Reject any effect on mixer multichannel sinks.
1305        // TODO: fix both format and multichannel issues with effects.
1306        if (mChannelCount != FCC_2) {
1307            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1308                    " thread %s", desc->name, mChannelCount, mThreadName);
1309            return BAD_VALUE;
1310        }
1311        audio_output_flags_t flags = mOutput->flags;
1312        if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1313            if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1314                // global effects are applied only to non fast tracks if they are SW
1315                if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1316                    break;
1317                }
1318            } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1319                // only post processing on output stage session
1320                if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1321                    ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1322                            " on output stage session", desc->name);
1323                    return BAD_VALUE;
1324                }
1325            } else {
1326                // no restriction on effects applied on non fast tracks
1327                if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1328                    break;
1329                }
1330            }
1331            if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1332                ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1333                      desc->name);
1334                return BAD_VALUE;
1335            }
1336            if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1337                ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1338                        " in fast mode", desc->name);
1339                return BAD_VALUE;
1340            }
1341        }
1342    } break;
1343    case OFFLOAD:
1344        // only offloadable effects on offload thread
1345        if ((desc->flags & EFFECT_FLAG_OFFLOAD_MASK) != EFFECT_FLAG_OFFLOAD_SUPPORTED) {
1346            ALOGW("checkEffectCompatibility_l(): non offloadable effect %s created on"
1347                    " OFFLOAD thread %s", desc->name, mThreadName);
1348            return BAD_VALUE;
1349        }
1350        break;
1351    case DIRECT:
1352        // Reject any effect on Direct output threads for now, since the format of
1353        // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1354        ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1355                desc->name, mThreadName);
1356        return BAD_VALUE;
1357    case DUPLICATING:
1358        // Reject any effect on mixer multichannel sinks.
1359        // TODO: fix both format and multichannel issues with effects.
1360        if (mChannelCount != FCC_2) {
1361            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1362                    " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1363            return BAD_VALUE;
1364        }
1365        if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1366            ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1367                    " thread %s", desc->name, mThreadName);
1368            return BAD_VALUE;
1369        }
1370        if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1371            ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1372                    " DUPLICATING thread %s", desc->name, mThreadName);
1373            return BAD_VALUE;
1374        }
1375        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1376            ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1377                    " DUPLICATING thread %s", desc->name, mThreadName);
1378            return BAD_VALUE;
1379        }
1380        break;
1381    default:
1382        LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1383    }
1384
1385    return NO_ERROR;
1386}
1387
1388// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1389sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1390        const sp<AudioFlinger::Client>& client,
1391        const sp<IEffectClient>& effectClient,
1392        int32_t priority,
1393        audio_session_t sessionId,
1394        effect_descriptor_t *desc,
1395        int *enabled,
1396        status_t *status)
1397{
1398    sp<EffectModule> effect;
1399    sp<EffectHandle> handle;
1400    status_t lStatus;
1401    sp<EffectChain> chain;
1402    bool chainCreated = false;
1403    bool effectCreated = false;
1404    bool effectRegistered = false;
1405
1406    lStatus = initCheck();
1407    if (lStatus != NO_ERROR) {
1408        ALOGW("createEffect_l() Audio driver not initialized.");
1409        goto Exit;
1410    }
1411
1412    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1413
1414    { // scope for mLock
1415        Mutex::Autolock _l(mLock);
1416
1417        lStatus = checkEffectCompatibility_l(desc, sessionId);
1418        if (lStatus != NO_ERROR) {
1419            goto Exit;
1420        }
1421
1422        // check for existing effect chain with the requested audio session
1423        chain = getEffectChain_l(sessionId);
1424        if (chain == 0) {
1425            // create a new chain for this session
1426            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1427            chain = new EffectChain(this, sessionId);
1428            addEffectChain_l(chain);
1429            chain->setStrategy(getStrategyForSession_l(sessionId));
1430            chainCreated = true;
1431        } else {
1432            effect = chain->getEffectFromDesc_l(desc);
1433        }
1434
1435        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1436
1437        if (effect == 0) {
1438            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1439            // Check CPU and memory usage
1440            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1441            if (lStatus != NO_ERROR) {
1442                goto Exit;
1443            }
1444            effectRegistered = true;
1445            // create a new effect module if none present in the chain
1446            effect = new EffectModule(this, chain, desc, id, sessionId);
1447            lStatus = effect->status();
1448            if (lStatus != NO_ERROR) {
1449                goto Exit;
1450            }
1451            effect->setOffloaded(mType == OFFLOAD, mId);
1452
1453            lStatus = chain->addEffect_l(effect);
1454            if (lStatus != NO_ERROR) {
1455                goto Exit;
1456            }
1457            effectCreated = true;
1458
1459            effect->setDevice(mOutDevice);
1460            effect->setDevice(mInDevice);
1461            effect->setMode(mAudioFlinger->getMode());
1462            effect->setAudioSource(mAudioSource);
1463        }
1464        // create effect handle and connect it to effect module
1465        handle = new EffectHandle(effect, client, effectClient, priority);
1466        lStatus = handle->initCheck();
1467        if (lStatus == OK) {
1468            lStatus = effect->addHandle(handle.get());
1469        }
1470        if (enabled != NULL) {
1471            *enabled = (int)effect->isEnabled();
1472        }
1473    }
1474
1475Exit:
1476    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1477        Mutex::Autolock _l(mLock);
1478        if (effectCreated) {
1479            chain->removeEffect_l(effect);
1480        }
1481        if (effectRegistered) {
1482            AudioSystem::unregisterEffect(effect->id());
1483        }
1484        if (chainCreated) {
1485            removeEffectChain_l(chain);
1486        }
1487        handle.clear();
1488    }
1489
1490    *status = lStatus;
1491    return handle;
1492}
1493
1494sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1495        int effectId)
1496{
1497    Mutex::Autolock _l(mLock);
1498    return getEffect_l(sessionId, effectId);
1499}
1500
1501sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1502        int effectId)
1503{
1504    sp<EffectChain> chain = getEffectChain_l(sessionId);
1505    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1506}
1507
1508// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1509// PlaybackThread::mLock held
1510status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1511{
1512    // check for existing effect chain with the requested audio session
1513    audio_session_t sessionId = effect->sessionId();
1514    sp<EffectChain> chain = getEffectChain_l(sessionId);
1515    bool chainCreated = false;
1516
1517    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1518             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1519                    this, effect->desc().name, effect->desc().flags);
1520
1521    if (chain == 0) {
1522        // create a new chain for this session
1523        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1524        chain = new EffectChain(this, sessionId);
1525        addEffectChain_l(chain);
1526        chain->setStrategy(getStrategyForSession_l(sessionId));
1527        chainCreated = true;
1528    }
1529    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1530
1531    if (chain->getEffectFromId_l(effect->id()) != 0) {
1532        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1533                this, effect->desc().name, chain.get());
1534        return BAD_VALUE;
1535    }
1536
1537    effect->setOffloaded(mType == OFFLOAD, mId);
1538
1539    status_t status = chain->addEffect_l(effect);
1540    if (status != NO_ERROR) {
1541        if (chainCreated) {
1542            removeEffectChain_l(chain);
1543        }
1544        return status;
1545    }
1546
1547    effect->setDevice(mOutDevice);
1548    effect->setDevice(mInDevice);
1549    effect->setMode(mAudioFlinger->getMode());
1550    effect->setAudioSource(mAudioSource);
1551    return NO_ERROR;
1552}
1553
1554void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1555
1556    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1557    effect_descriptor_t desc = effect->desc();
1558    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1559        detachAuxEffect_l(effect->id());
1560    }
1561
1562    sp<EffectChain> chain = effect->chain().promote();
1563    if (chain != 0) {
1564        // remove effect chain if removing last effect
1565        if (chain->removeEffect_l(effect) == 0) {
1566            removeEffectChain_l(chain);
1567        }
1568    } else {
1569        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1570    }
1571}
1572
1573void AudioFlinger::ThreadBase::lockEffectChains_l(
1574        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1575{
1576    effectChains = mEffectChains;
1577    for (size_t i = 0; i < mEffectChains.size(); i++) {
1578        mEffectChains[i]->lock();
1579    }
1580}
1581
1582void AudioFlinger::ThreadBase::unlockEffectChains(
1583        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1584{
1585    for (size_t i = 0; i < effectChains.size(); i++) {
1586        effectChains[i]->unlock();
1587    }
1588}
1589
1590sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1591{
1592    Mutex::Autolock _l(mLock);
1593    return getEffectChain_l(sessionId);
1594}
1595
1596sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1597        const
1598{
1599    size_t size = mEffectChains.size();
1600    for (size_t i = 0; i < size; i++) {
1601        if (mEffectChains[i]->sessionId() == sessionId) {
1602            return mEffectChains[i];
1603        }
1604    }
1605    return 0;
1606}
1607
1608void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1609{
1610    Mutex::Autolock _l(mLock);
1611    size_t size = mEffectChains.size();
1612    for (size_t i = 0; i < size; i++) {
1613        mEffectChains[i]->setMode_l(mode);
1614    }
1615}
1616
1617void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1618{
1619    config->type = AUDIO_PORT_TYPE_MIX;
1620    config->ext.mix.handle = mId;
1621    config->sample_rate = mSampleRate;
1622    config->format = mFormat;
1623    config->channel_mask = mChannelMask;
1624    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1625                            AUDIO_PORT_CONFIG_FORMAT;
1626}
1627
1628void AudioFlinger::ThreadBase::systemReady()
1629{
1630    Mutex::Autolock _l(mLock);
1631    if (mSystemReady) {
1632        return;
1633    }
1634    mSystemReady = true;
1635
1636    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1637        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1638    }
1639    mPendingConfigEvents.clear();
1640}
1641
1642
1643// ----------------------------------------------------------------------------
1644//      Playback
1645// ----------------------------------------------------------------------------
1646
1647AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1648                                             AudioStreamOut* output,
1649                                             audio_io_handle_t id,
1650                                             audio_devices_t device,
1651                                             type_t type,
1652                                             bool systemReady)
1653    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1654        mNormalFrameCount(0), mSinkBuffer(NULL),
1655        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1656        mMixerBuffer(NULL),
1657        mMixerBufferSize(0),
1658        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1659        mMixerBufferValid(false),
1660        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1661        mEffectBuffer(NULL),
1662        mEffectBufferSize(0),
1663        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1664        mEffectBufferValid(false),
1665        mSuspended(0), mBytesWritten(0),
1666        mFramesWritten(0),
1667        mActiveTracksGeneration(0),
1668        // mStreamTypes[] initialized in constructor body
1669        mOutput(output),
1670        mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1671        mMixerStatus(MIXER_IDLE),
1672        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1673        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1674        mBytesRemaining(0),
1675        mCurrentWriteLength(0),
1676        mUseAsyncWrite(false),
1677        mWriteAckSequence(0),
1678        mDrainSequence(0),
1679        mSignalPending(false),
1680        mScreenState(AudioFlinger::mScreenState),
1681        // index 0 is reserved for normal mixer's submix
1682        mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1683        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1684{
1685    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1686    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1687
1688    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1689    // it would be safer to explicitly pass initial masterVolume/masterMute as
1690    // parameter.
1691    //
1692    // If the HAL we are using has support for master volume or master mute,
1693    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1694    // and the mute set to false).
1695    mMasterVolume = audioFlinger->masterVolume_l();
1696    mMasterMute = audioFlinger->masterMute_l();
1697    if (mOutput && mOutput->audioHwDev) {
1698        if (mOutput->audioHwDev->canSetMasterVolume()) {
1699            mMasterVolume = 1.0;
1700        }
1701
1702        if (mOutput->audioHwDev->canSetMasterMute()) {
1703            mMasterMute = false;
1704        }
1705    }
1706
1707    readOutputParameters_l();
1708
1709    // ++ operator does not compile
1710    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1711            stream = (audio_stream_type_t) (stream + 1)) {
1712        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1713        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1714    }
1715}
1716
1717AudioFlinger::PlaybackThread::~PlaybackThread()
1718{
1719    mAudioFlinger->unregisterWriter(mNBLogWriter);
1720    free(mSinkBuffer);
1721    free(mMixerBuffer);
1722    free(mEffectBuffer);
1723}
1724
1725void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1726{
1727    dumpInternals(fd, args);
1728    dumpTracks(fd, args);
1729    dumpEffectChains(fd, args);
1730}
1731
1732void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1733{
1734    const size_t SIZE = 256;
1735    char buffer[SIZE];
1736    String8 result;
1737
1738    result.appendFormat("  Stream volumes in dB: ");
1739    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1740        const stream_type_t *st = &mStreamTypes[i];
1741        if (i > 0) {
1742            result.appendFormat(", ");
1743        }
1744        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1745        if (st->mute) {
1746            result.append("M");
1747        }
1748    }
1749    result.append("\n");
1750    write(fd, result.string(), result.length());
1751    result.clear();
1752
1753    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1754    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1755    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1756            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1757
1758    size_t numtracks = mTracks.size();
1759    size_t numactive = mActiveTracks.size();
1760    dprintf(fd, "  %zu Tracks", numtracks);
1761    size_t numactiveseen = 0;
1762    if (numtracks) {
1763        dprintf(fd, " of which %zu are active\n", numactive);
1764        Track::appendDumpHeader(result);
1765        for (size_t i = 0; i < numtracks; ++i) {
1766            sp<Track> track = mTracks[i];
1767            if (track != 0) {
1768                bool active = mActiveTracks.indexOf(track) >= 0;
1769                if (active) {
1770                    numactiveseen++;
1771                }
1772                track->dump(buffer, SIZE, active);
1773                result.append(buffer);
1774            }
1775        }
1776    } else {
1777        result.append("\n");
1778    }
1779    if (numactiveseen != numactive) {
1780        // some tracks in the active list were not in the tracks list
1781        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1782                " not in the track list\n");
1783        result.append(buffer);
1784        Track::appendDumpHeader(result);
1785        for (size_t i = 0; i < numactive; ++i) {
1786            sp<Track> track = mActiveTracks[i].promote();
1787            if (track != 0 && mTracks.indexOf(track) < 0) {
1788                track->dump(buffer, SIZE, true);
1789                result.append(buffer);
1790            }
1791        }
1792    }
1793
1794    write(fd, result.string(), result.size());
1795}
1796
1797void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1798{
1799    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1800
1801    dumpBase(fd, args);
1802
1803    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1804    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1805            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1806    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1807    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1808    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1809    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1810    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1811    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1812    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1813    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1814    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1815    AudioStreamOut *output = mOutput;
1816    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1817    String8 flagsAsString = outputFlagsToString(flags);
1818    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1819}
1820
1821// Thread virtuals
1822
1823void AudioFlinger::PlaybackThread::onFirstRef()
1824{
1825    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1826}
1827
1828// ThreadBase virtuals
1829void AudioFlinger::PlaybackThread::preExit()
1830{
1831    ALOGV("  preExit()");
1832    // FIXME this is using hard-coded strings but in the future, this functionality will be
1833    //       converted to use audio HAL extensions required to support tunneling
1834    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1835}
1836
1837// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1838sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1839        const sp<AudioFlinger::Client>& client,
1840        audio_stream_type_t streamType,
1841        uint32_t sampleRate,
1842        audio_format_t format,
1843        audio_channel_mask_t channelMask,
1844        size_t *pFrameCount,
1845        const sp<IMemory>& sharedBuffer,
1846        audio_session_t sessionId,
1847        audio_output_flags_t *flags,
1848        pid_t tid,
1849        int uid,
1850        status_t *status)
1851{
1852    size_t frameCount = *pFrameCount;
1853    sp<Track> track;
1854    status_t lStatus;
1855    audio_output_flags_t outputFlags = mOutput->flags;
1856
1857    // special case for FAST flag considered OK if fast mixer is present
1858    if (hasFastMixer()) {
1859        outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1860    }
1861
1862    // Check if requested flags are compatible with output stream flags
1863    if ((*flags & outputFlags) != *flags) {
1864        ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1865              *flags, outputFlags);
1866        *flags = (audio_output_flags_t)(*flags & outputFlags);
1867    }
1868
1869    // client expresses a preference for FAST, but we get the final say
1870    if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1871      if (
1872            // PCM data
1873            audio_is_linear_pcm(format) &&
1874            // TODO: extract as a data library function that checks that a computationally
1875            // expensive downmixer is not required: isFastOutputChannelConversion()
1876            (channelMask == mChannelMask ||
1877                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1878                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1879                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1880            // hardware sample rate
1881            (sampleRate == mSampleRate) &&
1882            // normal mixer has an associated fast mixer
1883            hasFastMixer() &&
1884            // there are sufficient fast track slots available
1885            (mFastTrackAvailMask != 0)
1886            // FIXME test that MixerThread for this fast track has a capable output HAL
1887            // FIXME add a permission test also?
1888        ) {
1889        // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1890        if (sharedBuffer == 0) {
1891            // read the fast track multiplier property the first time it is needed
1892            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1893            if (ok != 0) {
1894                ALOGE("%s pthread_once failed: %d", __func__, ok);
1895            }
1896            frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1897        }
1898
1899        // check compatibility with audio effects.
1900        { // scope for mLock
1901            Mutex::Autolock _l(mLock);
1902            // do not accept RAW flag if post processing are present. Note that post processing on
1903            // a fast mixer are necessarily hardware
1904            sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE);
1905            if (chain != 0) {
1906                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1907                        "AUDIO_OUTPUT_FLAG_RAW denied: post processing effect present");
1908                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1909            }
1910            // Do not accept FAST flag if software global effects are present
1911            chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
1912            if (chain != 0) {
1913                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1914                        "AUDIO_OUTPUT_FLAG_RAW denied: global effect present");
1915                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1916                if (chain->hasSoftwareEffect()) {
1917                    ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software global effect present");
1918                    *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1919                }
1920            }
1921            // Do not accept FAST flag if the session has software effects
1922            chain = getEffectChain_l(sessionId);
1923            if (chain != 0) {
1924                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1925                        "AUDIO_OUTPUT_FLAG_RAW denied: effect present on session");
1926                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1927                if (chain->hasSoftwareEffect()) {
1928                    ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software effect present on session");
1929                    *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1930                }
1931            }
1932        }
1933        ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1934                 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1935                 frameCount, mFrameCount);
1936      } else {
1937        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1938                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1939                "sampleRate=%u mSampleRate=%u "
1940                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1941                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1942                audio_is_linear_pcm(format),
1943                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1944        *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1945      }
1946    }
1947    // For normal PCM streaming tracks, update minimum frame count.
1948    // For compatibility with AudioTrack calculation, buffer depth is forced
1949    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1950    // This is probably too conservative, but legacy application code may depend on it.
1951    // If you change this calculation, also review the start threshold which is related.
1952    if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1953            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1954        // this must match AudioTrack.cpp calculateMinFrameCount().
1955        // TODO: Move to a common library
1956        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1957        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1958        if (minBufCount < 2) {
1959            minBufCount = 2;
1960        }
1961        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1962        // or the client should compute and pass in a larger buffer request.
1963        size_t minFrameCount =
1964                minBufCount * sourceFramesNeededWithTimestretch(
1965                        sampleRate, mNormalFrameCount,
1966                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1967        if (frameCount < minFrameCount) { // including frameCount == 0
1968            frameCount = minFrameCount;
1969        }
1970    }
1971    *pFrameCount = frameCount;
1972
1973    switch (mType) {
1974
1975    case DIRECT:
1976        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1977            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1978                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1979                        "for output %p with format %#x",
1980                        sampleRate, format, channelMask, mOutput, mFormat);
1981                lStatus = BAD_VALUE;
1982                goto Exit;
1983            }
1984        }
1985        break;
1986
1987    case OFFLOAD:
1988        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1989            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1990                    "for output %p with format %#x",
1991                    sampleRate, format, channelMask, mOutput, mFormat);
1992            lStatus = BAD_VALUE;
1993            goto Exit;
1994        }
1995        break;
1996
1997    default:
1998        if (!audio_is_linear_pcm(format)) {
1999                ALOGE("createTrack_l() Bad parameter: format %#x \""
2000                        "for output %p with format %#x",
2001                        format, mOutput, mFormat);
2002                lStatus = BAD_VALUE;
2003                goto Exit;
2004        }
2005        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2006            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2007            lStatus = BAD_VALUE;
2008            goto Exit;
2009        }
2010        break;
2011
2012    }
2013
2014    lStatus = initCheck();
2015    if (lStatus != NO_ERROR) {
2016        ALOGE("createTrack_l() audio driver not initialized");
2017        goto Exit;
2018    }
2019
2020    { // scope for mLock
2021        Mutex::Autolock _l(mLock);
2022
2023        // all tracks in same audio session must share the same routing strategy otherwise
2024        // conflicts will happen when tracks are moved from one output to another by audio policy
2025        // manager
2026        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2027        for (size_t i = 0; i < mTracks.size(); ++i) {
2028            sp<Track> t = mTracks[i];
2029            if (t != 0 && t->isExternalTrack()) {
2030                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2031                if (sessionId == t->sessionId() && strategy != actual) {
2032                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2033                            strategy, actual);
2034                    lStatus = BAD_VALUE;
2035                    goto Exit;
2036                }
2037            }
2038        }
2039
2040        track = new Track(this, client, streamType, sampleRate, format,
2041                          channelMask, frameCount, NULL, sharedBuffer,
2042                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
2043
2044        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2045        if (lStatus != NO_ERROR) {
2046            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2047            // track must be cleared from the caller as the caller has the AF lock
2048            goto Exit;
2049        }
2050        mTracks.add(track);
2051
2052        sp<EffectChain> chain = getEffectChain_l(sessionId);
2053        if (chain != 0) {
2054            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2055            track->setMainBuffer(chain->inBuffer());
2056            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2057            chain->incTrackCnt();
2058        }
2059
2060        if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2061            pid_t callingPid = IPCThreadState::self()->getCallingPid();
2062            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2063            // so ask activity manager to do this on our behalf
2064            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
2065        }
2066    }
2067
2068    lStatus = NO_ERROR;
2069
2070Exit:
2071    *status = lStatus;
2072    return track;
2073}
2074
2075uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2076{
2077    return latency;
2078}
2079
2080uint32_t AudioFlinger::PlaybackThread::latency() const
2081{
2082    Mutex::Autolock _l(mLock);
2083    return latency_l();
2084}
2085uint32_t AudioFlinger::PlaybackThread::latency_l() const
2086{
2087    if (initCheck() == NO_ERROR) {
2088        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
2089    } else {
2090        return 0;
2091    }
2092}
2093
2094void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2095{
2096    Mutex::Autolock _l(mLock);
2097    // Don't apply master volume in SW if our HAL can do it for us.
2098    if (mOutput && mOutput->audioHwDev &&
2099        mOutput->audioHwDev->canSetMasterVolume()) {
2100        mMasterVolume = 1.0;
2101    } else {
2102        mMasterVolume = value;
2103    }
2104}
2105
2106void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2107{
2108    Mutex::Autolock _l(mLock);
2109    // Don't apply master mute in SW if our HAL can do it for us.
2110    if (mOutput && mOutput->audioHwDev &&
2111        mOutput->audioHwDev->canSetMasterMute()) {
2112        mMasterMute = false;
2113    } else {
2114        mMasterMute = muted;
2115    }
2116}
2117
2118void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2119{
2120    Mutex::Autolock _l(mLock);
2121    mStreamTypes[stream].volume = value;
2122    broadcast_l();
2123}
2124
2125void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2126{
2127    Mutex::Autolock _l(mLock);
2128    mStreamTypes[stream].mute = muted;
2129    broadcast_l();
2130}
2131
2132float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2133{
2134    Mutex::Autolock _l(mLock);
2135    return mStreamTypes[stream].volume;
2136}
2137
2138// addTrack_l() must be called with ThreadBase::mLock held
2139status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2140{
2141    status_t status = ALREADY_EXISTS;
2142
2143    if (mActiveTracks.indexOf(track) < 0) {
2144        // the track is newly added, make sure it fills up all its
2145        // buffers before playing. This is to ensure the client will
2146        // effectively get the latency it requested.
2147        if (track->isExternalTrack()) {
2148            TrackBase::track_state state = track->mState;
2149            mLock.unlock();
2150            status = AudioSystem::startOutput(mId, track->streamType(),
2151                                              track->sessionId());
2152            mLock.lock();
2153            // abort track was stopped/paused while we released the lock
2154            if (state != track->mState) {
2155                if (status == NO_ERROR) {
2156                    mLock.unlock();
2157                    AudioSystem::stopOutput(mId, track->streamType(),
2158                                            track->sessionId());
2159                    mLock.lock();
2160                }
2161                return INVALID_OPERATION;
2162            }
2163            // abort if start is rejected by audio policy manager
2164            if (status != NO_ERROR) {
2165                return PERMISSION_DENIED;
2166            }
2167#ifdef ADD_BATTERY_DATA
2168            // to track the speaker usage
2169            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2170#endif
2171        }
2172
2173        // set retry count for buffer fill
2174        if (track->isOffloaded()) {
2175            if (track->isStopping_1()) {
2176                track->mRetryCount = kMaxTrackStopRetriesOffload;
2177            } else {
2178                track->mRetryCount = kMaxTrackStartupRetriesOffload;
2179            }
2180            track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2181        } else {
2182            track->mRetryCount = kMaxTrackStartupRetries;
2183            track->mFillingUpStatus =
2184                    track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2185        }
2186
2187        track->mResetDone = false;
2188        track->mPresentationCompleteFrames = 0;
2189        mActiveTracks.add(track);
2190        mWakeLockUids.add(track->uid());
2191        mActiveTracksGeneration++;
2192        mLatestActiveTrack = track;
2193        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2194        if (chain != 0) {
2195            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2196                    track->sessionId());
2197            chain->incActiveTrackCnt();
2198        }
2199
2200        status = NO_ERROR;
2201    }
2202
2203    onAddNewTrack_l();
2204    return status;
2205}
2206
2207bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2208{
2209    track->terminate();
2210    // active tracks are removed by threadLoop()
2211    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2212    track->mState = TrackBase::STOPPED;
2213    if (!trackActive) {
2214        removeTrack_l(track);
2215    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2216        track->mState = TrackBase::STOPPING_1;
2217    }
2218
2219    return trackActive;
2220}
2221
2222void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2223{
2224    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2225    mTracks.remove(track);
2226    deleteTrackName_l(track->name());
2227    // redundant as track is about to be destroyed, for dumpsys only
2228    track->mName = -1;
2229    if (track->isFastTrack()) {
2230        int index = track->mFastIndex;
2231        ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2232        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2233        mFastTrackAvailMask |= 1 << index;
2234        // redundant as track is about to be destroyed, for dumpsys only
2235        track->mFastIndex = -1;
2236    }
2237    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2238    if (chain != 0) {
2239        chain->decTrackCnt();
2240    }
2241}
2242
2243void AudioFlinger::PlaybackThread::broadcast_l()
2244{
2245    // Thread could be blocked waiting for async
2246    // so signal it to handle state changes immediately
2247    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2248    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2249    mSignalPending = true;
2250    mWaitWorkCV.broadcast();
2251}
2252
2253String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2254{
2255    Mutex::Autolock _l(mLock);
2256    if (initCheck() != NO_ERROR) {
2257        return String8();
2258    }
2259
2260    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2261    const String8 out_s8(s);
2262    free(s);
2263    return out_s8;
2264}
2265
2266void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2267    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2268    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2269
2270    desc->mIoHandle = mId;
2271
2272    switch (event) {
2273    case AUDIO_OUTPUT_OPENED:
2274    case AUDIO_OUTPUT_CONFIG_CHANGED:
2275        desc->mPatch = mPatch;
2276        desc->mChannelMask = mChannelMask;
2277        desc->mSamplingRate = mSampleRate;
2278        desc->mFormat = mFormat;
2279        desc->mFrameCount = mNormalFrameCount; // FIXME see
2280                                             // AudioFlinger::frameCount(audio_io_handle_t)
2281        desc->mFrameCountHAL = mFrameCount;
2282        desc->mLatency = latency_l();
2283        break;
2284
2285    case AUDIO_OUTPUT_CLOSED:
2286    default:
2287        break;
2288    }
2289    mAudioFlinger->ioConfigChanged(event, desc, pid);
2290}
2291
2292void AudioFlinger::PlaybackThread::writeCallback()
2293{
2294    ALOG_ASSERT(mCallbackThread != 0);
2295    mCallbackThread->resetWriteBlocked();
2296}
2297
2298void AudioFlinger::PlaybackThread::drainCallback()
2299{
2300    ALOG_ASSERT(mCallbackThread != 0);
2301    mCallbackThread->resetDraining();
2302}
2303
2304void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2305{
2306    Mutex::Autolock _l(mLock);
2307    // reject out of sequence requests
2308    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2309        mWriteAckSequence &= ~1;
2310        mWaitWorkCV.signal();
2311    }
2312}
2313
2314void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2315{
2316    Mutex::Autolock _l(mLock);
2317    // reject out of sequence requests
2318    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2319        mDrainSequence &= ~1;
2320        mWaitWorkCV.signal();
2321    }
2322}
2323
2324// static
2325int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2326                                                void *param __unused,
2327                                                void *cookie)
2328{
2329    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2330    ALOGV("asyncCallback() event %d", event);
2331    switch (event) {
2332    case STREAM_CBK_EVENT_WRITE_READY:
2333        me->writeCallback();
2334        break;
2335    case STREAM_CBK_EVENT_DRAIN_READY:
2336        me->drainCallback();
2337        break;
2338    default:
2339        ALOGW("asyncCallback() unknown event %d", event);
2340        break;
2341    }
2342    return 0;
2343}
2344
2345void AudioFlinger::PlaybackThread::readOutputParameters_l()
2346{
2347    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2348    mSampleRate = mOutput->getSampleRate();
2349    mChannelMask = mOutput->getChannelMask();
2350    if (!audio_is_output_channel(mChannelMask)) {
2351        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2352    }
2353    if ((mType == MIXER || mType == DUPLICATING)
2354            && !isValidPcmSinkChannelMask(mChannelMask)) {
2355        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2356                mChannelMask);
2357    }
2358    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2359
2360    // Get actual HAL format.
2361    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2362    // Get format from the shim, which will be different than the HAL format
2363    // if playing compressed audio over HDMI passthrough.
2364    mFormat = mOutput->getFormat();
2365    if (!audio_is_valid_format(mFormat)) {
2366        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2367    }
2368    if ((mType == MIXER || mType == DUPLICATING)
2369            && !isValidPcmSinkFormat(mFormat)) {
2370        LOG_FATAL("HAL format %#x not supported for mixed output",
2371                mFormat);
2372    }
2373    mFrameSize = mOutput->getFrameSize();
2374    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2375    mFrameCount = mBufferSize / mFrameSize;
2376    if (mFrameCount & 15) {
2377        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2378                mFrameCount);
2379    }
2380
2381    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2382            (mOutput->stream->set_callback != NULL)) {
2383        if (mOutput->stream->set_callback(mOutput->stream,
2384                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2385            mUseAsyncWrite = true;
2386            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2387        }
2388    }
2389
2390    mHwSupportsPause = false;
2391    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2392        if (mOutput->stream->pause != NULL) {
2393            if (mOutput->stream->resume != NULL) {
2394                mHwSupportsPause = true;
2395            } else {
2396                ALOGW("direct output implements pause but not resume");
2397            }
2398        } else if (mOutput->stream->resume != NULL) {
2399            ALOGW("direct output implements resume but not pause");
2400        }
2401    }
2402    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2403        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2404    }
2405
2406    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2407        // For best precision, we use float instead of the associated output
2408        // device format (typically PCM 16 bit).
2409
2410        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2411        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2412        mBufferSize = mFrameSize * mFrameCount;
2413
2414        // TODO: We currently use the associated output device channel mask and sample rate.
2415        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2416        // (if a valid mask) to avoid premature downmix.
2417        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2418        // instead of the output device sample rate to avoid loss of high frequency information.
2419        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2420    }
2421
2422    // Calculate size of normal sink buffer relative to the HAL output buffer size
2423    double multiplier = 1.0;
2424    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2425            kUseFastMixer == FastMixer_Dynamic)) {
2426        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2427        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2428
2429        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2430        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2431        maxNormalFrameCount = maxNormalFrameCount & ~15;
2432        if (maxNormalFrameCount < minNormalFrameCount) {
2433            maxNormalFrameCount = minNormalFrameCount;
2434        }
2435        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2436        if (multiplier <= 1.0) {
2437            multiplier = 1.0;
2438        } else if (multiplier <= 2.0) {
2439            if (2 * mFrameCount <= maxNormalFrameCount) {
2440                multiplier = 2.0;
2441            } else {
2442                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2443            }
2444        } else {
2445            multiplier = floor(multiplier);
2446        }
2447    }
2448    mNormalFrameCount = multiplier * mFrameCount;
2449    // round up to nearest 16 frames to satisfy AudioMixer
2450    if (mType == MIXER || mType == DUPLICATING) {
2451        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2452    }
2453    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2454            mNormalFrameCount);
2455
2456    // Check if we want to throttle the processing to no more than 2x normal rate
2457    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2458    mThreadThrottleTimeMs = 0;
2459    mThreadThrottleEndMs = 0;
2460    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2461
2462    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2463    // Originally this was int16_t[] array, need to remove legacy implications.
2464    free(mSinkBuffer);
2465    mSinkBuffer = NULL;
2466    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2467    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2468    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2469    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2470
2471    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2472    // drives the output.
2473    free(mMixerBuffer);
2474    mMixerBuffer = NULL;
2475    if (mMixerBufferEnabled) {
2476        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2477        mMixerBufferSize = mNormalFrameCount * mChannelCount
2478                * audio_bytes_per_sample(mMixerBufferFormat);
2479        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2480    }
2481    free(mEffectBuffer);
2482    mEffectBuffer = NULL;
2483    if (mEffectBufferEnabled) {
2484        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2485        mEffectBufferSize = mNormalFrameCount * mChannelCount
2486                * audio_bytes_per_sample(mEffectBufferFormat);
2487        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2488    }
2489
2490    // force reconfiguration of effect chains and engines to take new buffer size and audio
2491    // parameters into account
2492    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2493    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2494    // matter.
2495    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2496    Vector< sp<EffectChain> > effectChains = mEffectChains;
2497    for (size_t i = 0; i < effectChains.size(); i ++) {
2498        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2499    }
2500}
2501
2502
2503status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2504{
2505    if (halFrames == NULL || dspFrames == NULL) {
2506        return BAD_VALUE;
2507    }
2508    Mutex::Autolock _l(mLock);
2509    if (initCheck() != NO_ERROR) {
2510        return INVALID_OPERATION;
2511    }
2512    int64_t framesWritten = mBytesWritten / mFrameSize;
2513    *halFrames = framesWritten;
2514
2515    if (isSuspended()) {
2516        // return an estimation of rendered frames when the output is suspended
2517        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2518        *dspFrames = (uint32_t)
2519                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2520        return NO_ERROR;
2521    } else {
2522        status_t status;
2523        uint32_t frames;
2524        status = mOutput->getRenderPosition(&frames);
2525        *dspFrames = (size_t)frames;
2526        return status;
2527    }
2528}
2529
2530// hasAudioSession_l() must be called with ThreadBase::mLock held
2531uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2532{
2533    uint32_t result = 0;
2534    if (getEffectChain_l(sessionId) != 0) {
2535        result = EFFECT_SESSION;
2536    }
2537
2538    for (size_t i = 0; i < mTracks.size(); ++i) {
2539        sp<Track> track = mTracks[i];
2540        if (sessionId == track->sessionId() && !track->isInvalid()) {
2541            result |= TRACK_SESSION;
2542            if (track->isFastTrack()) {
2543                result |= FAST_SESSION;
2544            }
2545            break;
2546        }
2547    }
2548
2549    return result;
2550}
2551
2552uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2553{
2554    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2555    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2556    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2557        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2558    }
2559    for (size_t i = 0; i < mTracks.size(); i++) {
2560        sp<Track> track = mTracks[i];
2561        if (sessionId == track->sessionId() && !track->isInvalid()) {
2562            return AudioSystem::getStrategyForStream(track->streamType());
2563        }
2564    }
2565    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2566}
2567
2568
2569AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2570{
2571    Mutex::Autolock _l(mLock);
2572    return mOutput;
2573}
2574
2575AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2576{
2577    Mutex::Autolock _l(mLock);
2578    AudioStreamOut *output = mOutput;
2579    mOutput = NULL;
2580    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2581    //       must push a NULL and wait for ack
2582    mOutputSink.clear();
2583    mPipeSink.clear();
2584    mNormalSink.clear();
2585    return output;
2586}
2587
2588// this method must always be called either with ThreadBase mLock held or inside the thread loop
2589audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2590{
2591    if (mOutput == NULL) {
2592        return NULL;
2593    }
2594    return &mOutput->stream->common;
2595}
2596
2597uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2598{
2599    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2600}
2601
2602status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2603{
2604    if (!isValidSyncEvent(event)) {
2605        return BAD_VALUE;
2606    }
2607
2608    Mutex::Autolock _l(mLock);
2609
2610    for (size_t i = 0; i < mTracks.size(); ++i) {
2611        sp<Track> track = mTracks[i];
2612        if (event->triggerSession() == track->sessionId()) {
2613            (void) track->setSyncEvent(event);
2614            return NO_ERROR;
2615        }
2616    }
2617
2618    return NAME_NOT_FOUND;
2619}
2620
2621bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2622{
2623    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2624}
2625
2626void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2627        const Vector< sp<Track> >& tracksToRemove)
2628{
2629    size_t count = tracksToRemove.size();
2630    if (count > 0) {
2631        for (size_t i = 0 ; i < count ; i++) {
2632            const sp<Track>& track = tracksToRemove.itemAt(i);
2633            if (track->isExternalTrack()) {
2634                AudioSystem::stopOutput(mId, track->streamType(),
2635                                        track->sessionId());
2636#ifdef ADD_BATTERY_DATA
2637                // to track the speaker usage
2638                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2639#endif
2640                if (track->isTerminated()) {
2641                    AudioSystem::releaseOutput(mId, track->streamType(),
2642                                               track->sessionId());
2643                }
2644            }
2645        }
2646    }
2647}
2648
2649void AudioFlinger::PlaybackThread::checkSilentMode_l()
2650{
2651    if (!mMasterMute) {
2652        char value[PROPERTY_VALUE_MAX];
2653        if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2654            ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2655            return;
2656        }
2657        if (property_get("ro.audio.silent", value, "0") > 0) {
2658            char *endptr;
2659            unsigned long ul = strtoul(value, &endptr, 0);
2660            if (*endptr == '\0' && ul != 0) {
2661                ALOGD("Silence is golden");
2662                // The setprop command will not allow a property to be changed after
2663                // the first time it is set, so we don't have to worry about un-muting.
2664                setMasterMute_l(true);
2665            }
2666        }
2667    }
2668}
2669
2670// shared by MIXER and DIRECT, overridden by DUPLICATING
2671ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2672{
2673    mInWrite = true;
2674    ssize_t bytesWritten;
2675    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2676
2677    // If an NBAIO sink is present, use it to write the normal mixer's submix
2678    if (mNormalSink != 0) {
2679
2680        const size_t count = mBytesRemaining / mFrameSize;
2681
2682        ATRACE_BEGIN("write");
2683        // update the setpoint when AudioFlinger::mScreenState changes
2684        uint32_t screenState = AudioFlinger::mScreenState;
2685        if (screenState != mScreenState) {
2686            mScreenState = screenState;
2687            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2688            if (pipe != NULL) {
2689                pipe->setAvgFrames((mScreenState & 1) ?
2690                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2691            }
2692        }
2693        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2694        ATRACE_END();
2695        if (framesWritten > 0) {
2696            bytesWritten = framesWritten * mFrameSize;
2697        } else {
2698            bytesWritten = framesWritten;
2699        }
2700    // otherwise use the HAL / AudioStreamOut directly
2701    } else {
2702        // Direct output and offload threads
2703
2704        if (mUseAsyncWrite) {
2705            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2706            mWriteAckSequence += 2;
2707            mWriteAckSequence |= 1;
2708            ALOG_ASSERT(mCallbackThread != 0);
2709            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2710        }
2711        // FIXME We should have an implementation of timestamps for direct output threads.
2712        // They are used e.g for multichannel PCM playback over HDMI.
2713        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2714
2715        if (mUseAsyncWrite &&
2716                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2717            // do not wait for async callback in case of error of full write
2718            mWriteAckSequence &= ~1;
2719            ALOG_ASSERT(mCallbackThread != 0);
2720            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2721        }
2722    }
2723
2724    mNumWrites++;
2725    mInWrite = false;
2726    mStandby = false;
2727    return bytesWritten;
2728}
2729
2730void AudioFlinger::PlaybackThread::threadLoop_drain()
2731{
2732    if (mOutput->stream->drain) {
2733        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2734        if (mUseAsyncWrite) {
2735            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2736            mDrainSequence |= 1;
2737            ALOG_ASSERT(mCallbackThread != 0);
2738            mCallbackThread->setDraining(mDrainSequence);
2739        }
2740        mOutput->stream->drain(mOutput->stream,
2741            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2742                                                : AUDIO_DRAIN_ALL);
2743    }
2744}
2745
2746void AudioFlinger::PlaybackThread::threadLoop_exit()
2747{
2748    {
2749        Mutex::Autolock _l(mLock);
2750        for (size_t i = 0; i < mTracks.size(); i++) {
2751            sp<Track> track = mTracks[i];
2752            track->invalidate();
2753        }
2754    }
2755}
2756
2757/*
2758The derived values that are cached:
2759 - mSinkBufferSize from frame count * frame size
2760 - mActiveSleepTimeUs from activeSleepTimeUs()
2761 - mIdleSleepTimeUs from idleSleepTimeUs()
2762 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2763   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2764 - maxPeriod from frame count and sample rate (MIXER only)
2765
2766The parameters that affect these derived values are:
2767 - frame count
2768 - frame size
2769 - sample rate
2770 - device type: A2DP or not
2771 - device latency
2772 - format: PCM or not
2773 - active sleep time
2774 - idle sleep time
2775*/
2776
2777void AudioFlinger::PlaybackThread::cacheParameters_l()
2778{
2779    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2780    mActiveSleepTimeUs = activeSleepTimeUs();
2781    mIdleSleepTimeUs = idleSleepTimeUs();
2782
2783    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2784    // truncating audio when going to standby.
2785    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2786    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2787        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2788            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2789        }
2790    }
2791}
2792
2793bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2794{
2795    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2796            this,  streamType, mTracks.size());
2797    bool trackMatch = false;
2798    size_t size = mTracks.size();
2799    for (size_t i = 0; i < size; i++) {
2800        sp<Track> t = mTracks[i];
2801        if (t->streamType() == streamType && t->isExternalTrack()) {
2802            t->invalidate();
2803            trackMatch = true;
2804        }
2805    }
2806    return trackMatch;
2807}
2808
2809void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2810{
2811    Mutex::Autolock _l(mLock);
2812    invalidateTracks_l(streamType);
2813}
2814
2815status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2816{
2817    audio_session_t session = chain->sessionId();
2818    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2819            ? mEffectBuffer : mSinkBuffer);
2820    bool ownsBuffer = false;
2821
2822    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2823    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2824        // Only one effect chain can be present in direct output thread and it uses
2825        // the sink buffer as input
2826        if (mType != DIRECT) {
2827            size_t numSamples = mNormalFrameCount * mChannelCount;
2828            buffer = new int16_t[numSamples];
2829            memset(buffer, 0, numSamples * sizeof(int16_t));
2830            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2831            ownsBuffer = true;
2832        }
2833
2834        // Attach all tracks with same session ID to this chain.
2835        for (size_t i = 0; i < mTracks.size(); ++i) {
2836            sp<Track> track = mTracks[i];
2837            if (session == track->sessionId()) {
2838                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2839                        buffer);
2840                track->setMainBuffer(buffer);
2841                chain->incTrackCnt();
2842            }
2843        }
2844
2845        // indicate all active tracks in the chain
2846        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2847            sp<Track> track = mActiveTracks[i].promote();
2848            if (track == 0) {
2849                continue;
2850            }
2851            if (session == track->sessionId()) {
2852                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2853                chain->incActiveTrackCnt();
2854            }
2855        }
2856    }
2857    chain->setThread(this);
2858    chain->setInBuffer(buffer, ownsBuffer);
2859    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2860            ? mEffectBuffer : mSinkBuffer));
2861    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2862    // chains list in order to be processed last as it contains output stage effects.
2863    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2864    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2865    // after track specific effects and before output stage.
2866    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2867    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2868    // Effect chain for other sessions are inserted at beginning of effect
2869    // chains list to be processed before output mix effects. Relative order between other
2870    // sessions is not important.
2871    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2872            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2873            "audio_session_t constants misdefined");
2874    size_t size = mEffectChains.size();
2875    size_t i = 0;
2876    for (i = 0; i < size; i++) {
2877        if (mEffectChains[i]->sessionId() < session) {
2878            break;
2879        }
2880    }
2881    mEffectChains.insertAt(chain, i);
2882    checkSuspendOnAddEffectChain_l(chain);
2883
2884    return NO_ERROR;
2885}
2886
2887size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2888{
2889    audio_session_t session = chain->sessionId();
2890
2891    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2892
2893    for (size_t i = 0; i < mEffectChains.size(); i++) {
2894        if (chain == mEffectChains[i]) {
2895            mEffectChains.removeAt(i);
2896            // detach all active tracks from the chain
2897            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2898                sp<Track> track = mActiveTracks[i].promote();
2899                if (track == 0) {
2900                    continue;
2901                }
2902                if (session == track->sessionId()) {
2903                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2904                            chain.get(), session);
2905                    chain->decActiveTrackCnt();
2906                }
2907            }
2908
2909            // detach all tracks with same session ID from this chain
2910            for (size_t i = 0; i < mTracks.size(); ++i) {
2911                sp<Track> track = mTracks[i];
2912                if (session == track->sessionId()) {
2913                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2914                    chain->decTrackCnt();
2915                }
2916            }
2917            break;
2918        }
2919    }
2920    return mEffectChains.size();
2921}
2922
2923status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2924        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2925{
2926    Mutex::Autolock _l(mLock);
2927    return attachAuxEffect_l(track, EffectId);
2928}
2929
2930status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2931        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2932{
2933    status_t status = NO_ERROR;
2934
2935    if (EffectId == 0) {
2936        track->setAuxBuffer(0, NULL);
2937    } else {
2938        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2939        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2940        if (effect != 0) {
2941            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2942                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2943            } else {
2944                status = INVALID_OPERATION;
2945            }
2946        } else {
2947            status = BAD_VALUE;
2948        }
2949    }
2950    return status;
2951}
2952
2953void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2954{
2955    for (size_t i = 0; i < mTracks.size(); ++i) {
2956        sp<Track> track = mTracks[i];
2957        if (track->auxEffectId() == effectId) {
2958            attachAuxEffect_l(track, 0);
2959        }
2960    }
2961}
2962
2963bool AudioFlinger::PlaybackThread::threadLoop()
2964{
2965    Vector< sp<Track> > tracksToRemove;
2966
2967    mStandbyTimeNs = systemTime();
2968    nsecs_t lastWriteFinished = -1; // time last server write completed
2969    int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2970
2971    // MIXER
2972    nsecs_t lastWarning = 0;
2973
2974    // DUPLICATING
2975    // FIXME could this be made local to while loop?
2976    writeFrames = 0;
2977
2978    int lastGeneration = 0;
2979
2980    cacheParameters_l();
2981    mSleepTimeUs = mIdleSleepTimeUs;
2982
2983    if (mType == MIXER) {
2984        sleepTimeShift = 0;
2985    }
2986
2987    CpuStats cpuStats;
2988    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2989
2990    acquireWakeLock();
2991
2992    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2993    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2994    // and then that string will be logged at the next convenient opportunity.
2995    const char *logString = NULL;
2996
2997    checkSilentMode_l();
2998
2999    while (!exitPending())
3000    {
3001        cpuStats.sample(myName);
3002
3003        Vector< sp<EffectChain> > effectChains;
3004
3005        { // scope for mLock
3006
3007            Mutex::Autolock _l(mLock);
3008
3009            processConfigEvents_l();
3010
3011            if (logString != NULL) {
3012                mNBLogWriter->logTimestamp();
3013                mNBLogWriter->log(logString);
3014                logString = NULL;
3015            }
3016
3017            // Gather the framesReleased counters for all active tracks,
3018            // and associate with the sink frames written out.  We need
3019            // this to convert the sink timestamp to the track timestamp.
3020            bool kernelLocationUpdate = false;
3021            if (mNormalSink != 0) {
3022                // Note: The DuplicatingThread may not have a mNormalSink.
3023                // We always fetch the timestamp here because often the downstream
3024                // sink will block while writing.
3025                ExtendedTimestamp timestamp; // use private copy to fetch
3026                (void) mNormalSink->getTimestamp(timestamp);
3027
3028                // We keep track of the last valid kernel position in case we are in underrun
3029                // and the normal mixer period is the same as the fast mixer period, or there
3030                // is some error from the HAL.
3031                if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3032                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3033                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3034                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3035                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3036
3037                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3038                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3039                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3040                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3041                }
3042
3043                if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3044                    kernelLocationUpdate = true;
3045                } else {
3046                    ALOGVV("getTimestamp error - no valid kernel position");
3047                }
3048
3049                // copy over kernel info
3050                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3051                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3052                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3053                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3054            }
3055            // mFramesWritten for non-offloaded tracks are contiguous
3056            // even after standby() is called. This is useful for the track frame
3057            // to sink frame mapping.
3058            bool serverLocationUpdate = false;
3059            if (mFramesWritten != lastFramesWritten) {
3060                serverLocationUpdate = true;
3061                lastFramesWritten = mFramesWritten;
3062            }
3063            // Only update timestamps if there is a meaningful change.
3064            // Either the kernel timestamp must be valid or we have written something.
3065            if (kernelLocationUpdate || serverLocationUpdate) {
3066                if (serverLocationUpdate) {
3067                    // use the time before we called the HAL write - it is a bit more accurate
3068                    // to when the server last read data than the current time here.
3069                    //
3070                    // If we haven't written anything, mLastWriteTime will be -1
3071                    // and we use systemTime().
3072                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3073                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3074                            ? systemTime() : mLastWriteTime;
3075                }
3076                const size_t size = mActiveTracks.size();
3077                for (size_t i = 0; i < size; ++i) {
3078                    sp<Track> t = mActiveTracks[i].promote();
3079                    if (t != 0 && !t->isFastTrack()) {
3080                        t->updateTrackFrameInfo(
3081                                t->mAudioTrackServerProxy->framesReleased(),
3082                                mFramesWritten,
3083                                mTimestamp);
3084                    }
3085                }
3086            }
3087
3088            saveOutputTracks();
3089            if (mSignalPending) {
3090                // A signal was raised while we were unlocked
3091                mSignalPending = false;
3092            } else if (waitingAsyncCallback_l()) {
3093                if (exitPending()) {
3094                    break;
3095                }
3096                bool released = false;
3097                if (!keepWakeLock()) {
3098                    releaseWakeLock_l();
3099                    released = true;
3100                }
3101                mWakeLockUids.clear();
3102                mActiveTracksGeneration++;
3103                ALOGV("wait async completion");
3104                mWaitWorkCV.wait(mLock);
3105                ALOGV("async completion/wake");
3106                if (released) {
3107                    acquireWakeLock_l();
3108                }
3109                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3110                mSleepTimeUs = 0;
3111
3112                continue;
3113            }
3114            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3115                                   isSuspended()) {
3116                // put audio hardware into standby after short delay
3117                if (shouldStandby_l()) {
3118
3119                    threadLoop_standby();
3120
3121                    mStandby = true;
3122                }
3123
3124                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3125                    // we're about to wait, flush the binder command buffer
3126                    IPCThreadState::self()->flushCommands();
3127
3128                    clearOutputTracks();
3129
3130                    if (exitPending()) {
3131                        break;
3132                    }
3133
3134                    releaseWakeLock_l();
3135                    mWakeLockUids.clear();
3136                    mActiveTracksGeneration++;
3137                    // wait until we have something to do...
3138                    ALOGV("%s going to sleep", myName.string());
3139                    mWaitWorkCV.wait(mLock);
3140                    ALOGV("%s waking up", myName.string());
3141                    acquireWakeLock_l();
3142
3143                    mMixerStatus = MIXER_IDLE;
3144                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3145                    mBytesWritten = 0;
3146                    mBytesRemaining = 0;
3147                    checkSilentMode_l();
3148
3149                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3150                    mSleepTimeUs = mIdleSleepTimeUs;
3151                    if (mType == MIXER) {
3152                        sleepTimeShift = 0;
3153                    }
3154
3155                    continue;
3156                }
3157            }
3158            // mMixerStatusIgnoringFastTracks is also updated internally
3159            mMixerStatus = prepareTracks_l(&tracksToRemove);
3160
3161            // compare with previously applied list
3162            if (lastGeneration != mActiveTracksGeneration) {
3163                // update wakelock
3164                updateWakeLockUids_l(mWakeLockUids);
3165                lastGeneration = mActiveTracksGeneration;
3166            }
3167
3168            // prevent any changes in effect chain list and in each effect chain
3169            // during mixing and effect process as the audio buffers could be deleted
3170            // or modified if an effect is created or deleted
3171            lockEffectChains_l(effectChains);
3172        } // mLock scope ends
3173
3174        if (mBytesRemaining == 0) {
3175            mCurrentWriteLength = 0;
3176            if (mMixerStatus == MIXER_TRACKS_READY) {
3177                // threadLoop_mix() sets mCurrentWriteLength
3178                threadLoop_mix();
3179            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3180                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3181                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3182                // must be written to HAL
3183                threadLoop_sleepTime();
3184                if (mSleepTimeUs == 0) {
3185                    mCurrentWriteLength = mSinkBufferSize;
3186                }
3187            }
3188            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3189            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3190            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3191            // or mSinkBuffer (if there are no effects).
3192            //
3193            // This is done pre-effects computation; if effects change to
3194            // support higher precision, this needs to move.
3195            //
3196            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3197            // TODO use mSleepTimeUs == 0 as an additional condition.
3198            if (mMixerBufferValid) {
3199                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3200                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3201
3202                // mono blend occurs for mixer threads only (not direct or offloaded)
3203                // and is handled here if we're going directly to the sink.
3204                if (requireMonoBlend() && !mEffectBufferValid) {
3205                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3206                               true /*limit*/);
3207                }
3208
3209                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3210                        mNormalFrameCount * mChannelCount);
3211            }
3212
3213            mBytesRemaining = mCurrentWriteLength;
3214            if (isSuspended()) {
3215                mSleepTimeUs = suspendSleepTimeUs();
3216                // simulate write to HAL when suspended
3217                mBytesWritten += mSinkBufferSize;
3218                mFramesWritten += mSinkBufferSize / mFrameSize;
3219                mBytesRemaining = 0;
3220            }
3221
3222            // only process effects if we're going to write
3223            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3224                for (size_t i = 0; i < effectChains.size(); i ++) {
3225                    effectChains[i]->process_l();
3226                }
3227            }
3228        }
3229        // Process effect chains for offloaded thread even if no audio
3230        // was read from audio track: process only updates effect state
3231        // and thus does have to be synchronized with audio writes but may have
3232        // to be called while waiting for async write callback
3233        if (mType == OFFLOAD) {
3234            for (size_t i = 0; i < effectChains.size(); i ++) {
3235                effectChains[i]->process_l();
3236            }
3237        }
3238
3239        // Only if the Effects buffer is enabled and there is data in the
3240        // Effects buffer (buffer valid), we need to
3241        // copy into the sink buffer.
3242        // TODO use mSleepTimeUs == 0 as an additional condition.
3243        if (mEffectBufferValid) {
3244            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3245
3246            if (requireMonoBlend()) {
3247                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3248                           true /*limit*/);
3249            }
3250
3251            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3252                    mNormalFrameCount * mChannelCount);
3253        }
3254
3255        // enable changes in effect chain
3256        unlockEffectChains(effectChains);
3257
3258        if (!waitingAsyncCallback()) {
3259            // mSleepTimeUs == 0 means we must write to audio hardware
3260            if (mSleepTimeUs == 0) {
3261                ssize_t ret = 0;
3262                // We save lastWriteFinished here, as previousLastWriteFinished,
3263                // for throttling. On thread start, previousLastWriteFinished will be
3264                // set to -1, which properly results in no throttling after the first write.
3265                nsecs_t previousLastWriteFinished = lastWriteFinished;
3266                nsecs_t delta = 0;
3267                if (mBytesRemaining) {
3268                    // FIXME rewrite to reduce number of system calls
3269                    mLastWriteTime = systemTime();  // also used for dumpsys
3270                    ret = threadLoop_write();
3271                    lastWriteFinished = systemTime();
3272                    delta = lastWriteFinished - mLastWriteTime;
3273                    if (ret < 0) {
3274                        mBytesRemaining = 0;
3275                    } else {
3276                        mBytesWritten += ret;
3277                        mBytesRemaining -= ret;
3278                        mFramesWritten += ret / mFrameSize;
3279                    }
3280                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3281                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3282                    threadLoop_drain();
3283                }
3284                if (mType == MIXER && !mStandby) {
3285                    // write blocked detection
3286                    if (delta > maxPeriod) {
3287                        mNumDelayedWrites++;
3288                        if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3289                            ATRACE_NAME("underrun");
3290                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3291                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3292                            lastWarning = lastWriteFinished;
3293                        }
3294                    }
3295
3296                    if (mThreadThrottle
3297                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3298                            && ret > 0) {                         // we wrote something
3299                        // Limit MixerThread data processing to no more than twice the
3300                        // expected processing rate.
3301                        //
3302                        // This helps prevent underruns with NuPlayer and other applications
3303                        // which may set up buffers that are close to the minimum size, or use
3304                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3305                        //
3306                        // The throttle smooths out sudden large data drains from the device,
3307                        // e.g. when it comes out of standby, which often causes problems with
3308                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3309                        // (2) minimum buffer sized tracks (even if the track is full,
3310                        //     the app won't fill fast enough to handle the sudden draw).
3311                        //
3312                        // Total time spent in last processing cycle equals time spent in
3313                        // 1. threadLoop_write, as well as time spent in
3314                        // 2. threadLoop_mix (significant for heavy mixing, especially
3315                        //                    on low tier processors)
3316
3317                        // it's OK if deltaMs is an overestimate.
3318                        const int32_t deltaMs =
3319                                (lastWriteFinished - previousLastWriteFinished) / 1000000;
3320                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3321                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3322                            usleep(throttleMs * 1000);
3323                            // notify of throttle start on verbose log
3324                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3325                                    "mixer(%p) throttle begin:"
3326                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3327                                    this, ret, deltaMs, throttleMs);
3328                            mThreadThrottleTimeMs += throttleMs;
3329                            // Throttle must be attributed to the previous mixer loop's write time
3330                            // to allow back-to-back throttling.
3331                            lastWriteFinished += throttleMs * 1000000;
3332                        } else {
3333                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3334                            if (diff > 0) {
3335                                // notify of throttle end on debug log
3336                                // but prevent spamming for bluetooth
3337                                ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3338                                        "mixer(%p) throttle end: throttle time(%u)", this, diff);
3339                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3340                            }
3341                        }
3342                    }
3343                }
3344
3345            } else {
3346                ATRACE_BEGIN("sleep");
3347                Mutex::Autolock _l(mLock);
3348                if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3349                    mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3350                }
3351                ATRACE_END();
3352            }
3353        }
3354
3355        // Finally let go of removed track(s), without the lock held
3356        // since we can't guarantee the destructors won't acquire that
3357        // same lock.  This will also mutate and push a new fast mixer state.
3358        threadLoop_removeTracks(tracksToRemove);
3359        tracksToRemove.clear();
3360
3361        // FIXME I don't understand the need for this here;
3362        //       it was in the original code but maybe the
3363        //       assignment in saveOutputTracks() makes this unnecessary?
3364        clearOutputTracks();
3365
3366        // Effect chains will be actually deleted here if they were removed from
3367        // mEffectChains list during mixing or effects processing
3368        effectChains.clear();
3369
3370        // FIXME Note that the above .clear() is no longer necessary since effectChains
3371        // is now local to this block, but will keep it for now (at least until merge done).
3372    }
3373
3374    threadLoop_exit();
3375
3376    if (!mStandby) {
3377        threadLoop_standby();
3378        mStandby = true;
3379    }
3380
3381    releaseWakeLock();
3382    mWakeLockUids.clear();
3383    mActiveTracksGeneration++;
3384
3385    ALOGV("Thread %p type %d exiting", this, mType);
3386    return false;
3387}
3388
3389// removeTracks_l() must be called with ThreadBase::mLock held
3390void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3391{
3392    size_t count = tracksToRemove.size();
3393    if (count > 0) {
3394        for (size_t i=0 ; i<count ; i++) {
3395            const sp<Track>& track = tracksToRemove.itemAt(i);
3396            mActiveTracks.remove(track);
3397            mWakeLockUids.remove(track->uid());
3398            mActiveTracksGeneration++;
3399            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3400            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3401            if (chain != 0) {
3402                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3403                        track->sessionId());
3404                chain->decActiveTrackCnt();
3405            }
3406            if (track->isTerminated()) {
3407                removeTrack_l(track);
3408            }
3409        }
3410    }
3411
3412}
3413
3414status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3415{
3416    if (mNormalSink != 0) {
3417        ExtendedTimestamp ets;
3418        status_t status = mNormalSink->getTimestamp(ets);
3419        if (status == NO_ERROR) {
3420            status = ets.getBestTimestamp(&timestamp);
3421        }
3422        return status;
3423    }
3424    if ((mType == OFFLOAD || mType == DIRECT)
3425            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3426        uint64_t position64;
3427        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3428        if (ret == 0) {
3429            timestamp.mPosition = (uint32_t)position64;
3430            return NO_ERROR;
3431        }
3432    }
3433    return INVALID_OPERATION;
3434}
3435
3436status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3437                                                          audio_patch_handle_t *handle)
3438{
3439    AutoPark<FastMixer> park(mFastMixer);
3440
3441    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3442
3443    return status;
3444}
3445
3446status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3447                                                          audio_patch_handle_t *handle)
3448{
3449    status_t status = NO_ERROR;
3450
3451    // store new device and send to effects
3452    audio_devices_t type = AUDIO_DEVICE_NONE;
3453    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3454        type |= patch->sinks[i].ext.device.type;
3455    }
3456
3457#ifdef ADD_BATTERY_DATA
3458    // when changing the audio output device, call addBatteryData to notify
3459    // the change
3460    if (mOutDevice != type) {
3461        uint32_t params = 0;
3462        // check whether speaker is on
3463        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3464            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3465        }
3466
3467        audio_devices_t deviceWithoutSpeaker
3468            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3469        // check if any other device (except speaker) is on
3470        if (type & deviceWithoutSpeaker) {
3471            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3472        }
3473
3474        if (params != 0) {
3475            addBatteryData(params);
3476        }
3477    }
3478#endif
3479
3480    for (size_t i = 0; i < mEffectChains.size(); i++) {
3481        mEffectChains[i]->setDevice_l(type);
3482    }
3483
3484    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3485    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3486    bool configChanged = mPrevOutDevice != type;
3487    mOutDevice = type;
3488    mPatch = *patch;
3489
3490    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3491        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3492        status = hwDevice->create_audio_patch(hwDevice,
3493                                               patch->num_sources,
3494                                               patch->sources,
3495                                               patch->num_sinks,
3496                                               patch->sinks,
3497                                               handle);
3498    } else {
3499        char *address;
3500        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3501            //FIXME: we only support address on first sink with HAL version < 3.0
3502            address = audio_device_address_to_parameter(
3503                                                        patch->sinks[0].ext.device.type,
3504                                                        patch->sinks[0].ext.device.address);
3505        } else {
3506            address = (char *)calloc(1, 1);
3507        }
3508        AudioParameter param = AudioParameter(String8(address));
3509        free(address);
3510        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3511        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3512                param.toString().string());
3513        *handle = AUDIO_PATCH_HANDLE_NONE;
3514    }
3515    if (configChanged) {
3516        mPrevOutDevice = type;
3517        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3518    }
3519    return status;
3520}
3521
3522status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3523{
3524    AutoPark<FastMixer> park(mFastMixer);
3525
3526    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3527
3528    return status;
3529}
3530
3531status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3532{
3533    status_t status = NO_ERROR;
3534
3535    mOutDevice = AUDIO_DEVICE_NONE;
3536
3537    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3538        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3539        status = hwDevice->release_audio_patch(hwDevice, handle);
3540    } else {
3541        AudioParameter param;
3542        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3543        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3544                param.toString().string());
3545    }
3546    return status;
3547}
3548
3549void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3550{
3551    Mutex::Autolock _l(mLock);
3552    mTracks.add(track);
3553}
3554
3555void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3556{
3557    Mutex::Autolock _l(mLock);
3558    destroyTrack_l(track);
3559}
3560
3561void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3562{
3563    ThreadBase::getAudioPortConfig(config);
3564    config->role = AUDIO_PORT_ROLE_SOURCE;
3565    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3566    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3567}
3568
3569// ----------------------------------------------------------------------------
3570
3571AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3572        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3573    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3574        // mAudioMixer below
3575        // mFastMixer below
3576        mFastMixerFutex(0),
3577        mMasterMono(false)
3578        // mOutputSink below
3579        // mPipeSink below
3580        // mNormalSink below
3581{
3582    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3583    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3584            "mFrameCount=%zu, mNormalFrameCount=%zu",
3585            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3586            mNormalFrameCount);
3587    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3588
3589    if (type == DUPLICATING) {
3590        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3591        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3592        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3593        return;
3594    }
3595    // create an NBAIO sink for the HAL output stream, and negotiate
3596    mOutputSink = new AudioStreamOutSink(output->stream);
3597    size_t numCounterOffers = 0;
3598    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3599#if !LOG_NDEBUG
3600    ssize_t index =
3601#else
3602    (void)
3603#endif
3604            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3605    ALOG_ASSERT(index == 0);
3606
3607    // initialize fast mixer depending on configuration
3608    bool initFastMixer;
3609    switch (kUseFastMixer) {
3610    case FastMixer_Never:
3611        initFastMixer = false;
3612        break;
3613    case FastMixer_Always:
3614        initFastMixer = true;
3615        break;
3616    case FastMixer_Static:
3617    case FastMixer_Dynamic:
3618        initFastMixer = mFrameCount < mNormalFrameCount;
3619        break;
3620    }
3621    if (initFastMixer) {
3622        audio_format_t fastMixerFormat;
3623        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3624            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3625        } else {
3626            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3627        }
3628        if (mFormat != fastMixerFormat) {
3629            // change our Sink format to accept our intermediate precision
3630            mFormat = fastMixerFormat;
3631            free(mSinkBuffer);
3632            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3633            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3634            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3635        }
3636
3637        // create a MonoPipe to connect our submix to FastMixer
3638        NBAIO_Format format = mOutputSink->format();
3639#ifdef TEE_SINK
3640        NBAIO_Format origformat = format;
3641#endif
3642        // adjust format to match that of the Fast Mixer
3643        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3644        format.mFormat = fastMixerFormat;
3645        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3646
3647        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3648        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3649        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3650        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3651        const NBAIO_Format offers[1] = {format};
3652        size_t numCounterOffers = 0;
3653#if !LOG_NDEBUG || defined(TEE_SINK)
3654        ssize_t index =
3655#else
3656        (void)
3657#endif
3658                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3659        ALOG_ASSERT(index == 0);
3660        monoPipe->setAvgFrames((mScreenState & 1) ?
3661                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3662        mPipeSink = monoPipe;
3663
3664#ifdef TEE_SINK
3665        if (mTeeSinkOutputEnabled) {
3666            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3667            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3668            const NBAIO_Format offers2[1] = {origformat};
3669            numCounterOffers = 0;
3670            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3671            ALOG_ASSERT(index == 0);
3672            mTeeSink = teeSink;
3673            PipeReader *teeSource = new PipeReader(*teeSink);
3674            numCounterOffers = 0;
3675            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3676            ALOG_ASSERT(index == 0);
3677            mTeeSource = teeSource;
3678        }
3679#endif
3680
3681        // create fast mixer and configure it initially with just one fast track for our submix
3682        mFastMixer = new FastMixer();
3683        FastMixerStateQueue *sq = mFastMixer->sq();
3684#ifdef STATE_QUEUE_DUMP
3685        sq->setObserverDump(&mStateQueueObserverDump);
3686        sq->setMutatorDump(&mStateQueueMutatorDump);
3687#endif
3688        FastMixerState *state = sq->begin();
3689        FastTrack *fastTrack = &state->mFastTracks[0];
3690        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3691        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3692        fastTrack->mVolumeProvider = NULL;
3693        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3694        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3695        fastTrack->mGeneration++;
3696        state->mFastTracksGen++;
3697        state->mTrackMask = 1;
3698        // fast mixer will use the HAL output sink
3699        state->mOutputSink = mOutputSink.get();
3700        state->mOutputSinkGen++;
3701        state->mFrameCount = mFrameCount;
3702        state->mCommand = FastMixerState::COLD_IDLE;
3703        // already done in constructor initialization list
3704        //mFastMixerFutex = 0;
3705        state->mColdFutexAddr = &mFastMixerFutex;
3706        state->mColdGen++;
3707        state->mDumpState = &mFastMixerDumpState;
3708#ifdef TEE_SINK
3709        state->mTeeSink = mTeeSink.get();
3710#endif
3711        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3712        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3713        sq->end();
3714        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3715
3716        // start the fast mixer
3717        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3718        pid_t tid = mFastMixer->getTid();
3719        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3720
3721#ifdef AUDIO_WATCHDOG
3722        // create and start the watchdog
3723        mAudioWatchdog = new AudioWatchdog();
3724        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3725        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3726        tid = mAudioWatchdog->getTid();
3727        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3728#endif
3729
3730    }
3731
3732    switch (kUseFastMixer) {
3733    case FastMixer_Never:
3734    case FastMixer_Dynamic:
3735        mNormalSink = mOutputSink;
3736        break;
3737    case FastMixer_Always:
3738        mNormalSink = mPipeSink;
3739        break;
3740    case FastMixer_Static:
3741        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3742        break;
3743    }
3744}
3745
3746AudioFlinger::MixerThread::~MixerThread()
3747{
3748    if (mFastMixer != 0) {
3749        FastMixerStateQueue *sq = mFastMixer->sq();
3750        FastMixerState *state = sq->begin();
3751        if (state->mCommand == FastMixerState::COLD_IDLE) {
3752            int32_t old = android_atomic_inc(&mFastMixerFutex);
3753            if (old == -1) {
3754                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3755            }
3756        }
3757        state->mCommand = FastMixerState::EXIT;
3758        sq->end();
3759        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3760        mFastMixer->join();
3761        // Though the fast mixer thread has exited, it's state queue is still valid.
3762        // We'll use that extract the final state which contains one remaining fast track
3763        // corresponding to our sub-mix.
3764        state = sq->begin();
3765        ALOG_ASSERT(state->mTrackMask == 1);
3766        FastTrack *fastTrack = &state->mFastTracks[0];
3767        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3768        delete fastTrack->mBufferProvider;
3769        sq->end(false /*didModify*/);
3770        mFastMixer.clear();
3771#ifdef AUDIO_WATCHDOG
3772        if (mAudioWatchdog != 0) {
3773            mAudioWatchdog->requestExit();
3774            mAudioWatchdog->requestExitAndWait();
3775            mAudioWatchdog.clear();
3776        }
3777#endif
3778    }
3779    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3780    delete mAudioMixer;
3781}
3782
3783
3784uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3785{
3786    if (mFastMixer != 0) {
3787        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3788        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3789    }
3790    return latency;
3791}
3792
3793
3794void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3795{
3796    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3797}
3798
3799ssize_t AudioFlinger::MixerThread::threadLoop_write()
3800{
3801    // FIXME we should only do one push per cycle; confirm this is true
3802    // Start the fast mixer if it's not already running
3803    if (mFastMixer != 0) {
3804        FastMixerStateQueue *sq = mFastMixer->sq();
3805        FastMixerState *state = sq->begin();
3806        if (state->mCommand != FastMixerState::MIX_WRITE &&
3807                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3808            if (state->mCommand == FastMixerState::COLD_IDLE) {
3809
3810                // FIXME workaround for first HAL write being CPU bound on some devices
3811                ATRACE_BEGIN("write");
3812                mOutput->write((char *)mSinkBuffer, 0);
3813                ATRACE_END();
3814
3815                int32_t old = android_atomic_inc(&mFastMixerFutex);
3816                if (old == -1) {
3817                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3818                }
3819#ifdef AUDIO_WATCHDOG
3820                if (mAudioWatchdog != 0) {
3821                    mAudioWatchdog->resume();
3822                }
3823#endif
3824            }
3825            state->mCommand = FastMixerState::MIX_WRITE;
3826#ifdef FAST_THREAD_STATISTICS
3827            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3828                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3829#endif
3830            sq->end();
3831            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3832            if (kUseFastMixer == FastMixer_Dynamic) {
3833                mNormalSink = mPipeSink;
3834            }
3835        } else {
3836            sq->end(false /*didModify*/);
3837        }
3838    }
3839    return PlaybackThread::threadLoop_write();
3840}
3841
3842void AudioFlinger::MixerThread::threadLoop_standby()
3843{
3844    // Idle the fast mixer if it's currently running
3845    if (mFastMixer != 0) {
3846        FastMixerStateQueue *sq = mFastMixer->sq();
3847        FastMixerState *state = sq->begin();
3848        if (!(state->mCommand & FastMixerState::IDLE)) {
3849            state->mCommand = FastMixerState::COLD_IDLE;
3850            state->mColdFutexAddr = &mFastMixerFutex;
3851            state->mColdGen++;
3852            mFastMixerFutex = 0;
3853            sq->end();
3854            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3855            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3856            if (kUseFastMixer == FastMixer_Dynamic) {
3857                mNormalSink = mOutputSink;
3858            }
3859#ifdef AUDIO_WATCHDOG
3860            if (mAudioWatchdog != 0) {
3861                mAudioWatchdog->pause();
3862            }
3863#endif
3864        } else {
3865            sq->end(false /*didModify*/);
3866        }
3867    }
3868    PlaybackThread::threadLoop_standby();
3869}
3870
3871bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3872{
3873    return false;
3874}
3875
3876bool AudioFlinger::PlaybackThread::shouldStandby_l()
3877{
3878    return !mStandby;
3879}
3880
3881bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3882{
3883    Mutex::Autolock _l(mLock);
3884    return waitingAsyncCallback_l();
3885}
3886
3887// shared by MIXER and DIRECT, overridden by DUPLICATING
3888void AudioFlinger::PlaybackThread::threadLoop_standby()
3889{
3890    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3891    mOutput->standby();
3892    if (mUseAsyncWrite != 0) {
3893        // discard any pending drain or write ack by incrementing sequence
3894        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3895        mDrainSequence = (mDrainSequence + 2) & ~1;
3896        ALOG_ASSERT(mCallbackThread != 0);
3897        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3898        mCallbackThread->setDraining(mDrainSequence);
3899    }
3900    mHwPaused = false;
3901}
3902
3903void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3904{
3905    ALOGV("signal playback thread");
3906    broadcast_l();
3907}
3908
3909void AudioFlinger::MixerThread::threadLoop_mix()
3910{
3911    // mix buffers...
3912    mAudioMixer->process();
3913    mCurrentWriteLength = mSinkBufferSize;
3914    // increase sleep time progressively when application underrun condition clears.
3915    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3916    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3917    // such that we would underrun the audio HAL.
3918    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3919        sleepTimeShift--;
3920    }
3921    mSleepTimeUs = 0;
3922    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3923    //TODO: delay standby when effects have a tail
3924
3925}
3926
3927void AudioFlinger::MixerThread::threadLoop_sleepTime()
3928{
3929    // If no tracks are ready, sleep once for the duration of an output
3930    // buffer size, then write 0s to the output
3931    if (mSleepTimeUs == 0) {
3932        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3933            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3934            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3935                mSleepTimeUs = kMinThreadSleepTimeUs;
3936            }
3937            // reduce sleep time in case of consecutive application underruns to avoid
3938            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3939            // duration we would end up writing less data than needed by the audio HAL if
3940            // the condition persists.
3941            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3942                sleepTimeShift++;
3943            }
3944        } else {
3945            mSleepTimeUs = mIdleSleepTimeUs;
3946        }
3947    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3948        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3949        // before effects processing or output.
3950        if (mMixerBufferValid) {
3951            memset(mMixerBuffer, 0, mMixerBufferSize);
3952        } else {
3953            memset(mSinkBuffer, 0, mSinkBufferSize);
3954        }
3955        mSleepTimeUs = 0;
3956        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3957                "anticipated start");
3958    }
3959    // TODO add standby time extension fct of effect tail
3960}
3961
3962// prepareTracks_l() must be called with ThreadBase::mLock held
3963AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3964        Vector< sp<Track> > *tracksToRemove)
3965{
3966
3967    mixer_state mixerStatus = MIXER_IDLE;
3968    // find out which tracks need to be processed
3969    size_t count = mActiveTracks.size();
3970    size_t mixedTracks = 0;
3971    size_t tracksWithEffect = 0;
3972    // counts only _active_ fast tracks
3973    size_t fastTracks = 0;
3974    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3975
3976    float masterVolume = mMasterVolume;
3977    bool masterMute = mMasterMute;
3978
3979    if (masterMute) {
3980        masterVolume = 0;
3981    }
3982    // Delegate master volume control to effect in output mix effect chain if needed
3983    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3984    if (chain != 0) {
3985        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3986        chain->setVolume_l(&v, &v);
3987        masterVolume = (float)((v + (1 << 23)) >> 24);
3988        chain.clear();
3989    }
3990
3991    // prepare a new state to push
3992    FastMixerStateQueue *sq = NULL;
3993    FastMixerState *state = NULL;
3994    bool didModify = false;
3995    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3996    if (mFastMixer != 0) {
3997        sq = mFastMixer->sq();
3998        state = sq->begin();
3999    }
4000
4001    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
4002    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4003
4004    for (size_t i=0 ; i<count ; i++) {
4005        const sp<Track> t = mActiveTracks[i].promote();
4006        if (t == 0) {
4007            continue;
4008        }
4009
4010        // this const just means the local variable doesn't change
4011        Track* const track = t.get();
4012
4013        // process fast tracks
4014        if (track->isFastTrack()) {
4015
4016            // It's theoretically possible (though unlikely) for a fast track to be created
4017            // and then removed within the same normal mix cycle.  This is not a problem, as
4018            // the track never becomes active so it's fast mixer slot is never touched.
4019            // The converse, of removing an (active) track and then creating a new track
4020            // at the identical fast mixer slot within the same normal mix cycle,
4021            // is impossible because the slot isn't marked available until the end of each cycle.
4022            int j = track->mFastIndex;
4023            ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4024            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4025            FastTrack *fastTrack = &state->mFastTracks[j];
4026
4027            // Determine whether the track is currently in underrun condition,
4028            // and whether it had a recent underrun.
4029            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4030            FastTrackUnderruns underruns = ftDump->mUnderruns;
4031            uint32_t recentFull = (underruns.mBitFields.mFull -
4032                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4033            uint32_t recentPartial = (underruns.mBitFields.mPartial -
4034                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4035            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4036                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4037            uint32_t recentUnderruns = recentPartial + recentEmpty;
4038            track->mObservedUnderruns = underruns;
4039            // don't count underruns that occur while stopping or pausing
4040            // or stopped which can occur when flush() is called while active
4041            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4042                    recentUnderruns > 0) {
4043                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4044                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4045            } else {
4046                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4047            }
4048
4049            // This is similar to the state machine for normal tracks,
4050            // with a few modifications for fast tracks.
4051            bool isActive = true;
4052            switch (track->mState) {
4053            case TrackBase::STOPPING_1:
4054                // track stays active in STOPPING_1 state until first underrun
4055                if (recentUnderruns > 0 || track->isTerminated()) {
4056                    track->mState = TrackBase::STOPPING_2;
4057                }
4058                break;
4059            case TrackBase::PAUSING:
4060                // ramp down is not yet implemented
4061                track->setPaused();
4062                break;
4063            case TrackBase::RESUMING:
4064                // ramp up is not yet implemented
4065                track->mState = TrackBase::ACTIVE;
4066                break;
4067            case TrackBase::ACTIVE:
4068                if (recentFull > 0 || recentPartial > 0) {
4069                    // track has provided at least some frames recently: reset retry count
4070                    track->mRetryCount = kMaxTrackRetries;
4071                }
4072                if (recentUnderruns == 0) {
4073                    // no recent underruns: stay active
4074                    break;
4075                }
4076                // there has recently been an underrun of some kind
4077                if (track->sharedBuffer() == 0) {
4078                    // were any of the recent underruns "empty" (no frames available)?
4079                    if (recentEmpty == 0) {
4080                        // no, then ignore the partial underruns as they are allowed indefinitely
4081                        break;
4082                    }
4083                    // there has recently been an "empty" underrun: decrement the retry counter
4084                    if (--(track->mRetryCount) > 0) {
4085                        break;
4086                    }
4087                    // indicate to client process that the track was disabled because of underrun;
4088                    // it will then automatically call start() when data is available
4089                    track->disable();
4090                    // remove from active list, but state remains ACTIVE [confusing but true]
4091                    isActive = false;
4092                    break;
4093                }
4094                // fall through
4095            case TrackBase::STOPPING_2:
4096            case TrackBase::PAUSED:
4097            case TrackBase::STOPPED:
4098            case TrackBase::FLUSHED:   // flush() while active
4099                // Check for presentation complete if track is inactive
4100                // We have consumed all the buffers of this track.
4101                // This would be incomplete if we auto-paused on underrun
4102                {
4103                    size_t audioHALFrames =
4104                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4105                    int64_t framesWritten = mBytesWritten / mFrameSize;
4106                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4107                        // track stays in active list until presentation is complete
4108                        break;
4109                    }
4110                }
4111                if (track->isStopping_2()) {
4112                    track->mState = TrackBase::STOPPED;
4113                }
4114                if (track->isStopped()) {
4115                    // Can't reset directly, as fast mixer is still polling this track
4116                    //   track->reset();
4117                    // So instead mark this track as needing to be reset after push with ack
4118                    resetMask |= 1 << i;
4119                }
4120                isActive = false;
4121                break;
4122            case TrackBase::IDLE:
4123            default:
4124                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4125            }
4126
4127            if (isActive) {
4128                // was it previously inactive?
4129                if (!(state->mTrackMask & (1 << j))) {
4130                    ExtendedAudioBufferProvider *eabp = track;
4131                    VolumeProvider *vp = track;
4132                    fastTrack->mBufferProvider = eabp;
4133                    fastTrack->mVolumeProvider = vp;
4134                    fastTrack->mChannelMask = track->mChannelMask;
4135                    fastTrack->mFormat = track->mFormat;
4136                    fastTrack->mGeneration++;
4137                    state->mTrackMask |= 1 << j;
4138                    didModify = true;
4139                    // no acknowledgement required for newly active tracks
4140                }
4141                // cache the combined master volume and stream type volume for fast mixer; this
4142                // lacks any synchronization or barrier so VolumeProvider may read a stale value
4143                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4144                ++fastTracks;
4145            } else {
4146                // was it previously active?
4147                if (state->mTrackMask & (1 << j)) {
4148                    fastTrack->mBufferProvider = NULL;
4149                    fastTrack->mGeneration++;
4150                    state->mTrackMask &= ~(1 << j);
4151                    didModify = true;
4152                    // If any fast tracks were removed, we must wait for acknowledgement
4153                    // because we're about to decrement the last sp<> on those tracks.
4154                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4155                } else {
4156                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
4157                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4158                            j, track->mState, state->mTrackMask, recentUnderruns,
4159                            track->sharedBuffer() != 0);
4160                }
4161                tracksToRemove->add(track);
4162                // Avoids a misleading display in dumpsys
4163                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4164            }
4165            continue;
4166        }
4167
4168        {   // local variable scope to avoid goto warning
4169
4170        audio_track_cblk_t* cblk = track->cblk();
4171
4172        // The first time a track is added we wait
4173        // for all its buffers to be filled before processing it
4174        int name = track->name();
4175        // make sure that we have enough frames to mix one full buffer.
4176        // enforce this condition only once to enable draining the buffer in case the client
4177        // app does not call stop() and relies on underrun to stop:
4178        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4179        // during last round
4180        size_t desiredFrames;
4181        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4182        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4183
4184        desiredFrames = sourceFramesNeededWithTimestretch(
4185                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4186        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4187        // add frames already consumed but not yet released by the resampler
4188        // because mAudioTrackServerProxy->framesReady() will include these frames
4189        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4190
4191        uint32_t minFrames = 1;
4192        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4193                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4194            minFrames = desiredFrames;
4195        }
4196
4197        size_t framesReady = track->framesReady();
4198        if (ATRACE_ENABLED()) {
4199            // I wish we had formatted trace names
4200            char traceName[16];
4201            strcpy(traceName, "nRdy");
4202            int name = track->name();
4203            if (AudioMixer::TRACK0 <= name &&
4204                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4205                name -= AudioMixer::TRACK0;
4206                traceName[4] = (name / 10) + '0';
4207                traceName[5] = (name % 10) + '0';
4208            } else {
4209                traceName[4] = '?';
4210                traceName[5] = '?';
4211            }
4212            traceName[6] = '\0';
4213            ATRACE_INT(traceName, framesReady);
4214        }
4215        if ((framesReady >= minFrames) && track->isReady() &&
4216                !track->isPaused() && !track->isTerminated())
4217        {
4218            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4219
4220            mixedTracks++;
4221
4222            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4223            // there is an effect chain connected to the track
4224            chain.clear();
4225            if (track->mainBuffer() != mSinkBuffer &&
4226                    track->mainBuffer() != mMixerBuffer) {
4227                if (mEffectBufferEnabled) {
4228                    mEffectBufferValid = true; // Later can set directly.
4229                }
4230                chain = getEffectChain_l(track->sessionId());
4231                // Delegate volume control to effect in track effect chain if needed
4232                if (chain != 0) {
4233                    tracksWithEffect++;
4234                } else {
4235                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4236                            "session %d",
4237                            name, track->sessionId());
4238                }
4239            }
4240
4241
4242            int param = AudioMixer::VOLUME;
4243            if (track->mFillingUpStatus == Track::FS_FILLED) {
4244                // no ramp for the first volume setting
4245                track->mFillingUpStatus = Track::FS_ACTIVE;
4246                if (track->mState == TrackBase::RESUMING) {
4247                    track->mState = TrackBase::ACTIVE;
4248                    param = AudioMixer::RAMP_VOLUME;
4249                }
4250                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4251            // FIXME should not make a decision based on mServer
4252            } else if (cblk->mServer != 0) {
4253                // If the track is stopped before the first frame was mixed,
4254                // do not apply ramp
4255                param = AudioMixer::RAMP_VOLUME;
4256            }
4257
4258            // compute volume for this track
4259            uint32_t vl, vr;       // in U8.24 integer format
4260            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4261            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4262                vl = vr = 0;
4263                vlf = vrf = vaf = 0.;
4264                if (track->isPausing()) {
4265                    track->setPaused();
4266                }
4267            } else {
4268
4269                // read original volumes with volume control
4270                float typeVolume = mStreamTypes[track->streamType()].volume;
4271                float v = masterVolume * typeVolume;
4272                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4273                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4274                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4275                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4276                // track volumes come from shared memory, so can't be trusted and must be clamped
4277                if (vlf > GAIN_FLOAT_UNITY) {
4278                    ALOGV("Track left volume out of range: %.3g", vlf);
4279                    vlf = GAIN_FLOAT_UNITY;
4280                }
4281                if (vrf > GAIN_FLOAT_UNITY) {
4282                    ALOGV("Track right volume out of range: %.3g", vrf);
4283                    vrf = GAIN_FLOAT_UNITY;
4284                }
4285                // now apply the master volume and stream type volume
4286                vlf *= v;
4287                vrf *= v;
4288                // assuming master volume and stream type volume each go up to 1.0,
4289                // then derive vl and vr as U8.24 versions for the effect chain
4290                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4291                vl = (uint32_t) (scaleto8_24 * vlf);
4292                vr = (uint32_t) (scaleto8_24 * vrf);
4293                // vl and vr are now in U8.24 format
4294                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4295                // send level comes from shared memory and so may be corrupt
4296                if (sendLevel > MAX_GAIN_INT) {
4297                    ALOGV("Track send level out of range: %04X", sendLevel);
4298                    sendLevel = MAX_GAIN_INT;
4299                }
4300                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4301                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4302            }
4303
4304            // Delegate volume control to effect in track effect chain if needed
4305            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4306                // Do not ramp volume if volume is controlled by effect
4307                param = AudioMixer::VOLUME;
4308                // Update remaining floating point volume levels
4309                vlf = (float)vl / (1 << 24);
4310                vrf = (float)vr / (1 << 24);
4311                track->mHasVolumeController = true;
4312            } else {
4313                // force no volume ramp when volume controller was just disabled or removed
4314                // from effect chain to avoid volume spike
4315                if (track->mHasVolumeController) {
4316                    param = AudioMixer::VOLUME;
4317                }
4318                track->mHasVolumeController = false;
4319            }
4320
4321            // XXX: these things DON'T need to be done each time
4322            mAudioMixer->setBufferProvider(name, track);
4323            mAudioMixer->enable(name);
4324
4325            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4326            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4327            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4328            mAudioMixer->setParameter(
4329                name,
4330                AudioMixer::TRACK,
4331                AudioMixer::FORMAT, (void *)track->format());
4332            mAudioMixer->setParameter(
4333                name,
4334                AudioMixer::TRACK,
4335                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4336            mAudioMixer->setParameter(
4337                name,
4338                AudioMixer::TRACK,
4339                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4340            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4341            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4342            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4343            if (reqSampleRate == 0) {
4344                reqSampleRate = mSampleRate;
4345            } else if (reqSampleRate > maxSampleRate) {
4346                reqSampleRate = maxSampleRate;
4347            }
4348            mAudioMixer->setParameter(
4349                name,
4350                AudioMixer::RESAMPLE,
4351                AudioMixer::SAMPLE_RATE,
4352                (void *)(uintptr_t)reqSampleRate);
4353
4354            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4355            mAudioMixer->setParameter(
4356                name,
4357                AudioMixer::TIMESTRETCH,
4358                AudioMixer::PLAYBACK_RATE,
4359                &playbackRate);
4360
4361            /*
4362             * Select the appropriate output buffer for the track.
4363             *
4364             * Tracks with effects go into their own effects chain buffer
4365             * and from there into either mEffectBuffer or mSinkBuffer.
4366             *
4367             * Other tracks can use mMixerBuffer for higher precision
4368             * channel accumulation.  If this buffer is enabled
4369             * (mMixerBufferEnabled true), then selected tracks will accumulate
4370             * into it.
4371             *
4372             */
4373            if (mMixerBufferEnabled
4374                    && (track->mainBuffer() == mSinkBuffer
4375                            || track->mainBuffer() == mMixerBuffer)) {
4376                mAudioMixer->setParameter(
4377                        name,
4378                        AudioMixer::TRACK,
4379                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4380                mAudioMixer->setParameter(
4381                        name,
4382                        AudioMixer::TRACK,
4383                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4384                // TODO: override track->mainBuffer()?
4385                mMixerBufferValid = true;
4386            } else {
4387                mAudioMixer->setParameter(
4388                        name,
4389                        AudioMixer::TRACK,
4390                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4391                mAudioMixer->setParameter(
4392                        name,
4393                        AudioMixer::TRACK,
4394                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4395            }
4396            mAudioMixer->setParameter(
4397                name,
4398                AudioMixer::TRACK,
4399                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4400
4401            // reset retry count
4402            track->mRetryCount = kMaxTrackRetries;
4403
4404            // If one track is ready, set the mixer ready if:
4405            //  - the mixer was not ready during previous round OR
4406            //  - no other track is not ready
4407            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4408                    mixerStatus != MIXER_TRACKS_ENABLED) {
4409                mixerStatus = MIXER_TRACKS_READY;
4410            }
4411        } else {
4412            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4413                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4414                        track, framesReady, desiredFrames);
4415                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4416            } else {
4417                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4418            }
4419
4420            // clear effect chain input buffer if an active track underruns to avoid sending
4421            // previous audio buffer again to effects
4422            chain = getEffectChain_l(track->sessionId());
4423            if (chain != 0) {
4424                chain->clearInputBuffer();
4425            }
4426
4427            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4428            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4429                    track->isStopped() || track->isPaused()) {
4430                // We have consumed all the buffers of this track.
4431                // Remove it from the list of active tracks.
4432                // TODO: use actual buffer filling status instead of latency when available from
4433                // audio HAL
4434                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4435                int64_t framesWritten = mBytesWritten / mFrameSize;
4436                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4437                    if (track->isStopped()) {
4438                        track->reset();
4439                    }
4440                    tracksToRemove->add(track);
4441                }
4442            } else {
4443                // No buffers for this track. Give it a few chances to
4444                // fill a buffer, then remove it from active list.
4445                if (--(track->mRetryCount) <= 0) {
4446                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4447                    tracksToRemove->add(track);
4448                    // indicate to client process that the track was disabled because of underrun;
4449                    // it will then automatically call start() when data is available
4450                    track->disable();
4451                // If one track is not ready, mark the mixer also not ready if:
4452                //  - the mixer was ready during previous round OR
4453                //  - no other track is ready
4454                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4455                                mixerStatus != MIXER_TRACKS_READY) {
4456                    mixerStatus = MIXER_TRACKS_ENABLED;
4457                }
4458            }
4459            mAudioMixer->disable(name);
4460        }
4461
4462        }   // local variable scope to avoid goto warning
4463
4464    }
4465
4466    // Push the new FastMixer state if necessary
4467    bool pauseAudioWatchdog = false;
4468    if (didModify) {
4469        state->mFastTracksGen++;
4470        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4471        if (kUseFastMixer == FastMixer_Dynamic &&
4472                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4473            state->mCommand = FastMixerState::COLD_IDLE;
4474            state->mColdFutexAddr = &mFastMixerFutex;
4475            state->mColdGen++;
4476            mFastMixerFutex = 0;
4477            if (kUseFastMixer == FastMixer_Dynamic) {
4478                mNormalSink = mOutputSink;
4479            }
4480            // If we go into cold idle, need to wait for acknowledgement
4481            // so that fast mixer stops doing I/O.
4482            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4483            pauseAudioWatchdog = true;
4484        }
4485    }
4486    if (sq != NULL) {
4487        sq->end(didModify);
4488        sq->push(block);
4489    }
4490#ifdef AUDIO_WATCHDOG
4491    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4492        mAudioWatchdog->pause();
4493    }
4494#endif
4495
4496    // Now perform the deferred reset on fast tracks that have stopped
4497    while (resetMask != 0) {
4498        size_t i = __builtin_ctz(resetMask);
4499        ALOG_ASSERT(i < count);
4500        resetMask &= ~(1 << i);
4501        sp<Track> t = mActiveTracks[i].promote();
4502        if (t == 0) {
4503            continue;
4504        }
4505        Track* track = t.get();
4506        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4507        track->reset();
4508    }
4509
4510    // remove all the tracks that need to be...
4511    removeTracks_l(*tracksToRemove);
4512
4513    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4514        mEffectBufferValid = true;
4515    }
4516
4517    if (mEffectBufferValid) {
4518        // as long as there are effects we should clear the effects buffer, to avoid
4519        // passing a non-clean buffer to the effect chain
4520        memset(mEffectBuffer, 0, mEffectBufferSize);
4521    }
4522    // sink or mix buffer must be cleared if all tracks are connected to an
4523    // effect chain as in this case the mixer will not write to the sink or mix buffer
4524    // and track effects will accumulate into it
4525    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4526            (mixedTracks == 0 && fastTracks > 0))) {
4527        // FIXME as a performance optimization, should remember previous zero status
4528        if (mMixerBufferValid) {
4529            memset(mMixerBuffer, 0, mMixerBufferSize);
4530            // TODO: In testing, mSinkBuffer below need not be cleared because
4531            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4532            // after mixing.
4533            //
4534            // To enforce this guarantee:
4535            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4536            // (mixedTracks == 0 && fastTracks > 0))
4537            // must imply MIXER_TRACKS_READY.
4538            // Later, we may clear buffers regardless, and skip much of this logic.
4539        }
4540        // FIXME as a performance optimization, should remember previous zero status
4541        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4542    }
4543
4544    // if any fast tracks, then status is ready
4545    mMixerStatusIgnoringFastTracks = mixerStatus;
4546    if (fastTracks > 0) {
4547        mixerStatus = MIXER_TRACKS_READY;
4548    }
4549    return mixerStatus;
4550}
4551
4552// getTrackName_l() must be called with ThreadBase::mLock held
4553int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4554        audio_format_t format, audio_session_t sessionId)
4555{
4556    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4557}
4558
4559// deleteTrackName_l() must be called with ThreadBase::mLock held
4560void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4561{
4562    ALOGV("remove track (%d) and delete from mixer", name);
4563    mAudioMixer->deleteTrackName(name);
4564}
4565
4566// checkForNewParameter_l() must be called with ThreadBase::mLock held
4567bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4568                                                       status_t& status)
4569{
4570    bool reconfig = false;
4571    bool a2dpDeviceChanged = false;
4572
4573    status = NO_ERROR;
4574
4575    AutoPark<FastMixer> park(mFastMixer);
4576
4577    AudioParameter param = AudioParameter(keyValuePair);
4578    int value;
4579    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4580        reconfig = true;
4581    }
4582    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4583        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4584            status = BAD_VALUE;
4585        } else {
4586            // no need to save value, since it's constant
4587            reconfig = true;
4588        }
4589    }
4590    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4591        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4592            status = BAD_VALUE;
4593        } else {
4594            // no need to save value, since it's constant
4595            reconfig = true;
4596        }
4597    }
4598    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4599        // do not accept frame count changes if tracks are open as the track buffer
4600        // size depends on frame count and correct behavior would not be guaranteed
4601        // if frame count is changed after track creation
4602        if (!mTracks.isEmpty()) {
4603            status = INVALID_OPERATION;
4604        } else {
4605            reconfig = true;
4606        }
4607    }
4608    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4609#ifdef ADD_BATTERY_DATA
4610        // when changing the audio output device, call addBatteryData to notify
4611        // the change
4612        if (mOutDevice != value) {
4613            uint32_t params = 0;
4614            // check whether speaker is on
4615            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4616                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4617            }
4618
4619            audio_devices_t deviceWithoutSpeaker
4620                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4621            // check if any other device (except speaker) is on
4622            if (value & deviceWithoutSpeaker) {
4623                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4624            }
4625
4626            if (params != 0) {
4627                addBatteryData(params);
4628            }
4629        }
4630#endif
4631
4632        // forward device change to effects that have requested to be
4633        // aware of attached audio device.
4634        if (value != AUDIO_DEVICE_NONE) {
4635            a2dpDeviceChanged =
4636                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4637            mOutDevice = value;
4638            for (size_t i = 0; i < mEffectChains.size(); i++) {
4639                mEffectChains[i]->setDevice_l(mOutDevice);
4640            }
4641        }
4642    }
4643
4644    if (status == NO_ERROR) {
4645        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4646                                                keyValuePair.string());
4647        if (!mStandby && status == INVALID_OPERATION) {
4648            mOutput->standby();
4649            mStandby = true;
4650            mBytesWritten = 0;
4651            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4652                                                   keyValuePair.string());
4653        }
4654        if (status == NO_ERROR && reconfig) {
4655            readOutputParameters_l();
4656            delete mAudioMixer;
4657            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4658            for (size_t i = 0; i < mTracks.size() ; i++) {
4659                int name = getTrackName_l(mTracks[i]->mChannelMask,
4660                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4661                if (name < 0) {
4662                    break;
4663                }
4664                mTracks[i]->mName = name;
4665            }
4666            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4667        }
4668    }
4669
4670    return reconfig || a2dpDeviceChanged;
4671}
4672
4673
4674void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4675{
4676    PlaybackThread::dumpInternals(fd, args);
4677    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4678    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4679    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4680
4681    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4682    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4683    // This is a large object so we place it on the heap.
4684    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4685    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4686    copy->dump(fd);
4687    delete copy;
4688
4689#ifdef STATE_QUEUE_DUMP
4690    // Similar for state queue
4691    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4692    observerCopy.dump(fd);
4693    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4694    mutatorCopy.dump(fd);
4695#endif
4696
4697#ifdef TEE_SINK
4698    // Write the tee output to a .wav file
4699    dumpTee(fd, mTeeSource, mId);
4700#endif
4701
4702#ifdef AUDIO_WATCHDOG
4703    if (mAudioWatchdog != 0) {
4704        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4705        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4706        wdCopy.dump(fd);
4707    }
4708#endif
4709}
4710
4711uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4712{
4713    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4714}
4715
4716uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4717{
4718    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4719}
4720
4721void AudioFlinger::MixerThread::cacheParameters_l()
4722{
4723    PlaybackThread::cacheParameters_l();
4724
4725    // FIXME: Relaxed timing because of a certain device that can't meet latency
4726    // Should be reduced to 2x after the vendor fixes the driver issue
4727    // increase threshold again due to low power audio mode. The way this warning
4728    // threshold is calculated and its usefulness should be reconsidered anyway.
4729    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4730}
4731
4732// ----------------------------------------------------------------------------
4733
4734AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4735        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4736    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4737        // mLeftVolFloat, mRightVolFloat
4738{
4739}
4740
4741AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4742        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4743        ThreadBase::type_t type, bool systemReady)
4744    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4745        // mLeftVolFloat, mRightVolFloat
4746{
4747}
4748
4749AudioFlinger::DirectOutputThread::~DirectOutputThread()
4750{
4751}
4752
4753void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4754{
4755    float left, right;
4756
4757    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4758        left = right = 0;
4759    } else {
4760        float typeVolume = mStreamTypes[track->streamType()].volume;
4761        float v = mMasterVolume * typeVolume;
4762        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4763        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4764        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4765        if (left > GAIN_FLOAT_UNITY) {
4766            left = GAIN_FLOAT_UNITY;
4767        }
4768        left *= v;
4769        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4770        if (right > GAIN_FLOAT_UNITY) {
4771            right = GAIN_FLOAT_UNITY;
4772        }
4773        right *= v;
4774    }
4775
4776    if (lastTrack) {
4777        if (left != mLeftVolFloat || right != mRightVolFloat) {
4778            mLeftVolFloat = left;
4779            mRightVolFloat = right;
4780
4781            // Convert volumes from float to 8.24
4782            uint32_t vl = (uint32_t)(left * (1 << 24));
4783            uint32_t vr = (uint32_t)(right * (1 << 24));
4784
4785            // Delegate volume control to effect in track effect chain if needed
4786            // only one effect chain can be present on DirectOutputThread, so if
4787            // there is one, the track is connected to it
4788            if (!mEffectChains.isEmpty()) {
4789                mEffectChains[0]->setVolume_l(&vl, &vr);
4790                left = (float)vl / (1 << 24);
4791                right = (float)vr / (1 << 24);
4792            }
4793            if (mOutput->stream->set_volume) {
4794                mOutput->stream->set_volume(mOutput->stream, left, right);
4795            }
4796        }
4797    }
4798}
4799
4800void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4801{
4802    sp<Track> previousTrack = mPreviousTrack.promote();
4803    sp<Track> latestTrack = mLatestActiveTrack.promote();
4804
4805    if (previousTrack != 0 && latestTrack != 0) {
4806        if (mType == DIRECT) {
4807            if (previousTrack.get() != latestTrack.get()) {
4808                mFlushPending = true;
4809            }
4810        } else /* mType == OFFLOAD */ {
4811            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4812                mFlushPending = true;
4813            }
4814        }
4815    }
4816    PlaybackThread::onAddNewTrack_l();
4817}
4818
4819AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4820    Vector< sp<Track> > *tracksToRemove
4821)
4822{
4823    size_t count = mActiveTracks.size();
4824    mixer_state mixerStatus = MIXER_IDLE;
4825    bool doHwPause = false;
4826    bool doHwResume = false;
4827
4828    // find out which tracks need to be processed
4829    for (size_t i = 0; i < count; i++) {
4830        sp<Track> t = mActiveTracks[i].promote();
4831        // The track died recently
4832        if (t == 0) {
4833            continue;
4834        }
4835
4836        if (t->isInvalid()) {
4837            ALOGW("An invalidated track shouldn't be in active list");
4838            tracksToRemove->add(t);
4839            continue;
4840        }
4841
4842        Track* const track = t.get();
4843#ifdef VERY_VERY_VERBOSE_LOGGING
4844        audio_track_cblk_t* cblk = track->cblk();
4845#endif
4846        // Only consider last track started for volume and mixer state control.
4847        // In theory an older track could underrun and restart after the new one starts
4848        // but as we only care about the transition phase between two tracks on a
4849        // direct output, it is not a problem to ignore the underrun case.
4850        sp<Track> l = mLatestActiveTrack.promote();
4851        bool last = l.get() == track;
4852
4853        if (track->isPausing()) {
4854            track->setPaused();
4855            if (mHwSupportsPause && last && !mHwPaused) {
4856                doHwPause = true;
4857                mHwPaused = true;
4858            }
4859            tracksToRemove->add(track);
4860        } else if (track->isFlushPending()) {
4861            track->flushAck();
4862            if (last) {
4863                mFlushPending = true;
4864            }
4865        } else if (track->isResumePending()) {
4866            track->resumeAck();
4867            if (last && mHwPaused) {
4868                doHwResume = true;
4869                mHwPaused = false;
4870            }
4871        }
4872
4873        // The first time a track is added we wait
4874        // for all its buffers to be filled before processing it.
4875        // Allow draining the buffer in case the client
4876        // app does not call stop() and relies on underrun to stop:
4877        // hence the test on (track->mRetryCount > 1).
4878        // If retryCount<=1 then track is about to underrun and be removed.
4879        // Do not use a high threshold for compressed audio.
4880        uint32_t minFrames;
4881        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4882            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4883            minFrames = mNormalFrameCount;
4884        } else {
4885            minFrames = 1;
4886        }
4887
4888        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4889                !track->isStopping_2() && !track->isStopped())
4890        {
4891            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4892
4893            if (track->mFillingUpStatus == Track::FS_FILLED) {
4894                track->mFillingUpStatus = Track::FS_ACTIVE;
4895                // make sure processVolume_l() will apply new volume even if 0
4896                mLeftVolFloat = mRightVolFloat = -1.0;
4897                if (!mHwSupportsPause) {
4898                    track->resumeAck();
4899                }
4900            }
4901
4902            // compute volume for this track
4903            processVolume_l(track, last);
4904            if (last) {
4905                sp<Track> previousTrack = mPreviousTrack.promote();
4906                if (previousTrack != 0) {
4907                    if (track != previousTrack.get()) {
4908                        // Flush any data still being written from last track
4909                        mBytesRemaining = 0;
4910                        // Invalidate previous track to force a seek when resuming.
4911                        previousTrack->invalidate();
4912                    }
4913                }
4914                mPreviousTrack = track;
4915
4916                // reset retry count
4917                track->mRetryCount = kMaxTrackRetriesDirect;
4918                mActiveTrack = t;
4919                mixerStatus = MIXER_TRACKS_READY;
4920                if (mHwPaused) {
4921                    doHwResume = true;
4922                    mHwPaused = false;
4923                }
4924            }
4925        } else {
4926            // clear effect chain input buffer if the last active track started underruns
4927            // to avoid sending previous audio buffer again to effects
4928            if (!mEffectChains.isEmpty() && last) {
4929                mEffectChains[0]->clearInputBuffer();
4930            }
4931            if (track->isStopping_1()) {
4932                track->mState = TrackBase::STOPPING_2;
4933                if (last && mHwPaused) {
4934                     doHwResume = true;
4935                     mHwPaused = false;
4936                 }
4937            }
4938            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4939                    track->isStopping_2() || track->isPaused()) {
4940                // We have consumed all the buffers of this track.
4941                // Remove it from the list of active tracks.
4942                size_t audioHALFrames;
4943                if (audio_has_proportional_frames(mFormat)) {
4944                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4945                } else {
4946                    audioHALFrames = 0;
4947                }
4948
4949                int64_t framesWritten = mBytesWritten / mFrameSize;
4950                if (mStandby || !last ||
4951                        track->presentationComplete(framesWritten, audioHALFrames)) {
4952                    if (track->isStopping_2()) {
4953                        track->mState = TrackBase::STOPPED;
4954                    }
4955                    if (track->isStopped()) {
4956                        track->reset();
4957                    }
4958                    tracksToRemove->add(track);
4959                }
4960            } else {
4961                // No buffers for this track. Give it a few chances to
4962                // fill a buffer, then remove it from active list.
4963                // Only consider last track started for mixer state control
4964                if (--(track->mRetryCount) <= 0) {
4965                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4966                    tracksToRemove->add(track);
4967                    // indicate to client process that the track was disabled because of underrun;
4968                    // it will then automatically call start() when data is available
4969                    track->disable();
4970                } else if (last) {
4971                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4972                            "minFrames = %u, mFormat = %#x",
4973                            track->framesReady(), minFrames, mFormat);
4974                    mixerStatus = MIXER_TRACKS_ENABLED;
4975                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4976                        doHwPause = true;
4977                        mHwPaused = true;
4978                    }
4979                }
4980            }
4981        }
4982    }
4983
4984    // if an active track did not command a flush, check for pending flush on stopped tracks
4985    if (!mFlushPending) {
4986        for (size_t i = 0; i < mTracks.size(); i++) {
4987            if (mTracks[i]->isFlushPending()) {
4988                mTracks[i]->flushAck();
4989                mFlushPending = true;
4990            }
4991        }
4992    }
4993
4994    // make sure the pause/flush/resume sequence is executed in the right order.
4995    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4996    // before flush and then resume HW. This can happen in case of pause/flush/resume
4997    // if resume is received before pause is executed.
4998    if (mHwSupportsPause && !mStandby &&
4999            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5000        mOutput->stream->pause(mOutput->stream);
5001    }
5002    if (mFlushPending) {
5003        flushHw_l();
5004    }
5005    if (mHwSupportsPause && !mStandby && doHwResume) {
5006        mOutput->stream->resume(mOutput->stream);
5007    }
5008    // remove all the tracks that need to be...
5009    removeTracks_l(*tracksToRemove);
5010
5011    return mixerStatus;
5012}
5013
5014void AudioFlinger::DirectOutputThread::threadLoop_mix()
5015{
5016    size_t frameCount = mFrameCount;
5017    int8_t *curBuf = (int8_t *)mSinkBuffer;
5018    // output audio to hardware
5019    while (frameCount) {
5020        AudioBufferProvider::Buffer buffer;
5021        buffer.frameCount = frameCount;
5022        status_t status = mActiveTrack->getNextBuffer(&buffer);
5023        if (status != NO_ERROR || buffer.raw == NULL) {
5024            // no need to pad with 0 for compressed audio
5025            if (audio_has_proportional_frames(mFormat)) {
5026                memset(curBuf, 0, frameCount * mFrameSize);
5027            }
5028            break;
5029        }
5030        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5031        frameCount -= buffer.frameCount;
5032        curBuf += buffer.frameCount * mFrameSize;
5033        mActiveTrack->releaseBuffer(&buffer);
5034    }
5035    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5036    mSleepTimeUs = 0;
5037    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5038    mActiveTrack.clear();
5039}
5040
5041void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5042{
5043    // do not write to HAL when paused
5044    if (mHwPaused || (usesHwAvSync() && mStandby)) {
5045        mSleepTimeUs = mIdleSleepTimeUs;
5046        return;
5047    }
5048    if (mSleepTimeUs == 0) {
5049        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5050            mSleepTimeUs = mActiveSleepTimeUs;
5051        } else {
5052            mSleepTimeUs = mIdleSleepTimeUs;
5053        }
5054    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5055        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5056        mSleepTimeUs = 0;
5057    }
5058}
5059
5060void AudioFlinger::DirectOutputThread::threadLoop_exit()
5061{
5062    {
5063        Mutex::Autolock _l(mLock);
5064        for (size_t i = 0; i < mTracks.size(); i++) {
5065            if (mTracks[i]->isFlushPending()) {
5066                mTracks[i]->flushAck();
5067                mFlushPending = true;
5068            }
5069        }
5070        if (mFlushPending) {
5071            flushHw_l();
5072        }
5073    }
5074    PlaybackThread::threadLoop_exit();
5075}
5076
5077// must be called with thread mutex locked
5078bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5079{
5080    bool trackPaused = false;
5081    bool trackStopped = false;
5082
5083    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5084        return !mStandby;
5085    }
5086
5087    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5088    // after a timeout and we will enter standby then.
5089    if (mTracks.size() > 0) {
5090        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5091        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5092                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5093    }
5094
5095    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5096}
5097
5098// getTrackName_l() must be called with ThreadBase::mLock held
5099int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5100        audio_format_t format __unused, audio_session_t sessionId __unused)
5101{
5102    return 0;
5103}
5104
5105// deleteTrackName_l() must be called with ThreadBase::mLock held
5106void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5107{
5108}
5109
5110// checkForNewParameter_l() must be called with ThreadBase::mLock held
5111bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5112                                                              status_t& status)
5113{
5114    bool reconfig = false;
5115    bool a2dpDeviceChanged = false;
5116
5117    status = NO_ERROR;
5118
5119    AudioParameter param = AudioParameter(keyValuePair);
5120    int value;
5121    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5122        // forward device change to effects that have requested to be
5123        // aware of attached audio device.
5124        if (value != AUDIO_DEVICE_NONE) {
5125            a2dpDeviceChanged =
5126                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5127            mOutDevice = value;
5128            for (size_t i = 0; i < mEffectChains.size(); i++) {
5129                mEffectChains[i]->setDevice_l(mOutDevice);
5130            }
5131        }
5132    }
5133    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5134        // do not accept frame count changes if tracks are open as the track buffer
5135        // size depends on frame count and correct behavior would not be garantied
5136        // if frame count is changed after track creation
5137        if (!mTracks.isEmpty()) {
5138            status = INVALID_OPERATION;
5139        } else {
5140            reconfig = true;
5141        }
5142    }
5143    if (status == NO_ERROR) {
5144        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5145                                                keyValuePair.string());
5146        if (!mStandby && status == INVALID_OPERATION) {
5147            mOutput->standby();
5148            mStandby = true;
5149            mBytesWritten = 0;
5150            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5151                                                   keyValuePair.string());
5152        }
5153        if (status == NO_ERROR && reconfig) {
5154            readOutputParameters_l();
5155            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5156        }
5157    }
5158
5159    return reconfig || a2dpDeviceChanged;
5160}
5161
5162uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5163{
5164    uint32_t time;
5165    if (audio_has_proportional_frames(mFormat)) {
5166        time = PlaybackThread::activeSleepTimeUs();
5167    } else {
5168        time = kDirectMinSleepTimeUs;
5169    }
5170    return time;
5171}
5172
5173uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5174{
5175    uint32_t time;
5176    if (audio_has_proportional_frames(mFormat)) {
5177        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5178    } else {
5179        time = kDirectMinSleepTimeUs;
5180    }
5181    return time;
5182}
5183
5184uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5185{
5186    uint32_t time;
5187    if (audio_has_proportional_frames(mFormat)) {
5188        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5189    } else {
5190        time = kDirectMinSleepTimeUs;
5191    }
5192    return time;
5193}
5194
5195void AudioFlinger::DirectOutputThread::cacheParameters_l()
5196{
5197    PlaybackThread::cacheParameters_l();
5198
5199    // use shorter standby delay as on normal output to release
5200    // hardware resources as soon as possible
5201    // no delay on outputs with HW A/V sync
5202    if (usesHwAvSync()) {
5203        mStandbyDelayNs = 0;
5204    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5205        mStandbyDelayNs = kOffloadStandbyDelayNs;
5206    } else {
5207        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5208    }
5209}
5210
5211void AudioFlinger::DirectOutputThread::flushHw_l()
5212{
5213    mOutput->flush();
5214    mHwPaused = false;
5215    mFlushPending = false;
5216}
5217
5218// ----------------------------------------------------------------------------
5219
5220AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5221        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5222    :   Thread(false /*canCallJava*/),
5223        mPlaybackThread(playbackThread),
5224        mWriteAckSequence(0),
5225        mDrainSequence(0)
5226{
5227}
5228
5229AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5230{
5231}
5232
5233void AudioFlinger::AsyncCallbackThread::onFirstRef()
5234{
5235    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5236}
5237
5238bool AudioFlinger::AsyncCallbackThread::threadLoop()
5239{
5240    while (!exitPending()) {
5241        uint32_t writeAckSequence;
5242        uint32_t drainSequence;
5243
5244        {
5245            Mutex::Autolock _l(mLock);
5246            while (!((mWriteAckSequence & 1) ||
5247                     (mDrainSequence & 1) ||
5248                     exitPending())) {
5249                mWaitWorkCV.wait(mLock);
5250            }
5251
5252            if (exitPending()) {
5253                break;
5254            }
5255            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5256                  mWriteAckSequence, mDrainSequence);
5257            writeAckSequence = mWriteAckSequence;
5258            mWriteAckSequence &= ~1;
5259            drainSequence = mDrainSequence;
5260            mDrainSequence &= ~1;
5261        }
5262        {
5263            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5264            if (playbackThread != 0) {
5265                if (writeAckSequence & 1) {
5266                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5267                }
5268                if (drainSequence & 1) {
5269                    playbackThread->resetDraining(drainSequence >> 1);
5270                }
5271            }
5272        }
5273    }
5274    return false;
5275}
5276
5277void AudioFlinger::AsyncCallbackThread::exit()
5278{
5279    ALOGV("AsyncCallbackThread::exit");
5280    Mutex::Autolock _l(mLock);
5281    requestExit();
5282    mWaitWorkCV.broadcast();
5283}
5284
5285void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5286{
5287    Mutex::Autolock _l(mLock);
5288    // bit 0 is cleared
5289    mWriteAckSequence = sequence << 1;
5290}
5291
5292void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5293{
5294    Mutex::Autolock _l(mLock);
5295    // ignore unexpected callbacks
5296    if (mWriteAckSequence & 2) {
5297        mWriteAckSequence |= 1;
5298        mWaitWorkCV.signal();
5299    }
5300}
5301
5302void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5303{
5304    Mutex::Autolock _l(mLock);
5305    // bit 0 is cleared
5306    mDrainSequence = sequence << 1;
5307}
5308
5309void AudioFlinger::AsyncCallbackThread::resetDraining()
5310{
5311    Mutex::Autolock _l(mLock);
5312    // ignore unexpected callbacks
5313    if (mDrainSequence & 2) {
5314        mDrainSequence |= 1;
5315        mWaitWorkCV.signal();
5316    }
5317}
5318
5319
5320// ----------------------------------------------------------------------------
5321AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5322        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5323    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5324        mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true)
5325{
5326    //FIXME: mStandby should be set to true by ThreadBase constructor
5327    mStandby = true;
5328    mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5329}
5330
5331void AudioFlinger::OffloadThread::threadLoop_exit()
5332{
5333    if (mFlushPending || mHwPaused) {
5334        // If a flush is pending or track was paused, just discard buffered data
5335        flushHw_l();
5336    } else {
5337        mMixerStatus = MIXER_DRAIN_ALL;
5338        threadLoop_drain();
5339    }
5340    if (mUseAsyncWrite) {
5341        ALOG_ASSERT(mCallbackThread != 0);
5342        mCallbackThread->exit();
5343    }
5344    PlaybackThread::threadLoop_exit();
5345}
5346
5347AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5348    Vector< sp<Track> > *tracksToRemove
5349)
5350{
5351    size_t count = mActiveTracks.size();
5352
5353    mixer_state mixerStatus = MIXER_IDLE;
5354    bool doHwPause = false;
5355    bool doHwResume = false;
5356
5357    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5358
5359    // find out which tracks need to be processed
5360    for (size_t i = 0; i < count; i++) {
5361        sp<Track> t = mActiveTracks[i].promote();
5362        // The track died recently
5363        if (t == 0) {
5364            continue;
5365        }
5366        Track* const track = t.get();
5367#ifdef VERY_VERY_VERBOSE_LOGGING
5368        audio_track_cblk_t* cblk = track->cblk();
5369#endif
5370        // Only consider last track started for volume and mixer state control.
5371        // In theory an older track could underrun and restart after the new one starts
5372        // but as we only care about the transition phase between two tracks on a
5373        // direct output, it is not a problem to ignore the underrun case.
5374        sp<Track> l = mLatestActiveTrack.promote();
5375        bool last = l.get() == track;
5376
5377        if (track->isInvalid()) {
5378            ALOGW("An invalidated track shouldn't be in active list");
5379            tracksToRemove->add(track);
5380            continue;
5381        }
5382
5383        if (track->mState == TrackBase::IDLE) {
5384            ALOGW("An idle track shouldn't be in active list");
5385            continue;
5386        }
5387
5388        if (track->isPausing()) {
5389            track->setPaused();
5390            if (last) {
5391                if (mHwSupportsPause && !mHwPaused) {
5392                    doHwPause = true;
5393                    mHwPaused = true;
5394                }
5395                // If we were part way through writing the mixbuffer to
5396                // the HAL we must save this until we resume
5397                // BUG - this will be wrong if a different track is made active,
5398                // in that case we want to discard the pending data in the
5399                // mixbuffer and tell the client to present it again when the
5400                // track is resumed
5401                mPausedWriteLength = mCurrentWriteLength;
5402                mPausedBytesRemaining = mBytesRemaining;
5403                mBytesRemaining = 0;    // stop writing
5404            }
5405            tracksToRemove->add(track);
5406        } else if (track->isFlushPending()) {
5407            if (track->isStopping_1()) {
5408                track->mRetryCount = kMaxTrackStopRetriesOffload;
5409            } else {
5410                track->mRetryCount = kMaxTrackRetriesOffload;
5411            }
5412            track->flushAck();
5413            if (last) {
5414                mFlushPending = true;
5415            }
5416        } else if (track->isResumePending()){
5417            track->resumeAck();
5418            if (last) {
5419                if (mPausedBytesRemaining) {
5420                    // Need to continue write that was interrupted
5421                    mCurrentWriteLength = mPausedWriteLength;
5422                    mBytesRemaining = mPausedBytesRemaining;
5423                    mPausedBytesRemaining = 0;
5424                }
5425                if (mHwPaused) {
5426                    doHwResume = true;
5427                    mHwPaused = false;
5428                    // threadLoop_mix() will handle the case that we need to
5429                    // resume an interrupted write
5430                }
5431                // enable write to audio HAL
5432                mSleepTimeUs = 0;
5433
5434                // Do not handle new data in this iteration even if track->framesReady()
5435                mixerStatus = MIXER_TRACKS_ENABLED;
5436            }
5437        }  else if (track->framesReady() && track->isReady() &&
5438                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5439            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5440            if (track->mFillingUpStatus == Track::FS_FILLED) {
5441                track->mFillingUpStatus = Track::FS_ACTIVE;
5442                // make sure processVolume_l() will apply new volume even if 0
5443                mLeftVolFloat = mRightVolFloat = -1.0;
5444            }
5445
5446            if (last) {
5447                sp<Track> previousTrack = mPreviousTrack.promote();
5448                if (previousTrack != 0) {
5449                    if (track != previousTrack.get()) {
5450                        // Flush any data still being written from last track
5451                        mBytesRemaining = 0;
5452                        if (mPausedBytesRemaining) {
5453                            // Last track was paused so we also need to flush saved
5454                            // mixbuffer state and invalidate track so that it will
5455                            // re-submit that unwritten data when it is next resumed
5456                            mPausedBytesRemaining = 0;
5457                            // Invalidate is a bit drastic - would be more efficient
5458                            // to have a flag to tell client that some of the
5459                            // previously written data was lost
5460                            previousTrack->invalidate();
5461                        }
5462                        // flush data already sent to the DSP if changing audio session as audio
5463                        // comes from a different source. Also invalidate previous track to force a
5464                        // seek when resuming.
5465                        if (previousTrack->sessionId() != track->sessionId()) {
5466                            previousTrack->invalidate();
5467                        }
5468                    }
5469                }
5470                mPreviousTrack = track;
5471                // reset retry count
5472                if (track->isStopping_1()) {
5473                    track->mRetryCount = kMaxTrackStopRetriesOffload;
5474                } else {
5475                    track->mRetryCount = kMaxTrackRetriesOffload;
5476                }
5477                mActiveTrack = t;
5478                mixerStatus = MIXER_TRACKS_READY;
5479            }
5480        } else {
5481            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5482            if (track->isStopping_1()) {
5483                if (--(track->mRetryCount) <= 0) {
5484                    // Hardware buffer can hold a large amount of audio so we must
5485                    // wait for all current track's data to drain before we say
5486                    // that the track is stopped.
5487                    if (mBytesRemaining == 0) {
5488                        // Only start draining when all data in mixbuffer
5489                        // has been written
5490                        ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5491                        track->mState = TrackBase::STOPPING_2; // so presentation completes after
5492                        // drain do not drain if no data was ever sent to HAL (mStandby == true)
5493                        if (last && !mStandby) {
5494                            // do not modify drain sequence if we are already draining. This happens
5495                            // when resuming from pause after drain.
5496                            if ((mDrainSequence & 1) == 0) {
5497                                mSleepTimeUs = 0;
5498                                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5499                                mixerStatus = MIXER_DRAIN_TRACK;
5500                                mDrainSequence += 2;
5501                            }
5502                            if (mHwPaused) {
5503                                // It is possible to move from PAUSED to STOPPING_1 without
5504                                // a resume so we must ensure hardware is running
5505                                doHwResume = true;
5506                                mHwPaused = false;
5507                            }
5508                        }
5509                    }
5510                } else if (last) {
5511                    ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5512                    mixerStatus = MIXER_TRACKS_ENABLED;
5513                }
5514            } else if (track->isStopping_2()) {
5515                // Drain has completed or we are in standby, signal presentation complete
5516                if (!(mDrainSequence & 1) || !last || mStandby) {
5517                    track->mState = TrackBase::STOPPED;
5518                    size_t audioHALFrames =
5519                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5520                    int64_t framesWritten =
5521                            mBytesWritten / mOutput->getFrameSize();
5522                    track->presentationComplete(framesWritten, audioHALFrames);
5523                    track->reset();
5524                    tracksToRemove->add(track);
5525                }
5526            } else {
5527                // No buffers for this track. Give it a few chances to
5528                // fill a buffer, then remove it from active list.
5529                if (--(track->mRetryCount) <= 0) {
5530                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5531                          track->name());
5532                    tracksToRemove->add(track);
5533                    // indicate to client process that the track was disabled because of underrun;
5534                    // it will then automatically call start() when data is available
5535                    track->disable();
5536                } else if (last){
5537                    mixerStatus = MIXER_TRACKS_ENABLED;
5538                }
5539            }
5540        }
5541        // compute volume for this track
5542        processVolume_l(track, last);
5543    }
5544
5545    // make sure the pause/flush/resume sequence is executed in the right order.
5546    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5547    // before flush and then resume HW. This can happen in case of pause/flush/resume
5548    // if resume is received before pause is executed.
5549    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5550        mOutput->stream->pause(mOutput->stream);
5551    }
5552    if (mFlushPending) {
5553        flushHw_l();
5554    }
5555    if (!mStandby && doHwResume) {
5556        mOutput->stream->resume(mOutput->stream);
5557    }
5558
5559    // remove all the tracks that need to be...
5560    removeTracks_l(*tracksToRemove);
5561
5562    return mixerStatus;
5563}
5564
5565// must be called with thread mutex locked
5566bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5567{
5568    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5569          mWriteAckSequence, mDrainSequence);
5570    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5571        return true;
5572    }
5573    return false;
5574}
5575
5576bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5577{
5578    Mutex::Autolock _l(mLock);
5579    return waitingAsyncCallback_l();
5580}
5581
5582void AudioFlinger::OffloadThread::flushHw_l()
5583{
5584    DirectOutputThread::flushHw_l();
5585    // Flush anything still waiting in the mixbuffer
5586    mCurrentWriteLength = 0;
5587    mBytesRemaining = 0;
5588    mPausedWriteLength = 0;
5589    mPausedBytesRemaining = 0;
5590    // reset bytes written count to reflect that DSP buffers are empty after flush.
5591    mBytesWritten = 0;
5592
5593    if (mUseAsyncWrite) {
5594        // discard any pending drain or write ack by incrementing sequence
5595        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5596        mDrainSequence = (mDrainSequence + 2) & ~1;
5597        ALOG_ASSERT(mCallbackThread != 0);
5598        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5599        mCallbackThread->setDraining(mDrainSequence);
5600    }
5601}
5602
5603void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5604{
5605    Mutex::Autolock _l(mLock);
5606    if (PlaybackThread::invalidateTracks_l(streamType)) {
5607        mFlushPending = true;
5608    }
5609}
5610
5611// ----------------------------------------------------------------------------
5612
5613AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5614        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5615    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5616                    systemReady, DUPLICATING),
5617        mWaitTimeMs(UINT_MAX)
5618{
5619    addOutputTrack(mainThread);
5620}
5621
5622AudioFlinger::DuplicatingThread::~DuplicatingThread()
5623{
5624    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5625        mOutputTracks[i]->destroy();
5626    }
5627}
5628
5629void AudioFlinger::DuplicatingThread::threadLoop_mix()
5630{
5631    // mix buffers...
5632    if (outputsReady(outputTracks)) {
5633        mAudioMixer->process();
5634    } else {
5635        if (mMixerBufferValid) {
5636            memset(mMixerBuffer, 0, mMixerBufferSize);
5637        } else {
5638            memset(mSinkBuffer, 0, mSinkBufferSize);
5639        }
5640    }
5641    mSleepTimeUs = 0;
5642    writeFrames = mNormalFrameCount;
5643    mCurrentWriteLength = mSinkBufferSize;
5644    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5645}
5646
5647void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5648{
5649    if (mSleepTimeUs == 0) {
5650        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5651            mSleepTimeUs = mActiveSleepTimeUs;
5652        } else {
5653            mSleepTimeUs = mIdleSleepTimeUs;
5654        }
5655    } else if (mBytesWritten != 0) {
5656        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5657            writeFrames = mNormalFrameCount;
5658            memset(mSinkBuffer, 0, mSinkBufferSize);
5659        } else {
5660            // flush remaining overflow buffers in output tracks
5661            writeFrames = 0;
5662        }
5663        mSleepTimeUs = 0;
5664    }
5665}
5666
5667ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5668{
5669    for (size_t i = 0; i < outputTracks.size(); i++) {
5670        outputTracks[i]->write(mSinkBuffer, writeFrames);
5671    }
5672    mStandby = false;
5673    return (ssize_t)mSinkBufferSize;
5674}
5675
5676void AudioFlinger::DuplicatingThread::threadLoop_standby()
5677{
5678    // DuplicatingThread implements standby by stopping all tracks
5679    for (size_t i = 0; i < outputTracks.size(); i++) {
5680        outputTracks[i]->stop();
5681    }
5682}
5683
5684void AudioFlinger::DuplicatingThread::saveOutputTracks()
5685{
5686    outputTracks = mOutputTracks;
5687}
5688
5689void AudioFlinger::DuplicatingThread::clearOutputTracks()
5690{
5691    outputTracks.clear();
5692}
5693
5694void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5695{
5696    Mutex::Autolock _l(mLock);
5697    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5698    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5699    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5700    const size_t frameCount =
5701            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5702    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5703    // from different OutputTracks and their associated MixerThreads (e.g. one may
5704    // nearly empty and the other may be dropping data).
5705
5706    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5707                                            this,
5708                                            mSampleRate,
5709                                            mFormat,
5710                                            mChannelMask,
5711                                            frameCount,
5712                                            IPCThreadState::self()->getCallingUid());
5713    if (outputTrack->cblk() != NULL) {
5714        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5715        mOutputTracks.add(outputTrack);
5716        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5717        updateWaitTime_l();
5718    }
5719}
5720
5721void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5722{
5723    Mutex::Autolock _l(mLock);
5724    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5725        if (mOutputTracks[i]->thread() == thread) {
5726            mOutputTracks[i]->destroy();
5727            mOutputTracks.removeAt(i);
5728            updateWaitTime_l();
5729            if (thread->getOutput() == mOutput) {
5730                mOutput = NULL;
5731            }
5732            return;
5733        }
5734    }
5735    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5736}
5737
5738// caller must hold mLock
5739void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5740{
5741    mWaitTimeMs = UINT_MAX;
5742    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5743        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5744        if (strong != 0) {
5745            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5746            if (waitTimeMs < mWaitTimeMs) {
5747                mWaitTimeMs = waitTimeMs;
5748            }
5749        }
5750    }
5751}
5752
5753
5754bool AudioFlinger::DuplicatingThread::outputsReady(
5755        const SortedVector< sp<OutputTrack> > &outputTracks)
5756{
5757    for (size_t i = 0; i < outputTracks.size(); i++) {
5758        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5759        if (thread == 0) {
5760            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5761                    outputTracks[i].get());
5762            return false;
5763        }
5764        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5765        // see note at standby() declaration
5766        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5767            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5768                    thread.get());
5769            return false;
5770        }
5771    }
5772    return true;
5773}
5774
5775uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5776{
5777    return (mWaitTimeMs * 1000) / 2;
5778}
5779
5780void AudioFlinger::DuplicatingThread::cacheParameters_l()
5781{
5782    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5783    updateWaitTime_l();
5784
5785    MixerThread::cacheParameters_l();
5786}
5787
5788// ----------------------------------------------------------------------------
5789//      Record
5790// ----------------------------------------------------------------------------
5791
5792AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5793                                         AudioStreamIn *input,
5794                                         audio_io_handle_t id,
5795                                         audio_devices_t outDevice,
5796                                         audio_devices_t inDevice,
5797                                         bool systemReady
5798#ifdef TEE_SINK
5799                                         , const sp<NBAIO_Sink>& teeSink
5800#endif
5801                                         ) :
5802    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5803    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5804    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5805    mRsmpInRear(0)
5806#ifdef TEE_SINK
5807    , mTeeSink(teeSink)
5808#endif
5809    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5810            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5811    // mFastCapture below
5812    , mFastCaptureFutex(0)
5813    // mInputSource
5814    // mPipeSink
5815    // mPipeSource
5816    , mPipeFramesP2(0)
5817    // mPipeMemory
5818    // mFastCaptureNBLogWriter
5819    , mFastTrackAvail(false)
5820{
5821    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5822    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5823
5824    readInputParameters_l();
5825
5826    // create an NBAIO source for the HAL input stream, and negotiate
5827    mInputSource = new AudioStreamInSource(input->stream);
5828    size_t numCounterOffers = 0;
5829    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5830#if !LOG_NDEBUG
5831    ssize_t index =
5832#else
5833    (void)
5834#endif
5835            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5836    ALOG_ASSERT(index == 0);
5837
5838    // initialize fast capture depending on configuration
5839    bool initFastCapture;
5840    switch (kUseFastCapture) {
5841    case FastCapture_Never:
5842        initFastCapture = false;
5843        break;
5844    case FastCapture_Always:
5845        initFastCapture = true;
5846        break;
5847    case FastCapture_Static:
5848        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5849        break;
5850    // case FastCapture_Dynamic:
5851    }
5852
5853    if (initFastCapture) {
5854        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5855        NBAIO_Format format = mInputSource->format();
5856        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5857        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5858        void *pipeBuffer;
5859        const sp<MemoryDealer> roHeap(readOnlyHeap());
5860        sp<IMemory> pipeMemory;
5861        if ((roHeap == 0) ||
5862                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5863                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5864            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5865            goto failed;
5866        }
5867        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5868        memset(pipeBuffer, 0, pipeSize);
5869        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5870        const NBAIO_Format offers[1] = {format};
5871        size_t numCounterOffers = 0;
5872        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5873        ALOG_ASSERT(index == 0);
5874        mPipeSink = pipe;
5875        PipeReader *pipeReader = new PipeReader(*pipe);
5876        numCounterOffers = 0;
5877        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5878        ALOG_ASSERT(index == 0);
5879        mPipeSource = pipeReader;
5880        mPipeFramesP2 = pipeFramesP2;
5881        mPipeMemory = pipeMemory;
5882
5883        // create fast capture
5884        mFastCapture = new FastCapture();
5885        FastCaptureStateQueue *sq = mFastCapture->sq();
5886#ifdef STATE_QUEUE_DUMP
5887        // FIXME
5888#endif
5889        FastCaptureState *state = sq->begin();
5890        state->mCblk = NULL;
5891        state->mInputSource = mInputSource.get();
5892        state->mInputSourceGen++;
5893        state->mPipeSink = pipe;
5894        state->mPipeSinkGen++;
5895        state->mFrameCount = mFrameCount;
5896        state->mCommand = FastCaptureState::COLD_IDLE;
5897        // already done in constructor initialization list
5898        //mFastCaptureFutex = 0;
5899        state->mColdFutexAddr = &mFastCaptureFutex;
5900        state->mColdGen++;
5901        state->mDumpState = &mFastCaptureDumpState;
5902#ifdef TEE_SINK
5903        // FIXME
5904#endif
5905        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5906        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5907        sq->end();
5908        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5909
5910        // start the fast capture
5911        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5912        pid_t tid = mFastCapture->getTid();
5913        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5914#ifdef AUDIO_WATCHDOG
5915        // FIXME
5916#endif
5917
5918        mFastTrackAvail = true;
5919    }
5920failed: ;
5921
5922    // FIXME mNormalSource
5923}
5924
5925AudioFlinger::RecordThread::~RecordThread()
5926{
5927    if (mFastCapture != 0) {
5928        FastCaptureStateQueue *sq = mFastCapture->sq();
5929        FastCaptureState *state = sq->begin();
5930        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5931            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5932            if (old == -1) {
5933                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5934            }
5935        }
5936        state->mCommand = FastCaptureState::EXIT;
5937        sq->end();
5938        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5939        mFastCapture->join();
5940        mFastCapture.clear();
5941    }
5942    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5943    mAudioFlinger->unregisterWriter(mNBLogWriter);
5944    free(mRsmpInBuffer);
5945}
5946
5947void AudioFlinger::RecordThread::onFirstRef()
5948{
5949    run(mThreadName, PRIORITY_URGENT_AUDIO);
5950}
5951
5952bool AudioFlinger::RecordThread::threadLoop()
5953{
5954    nsecs_t lastWarning = 0;
5955
5956    inputStandBy();
5957
5958reacquire_wakelock:
5959    sp<RecordTrack> activeTrack;
5960    int activeTracksGen;
5961    {
5962        Mutex::Autolock _l(mLock);
5963        size_t size = mActiveTracks.size();
5964        activeTracksGen = mActiveTracksGen;
5965        if (size > 0) {
5966            // FIXME an arbitrary choice
5967            activeTrack = mActiveTracks[0];
5968            acquireWakeLock_l(activeTrack->uid());
5969            if (size > 1) {
5970                SortedVector<int> tmp;
5971                for (size_t i = 0; i < size; i++) {
5972                    tmp.add(mActiveTracks[i]->uid());
5973                }
5974                updateWakeLockUids_l(tmp);
5975            }
5976        } else {
5977            acquireWakeLock_l(-1);
5978        }
5979    }
5980
5981    // used to request a deferred sleep, to be executed later while mutex is unlocked
5982    uint32_t sleepUs = 0;
5983
5984    // loop while there is work to do
5985    for (;;) {
5986        Vector< sp<EffectChain> > effectChains;
5987
5988        // sleep with mutex unlocked
5989        if (sleepUs > 0) {
5990            ATRACE_BEGIN("sleep");
5991            usleep(sleepUs);
5992            ATRACE_END();
5993            sleepUs = 0;
5994        }
5995
5996        // activeTracks accumulates a copy of a subset of mActiveTracks
5997        Vector< sp<RecordTrack> > activeTracks;
5998
5999        // reference to the (first and only) active fast track
6000        sp<RecordTrack> fastTrack;
6001
6002        // reference to a fast track which is about to be removed
6003        sp<RecordTrack> fastTrackToRemove;
6004
6005        { // scope for mLock
6006            Mutex::Autolock _l(mLock);
6007
6008            processConfigEvents_l();
6009
6010            // check exitPending here because checkForNewParameters_l() and
6011            // checkForNewParameters_l() can temporarily release mLock
6012            if (exitPending()) {
6013                break;
6014            }
6015
6016            // if no active track(s), then standby and release wakelock
6017            size_t size = mActiveTracks.size();
6018            if (size == 0) {
6019                standbyIfNotAlreadyInStandby();
6020                // exitPending() can't become true here
6021                releaseWakeLock_l();
6022                ALOGV("RecordThread: loop stopping");
6023                // go to sleep
6024                mWaitWorkCV.wait(mLock);
6025                ALOGV("RecordThread: loop starting");
6026                goto reacquire_wakelock;
6027            }
6028
6029            if (mActiveTracksGen != activeTracksGen) {
6030                activeTracksGen = mActiveTracksGen;
6031                SortedVector<int> tmp;
6032                for (size_t i = 0; i < size; i++) {
6033                    tmp.add(mActiveTracks[i]->uid());
6034                }
6035                updateWakeLockUids_l(tmp);
6036            }
6037
6038            bool doBroadcast = false;
6039            for (size_t i = 0; i < size; ) {
6040
6041                activeTrack = mActiveTracks[i];
6042                if (activeTrack->isTerminated()) {
6043                    if (activeTrack->isFastTrack()) {
6044                        ALOG_ASSERT(fastTrackToRemove == 0);
6045                        fastTrackToRemove = activeTrack;
6046                    }
6047                    removeTrack_l(activeTrack);
6048                    mActiveTracks.remove(activeTrack);
6049                    mActiveTracksGen++;
6050                    size--;
6051                    continue;
6052                }
6053
6054                TrackBase::track_state activeTrackState = activeTrack->mState;
6055                switch (activeTrackState) {
6056
6057                case TrackBase::PAUSING:
6058                    mActiveTracks.remove(activeTrack);
6059                    mActiveTracksGen++;
6060                    doBroadcast = true;
6061                    size--;
6062                    continue;
6063
6064                case TrackBase::STARTING_1:
6065                    sleepUs = 10000;
6066                    i++;
6067                    continue;
6068
6069                case TrackBase::STARTING_2:
6070                    doBroadcast = true;
6071                    mStandby = false;
6072                    activeTrack->mState = TrackBase::ACTIVE;
6073                    break;
6074
6075                case TrackBase::ACTIVE:
6076                    break;
6077
6078                case TrackBase::IDLE:
6079                    i++;
6080                    continue;
6081
6082                default:
6083                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6084                }
6085
6086                activeTracks.add(activeTrack);
6087                i++;
6088
6089                if (activeTrack->isFastTrack()) {
6090                    ALOG_ASSERT(!mFastTrackAvail);
6091                    ALOG_ASSERT(fastTrack == 0);
6092                    fastTrack = activeTrack;
6093                }
6094            }
6095            if (doBroadcast) {
6096                mStartStopCond.broadcast();
6097            }
6098
6099            // sleep if there are no active tracks to process
6100            if (activeTracks.size() == 0) {
6101                if (sleepUs == 0) {
6102                    sleepUs = kRecordThreadSleepUs;
6103                }
6104                continue;
6105            }
6106            sleepUs = 0;
6107
6108            lockEffectChains_l(effectChains);
6109        }
6110
6111        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6112
6113        size_t size = effectChains.size();
6114        for (size_t i = 0; i < size; i++) {
6115            // thread mutex is not locked, but effect chain is locked
6116            effectChains[i]->process_l();
6117        }
6118
6119        // Push a new fast capture state if fast capture is not already running, or cblk change
6120        if (mFastCapture != 0) {
6121            FastCaptureStateQueue *sq = mFastCapture->sq();
6122            FastCaptureState *state = sq->begin();
6123            bool didModify = false;
6124            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6125            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6126                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6127                if (state->mCommand == FastCaptureState::COLD_IDLE) {
6128                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
6129                    if (old == -1) {
6130                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6131                    }
6132                }
6133                state->mCommand = FastCaptureState::READ_WRITE;
6134#if 0   // FIXME
6135                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6136                        FastThreadDumpState::kSamplingNforLowRamDevice :
6137                        FastThreadDumpState::kSamplingN);
6138#endif
6139                didModify = true;
6140            }
6141            audio_track_cblk_t *cblkOld = state->mCblk;
6142            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6143            if (cblkNew != cblkOld) {
6144                state->mCblk = cblkNew;
6145                // block until acked if removing a fast track
6146                if (cblkOld != NULL) {
6147                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6148                }
6149                didModify = true;
6150            }
6151            sq->end(didModify);
6152            if (didModify) {
6153                sq->push(block);
6154#if 0
6155                if (kUseFastCapture == FastCapture_Dynamic) {
6156                    mNormalSource = mPipeSource;
6157                }
6158#endif
6159            }
6160        }
6161
6162        // now run the fast track destructor with thread mutex unlocked
6163        fastTrackToRemove.clear();
6164
6165        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6166        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6167        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6168        // If destination is non-contiguous, first read past the nominal end of buffer, then
6169        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6170
6171        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6172        ssize_t framesRead;
6173
6174        // If an NBAIO source is present, use it to read the normal capture's data
6175        if (mPipeSource != 0) {
6176            size_t framesToRead = mBufferSize / mFrameSize;
6177            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6178                    framesToRead);
6179            if (framesRead == 0) {
6180                // since pipe is non-blocking, simulate blocking input
6181                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6182            }
6183        // otherwise use the HAL / AudioStreamIn directly
6184        } else {
6185            ATRACE_BEGIN("read");
6186            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6187                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6188            ATRACE_END();
6189            if (bytesRead < 0) {
6190                framesRead = bytesRead;
6191            } else {
6192                framesRead = bytesRead / mFrameSize;
6193            }
6194        }
6195
6196        // Update server timestamp with server stats
6197        // systemTime() is optional if the hardware supports timestamps.
6198        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6199        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6200
6201        // Update server timestamp with kernel stats
6202        if (mInput->stream->get_capture_position != nullptr) {
6203            int64_t position, time;
6204            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6205            if (ret == NO_ERROR) {
6206                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6207                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6208                // Note: In general record buffers should tend to be empty in
6209                // a properly running pipeline.
6210                //
6211                // Also, it is not advantageous to call get_presentation_position during the read
6212                // as the read obtains a lock, preventing the timestamp call from executing.
6213            }
6214        }
6215        // Use this to track timestamp information
6216        // ALOGD("%s", mTimestamp.toString().c_str());
6217
6218        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6219            ALOGE("read failed: framesRead=%zd", framesRead);
6220            // Force input into standby so that it tries to recover at next read attempt
6221            inputStandBy();
6222            sleepUs = kRecordThreadSleepUs;
6223        }
6224        if (framesRead <= 0) {
6225            goto unlock;
6226        }
6227        ALOG_ASSERT(framesRead > 0);
6228
6229        if (mTeeSink != 0) {
6230            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6231        }
6232        // If destination is non-contiguous, we now correct for reading past end of buffer.
6233        {
6234            size_t part1 = mRsmpInFramesP2 - rear;
6235            if ((size_t) framesRead > part1) {
6236                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6237                        (framesRead - part1) * mFrameSize);
6238            }
6239        }
6240        rear = mRsmpInRear += framesRead;
6241
6242        size = activeTracks.size();
6243        // loop over each active track
6244        for (size_t i = 0; i < size; i++) {
6245            activeTrack = activeTracks[i];
6246
6247            // skip fast tracks, as those are handled directly by FastCapture
6248            if (activeTrack->isFastTrack()) {
6249                continue;
6250            }
6251
6252            // TODO: This code probably should be moved to RecordTrack.
6253            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6254
6255            enum {
6256                OVERRUN_UNKNOWN,
6257                OVERRUN_TRUE,
6258                OVERRUN_FALSE
6259            } overrun = OVERRUN_UNKNOWN;
6260
6261            // loop over getNextBuffer to handle circular sink
6262            for (;;) {
6263
6264                activeTrack->mSink.frameCount = ~0;
6265                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6266                size_t framesOut = activeTrack->mSink.frameCount;
6267                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6268
6269                // check available frames and handle overrun conditions
6270                // if the record track isn't draining fast enough.
6271                bool hasOverrun;
6272                size_t framesIn;
6273                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6274                if (hasOverrun) {
6275                    overrun = OVERRUN_TRUE;
6276                }
6277                if (framesOut == 0 || framesIn == 0) {
6278                    break;
6279                }
6280
6281                // Don't allow framesOut to be larger than what is possible with resampling
6282                // from framesIn.
6283                // This isn't strictly necessary but helps limit buffer resizing in
6284                // RecordBufferConverter.  TODO: remove when no longer needed.
6285                framesOut = min(framesOut,
6286                        destinationFramesPossible(
6287                                framesIn, mSampleRate, activeTrack->mSampleRate));
6288                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6289                framesOut = activeTrack->mRecordBufferConverter->convert(
6290                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6291
6292                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6293                    overrun = OVERRUN_FALSE;
6294                }
6295
6296                if (activeTrack->mFramesToDrop == 0) {
6297                    if (framesOut > 0) {
6298                        activeTrack->mSink.frameCount = framesOut;
6299                        activeTrack->releaseBuffer(&activeTrack->mSink);
6300                    }
6301                } else {
6302                    // FIXME could do a partial drop of framesOut
6303                    if (activeTrack->mFramesToDrop > 0) {
6304                        activeTrack->mFramesToDrop -= framesOut;
6305                        if (activeTrack->mFramesToDrop <= 0) {
6306                            activeTrack->clearSyncStartEvent();
6307                        }
6308                    } else {
6309                        activeTrack->mFramesToDrop += framesOut;
6310                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6311                                activeTrack->mSyncStartEvent->isCancelled()) {
6312                            ALOGW("Synced record %s, session %d, trigger session %d",
6313                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6314                                  activeTrack->sessionId(),
6315                                  (activeTrack->mSyncStartEvent != 0) ?
6316                                          activeTrack->mSyncStartEvent->triggerSession() :
6317                                          AUDIO_SESSION_NONE);
6318                            activeTrack->clearSyncStartEvent();
6319                        }
6320                    }
6321                }
6322
6323                if (framesOut == 0) {
6324                    break;
6325                }
6326            }
6327
6328            switch (overrun) {
6329            case OVERRUN_TRUE:
6330                // client isn't retrieving buffers fast enough
6331                if (!activeTrack->setOverflow()) {
6332                    nsecs_t now = systemTime();
6333                    // FIXME should lastWarning per track?
6334                    if ((now - lastWarning) > kWarningThrottleNs) {
6335                        ALOGW("RecordThread: buffer overflow");
6336                        lastWarning = now;
6337                    }
6338                }
6339                break;
6340            case OVERRUN_FALSE:
6341                activeTrack->clearOverflow();
6342                break;
6343            case OVERRUN_UNKNOWN:
6344                break;
6345            }
6346
6347            // update frame information and push timestamp out
6348            activeTrack->updateTrackFrameInfo(
6349                    activeTrack->mServerProxy->framesReleased(),
6350                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6351                    mSampleRate, mTimestamp);
6352        }
6353
6354unlock:
6355        // enable changes in effect chain
6356        unlockEffectChains(effectChains);
6357        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6358    }
6359
6360    standbyIfNotAlreadyInStandby();
6361
6362    {
6363        Mutex::Autolock _l(mLock);
6364        for (size_t i = 0; i < mTracks.size(); i++) {
6365            sp<RecordTrack> track = mTracks[i];
6366            track->invalidate();
6367        }
6368        mActiveTracks.clear();
6369        mActiveTracksGen++;
6370        mStartStopCond.broadcast();
6371    }
6372
6373    releaseWakeLock();
6374
6375    ALOGV("RecordThread %p exiting", this);
6376    return false;
6377}
6378
6379void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6380{
6381    if (!mStandby) {
6382        inputStandBy();
6383        mStandby = true;
6384    }
6385}
6386
6387void AudioFlinger::RecordThread::inputStandBy()
6388{
6389    // Idle the fast capture if it's currently running
6390    if (mFastCapture != 0) {
6391        FastCaptureStateQueue *sq = mFastCapture->sq();
6392        FastCaptureState *state = sq->begin();
6393        if (!(state->mCommand & FastCaptureState::IDLE)) {
6394            state->mCommand = FastCaptureState::COLD_IDLE;
6395            state->mColdFutexAddr = &mFastCaptureFutex;
6396            state->mColdGen++;
6397            mFastCaptureFutex = 0;
6398            sq->end();
6399            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6400            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6401#if 0
6402            if (kUseFastCapture == FastCapture_Dynamic) {
6403                // FIXME
6404            }
6405#endif
6406#ifdef AUDIO_WATCHDOG
6407            // FIXME
6408#endif
6409        } else {
6410            sq->end(false /*didModify*/);
6411        }
6412    }
6413    mInput->stream->common.standby(&mInput->stream->common);
6414}
6415
6416// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6417sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6418        const sp<AudioFlinger::Client>& client,
6419        uint32_t sampleRate,
6420        audio_format_t format,
6421        audio_channel_mask_t channelMask,
6422        size_t *pFrameCount,
6423        audio_session_t sessionId,
6424        size_t *notificationFrames,
6425        int uid,
6426        audio_input_flags_t *flags,
6427        pid_t tid,
6428        status_t *status)
6429{
6430    size_t frameCount = *pFrameCount;
6431    sp<RecordTrack> track;
6432    status_t lStatus;
6433    audio_input_flags_t inputFlags = mInput->flags;
6434
6435    // special case for FAST flag considered OK if fast capture is present
6436    if (hasFastCapture()) {
6437        inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6438    }
6439
6440    // Check if requested flags are compatible with output stream flags
6441    if ((*flags & inputFlags) != *flags) {
6442        ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6443                " input flags (%08x)",
6444              *flags, inputFlags);
6445        *flags = (audio_input_flags_t)(*flags & inputFlags);
6446    }
6447
6448    // client expresses a preference for FAST, but we get the final say
6449    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6450      if (
6451            // we formerly checked for a callback handler (non-0 tid),
6452            // but that is no longer required for TRANSFER_OBTAIN mode
6453            //
6454            // frame count is not specified, or is exactly the pipe depth
6455            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6456            // PCM data
6457            audio_is_linear_pcm(format) &&
6458            // hardware format
6459            (format == mFormat) &&
6460            // hardware channel mask
6461            (channelMask == mChannelMask) &&
6462            // hardware sample rate
6463            (sampleRate == mSampleRate) &&
6464            // record thread has an associated fast capture
6465            hasFastCapture() &&
6466            // there are sufficient fast track slots available
6467            mFastTrackAvail
6468        ) {
6469          // check compatibility with audio effects.
6470          Mutex::Autolock _l(mLock);
6471          // Do not accept FAST flag if the session has software effects
6472          sp<EffectChain> chain = getEffectChain_l(sessionId);
6473          if (chain != 0) {
6474              ALOGV_IF((*flags & AUDIO_INPUT_FLAG_RAW) != 0,
6475                      "AUDIO_INPUT_FLAG_RAW denied: effect present on session");
6476              *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_RAW);
6477              if (chain->hasSoftwareEffect()) {
6478                  ALOGV("AUDIO_INPUT_FLAG_FAST denied: software effect present on session");
6479                  *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6480              }
6481          }
6482          ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6483                   "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6484                   frameCount, mFrameCount);
6485      } else {
6486        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6487                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6488                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6489                frameCount, mFrameCount, mPipeFramesP2,
6490                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6491                hasFastCapture(), tid, mFastTrackAvail);
6492        *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6493      }
6494    }
6495
6496    // compute track buffer size in frames, and suggest the notification frame count
6497    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6498        // fast track: frame count is exactly the pipe depth
6499        frameCount = mPipeFramesP2;
6500        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6501        *notificationFrames = mFrameCount;
6502    } else {
6503        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6504        //                 or 20 ms if there is a fast capture
6505        // TODO This could be a roundupRatio inline, and const
6506        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6507                * sampleRate + mSampleRate - 1) / mSampleRate;
6508        // minimum number of notification periods is at least kMinNotifications,
6509        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6510        static const size_t kMinNotifications = 3;
6511        static const uint32_t kMinMs = 30;
6512        // TODO This could be a roundupRatio inline
6513        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6514        // TODO This could be a roundupRatio inline
6515        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6516                maxNotificationFrames;
6517        const size_t minFrameCount = maxNotificationFrames *
6518                max(kMinNotifications, minNotificationsByMs);
6519        frameCount = max(frameCount, minFrameCount);
6520        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6521            *notificationFrames = maxNotificationFrames;
6522        }
6523    }
6524    *pFrameCount = frameCount;
6525
6526    lStatus = initCheck();
6527    if (lStatus != NO_ERROR) {
6528        ALOGE("createRecordTrack_l() audio driver not initialized");
6529        goto Exit;
6530    }
6531
6532    { // scope for mLock
6533        Mutex::Autolock _l(mLock);
6534
6535        track = new RecordTrack(this, client, sampleRate,
6536                      format, channelMask, frameCount, NULL, sessionId, uid,
6537                      *flags, TrackBase::TYPE_DEFAULT);
6538
6539        lStatus = track->initCheck();
6540        if (lStatus != NO_ERROR) {
6541            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6542            // track must be cleared from the caller as the caller has the AF lock
6543            goto Exit;
6544        }
6545        mTracks.add(track);
6546
6547        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6548        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6549                        mAudioFlinger->btNrecIsOff();
6550        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6551        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6552
6553        if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6554            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6555            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6556            // so ask activity manager to do this on our behalf
6557            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6558        }
6559    }
6560
6561    lStatus = NO_ERROR;
6562
6563Exit:
6564    *status = lStatus;
6565    return track;
6566}
6567
6568status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6569                                           AudioSystem::sync_event_t event,
6570                                           audio_session_t triggerSession)
6571{
6572    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6573    sp<ThreadBase> strongMe = this;
6574    status_t status = NO_ERROR;
6575
6576    if (event == AudioSystem::SYNC_EVENT_NONE) {
6577        recordTrack->clearSyncStartEvent();
6578    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6579        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6580                                       triggerSession,
6581                                       recordTrack->sessionId(),
6582                                       syncStartEventCallback,
6583                                       recordTrack);
6584        // Sync event can be cancelled by the trigger session if the track is not in a
6585        // compatible state in which case we start record immediately
6586        if (recordTrack->mSyncStartEvent->isCancelled()) {
6587            recordTrack->clearSyncStartEvent();
6588        } else {
6589            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6590            recordTrack->mFramesToDrop = -
6591                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6592        }
6593    }
6594
6595    {
6596        // This section is a rendezvous between binder thread executing start() and RecordThread
6597        AutoMutex lock(mLock);
6598        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6599            if (recordTrack->mState == TrackBase::PAUSING) {
6600                ALOGV("active record track PAUSING -> ACTIVE");
6601                recordTrack->mState = TrackBase::ACTIVE;
6602            } else {
6603                ALOGV("active record track state %d", recordTrack->mState);
6604            }
6605            return status;
6606        }
6607
6608        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6609        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6610        //      or using a separate command thread
6611        recordTrack->mState = TrackBase::STARTING_1;
6612        mActiveTracks.add(recordTrack);
6613        mActiveTracksGen++;
6614        status_t status = NO_ERROR;
6615        if (recordTrack->isExternalTrack()) {
6616            mLock.unlock();
6617            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6618            mLock.lock();
6619            // FIXME should verify that recordTrack is still in mActiveTracks
6620            if (status != NO_ERROR) {
6621                mActiveTracks.remove(recordTrack);
6622                mActiveTracksGen++;
6623                recordTrack->clearSyncStartEvent();
6624                ALOGV("RecordThread::start error %d", status);
6625                return status;
6626            }
6627        }
6628        // Catch up with current buffer indices if thread is already running.
6629        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6630        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6631        // see previously buffered data before it called start(), but with greater risk of overrun.
6632
6633        recordTrack->mResamplerBufferProvider->reset();
6634        // clear any converter state as new data will be discontinuous
6635        recordTrack->mRecordBufferConverter->reset();
6636        recordTrack->mState = TrackBase::STARTING_2;
6637        // signal thread to start
6638        mWaitWorkCV.broadcast();
6639        if (mActiveTracks.indexOf(recordTrack) < 0) {
6640            ALOGV("Record failed to start");
6641            status = BAD_VALUE;
6642            goto startError;
6643        }
6644        return status;
6645    }
6646
6647startError:
6648    if (recordTrack->isExternalTrack()) {
6649        AudioSystem::stopInput(mId, recordTrack->sessionId());
6650    }
6651    recordTrack->clearSyncStartEvent();
6652    // FIXME I wonder why we do not reset the state here?
6653    return status;
6654}
6655
6656void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6657{
6658    sp<SyncEvent> strongEvent = event.promote();
6659
6660    if (strongEvent != 0) {
6661        sp<RefBase> ptr = strongEvent->cookie().promote();
6662        if (ptr != 0) {
6663            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6664            recordTrack->handleSyncStartEvent(strongEvent);
6665        }
6666    }
6667}
6668
6669bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6670    ALOGV("RecordThread::stop");
6671    AutoMutex _l(mLock);
6672    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6673        return false;
6674    }
6675    // note that threadLoop may still be processing the track at this point [without lock]
6676    recordTrack->mState = TrackBase::PAUSING;
6677    // do not wait for mStartStopCond if exiting
6678    if (exitPending()) {
6679        return true;
6680    }
6681    // FIXME incorrect usage of wait: no explicit predicate or loop
6682    mStartStopCond.wait(mLock);
6683    // if we have been restarted, recordTrack is in mActiveTracks here
6684    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6685        ALOGV("Record stopped OK");
6686        return true;
6687    }
6688    return false;
6689}
6690
6691bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6692{
6693    return false;
6694}
6695
6696status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6697{
6698#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6699    if (!isValidSyncEvent(event)) {
6700        return BAD_VALUE;
6701    }
6702
6703    audio_session_t eventSession = event->triggerSession();
6704    status_t ret = NAME_NOT_FOUND;
6705
6706    Mutex::Autolock _l(mLock);
6707
6708    for (size_t i = 0; i < mTracks.size(); i++) {
6709        sp<RecordTrack> track = mTracks[i];
6710        if (eventSession == track->sessionId()) {
6711            (void) track->setSyncEvent(event);
6712            ret = NO_ERROR;
6713        }
6714    }
6715    return ret;
6716#else
6717    return BAD_VALUE;
6718#endif
6719}
6720
6721// destroyTrack_l() must be called with ThreadBase::mLock held
6722void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6723{
6724    track->terminate();
6725    track->mState = TrackBase::STOPPED;
6726    // active tracks are removed by threadLoop()
6727    if (mActiveTracks.indexOf(track) < 0) {
6728        removeTrack_l(track);
6729    }
6730}
6731
6732void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6733{
6734    mTracks.remove(track);
6735    // need anything related to effects here?
6736    if (track->isFastTrack()) {
6737        ALOG_ASSERT(!mFastTrackAvail);
6738        mFastTrackAvail = true;
6739    }
6740}
6741
6742void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6743{
6744    dumpInternals(fd, args);
6745    dumpTracks(fd, args);
6746    dumpEffectChains(fd, args);
6747}
6748
6749void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6750{
6751    dprintf(fd, "\nInput thread %p:\n", this);
6752
6753    dumpBase(fd, args);
6754
6755    if (mActiveTracks.size() == 0) {
6756        dprintf(fd, "  No active record clients\n");
6757    }
6758    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6759    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6760
6761    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6762    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6763    // This is a large object so we place it on the heap.
6764    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6765    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6766    copy->dump(fd);
6767    delete copy;
6768}
6769
6770void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6771{
6772    const size_t SIZE = 256;
6773    char buffer[SIZE];
6774    String8 result;
6775
6776    size_t numtracks = mTracks.size();
6777    size_t numactive = mActiveTracks.size();
6778    size_t numactiveseen = 0;
6779    dprintf(fd, "  %zu Tracks", numtracks);
6780    if (numtracks) {
6781        dprintf(fd, " of which %zu are active\n", numactive);
6782        RecordTrack::appendDumpHeader(result);
6783        for (size_t i = 0; i < numtracks ; ++i) {
6784            sp<RecordTrack> track = mTracks[i];
6785            if (track != 0) {
6786                bool active = mActiveTracks.indexOf(track) >= 0;
6787                if (active) {
6788                    numactiveseen++;
6789                }
6790                track->dump(buffer, SIZE, active);
6791                result.append(buffer);
6792            }
6793        }
6794    } else {
6795        dprintf(fd, "\n");
6796    }
6797
6798    if (numactiveseen != numactive) {
6799        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6800                " not in the track list\n");
6801        result.append(buffer);
6802        RecordTrack::appendDumpHeader(result);
6803        for (size_t i = 0; i < numactive; ++i) {
6804            sp<RecordTrack> track = mActiveTracks[i];
6805            if (mTracks.indexOf(track) < 0) {
6806                track->dump(buffer, SIZE, true);
6807                result.append(buffer);
6808            }
6809        }
6810
6811    }
6812    write(fd, result.string(), result.size());
6813}
6814
6815
6816void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6817{
6818    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6819    RecordThread *recordThread = (RecordThread *) threadBase.get();
6820    mRsmpInFront = recordThread->mRsmpInRear;
6821    mRsmpInUnrel = 0;
6822}
6823
6824void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6825        size_t *framesAvailable, bool *hasOverrun)
6826{
6827    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6828    RecordThread *recordThread = (RecordThread *) threadBase.get();
6829    const int32_t rear = recordThread->mRsmpInRear;
6830    const int32_t front = mRsmpInFront;
6831    const ssize_t filled = rear - front;
6832
6833    size_t framesIn;
6834    bool overrun = false;
6835    if (filled < 0) {
6836        // should not happen, but treat like a massive overrun and re-sync
6837        framesIn = 0;
6838        mRsmpInFront = rear;
6839        overrun = true;
6840    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6841        framesIn = (size_t) filled;
6842    } else {
6843        // client is not keeping up with server, but give it latest data
6844        framesIn = recordThread->mRsmpInFrames;
6845        mRsmpInFront = /* front = */ rear - framesIn;
6846        overrun = true;
6847    }
6848    if (framesAvailable != NULL) {
6849        *framesAvailable = framesIn;
6850    }
6851    if (hasOverrun != NULL) {
6852        *hasOverrun = overrun;
6853    }
6854}
6855
6856// AudioBufferProvider interface
6857status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6858        AudioBufferProvider::Buffer* buffer)
6859{
6860    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6861    if (threadBase == 0) {
6862        buffer->frameCount = 0;
6863        buffer->raw = NULL;
6864        return NOT_ENOUGH_DATA;
6865    }
6866    RecordThread *recordThread = (RecordThread *) threadBase.get();
6867    int32_t rear = recordThread->mRsmpInRear;
6868    int32_t front = mRsmpInFront;
6869    ssize_t filled = rear - front;
6870    // FIXME should not be P2 (don't want to increase latency)
6871    // FIXME if client not keeping up, discard
6872    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6873    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6874    front &= recordThread->mRsmpInFramesP2 - 1;
6875    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6876    if (part1 > (size_t) filled) {
6877        part1 = filled;
6878    }
6879    size_t ask = buffer->frameCount;
6880    ALOG_ASSERT(ask > 0);
6881    if (part1 > ask) {
6882        part1 = ask;
6883    }
6884    if (part1 == 0) {
6885        // out of data is fine since the resampler will return a short-count.
6886        buffer->raw = NULL;
6887        buffer->frameCount = 0;
6888        mRsmpInUnrel = 0;
6889        return NOT_ENOUGH_DATA;
6890    }
6891
6892    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6893    buffer->frameCount = part1;
6894    mRsmpInUnrel = part1;
6895    return NO_ERROR;
6896}
6897
6898// AudioBufferProvider interface
6899void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6900        AudioBufferProvider::Buffer* buffer)
6901{
6902    size_t stepCount = buffer->frameCount;
6903    if (stepCount == 0) {
6904        return;
6905    }
6906    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6907    mRsmpInUnrel -= stepCount;
6908    mRsmpInFront += stepCount;
6909    buffer->raw = NULL;
6910    buffer->frameCount = 0;
6911}
6912
6913AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6914        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6915        uint32_t srcSampleRate,
6916        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6917        uint32_t dstSampleRate) :
6918            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6919            // mSrcFormat
6920            // mSrcSampleRate
6921            // mDstChannelMask
6922            // mDstFormat
6923            // mDstSampleRate
6924            // mSrcChannelCount
6925            // mDstChannelCount
6926            // mDstFrameSize
6927            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6928            mResampler(NULL),
6929            mIsLegacyDownmix(false),
6930            mIsLegacyUpmix(false),
6931            mRequiresFloat(false),
6932            mInputConverterProvider(NULL)
6933{
6934    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6935            dstChannelMask, dstFormat, dstSampleRate);
6936}
6937
6938AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6939    free(mBuf);
6940    delete mResampler;
6941    delete mInputConverterProvider;
6942}
6943
6944size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6945        AudioBufferProvider *provider, size_t frames)
6946{
6947    if (mInputConverterProvider != NULL) {
6948        mInputConverterProvider->setBufferProvider(provider);
6949        provider = mInputConverterProvider;
6950    }
6951
6952    if (mResampler == NULL) {
6953        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6954                mSrcSampleRate, mSrcFormat, mDstFormat);
6955
6956        AudioBufferProvider::Buffer buffer;
6957        for (size_t i = frames; i > 0; ) {
6958            buffer.frameCount = i;
6959            status_t status = provider->getNextBuffer(&buffer);
6960            if (status != OK || buffer.frameCount == 0) {
6961                frames -= i; // cannot fill request.
6962                break;
6963            }
6964            // format convert to destination buffer
6965            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6966
6967            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6968            i -= buffer.frameCount;
6969            provider->releaseBuffer(&buffer);
6970        }
6971    } else {
6972         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6973                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6974
6975         // reallocate buffer if needed
6976         if (mBufFrameSize != 0 && mBufFrames < frames) {
6977             free(mBuf);
6978             mBufFrames = frames;
6979             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6980         }
6981        // resampler accumulates, but we only have one source track
6982        memset(mBuf, 0, frames * mBufFrameSize);
6983        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6984        // format convert to destination buffer
6985        convertResampler(dst, mBuf, frames);
6986    }
6987    return frames;
6988}
6989
6990status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6991        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6992        uint32_t srcSampleRate,
6993        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6994        uint32_t dstSampleRate)
6995{
6996    // quick evaluation if there is any change.
6997    if (mSrcFormat == srcFormat
6998            && mSrcChannelMask == srcChannelMask
6999            && mSrcSampleRate == srcSampleRate
7000            && mDstFormat == dstFormat
7001            && mDstChannelMask == dstChannelMask
7002            && mDstSampleRate == dstSampleRate) {
7003        return NO_ERROR;
7004    }
7005
7006    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
7007            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
7008            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
7009    const bool valid =
7010            audio_is_input_channel(srcChannelMask)
7011            && audio_is_input_channel(dstChannelMask)
7012            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
7013            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
7014            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
7015            ; // no upsampling checks for now
7016    if (!valid) {
7017        return BAD_VALUE;
7018    }
7019
7020    mSrcFormat = srcFormat;
7021    mSrcChannelMask = srcChannelMask;
7022    mSrcSampleRate = srcSampleRate;
7023    mDstFormat = dstFormat;
7024    mDstChannelMask = dstChannelMask;
7025    mDstSampleRate = dstSampleRate;
7026
7027    // compute derived parameters
7028    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
7029    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
7030    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
7031
7032    // do we need to resample?
7033    delete mResampler;
7034    mResampler = NULL;
7035    if (mSrcSampleRate != mDstSampleRate) {
7036        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
7037                mSrcChannelCount, mDstSampleRate);
7038        mResampler->setSampleRate(mSrcSampleRate);
7039        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
7040    }
7041
7042    // are we running legacy channel conversion modes?
7043    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
7044                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
7045                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
7046    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
7047                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
7048                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
7049
7050    // do we need to process in float?
7051    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
7052
7053    // do we need a staging buffer to convert for destination (we can still optimize this)?
7054    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
7055    if (mResampler != NULL) {
7056        mBufFrameSize = max(mSrcChannelCount, FCC_2)
7057                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7058    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
7059        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7060    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
7061        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
7062    } else {
7063        mBufFrameSize = 0;
7064    }
7065    mBufFrames = 0; // force the buffer to be resized.
7066
7067    // do we need an input converter buffer provider to give us float?
7068    delete mInputConverterProvider;
7069    mInputConverterProvider = NULL;
7070    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
7071        mInputConverterProvider = new ReformatBufferProvider(
7072                audio_channel_count_from_in_mask(mSrcChannelMask),
7073                mSrcFormat,
7074                AUDIO_FORMAT_PCM_FLOAT,
7075                256 /* provider buffer frame count */);
7076    }
7077
7078    // do we need a remixer to do channel mask conversion
7079    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
7080        (void) memcpy_by_index_array_initialization_from_channel_mask(
7081                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
7082    }
7083    return NO_ERROR;
7084}
7085
7086void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
7087        void *dst, const void *src, size_t frames)
7088{
7089    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
7090    if (mBufFrameSize != 0 && mBufFrames < frames) {
7091        free(mBuf);
7092        mBufFrames = frames;
7093        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7094    }
7095    // do we need to do legacy upmix and downmix?
7096    if (mIsLegacyUpmix || mIsLegacyDownmix) {
7097        void *dstBuf = mBuf != NULL ? mBuf : dst;
7098        if (mIsLegacyUpmix) {
7099            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
7100                    (const float *)src, frames);
7101        } else /*mIsLegacyDownmix */ {
7102            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
7103                    (const float *)src, frames);
7104        }
7105        if (mBuf != NULL) {
7106            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
7107                    frames * mDstChannelCount);
7108        }
7109        return;
7110    }
7111    // do we need to do channel mask conversion?
7112    if (mSrcChannelMask != mDstChannelMask) {
7113        void *dstBuf = mBuf != NULL ? mBuf : dst;
7114        memcpy_by_index_array(dstBuf, mDstChannelCount,
7115                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
7116        if (dstBuf == dst) {
7117            return; // format is the same
7118        }
7119    }
7120    // convert to destination buffer
7121    const void *convertBuf = mBuf != NULL ? mBuf : src;
7122    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
7123            frames * mDstChannelCount);
7124}
7125
7126void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
7127        void *dst, /*not-a-const*/ void *src, size_t frames)
7128{
7129    // src buffer format is ALWAYS float when entering this routine
7130    if (mIsLegacyUpmix) {
7131        ; // mono to stereo already handled by resampler
7132    } else if (mIsLegacyDownmix
7133            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7134        // the resampler outputs stereo for mono input channel (a feature?)
7135        // must convert to mono
7136        downmix_to_mono_float_from_stereo_float((float *)src,
7137                (const float *)src, frames);
7138    } else if (mSrcChannelMask != mDstChannelMask) {
7139        // convert to mono channel again for channel mask conversion (could be skipped
7140        // with further optimization).
7141        if (mSrcChannelCount == 1) {
7142            downmix_to_mono_float_from_stereo_float((float *)src,
7143                (const float *)src, frames);
7144        }
7145        // convert to destination format (in place, OK as float is larger than other types)
7146        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7147            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7148                    frames * mSrcChannelCount);
7149        }
7150        // channel convert and save to dst
7151        memcpy_by_index_array(dst, mDstChannelCount,
7152                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7153        return;
7154    }
7155    // convert to destination format and save to dst
7156    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7157            frames * mDstChannelCount);
7158}
7159
7160bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7161                                                        status_t& status)
7162{
7163    bool reconfig = false;
7164
7165    status = NO_ERROR;
7166
7167    audio_format_t reqFormat = mFormat;
7168    uint32_t samplingRate = mSampleRate;
7169    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7170    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7171
7172    AudioParameter param = AudioParameter(keyValuePair);
7173    int value;
7174
7175    // scope for AutoPark extends to end of method
7176    AutoPark<FastCapture> park(mFastCapture);
7177
7178    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7179    //      channel count change can be requested. Do we mandate the first client defines the
7180    //      HAL sampling rate and channel count or do we allow changes on the fly?
7181    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7182        samplingRate = value;
7183        reconfig = true;
7184    }
7185    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7186        if (!audio_is_linear_pcm((audio_format_t) value)) {
7187            status = BAD_VALUE;
7188        } else {
7189            reqFormat = (audio_format_t) value;
7190            reconfig = true;
7191        }
7192    }
7193    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7194        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7195        if (!audio_is_input_channel(mask) ||
7196                audio_channel_count_from_in_mask(mask) > FCC_8) {
7197            status = BAD_VALUE;
7198        } else {
7199            channelMask = mask;
7200            reconfig = true;
7201        }
7202    }
7203    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7204        // do not accept frame count changes if tracks are open as the track buffer
7205        // size depends on frame count and correct behavior would not be guaranteed
7206        // if frame count is changed after track creation
7207        if (mActiveTracks.size() > 0) {
7208            status = INVALID_OPERATION;
7209        } else {
7210            reconfig = true;
7211        }
7212    }
7213    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7214        // forward device change to effects that have requested to be
7215        // aware of attached audio device.
7216        for (size_t i = 0; i < mEffectChains.size(); i++) {
7217            mEffectChains[i]->setDevice_l(value);
7218        }
7219
7220        // store input device and output device but do not forward output device to audio HAL.
7221        // Note that status is ignored by the caller for output device
7222        // (see AudioFlinger::setParameters()
7223        if (audio_is_output_devices(value)) {
7224            mOutDevice = value;
7225            status = BAD_VALUE;
7226        } else {
7227            mInDevice = value;
7228            if (value != AUDIO_DEVICE_NONE) {
7229                mPrevInDevice = value;
7230            }
7231            // disable AEC and NS if the device is a BT SCO headset supporting those
7232            // pre processings
7233            if (mTracks.size() > 0) {
7234                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7235                                    mAudioFlinger->btNrecIsOff();
7236                for (size_t i = 0; i < mTracks.size(); i++) {
7237                    sp<RecordTrack> track = mTracks[i];
7238                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7239                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7240                }
7241            }
7242        }
7243    }
7244    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7245            mAudioSource != (audio_source_t)value) {
7246        // forward device change to effects that have requested to be
7247        // aware of attached audio device.
7248        for (size_t i = 0; i < mEffectChains.size(); i++) {
7249            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7250        }
7251        mAudioSource = (audio_source_t)value;
7252    }
7253
7254    if (status == NO_ERROR) {
7255        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7256                keyValuePair.string());
7257        if (status == INVALID_OPERATION) {
7258            inputStandBy();
7259            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7260                    keyValuePair.string());
7261        }
7262        if (reconfig) {
7263            if (status == BAD_VALUE &&
7264                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7265                audio_is_linear_pcm(reqFormat) &&
7266                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7267                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7268                audio_channel_count_from_in_mask(
7269                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7270                status = NO_ERROR;
7271            }
7272            if (status == NO_ERROR) {
7273                readInputParameters_l();
7274                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7275            }
7276        }
7277    }
7278
7279    return reconfig;
7280}
7281
7282String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7283{
7284    Mutex::Autolock _l(mLock);
7285    if (initCheck() != NO_ERROR) {
7286        return String8();
7287    }
7288
7289    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7290    const String8 out_s8(s);
7291    free(s);
7292    return out_s8;
7293}
7294
7295void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7296    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7297
7298    desc->mIoHandle = mId;
7299
7300    switch (event) {
7301    case AUDIO_INPUT_OPENED:
7302    case AUDIO_INPUT_CONFIG_CHANGED:
7303        desc->mPatch = mPatch;
7304        desc->mChannelMask = mChannelMask;
7305        desc->mSamplingRate = mSampleRate;
7306        desc->mFormat = mFormat;
7307        desc->mFrameCount = mFrameCount;
7308        desc->mFrameCountHAL = mFrameCount;
7309        desc->mLatency = 0;
7310        break;
7311
7312    case AUDIO_INPUT_CLOSED:
7313    default:
7314        break;
7315    }
7316    mAudioFlinger->ioConfigChanged(event, desc, pid);
7317}
7318
7319void AudioFlinger::RecordThread::readInputParameters_l()
7320{
7321    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7322    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7323    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7324    if (mChannelCount > FCC_8) {
7325        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7326    }
7327    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7328    mFormat = mHALFormat;
7329    if (!audio_is_linear_pcm(mFormat)) {
7330        ALOGE("HAL format %#x is not linear pcm", mFormat);
7331    }
7332    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7333    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7334    mFrameCount = mBufferSize / mFrameSize;
7335    // This is the formula for calculating the temporary buffer size.
7336    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7337    // 1 full output buffer, regardless of the alignment of the available input.
7338    // The value is somewhat arbitrary, and could probably be even larger.
7339    // A larger value should allow more old data to be read after a track calls start(),
7340    // without increasing latency.
7341    //
7342    // Note this is independent of the maximum downsampling ratio permitted for capture.
7343    mRsmpInFrames = mFrameCount * 7;
7344    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7345    free(mRsmpInBuffer);
7346    mRsmpInBuffer = NULL;
7347
7348    // TODO optimize audio capture buffer sizes ...
7349    // Here we calculate the size of the sliding buffer used as a source
7350    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7351    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7352    // be better to have it derived from the pipe depth in the long term.
7353    // The current value is higher than necessary.  However it should not add to latency.
7354
7355    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7356    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7357    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7358    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7359
7360    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7361    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7362}
7363
7364uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7365{
7366    Mutex::Autolock _l(mLock);
7367    if (initCheck() != NO_ERROR) {
7368        return 0;
7369    }
7370
7371    return mInput->stream->get_input_frames_lost(mInput->stream);
7372}
7373
7374// hasAudioSession_l() must be called with ThreadBase::mLock held
7375uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7376{
7377    uint32_t result = 0;
7378    if (getEffectChain_l(sessionId) != 0) {
7379        result = EFFECT_SESSION;
7380    }
7381
7382    for (size_t i = 0; i < mTracks.size(); ++i) {
7383        if (sessionId == mTracks[i]->sessionId()) {
7384            result |= TRACK_SESSION;
7385            if (mTracks[i]->isFastTrack()) {
7386                result |= FAST_SESSION;
7387            }
7388            break;
7389        }
7390    }
7391
7392    return result;
7393}
7394
7395KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7396{
7397    KeyedVector<audio_session_t, bool> ids;
7398    Mutex::Autolock _l(mLock);
7399    for (size_t j = 0; j < mTracks.size(); ++j) {
7400        sp<RecordThread::RecordTrack> track = mTracks[j];
7401        audio_session_t sessionId = track->sessionId();
7402        if (ids.indexOfKey(sessionId) < 0) {
7403            ids.add(sessionId, true);
7404        }
7405    }
7406    return ids;
7407}
7408
7409AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7410{
7411    Mutex::Autolock _l(mLock);
7412    AudioStreamIn *input = mInput;
7413    mInput = NULL;
7414    return input;
7415}
7416
7417// this method must always be called either with ThreadBase mLock held or inside the thread loop
7418audio_stream_t* AudioFlinger::RecordThread::stream() const
7419{
7420    if (mInput == NULL) {
7421        return NULL;
7422    }
7423    return &mInput->stream->common;
7424}
7425
7426status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7427{
7428    // only one chain per input thread
7429    if (mEffectChains.size() != 0) {
7430        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7431        return INVALID_OPERATION;
7432    }
7433    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7434    chain->setThread(this);
7435    chain->setInBuffer(NULL);
7436    chain->setOutBuffer(NULL);
7437
7438    checkSuspendOnAddEffectChain_l(chain);
7439
7440    // make sure enabled pre processing effects state is communicated to the HAL as we
7441    // just moved them to a new input stream.
7442    chain->syncHalEffectsState();
7443
7444    mEffectChains.add(chain);
7445
7446    return NO_ERROR;
7447}
7448
7449size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7450{
7451    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7452    ALOGW_IF(mEffectChains.size() != 1,
7453            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7454            chain.get(), mEffectChains.size(), this);
7455    if (mEffectChains.size() == 1) {
7456        mEffectChains.removeAt(0);
7457    }
7458    return 0;
7459}
7460
7461status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7462                                                          audio_patch_handle_t *handle)
7463{
7464    status_t status = NO_ERROR;
7465
7466    // store new device and send to effects
7467    mInDevice = patch->sources[0].ext.device.type;
7468    mPatch = *patch;
7469    for (size_t i = 0; i < mEffectChains.size(); i++) {
7470        mEffectChains[i]->setDevice_l(mInDevice);
7471    }
7472
7473    // disable AEC and NS if the device is a BT SCO headset supporting those
7474    // pre processings
7475    if (mTracks.size() > 0) {
7476        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7477                            mAudioFlinger->btNrecIsOff();
7478        for (size_t i = 0; i < mTracks.size(); i++) {
7479            sp<RecordTrack> track = mTracks[i];
7480            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7481            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7482        }
7483    }
7484
7485    // store new source and send to effects
7486    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7487        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7488        for (size_t i = 0; i < mEffectChains.size(); i++) {
7489            mEffectChains[i]->setAudioSource_l(mAudioSource);
7490        }
7491    }
7492
7493    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7494        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7495        status = hwDevice->create_audio_patch(hwDevice,
7496                                               patch->num_sources,
7497                                               patch->sources,
7498                                               patch->num_sinks,
7499                                               patch->sinks,
7500                                               handle);
7501    } else {
7502        char *address;
7503        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7504            address = audio_device_address_to_parameter(
7505                                                patch->sources[0].ext.device.type,
7506                                                patch->sources[0].ext.device.address);
7507        } else {
7508            address = (char *)calloc(1, 1);
7509        }
7510        AudioParameter param = AudioParameter(String8(address));
7511        free(address);
7512        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7513                     (int)patch->sources[0].ext.device.type);
7514        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7515                                         (int)patch->sinks[0].ext.mix.usecase.source);
7516        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7517                param.toString().string());
7518        *handle = AUDIO_PATCH_HANDLE_NONE;
7519    }
7520
7521    if (mInDevice != mPrevInDevice) {
7522        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7523        mPrevInDevice = mInDevice;
7524    }
7525
7526    return status;
7527}
7528
7529status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7530{
7531    status_t status = NO_ERROR;
7532
7533    mInDevice = AUDIO_DEVICE_NONE;
7534
7535    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7536        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7537        status = hwDevice->release_audio_patch(hwDevice, handle);
7538    } else {
7539        AudioParameter param;
7540        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7541        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7542                param.toString().string());
7543    }
7544    return status;
7545}
7546
7547void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7548{
7549    Mutex::Autolock _l(mLock);
7550    mTracks.add(record);
7551}
7552
7553void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7554{
7555    Mutex::Autolock _l(mLock);
7556    destroyTrack_l(record);
7557}
7558
7559void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7560{
7561    ThreadBase::getAudioPortConfig(config);
7562    config->role = AUDIO_PORT_ROLE_SINK;
7563    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7564    config->ext.mix.usecase.source = mAudioSource;
7565}
7566
7567} // namespace android
7568