1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.annotation.SystemApi;
20import android.os.Build;
21import android.os.Handler;
22import android.util.Log;
23import android.util.SparseArray;
24
25import java.util.ArrayList;
26import java.util.Collections;
27import java.util.List;
28
29/**
30 * <p>
31 * SensorManager lets you access the device's {@link android.hardware.Sensor
32 * sensors}. Get an instance of this class by calling
33 * {@link android.content.Context#getSystemService(java.lang.String)
34 * Context.getSystemService()} with the argument
35 * {@link android.content.Context#SENSOR_SERVICE}.
36 * </p>
37 * <p>
38 * Always make sure to disable sensors you don't need, especially when your
39 * activity is paused. Failing to do so can drain the battery in just a few
40 * hours. Note that the system will <i>not</i> disable sensors automatically when
41 * the screen turns off.
42 * </p>
43 * <p class="note">
44 * Note: Don't use this mechanism with a Trigger Sensor, have a look
45 * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION}
46 * is an example of a trigger sensor.
47 * </p>
48 * <pre class="prettyprint">
49 * public class SensorActivity extends Activity implements SensorEventListener {
50 *     private final SensorManager mSensorManager;
51 *     private final Sensor mAccelerometer;
52 *
53 *     public SensorActivity() {
54 *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
55 *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
56 *     }
57 *
58 *     protected void onResume() {
59 *         super.onResume();
60 *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
61 *     }
62 *
63 *     protected void onPause() {
64 *         super.onPause();
65 *         mSensorManager.unregisterListener(this);
66 *     }
67 *
68 *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
69 *     }
70 *
71 *     public void onSensorChanged(SensorEvent event) {
72 *     }
73 * }
74 * </pre>
75 *
76 * @see SensorEventListener
77 * @see SensorEvent
78 * @see Sensor
79 *
80 */
81public abstract class SensorManager {
82    /** @hide */
83    protected static final String TAG = "SensorManager";
84
85    private static final float[] mTempMatrix = new float[16];
86
87    // Cached lists of sensors by type.  Guarded by mSensorListByType.
88    private final SparseArray<List<Sensor>> mSensorListByType =
89            new SparseArray<List<Sensor>>();
90
91    // Legacy sensor manager implementation.  Guarded by mSensorListByType during initialization.
92    private LegacySensorManager mLegacySensorManager;
93
94    /* NOTE: sensor IDs must be a power of 2 */
95
96    /**
97     * A constant describing an orientation sensor. See
98     * {@link android.hardware.SensorListener SensorListener} for more details.
99     *
100     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
101     */
102    @Deprecated
103    public static final int SENSOR_ORIENTATION = 1 << 0;
104
105    /**
106     * A constant describing an accelerometer. See
107     * {@link android.hardware.SensorListener SensorListener} for more details.
108     *
109     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
110     */
111    @Deprecated
112    public static final int SENSOR_ACCELEROMETER = 1 << 1;
113
114    /**
115     * A constant describing a temperature sensor See
116     * {@link android.hardware.SensorListener SensorListener} for more details.
117     *
118     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
119     */
120    @Deprecated
121    public static final int SENSOR_TEMPERATURE = 1 << 2;
122
123    /**
124     * A constant describing a magnetic sensor See
125     * {@link android.hardware.SensorListener SensorListener} for more details.
126     *
127     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
128     */
129    @Deprecated
130    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
131
132    /**
133     * A constant describing an ambient light sensor See
134     * {@link android.hardware.SensorListener SensorListener} for more details.
135     *
136     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
137     */
138    @Deprecated
139    public static final int SENSOR_LIGHT = 1 << 4;
140
141    /**
142     * A constant describing a proximity sensor See
143     * {@link android.hardware.SensorListener SensorListener} for more details.
144     *
145     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
146     */
147    @Deprecated
148    public static final int SENSOR_PROXIMITY = 1 << 5;
149
150    /**
151     * A constant describing a Tricorder See
152     * {@link android.hardware.SensorListener SensorListener} for more details.
153     *
154     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
155     */
156    @Deprecated
157    public static final int SENSOR_TRICORDER = 1 << 6;
158
159    /**
160     * A constant describing an orientation sensor. See
161     * {@link android.hardware.SensorListener SensorListener} for more details.
162     *
163     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
164     */
165    @Deprecated
166    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
167
168    /**
169     * A constant that includes all sensors
170     *
171     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
172     */
173    @Deprecated
174    public static final int SENSOR_ALL = 0x7F;
175
176    /**
177     * Smallest sensor ID
178     *
179     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
180     */
181    @Deprecated
182    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
183
184    /**
185     * Largest sensor ID
186     *
187     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
188     */
189    @Deprecated
190    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
191
192
193    /**
194     * Index of the X value in the array returned by
195     * {@link android.hardware.SensorListener#onSensorChanged}
196     *
197     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
198     */
199    @Deprecated
200    public static final int DATA_X = 0;
201
202    /**
203     * Index of the Y value in the array returned by
204     * {@link android.hardware.SensorListener#onSensorChanged}
205     *
206     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
207     */
208    @Deprecated
209    public static final int DATA_Y = 1;
210
211    /**
212     * Index of the Z value in the array returned by
213     * {@link android.hardware.SensorListener#onSensorChanged}
214     *
215     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
216     */
217    @Deprecated
218    public static final int DATA_Z = 2;
219
220    /**
221     * Offset to the untransformed values in the array returned by
222     * {@link android.hardware.SensorListener#onSensorChanged}
223     *
224     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
225     */
226    @Deprecated
227    public static final int RAW_DATA_INDEX = 3;
228
229    /**
230     * Index of the untransformed X value in the array returned by
231     * {@link android.hardware.SensorListener#onSensorChanged}
232     *
233     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
234     */
235    @Deprecated
236    public static final int RAW_DATA_X = 3;
237
238    /**
239     * Index of the untransformed Y value in the array returned by
240     * {@link android.hardware.SensorListener#onSensorChanged}
241     *
242     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
243     */
244    @Deprecated
245    public static final int RAW_DATA_Y = 4;
246
247    /**
248     * Index of the untransformed Z value in the array returned by
249     * {@link android.hardware.SensorListener#onSensorChanged}
250     *
251     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
252     */
253    @Deprecated
254    public static final int RAW_DATA_Z = 5;
255
256    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
257    public static final float STANDARD_GRAVITY = 9.80665f;
258
259    /** Sun's gravity in SI units (m/s^2) */
260    public static final float GRAVITY_SUN             = 275.0f;
261    /** Mercury's gravity in SI units (m/s^2) */
262    public static final float GRAVITY_MERCURY         = 3.70f;
263    /** Venus' gravity in SI units (m/s^2) */
264    public static final float GRAVITY_VENUS           = 8.87f;
265    /** Earth's gravity in SI units (m/s^2) */
266    public static final float GRAVITY_EARTH           = 9.80665f;
267    /** The Moon's gravity in SI units (m/s^2) */
268    public static final float GRAVITY_MOON            = 1.6f;
269    /** Mars' gravity in SI units (m/s^2) */
270    public static final float GRAVITY_MARS            = 3.71f;
271    /** Jupiter's gravity in SI units (m/s^2) */
272    public static final float GRAVITY_JUPITER         = 23.12f;
273    /** Saturn's gravity in SI units (m/s^2) */
274    public static final float GRAVITY_SATURN          = 8.96f;
275    /** Uranus' gravity in SI units (m/s^2) */
276    public static final float GRAVITY_URANUS          = 8.69f;
277    /** Neptune's gravity in SI units (m/s^2) */
278    public static final float GRAVITY_NEPTUNE         = 11.0f;
279    /** Pluto's gravity in SI units (m/s^2) */
280    public static final float GRAVITY_PLUTO           = 0.6f;
281    /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
282    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
283    /** Gravity on the island */
284    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
285
286
287    /** Maximum magnetic field on Earth's surface */
288    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
289    /** Minimum magnetic field on Earth's surface */
290    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
291
292
293    /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
294    public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
295
296
297    /** Maximum luminance of sunlight in lux */
298    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
299    /** luminance of sunlight in lux */
300    public static final float LIGHT_SUNLIGHT     = 110000.0f;
301    /** luminance in shade in lux */
302    public static final float LIGHT_SHADE        = 20000.0f;
303    /** luminance under an overcast sky in lux */
304    public static final float LIGHT_OVERCAST     = 10000.0f;
305    /** luminance at sunrise in lux */
306    public static final float LIGHT_SUNRISE      = 400.0f;
307    /** luminance under a cloudy sky in lux */
308    public static final float LIGHT_CLOUDY       = 100.0f;
309    /** luminance at night with full moon in lux */
310    public static final float LIGHT_FULLMOON     = 0.25f;
311    /** luminance at night with no moon in lux*/
312    public static final float LIGHT_NO_MOON      = 0.001f;
313
314
315    /** get sensor data as fast as possible */
316    public static final int SENSOR_DELAY_FASTEST = 0;
317    /** rate suitable for games */
318    public static final int SENSOR_DELAY_GAME = 1;
319    /** rate suitable for the user interface  */
320    public static final int SENSOR_DELAY_UI = 2;
321    /** rate (default) suitable for screen orientation changes */
322    public static final int SENSOR_DELAY_NORMAL = 3;
323
324
325    /**
326      * The values returned by this sensor cannot be trusted because the sensor
327      * had no contact with what it was measuring (for example, the heart rate
328      * monitor is not in contact with the user).
329      */
330    public static final int SENSOR_STATUS_NO_CONTACT = -1;
331
332    /**
333     * The values returned by this sensor cannot be trusted, calibration is
334     * needed or the environment doesn't allow readings
335     */
336    public static final int SENSOR_STATUS_UNRELIABLE = 0;
337
338    /**
339     * This sensor is reporting data with low accuracy, calibration with the
340     * environment is needed
341     */
342    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
343
344    /**
345     * This sensor is reporting data with an average level of accuracy,
346     * calibration with the environment may improve the readings
347     */
348    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
349
350    /** This sensor is reporting data with maximum accuracy */
351    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
352
353    /** see {@link #remapCoordinateSystem} */
354    public static final int AXIS_X = 1;
355    /** see {@link #remapCoordinateSystem} */
356    public static final int AXIS_Y = 2;
357    /** see {@link #remapCoordinateSystem} */
358    public static final int AXIS_Z = 3;
359    /** see {@link #remapCoordinateSystem} */
360    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
361    /** see {@link #remapCoordinateSystem} */
362    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
363    /** see {@link #remapCoordinateSystem} */
364    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
365
366
367    /**
368     * {@hide}
369     */
370    public SensorManager() {
371    }
372
373    /**
374     * Gets the full list of sensors that are available.
375     * @hide
376     */
377    protected abstract List<Sensor> getFullSensorList();
378
379    /**
380     * Gets the full list of dynamic sensors that are available.
381     * @hide
382     */
383    protected abstract List<Sensor> getFullDynamicSensorList();
384
385    /**
386     * @return available sensors.
387     * @deprecated This method is deprecated, use
388     *             {@link SensorManager#getSensorList(int)} instead
389     */
390    @Deprecated
391    public int getSensors() {
392        return getLegacySensorManager().getSensors();
393    }
394
395    /**
396     * Use this method to get the list of available sensors of a certain type.
397     * Make multiple calls to get sensors of different types or use
398     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
399     * sensors.
400     *
401     * <p class="note">
402     * NOTE: Both wake-up and non wake-up sensors matching the given type are
403     * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
404     * of the returned {@link Sensor}.
405     * </p>
406     *
407     * @param type
408     *        of sensors requested
409     *
410     * @return a list of sensors matching the asked type.
411     *
412     * @see #getDefaultSensor(int)
413     * @see Sensor
414     */
415    public List<Sensor> getSensorList(int type) {
416        // cache the returned lists the first time
417        List<Sensor> list;
418        final List<Sensor> fullList = getFullSensorList();
419        synchronized (mSensorListByType) {
420            list = mSensorListByType.get(type);
421            if (list == null) {
422                if (type == Sensor.TYPE_ALL) {
423                    list = fullList;
424                } else {
425                    list = new ArrayList<Sensor>();
426                    for (Sensor i : fullList) {
427                        if (i.getType() == type)
428                            list.add(i);
429                    }
430                }
431                list = Collections.unmodifiableList(list);
432                mSensorListByType.append(type, list);
433            }
434        }
435        return list;
436    }
437
438    /**
439     * Use this method to get a list of available dynamic sensors of a certain type.
440     * Make multiple calls to get sensors of different types or use
441     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all dynamic sensors.
442     *
443     * <p class="note">
444     * NOTE: Both wake-up and non wake-up sensors matching the given type are
445     * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
446     * of the returned {@link Sensor}.
447     * </p>
448     *
449     * @param type of sensors requested
450     *
451     * @return a list of dynamic sensors matching the requested type.
452     *
453     * @see Sensor
454     */
455    public List<Sensor> getDynamicSensorList(int type) {
456        // cache the returned lists the first time
457        final List<Sensor> fullList = getFullDynamicSensorList();
458        if (type == Sensor.TYPE_ALL) {
459            return Collections.unmodifiableList(fullList);
460        } else {
461            List<Sensor> list = new ArrayList();
462            for (Sensor i : fullList) {
463                if (i.getType() == type)
464                    list.add(i);
465            }
466            return Collections.unmodifiableList(list);
467        }
468    }
469
470    /**
471     * Use this method to get the default sensor for a given type. Note that the
472     * returned sensor could be a composite sensor, and its data could be
473     * averaged or filtered. If you need to access the raw sensors use
474     * {@link SensorManager#getSensorList(int) getSensorList}.
475     *
476     * @param type
477     *         of sensors requested
478     *
479     * @return the default sensor matching the requested type if one exists and the application
480     *         has the necessary permissions, or null otherwise.
481     *
482     * @see #getSensorList(int)
483     * @see Sensor
484     */
485    public Sensor getDefaultSensor(int type) {
486        // TODO: need to be smarter, for now, just return the 1st sensor
487        List<Sensor> l = getSensorList(type);
488        boolean wakeUpSensor = false;
489        // For the following sensor types, return a wake-up sensor. These types are by default
490        // defined as wake-up sensors. For the rest of the SDK defined sensor types return a
491        // non_wake-up version.
492        if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION ||
493                type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE ||
494                type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE ||
495                type == Sensor.TYPE_WRIST_TILT_GESTURE) {
496            wakeUpSensor = true;
497        }
498
499        for (Sensor sensor : l) {
500            if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor;
501        }
502        return null;
503    }
504
505    /**
506     * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this
507     * type exist, any one of them may be returned.
508     * <p>
509     * For example,
510     * <ul>
511     *     <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up accelerometer
512     *     sensor if it exists. </li>
513     *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up proximity
514     *     sensor if it exists. </li>
515     *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity sensor
516     *     which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li>
517     * </ul>
518     * </p>
519     * <p class="note">
520     * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION}
521     * are declared as wake-up sensors by default.
522     * </p>
523     * @param type
524     *        type of sensor requested
525     * @param wakeUp
526     *        flag to indicate whether the Sensor is a wake-up or non wake-up sensor.
527     * @return the default sensor matching the requested type and wakeUp properties if one exists
528     *         and the application has the necessary permissions, or null otherwise.
529     * @see Sensor#isWakeUpSensor()
530     */
531    public Sensor getDefaultSensor(int type, boolean wakeUp) {
532        List<Sensor> l = getSensorList(type);
533        for (Sensor sensor : l) {
534            if (sensor.isWakeUpSensor() == wakeUp)
535                return sensor;
536        }
537        return null;
538    }
539
540    /**
541     * Registers a listener for given sensors.
542     *
543     * @deprecated This method is deprecated, use
544     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
545     *             instead.
546     *
547     * @param listener
548     *        sensor listener object
549     *
550     * @param sensors
551     *        a bit masks of the sensors to register to
552     *
553     * @return <code>true</code> if the sensor is supported and successfully
554     *         enabled
555     */
556    @Deprecated
557    public boolean registerListener(SensorListener listener, int sensors) {
558        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
559    }
560
561    /**
562     * Registers a SensorListener for given sensors.
563     *
564     * @deprecated This method is deprecated, use
565     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
566     *             instead.
567     *
568     * @param listener
569     *        sensor listener object
570     *
571     * @param sensors
572     *        a bit masks of the sensors to register to
573     *
574     * @param rate
575     *        rate of events. This is only a hint to the system. events may be
576     *        received faster or slower than the specified rate. Usually events
577     *        are received faster. The value must be one of
578     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
579     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
580     *
581     * @return <code>true</code> if the sensor is supported and successfully
582     *         enabled
583     */
584    @Deprecated
585    public boolean registerListener(SensorListener listener, int sensors, int rate) {
586        return getLegacySensorManager().registerListener(listener, sensors, rate);
587    }
588
589    /**
590     * Unregisters a listener for all sensors.
591     *
592     * @deprecated This method is deprecated, use
593     *             {@link SensorManager#unregisterListener(SensorEventListener)}
594     *             instead.
595     *
596     * @param listener
597     *        a SensorListener object
598     */
599    @Deprecated
600    public void unregisterListener(SensorListener listener) {
601        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
602    }
603
604    /**
605     * Unregisters a listener for the sensors with which it is registered.
606     *
607     * @deprecated This method is deprecated, use
608     *             {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
609     *             instead.
610     *
611     * @param listener
612     *        a SensorListener object
613     *
614     * @param sensors
615     *        a bit masks of the sensors to unregister from
616     */
617    @Deprecated
618    public void unregisterListener(SensorListener listener, int sensors) {
619        getLegacySensorManager().unregisterListener(listener, sensors);
620    }
621
622    /**
623     * Unregisters a listener for the sensors with which it is registered.
624     *
625     * <p class="note"></p>
626     * Note: Don't use this method with a one shot trigger sensor such as
627     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
628     * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
629     * </p>
630     *
631     * @param listener
632     *        a SensorEventListener object
633     *
634     * @param sensor
635     *        the sensor to unregister from
636     *
637     * @see #unregisterListener(SensorEventListener)
638     * @see #registerListener(SensorEventListener, Sensor, int)
639     */
640    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
641        if (listener == null || sensor == null) {
642            return;
643        }
644
645        unregisterListenerImpl(listener, sensor);
646    }
647
648    /**
649     * Unregisters a listener for all sensors.
650     *
651     * @param listener
652     *        a SensorListener object
653     *
654     * @see #unregisterListener(SensorEventListener, Sensor)
655     * @see #registerListener(SensorEventListener, Sensor, int)
656     *
657     */
658    public void unregisterListener(SensorEventListener listener) {
659        if (listener == null) {
660            return;
661        }
662
663        unregisterListenerImpl(listener, null);
664    }
665
666    /** @hide */
667    protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
668
669    /**
670     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
671     * sensor at the given sampling frequency.
672     * <p>
673     * The events will be delivered to the provided {@code SensorEventListener} as soon as they are
674     * available. To reduce the power consumption, applications can use
675     * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
676     * positive non-zero maximum reporting latency.
677     * </p>
678     * <p>
679     * In the case of non-wake-up sensors, the events are only delivered while the Application
680     * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details.
681     * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the
682     * application registering to the sensor must hold a partial wake-lock to keep the AP awake,
683     * otherwise some events might be lost while the AP is asleep. Note that although events might
684     * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly
685     * deactivated by the application. Applications must unregister their {@code
686     * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power
687     * while the device is inactive.  See {@link #registerListener(SensorEventListener, Sensor, int,
688     * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events
689     * might be lost.
690     * </p>
691     * <p>
692     * In the case of wake-up sensors, each event generated by the sensor will cause the AP to
693     * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up
694     * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check
695     * whether a sensor is a wake-up sensor. See
696     * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to
697     * reduce the power impact of registering to wake-up sensors.
698     * </p>
699     * <p class="note">
700     * Note: Don't use this method with one-shot trigger sensors such as
701     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
702     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use
703     * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor.
704     * </p>
705     *
706     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
707     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
708     * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
709     *            delivered at. This is only a hint to the system. Events may be received faster or
710     *            slower than the specified rate. Usually events are received faster. The value must
711     *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
712     *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay
713     *            between events in microseconds. Specifying the delay in microseconds only works
714     *            from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of
715     *            the {@code SENSOR_DELAY_*} constants.
716     * @return <code>true</code> if the sensor is supported and successfully enabled.
717     * @see #registerListener(SensorEventListener, Sensor, int, Handler)
718     * @see #unregisterListener(SensorEventListener)
719     * @see #unregisterListener(SensorEventListener, Sensor)
720     */
721    public boolean registerListener(SensorEventListener listener, Sensor sensor,
722            int samplingPeriodUs) {
723        return registerListener(listener, sensor, samplingPeriodUs, null);
724    }
725
726    /**
727     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
728     * sensor at the given sampling frequency and the given maximum reporting latency.
729     * <p>
730     * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but
731     * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The
732     * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once
733     * one of the events in the FIFO needs to be reported, all of the events in the FIFO are
734     * reported sequentially. This means that some events will be reported before the maximum
735     * reporting latency has elapsed.
736     * </p><p>
737     * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to
738     * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be
739     * delivered as soon as possible.
740     * </p><p>
741     * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call
742     * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}.
743     * </p><p>
744     * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of
745     * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the
746     * AP can switch to a lower power state while the sensor is capturing the data. This is
747     * especially important when registering to wake-up sensors, for which each interrupt causes the
748     * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more
749     * information on wake-up sensors.
750     * </p>
751     * <p class="note">
752     * </p>
753     * Note: Don't use this method with one-shot trigger sensors such as
754     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
755     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
756     *
757     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
758     *            that will receive the sensor events. If the application is interested in receiving
759     *            flush complete notifications, it should register with
760     *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
761     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
762     * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
763     *            This is only a hint to the system. Events may be received faster or slower than
764     *            the specified rate. Usually events are received faster. Can be one of
765     *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
766     *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
767     *            microseconds.
768     * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
769     *            being reported to the application. A large value allows reducing the power
770     *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
771     *            events are delivered as soon as they are available, which is equivalent to calling
772     *            {@link #registerListener(SensorEventListener, Sensor, int)}.
773     * @return <code>true</code> if the sensor is supported and successfully enabled.
774     * @see #registerListener(SensorEventListener, Sensor, int)
775     * @see #unregisterListener(SensorEventListener)
776     * @see #flush(SensorEventListener)
777     */
778    public boolean registerListener(SensorEventListener listener, Sensor sensor,
779            int samplingPeriodUs, int maxReportLatencyUs) {
780        int delay = getDelay(samplingPeriodUs);
781        return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0);
782    }
783
784    /**
785     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
786     * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
787     * power consumption, applications can use
788     * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
789     * positive non-zero maximum reporting latency.
790     * <p class="note">
791     * </p>
792     * Note: Don't use this method with a one shot trigger sensor such as
793     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
794     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
795     *
796     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
797     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
798     * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
799     *            delivered at. This is only a hint to the system. Events may be received faster or
800     *            slower than the specified rate. Usually events are received faster. The value must
801     *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
802     *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired
803     *            delay between events in microseconds. Specifying the delay in microseconds only
804     *            works from Android 2.3 (API level 9) onwards. For earlier releases, you must use
805     *            one of the {@code SENSOR_DELAY_*} constants.
806     * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
807     *            sensor events} will be delivered to.
808     * @return <code>true</code> if the sensor is supported and successfully enabled.
809     * @see #registerListener(SensorEventListener, Sensor, int)
810     * @see #unregisterListener(SensorEventListener)
811     * @see #unregisterListener(SensorEventListener, Sensor)
812     */
813    public boolean registerListener(SensorEventListener listener, Sensor sensor,
814            int samplingPeriodUs, Handler handler) {
815        int delay = getDelay(samplingPeriodUs);
816        return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
817    }
818
819    /**
820     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
821     * sensor at the given sampling frequency and the given maximum reporting latency.
822     *
823     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
824     *            that will receive the sensor events. If the application is interested in receiving
825     *            flush complete notifications, it should register with
826     *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
827     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
828     * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
829     *            This is only a hint to the system. Events may be received faster or slower than
830     *            the specified rate. Usually events are received faster. Can be one of
831     *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
832     *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
833     *            microseconds.
834     * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
835     *            being reported to the application. A large value allows reducing the power
836     *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
837     *            events are delivered as soon as they are available, which is equivalent to calling
838     *            {@link #registerListener(SensorEventListener, Sensor, int)}.
839     * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
840     *            sensor events} will be delivered to.
841     * @return <code>true</code> if the sensor is supported and successfully enabled.
842     * @see #registerListener(SensorEventListener, Sensor, int, int)
843     */
844    public boolean registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs,
845            int maxReportLatencyUs, Handler handler) {
846        int delayUs = getDelay(samplingPeriodUs);
847        return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0);
848    }
849
850    /** @hide */
851    protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
852            int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags);
853
854
855    /**
856     * Flushes the FIFO of all the sensors registered for this listener. If there are events
857     * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has
858     * expired. Events are returned in the usual way through the SensorEventListener.
859     * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and
860     * returns immediately.
861     * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
862     * after all the events in the batch at the time of calling this method have been delivered
863     * successfully. If the hardware doesn't support flush, it still returns true and a trivial
864     * flush complete event is sent after the current event for all the clients registered for this
865     * sensor.
866     *
867     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
868     *        which was previously used in a registerListener call.
869     * @return <code>true</code> if the flush is initiated successfully on all the sensors
870     *         registered for this listener, false if no sensor is previously registered for this
871     *         listener or flush on one of the sensors fails.
872     * @see #registerListener(SensorEventListener, Sensor, int, int)
873     * @throws IllegalArgumentException when listener is null.
874     */
875    public boolean flush(SensorEventListener listener) {
876        return flushImpl(listener);
877    }
878
879    /** @hide */
880    protected abstract boolean flushImpl(SensorEventListener listener);
881
882
883    /**
884     * Used for receiving notifications from the SensorManager when dynamic sensors are connected or
885     * disconnected.
886     */
887    public static abstract class DynamicSensorCallback {
888        /**
889         * Called when there is a dynamic sensor being connected to the system.
890         *
891         * @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}.
892         */
893        public void onDynamicSensorConnected(Sensor sensor) {}
894
895        /**
896         * Called when there is a dynamic sensor being disconnected from the system.
897         *
898         * @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}.
899         */
900        public void onDynamicSensorDisconnected(Sensor sensor) {}
901    }
902
903
904    /**
905     * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
906     * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
907     * registration with the already registered callback object will have no additional effect.
908     *
909     * @param callback An object that implements the
910     *        {@link android.hardware.SensorManager.DynamicSensorCallback
911     *        DynamicSensorCallback}
912     *        interface for receiving callbacks.
913     * @see #addDynamicSensorCallback(DynamicSensorCallback, Handler)
914     *
915     * @throws IllegalArgumentException when callback is null.
916     */
917    public void registerDynamicSensorCallback(DynamicSensorCallback callback) {
918        registerDynamicSensorCallback(callback, null);
919    }
920
921    /**
922     * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
923     * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
924     * registration with the already registered callback object will have no additional effect.
925     *
926     * @param callback An object that implements the
927     *        {@link android.hardware.SensorManager.DynamicSensorCallback
928     *        DynamicSensorCallback} interface for receiving callbacks.
929     * @param handler The {@link android.os.Handler Handler} the {@link
930     *        android.hardware.SensorManager.DynamicSensorCallback
931     *        sensor connection events} will be delivered to.
932     *
933     * @throws IllegalArgumentException when callback is null.
934     */
935    public void registerDynamicSensorCallback(
936            DynamicSensorCallback callback, Handler handler) {
937        registerDynamicSensorCallbackImpl(callback, handler);
938    }
939
940    /**
941     * Remove a {@link android.hardware.SensorManager.DynamicSensorCallback
942     * DynamicSensorCallback} to stop sending dynamic sensor connection events to that
943     * callback.
944     *
945     * @param callback An object that implements the
946     *        {@link android.hardware.SensorManager.DynamicSensorCallback
947     *        DynamicSensorCallback}
948     *        interface for receiving callbacks.
949     */
950    public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) {
951        unregisterDynamicSensorCallbackImpl(callback);
952    }
953
954    /**
955     * Tell if dynamic sensor discovery feature is supported by system.
956     *
957     * @return <code>true</code> if dynamic sensor discovery is supported, <code>false</code>
958     * otherwise.
959     */
960    public boolean isDynamicSensorDiscoverySupported() {
961        List<Sensor> sensors = getSensorList(Sensor.TYPE_DYNAMIC_SENSOR_META);
962        return sensors.size() > 0;
963    }
964
965    /** @hide */
966    protected abstract void registerDynamicSensorCallbackImpl(
967            DynamicSensorCallback callback, Handler handler);
968
969    /** @hide */
970    protected abstract void unregisterDynamicSensorCallbackImpl(
971            DynamicSensorCallback callback);
972
973    /**
974     * <p>
975     * Computes the inclination matrix <b>I</b> as well as the rotation matrix
976     * <b>R</b> transforming a vector from the device coordinate system to the
977     * world's coordinate system which is defined as a direct orthonormal basis,
978     * where:
979     * </p>
980     *
981     * <ul>
982     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
983     * the ground at the device's current location and roughly points East).</li>
984     * <li>Y is tangential to the ground at the device's current location and
985     * points towards the magnetic North Pole.</li>
986     * <li>Z points towards the sky and is perpendicular to the ground.</li>
987     * </ul>
988     *
989     * <p>
990     * <center><img src="../../../images/axis_globe.png"
991     * alt="World coordinate-system diagram." border="0" /></center>
992     * </p>
993     *
994     * <p>
995     * <hr>
996     * <p>
997     * By definition:
998     * <p>
999     * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
1000     * <p>
1001     * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
1002     * geomagnetic field)
1003     * <p>
1004     * <b>R</b> is the identity matrix when the device is aligned with the
1005     * world's coordinate system, that is, when the device's X axis points
1006     * toward East, the Y axis points to the North Pole and the device is facing
1007     * the sky.
1008     *
1009     * <p>
1010     * <b>I</b> is a rotation matrix transforming the geomagnetic vector into
1011     * the same coordinate space as gravity (the world's coordinate space).
1012     * <b>I</b> is a simple rotation around the X axis. The inclination angle in
1013     * radians can be computed with {@link #getInclination}.
1014     * <hr>
1015     *
1016     * <p>
1017     * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
1018     * on the length of the passed array:
1019     * <p>
1020     * <u>If the array length is 16:</u>
1021     *
1022     * <pre>
1023     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
1024     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
1025     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
1026     *   \  M[12]   M[13]   M[14]   M[15]  /
1027     *</pre>
1028     *
1029     * This matrix is ready to be used by OpenGL ES's
1030     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
1031     * glLoadMatrixf(float[], int)}.
1032     * <p>
1033     * Note that because OpenGL matrices are column-major matrices you must
1034     * transpose the matrix before using it. However, since the matrix is a
1035     * rotation matrix, its transpose is also its inverse, conveniently, it is
1036     * often the inverse of the rotation that is needed for rendering; it can
1037     * therefore be used with OpenGL ES directly.
1038     * <p>
1039     * Also note that the returned matrices always have this form:
1040     *
1041     * <pre>
1042     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
1043     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
1044     *   |  M[ 8]   M[ 9]   M[10]   0  |
1045     *   \      0       0       0   1  /
1046     *</pre>
1047     *
1048     * <p>
1049     * <u>If the array length is 9:</u>
1050     *
1051     * <pre>
1052     *   /  M[ 0]   M[ 1]   M[ 2]  \
1053     *   |  M[ 3]   M[ 4]   M[ 5]  |
1054     *   \  M[ 6]   M[ 7]   M[ 8]  /
1055     *</pre>
1056     *
1057     * <hr>
1058     * <p>
1059     * The inverse of each matrix can be computed easily by taking its
1060     * transpose.
1061     *
1062     * <p>
1063     * The matrices returned by this function are meaningful only when the
1064     * device is not free-falling and it is not close to the magnetic north. If
1065     * the device is accelerating, or placed into a strong magnetic field, the
1066     * returned matrices may be inaccurate.
1067     *
1068     * @param R
1069     *        is an array of 9 floats holding the rotation matrix <b>R</b> when
1070     *        this function returns. R can be null.
1071     *        <p>
1072     *
1073     * @param I
1074     *        is an array of 9 floats holding the rotation matrix <b>I</b> when
1075     *        this function returns. I can be null.
1076     *        <p>
1077     *
1078     * @param gravity
1079     *        is an array of 3 floats containing the gravity vector expressed in
1080     *        the device's coordinate. You can simply use the
1081     *        {@link android.hardware.SensorEvent#values values} returned by a
1082     *        {@link android.hardware.SensorEvent SensorEvent} of a
1083     *        {@link android.hardware.Sensor Sensor} of type
1084     *        {@link android.hardware.Sensor#TYPE_ACCELEROMETER
1085     *        TYPE_ACCELEROMETER}.
1086     *        <p>
1087     *
1088     * @param geomagnetic
1089     *        is an array of 3 floats containing the geomagnetic vector
1090     *        expressed in the device's coordinate. You can simply use the
1091     *        {@link android.hardware.SensorEvent#values values} returned by a
1092     *        {@link android.hardware.SensorEvent SensorEvent} of a
1093     *        {@link android.hardware.Sensor Sensor} of type
1094     *        {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
1095     *        TYPE_MAGNETIC_FIELD}.
1096     *
1097     * @return <code>true</code> on success, <code>false</code> on failure (for
1098     *         instance, if the device is in free fall). Free fall is defined as
1099     *         condition when the magnitude of the gravity is less than 1/10 of
1100     *         the nominal value. On failure the output matrices are not modified.
1101     *
1102     * @see #getInclination(float[])
1103     * @see #getOrientation(float[], float[])
1104     * @see #remapCoordinateSystem(float[], int, int, float[])
1105     */
1106
1107    public static boolean getRotationMatrix(float[] R, float[] I,
1108            float[] gravity, float[] geomagnetic) {
1109        // TODO: move this to native code for efficiency
1110        float Ax = gravity[0];
1111        float Ay = gravity[1];
1112        float Az = gravity[2];
1113
1114        final float normsqA = (Ax*Ax + Ay*Ay + Az*Az);
1115        final float g = 9.81f;
1116        final float freeFallGravitySquared = 0.01f * g * g;
1117        if (normsqA < freeFallGravitySquared) {
1118            // gravity less than 10% of normal value
1119            return false;
1120        }
1121
1122        final float Ex = geomagnetic[0];
1123        final float Ey = geomagnetic[1];
1124        final float Ez = geomagnetic[2];
1125        float Hx = Ey*Az - Ez*Ay;
1126        float Hy = Ez*Ax - Ex*Az;
1127        float Hz = Ex*Ay - Ey*Ax;
1128        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
1129
1130        if (normH < 0.1f) {
1131            // device is close to free fall (or in space?), or close to
1132            // magnetic north pole. Typical values are  > 100.
1133            return false;
1134        }
1135        final float invH = 1.0f / normH;
1136        Hx *= invH;
1137        Hy *= invH;
1138        Hz *= invH;
1139        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
1140        Ax *= invA;
1141        Ay *= invA;
1142        Az *= invA;
1143        final float Mx = Ay*Hz - Az*Hy;
1144        final float My = Az*Hx - Ax*Hz;
1145        final float Mz = Ax*Hy - Ay*Hx;
1146        if (R != null) {
1147            if (R.length == 9) {
1148                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1149                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1150                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1151            } else if (R.length == 16) {
1152                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1153                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1154                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1155                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1156            }
1157        }
1158        if (I != null) {
1159            // compute the inclination matrix by projecting the geomagnetic
1160            // vector onto the Z (gravity) and X (horizontal component
1161            // of geomagnetic vector) axes.
1162            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1163            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1164            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1165            if (I.length == 9) {
1166                I[0] = 1;     I[1] = 0;     I[2] = 0;
1167                I[3] = 0;     I[4] = c;     I[5] = s;
1168                I[6] = 0;     I[7] =-s;     I[8] = c;
1169            } else if (I.length == 16) {
1170                I[0] = 1;     I[1] = 0;     I[2] = 0;
1171                I[4] = 0;     I[5] = c;     I[6] = s;
1172                I[8] = 0;     I[9] =-s;     I[10]= c;
1173                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1174                I[15] = 1;
1175            }
1176        }
1177        return true;
1178    }
1179
1180    /**
1181     * Computes the geomagnetic inclination angle in radians from the
1182     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1183     *
1184     * @param I
1185     *        inclination matrix see {@link #getRotationMatrix}.
1186     *
1187     * @return The geomagnetic inclination angle in radians.
1188     *
1189     * @see #getRotationMatrix(float[], float[], float[], float[])
1190     * @see #getOrientation(float[], float[])
1191     * @see GeomagneticField
1192     *
1193     */
1194    public static float getInclination(float[] I) {
1195        if (I.length == 9) {
1196            return (float)Math.atan2(I[5], I[4]);
1197        } else {
1198            return (float)Math.atan2(I[6], I[5]);
1199        }
1200    }
1201
1202    /**
1203     * <p>
1204     * Rotates the supplied rotation matrix so it is expressed in a different
1205     * coordinate system. This is typically used when an application needs to
1206     * compute the three orientation angles of the device (see
1207     * {@link #getOrientation}) in a different coordinate system.
1208     * </p>
1209     *
1210     * <p>
1211     * When the rotation matrix is used for drawing (for instance with OpenGL
1212     * ES), it usually <b>doesn't need</b> to be transformed by this function,
1213     * unless the screen is physically rotated, in which case you can use
1214     * {@link android.view.Display#getRotation() Display.getRotation()} to
1215     * retrieve the current rotation of the screen. Note that because the user
1216     * is generally free to rotate their screen, you often should consider the
1217     * rotation in deciding the parameters to use here.
1218     * </p>
1219     *
1220     * <p>
1221     * <u>Examples:</u>
1222     * <p>
1223     *
1224     * <ul>
1225     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1226     * reality application where the rotation angles are needed:</li>
1227     *
1228     * <p>
1229     * <ul>
1230     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
1231     * </ul>
1232     * </p>
1233     *
1234     * <li>Using the device as a mechanical compass when rotation is
1235     * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
1236     *
1237     * <p>
1238     * <ul>
1239     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
1240     * </ul>
1241     * </p>
1242     *
1243     * Beware of the above example. This call is needed only to account for a
1244     * rotation from its natural orientation when calculating the rotation
1245     * angles (see {@link #getOrientation}). If the rotation matrix is also used
1246     * for rendering, it may not need to be transformed, for instance if your
1247     * {@link android.app.Activity Activity} is running in landscape mode.
1248     * </ul>
1249     *
1250     * <p>
1251     * Since the resulting coordinate system is orthonormal, only two axes need
1252     * to be specified.
1253     *
1254     * @param inR
1255     *        the rotation matrix to be transformed. Usually it is the matrix
1256     *        returned by {@link #getRotationMatrix}.
1257     *
1258     * @param X
1259     *        defines the axis of the new cooridinate system that coincide with the X axis of the
1260     *        original coordinate system.
1261     *
1262     * @param Y
1263     *        defines the axis of the new cooridinate system that coincide with the Y axis of the
1264     *        original coordinate system.
1265     *
1266     * @param outR
1267     *        the transformed rotation matrix. inR and outR should not be the same
1268     *        array.
1269     *
1270     * @return <code>true</code> on success. <code>false</code> if the input
1271     *         parameters are incorrect, for instance if X and Y define the same
1272     *         axis. Or if inR and outR don't have the same length.
1273     *
1274     * @see #getRotationMatrix(float[], float[], float[], float[])
1275     */
1276
1277    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1278            float[] outR)
1279    {
1280        if (inR == outR) {
1281            final float[] temp = mTempMatrix;
1282            synchronized(temp) {
1283                // we don't expect to have a lot of contention
1284                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1285                    final int size = outR.length;
1286                    for (int i=0 ; i<size ; i++)
1287                        outR[i] = temp[i];
1288                    return true;
1289                }
1290            }
1291        }
1292        return remapCoordinateSystemImpl(inR, X, Y, outR);
1293    }
1294
1295    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1296            float[] outR)
1297    {
1298        /*
1299         * X and Y define a rotation matrix 'r':
1300         *
1301         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1302         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1303         *                              r[0] ^ r[1]
1304         *
1305         * where the 3rd line is the vector product of the first 2 lines
1306         *
1307         */
1308
1309        final int length = outR.length;
1310        if (inR.length != length)
1311            return false;   // invalid parameter
1312        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1313            return false;   // invalid parameter
1314        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1315            return false;   // no axis specified
1316        if ((X & 0x3) == (Y & 0x3))
1317            return false;   // same axis specified
1318
1319        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1320        // this can be calculated by exclusive-or'ing X and Y; except for
1321        // the sign inversion (+/-) which is calculated below.
1322        int Z = X ^ Y;
1323
1324        // extract the axis (remove the sign), offset in the range 0 to 2.
1325        final int x = (X & 0x3)-1;
1326        final int y = (Y & 0x3)-1;
1327        final int z = (Z & 0x3)-1;
1328
1329        // compute the sign of Z (whether it needs to be inverted)
1330        final int axis_y = (z+1)%3;
1331        final int axis_z = (z+2)%3;
1332        if (((x^axis_y)|(y^axis_z)) != 0)
1333            Z ^= 0x80;
1334
1335        final boolean sx = (X>=0x80);
1336        final boolean sy = (Y>=0x80);
1337        final boolean sz = (Z>=0x80);
1338
1339        // Perform R * r, in avoiding actual muls and adds.
1340        final int rowLength = ((length==16)?4:3);
1341        for (int j=0 ; j<3 ; j++) {
1342            final int offset = j*rowLength;
1343            for (int i=0 ; i<3 ; i++) {
1344                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1345                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1346                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1347            }
1348        }
1349        if (length == 16) {
1350            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1351            outR[15] = 1;
1352        }
1353        return true;
1354    }
1355
1356    /**
1357     * Computes the device's orientation based on the rotation matrix.
1358     * <p>
1359     * When it returns, the array values are as follows:
1360     * <ul>
1361     * <li>values[0]: <i>Azimuth</i>, angle of rotation about the -z axis.
1362     *                This value represents the angle between the device's y
1363     *                axis and the magnetic north pole. When facing north, this
1364     *                angle is 0, when facing south, this angle is &pi;.
1365     *                Likewise, when facing east, this angle is &pi;/2, and
1366     *                when facing west, this angle is -&pi;/2. The range of
1367     *                values is -&pi; to &pi;.</li>
1368     * <li>values[1]: <i>Pitch</i>, angle of rotation about the x axis.
1369     *                This value represents the angle between a plane parallel
1370     *                to the device's screen and a plane parallel to the ground.
1371     *                Assuming that the bottom edge of the device faces the
1372     *                user and that the screen is face-up, tilting the top edge
1373     *                of the device toward the ground creates a positive pitch
1374     *                angle. The range of values is -&pi; to &pi;.</li>
1375     * <li>values[2]: <i>Roll</i>, angle of rotation about the y axis. This
1376     *                value represents the angle between a plane perpendicular
1377     *                to the device's screen and a plane perpendicular to the
1378     *                ground. Assuming that the bottom edge of the device faces
1379     *                the user and that the screen is face-up, tilting the left
1380     *                edge of the device toward the ground creates a positive
1381     *                roll angle. The range of values is -&pi;/2 to &pi;/2.</li>
1382     * </ul>
1383     * <p>
1384     * Applying these three rotations in the azimuth, pitch, roll order
1385     * transforms an identity matrix to the rotation matrix passed into this
1386     * method. Also, note that all three orientation angles are expressed in
1387     * <b>radians</b>.
1388     *
1389     * @param R
1390     *        rotation matrix see {@link #getRotationMatrix}.
1391     *
1392     * @param values
1393     *        an array of 3 floats to hold the result.
1394     *
1395     * @return The array values passed as argument.
1396     *
1397     * @see #getRotationMatrix(float[], float[], float[], float[])
1398     * @see GeomagneticField
1399     */
1400    public static float[] getOrientation(float[] R, float values[]) {
1401        /*
1402         * 4x4 (length=16) case:
1403         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1404         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1405         *   |  R[ 8]   R[ 9]   R[10]   0  |
1406         *   \      0       0       0   1  /
1407         *
1408         * 3x3 (length=9) case:
1409         *   /  R[ 0]   R[ 1]   R[ 2]  \
1410         *   |  R[ 3]   R[ 4]   R[ 5]  |
1411         *   \  R[ 6]   R[ 7]   R[ 8]  /
1412         *
1413         */
1414        if (R.length == 9) {
1415            values[0] = (float)Math.atan2(R[1], R[4]);
1416            values[1] = (float)Math.asin(-R[7]);
1417            values[2] = (float)Math.atan2(-R[6], R[8]);
1418        } else {
1419            values[0] = (float)Math.atan2(R[1], R[5]);
1420            values[1] = (float)Math.asin(-R[9]);
1421            values[2] = (float)Math.atan2(-R[8], R[10]);
1422        }
1423
1424        return values;
1425    }
1426
1427    /**
1428     * Computes the Altitude in meters from the atmospheric pressure and the
1429     * pressure at sea level.
1430     * <p>
1431     * Typically the atmospheric pressure is read from a
1432     * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
1433     * known, usually it can be retrieved from airport databases in the
1434     * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
1435     * as an approximation, but absolute altitudes won't be accurate.
1436     * </p>
1437     * <p>
1438     * To calculate altitude differences, you must calculate the difference
1439     * between the altitudes at both points. If you don't know the altitude
1440     * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
1441     * which will give good results considering the range of pressure typically
1442     * involved.
1443     * </p>
1444     * <p>
1445     * <code><ul>
1446     *  float altitude_difference =
1447     *      getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
1448     *      - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
1449     * </ul></code>
1450     * </p>
1451     *
1452     * @param p0 pressure at sea level
1453     * @param p atmospheric pressure
1454     * @return Altitude in meters
1455     */
1456    public static float getAltitude(float p0, float p) {
1457        final float coef = 1.0f / 5.255f;
1458        return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef));
1459    }
1460
1461    /** Helper function to compute the angle change between two rotation matrices.
1462     *  Given a current rotation matrix (R) and a previous rotation matrix
1463     *  (prevR) computes the intrinsic rotation around the z, x, and y axes which
1464     *  transforms prevR to R.
1465     *  outputs a 3 element vector containing the z, x, and y angle
1466     *  change at indexes 0, 1, and 2 respectively.
1467     * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
1468     * depending on the length of the passed array:
1469     * <p>If the array length is 9, then the array elements represent this matrix
1470     * <pre>
1471     *   /  R[ 0]   R[ 1]   R[ 2]   \
1472     *   |  R[ 3]   R[ 4]   R[ 5]   |
1473     *   \  R[ 6]   R[ 7]   R[ 8]   /
1474     *</pre>
1475     * <p>If the array length is 16, then the array elements represent this matrix
1476     * <pre>
1477     *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
1478     *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
1479     *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
1480     *   \  R[12]   R[13]   R[14]   R[15]  /
1481     *</pre>
1482     *
1483     * See {@link #getOrientation} for more detailed definition of the output.
1484     *
1485     * @param R current rotation matrix
1486     * @param prevR previous rotation matrix
1487     * @param angleChange an an array of floats (z, x, and y) in which the angle change
1488     *        (in radians) is stored
1489     */
1490
1491    public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) {
1492        float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0;
1493        float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0;
1494        float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0;
1495
1496        if(R.length == 9) {
1497            ri0 = R[0];
1498            ri1 = R[1];
1499            ri2 = R[2];
1500            ri3 = R[3];
1501            ri4 = R[4];
1502            ri5 = R[5];
1503            ri6 = R[6];
1504            ri7 = R[7];
1505            ri8 = R[8];
1506        } else if(R.length == 16) {
1507            ri0 = R[0];
1508            ri1 = R[1];
1509            ri2 = R[2];
1510            ri3 = R[4];
1511            ri4 = R[5];
1512            ri5 = R[6];
1513            ri6 = R[8];
1514            ri7 = R[9];
1515            ri8 = R[10];
1516        }
1517
1518        if(prevR.length == 9) {
1519            pri0 = prevR[0];
1520            pri1 = prevR[1];
1521            pri2 = prevR[2];
1522            pri3 = prevR[3];
1523            pri4 = prevR[4];
1524            pri5 = prevR[5];
1525            pri6 = prevR[6];
1526            pri7 = prevR[7];
1527            pri8 = prevR[8];
1528        } else if(prevR.length == 16) {
1529            pri0 = prevR[0];
1530            pri1 = prevR[1];
1531            pri2 = prevR[2];
1532            pri3 = prevR[4];
1533            pri4 = prevR[5];
1534            pri5 = prevR[6];
1535            pri6 = prevR[8];
1536            pri7 = prevR[9];
1537            pri8 = prevR[10];
1538        }
1539
1540        // calculate the parts of the rotation difference matrix we need
1541        // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
1542
1543        rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
1544        rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
1545        rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
1546        rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
1547        rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
1548
1549        angleChange[0] = (float)Math.atan2(rd1, rd4);
1550        angleChange[1] = (float)Math.asin(-rd7);
1551        angleChange[2] = (float)Math.atan2(-rd6, rd8);
1552
1553    }
1554
1555    /** Helper function to convert a rotation vector to a rotation matrix.
1556     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
1557     *  9  or 16 element rotation matrix in the array R.  R must have length 9 or 16.
1558     *  If R.length == 9, the following matrix is returned:
1559     * <pre>
1560     *   /  R[ 0]   R[ 1]   R[ 2]   \
1561     *   |  R[ 3]   R[ 4]   R[ 5]   |
1562     *   \  R[ 6]   R[ 7]   R[ 8]   /
1563     *</pre>
1564     * If R.length == 16, the following matrix is returned:
1565     * <pre>
1566     *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1567     *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1568     *   |  R[ 8]   R[ 9]   R[10]   0  |
1569     *   \  0       0       0       1  /
1570     *</pre>
1571     *  @param rotationVector the rotation vector to convert
1572     *  @param R an array of floats in which to store the rotation matrix
1573     */
1574    public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
1575
1576        float q0;
1577        float q1 = rotationVector[0];
1578        float q2 = rotationVector[1];
1579        float q3 = rotationVector[2];
1580
1581        if (rotationVector.length >= 4) {
1582            q0 = rotationVector[3];
1583        } else {
1584            q0 = 1 - q1*q1 - q2*q2 - q3*q3;
1585            q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0;
1586        }
1587
1588        float sq_q1 = 2 * q1 * q1;
1589        float sq_q2 = 2 * q2 * q2;
1590        float sq_q3 = 2 * q3 * q3;
1591        float q1_q2 = 2 * q1 * q2;
1592        float q3_q0 = 2 * q3 * q0;
1593        float q1_q3 = 2 * q1 * q3;
1594        float q2_q0 = 2 * q2 * q0;
1595        float q2_q3 = 2 * q2 * q3;
1596        float q1_q0 = 2 * q1 * q0;
1597
1598        if(R.length == 9) {
1599            R[0] = 1 - sq_q2 - sq_q3;
1600            R[1] = q1_q2 - q3_q0;
1601            R[2] = q1_q3 + q2_q0;
1602
1603            R[3] = q1_q2 + q3_q0;
1604            R[4] = 1 - sq_q1 - sq_q3;
1605            R[5] = q2_q3 - q1_q0;
1606
1607            R[6] = q1_q3 - q2_q0;
1608            R[7] = q2_q3 + q1_q0;
1609            R[8] = 1 - sq_q1 - sq_q2;
1610        } else if (R.length == 16) {
1611            R[0] = 1 - sq_q2 - sq_q3;
1612            R[1] = q1_q2 - q3_q0;
1613            R[2] = q1_q3 + q2_q0;
1614            R[3] = 0.0f;
1615
1616            R[4] = q1_q2 + q3_q0;
1617            R[5] = 1 - sq_q1 - sq_q3;
1618            R[6] = q2_q3 - q1_q0;
1619            R[7] = 0.0f;
1620
1621            R[8] = q1_q3 - q2_q0;
1622            R[9] = q2_q3 + q1_q0;
1623            R[10] = 1 - sq_q1 - sq_q2;
1624            R[11] = 0.0f;
1625
1626            R[12] = R[13] = R[14] = 0.0f;
1627            R[15] = 1.0f;
1628        }
1629    }
1630
1631    /** Helper function to convert a rotation vector to a normalized quaternion.
1632     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
1633     *  quaternion in the array Q.  The quaternion is stored as [w, x, y, z]
1634     *  @param rv the rotation vector to convert
1635     *  @param Q an array of floats in which to store the computed quaternion
1636     */
1637    public static void getQuaternionFromVector(float[] Q, float[] rv) {
1638        if (rv.length >= 4) {
1639            Q[0] = rv[3];
1640        } else {
1641            Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2];
1642            Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0;
1643        }
1644        Q[1] = rv[0];
1645        Q[2] = rv[1];
1646        Q[3] = rv[2];
1647    }
1648
1649    /**
1650     * Requests receiving trigger events for a trigger sensor.
1651     *
1652     * <p>
1653     * When the sensor detects a trigger event condition, such as significant motion in
1654     * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
1655     * will be invoked once and then its request to receive trigger events will be canceled.
1656     * To continue receiving trigger events, the application must request to receive trigger
1657     * events again.
1658     * </p>
1659     *
1660     * @param listener The listener on which the
1661     *        {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered.
1662     * @param sensor The sensor to be enabled.
1663     *
1664     * @return true if the sensor was successfully enabled.
1665     *
1666     * @throws IllegalArgumentException when sensor is null or not a trigger sensor.
1667     */
1668    public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1669        return requestTriggerSensorImpl(listener, sensor);
1670    }
1671
1672    /**
1673     * @hide
1674     */
1675    protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener,
1676            Sensor sensor);
1677
1678    /**
1679     * Cancels receiving trigger events for a trigger sensor.
1680     *
1681     * <p>
1682     * Note that a Trigger sensor will be auto disabled if
1683     * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
1684     * This method is provided in case the user wants to explicitly cancel the request
1685     * to receive trigger events.
1686     * </p>
1687     *
1688     * @param listener The listener on which the
1689     *        {@link TriggerEventListener#onTrigger(TriggerEvent)}
1690     *        is delivered.It should be the same as the one used
1691     *        in {@link #requestTriggerSensor(TriggerEventListener, Sensor)}
1692     * @param sensor The sensor for which the trigger request should be canceled.
1693     *        If null, it cancels receiving trigger for all sensors associated
1694     *        with the listener.
1695     *
1696     * @return true if successfully canceled.
1697     *
1698     * @throws IllegalArgumentException when sensor is a trigger sensor.
1699     */
1700    public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1701        return cancelTriggerSensorImpl(listener, sensor, true);
1702    }
1703
1704    /**
1705     * @hide
1706     */
1707    protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener,
1708            Sensor sensor, boolean disable);
1709
1710
1711    /**
1712     * For testing purposes only. Not for third party applications.
1713     *
1714     * Initialize data injection mode and create a client for data injection. SensorService should
1715     * already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into
1716     * DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called
1717     * through adb. Typically this is done using a host side test.  This mode is expected to be used
1718     * only for testing purposes. If the HAL is set to data injection mode, it will ignore the input
1719     * from physical sensors and read sensor data that is injected from the test application. This
1720     * mode is used for testing vendor implementations for various algorithms like Rotation Vector,
1721     * Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will
1722     * fail in those cases. Once this method succeeds, the test can call
1723     * {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL.
1724     *
1725     * @param enable True to initialize a client in DATA_INJECTION mode.
1726     *               False to clean up the native resources.
1727     *
1728     * @return true if the HAL supports data injection and false
1729     *         otherwise.
1730     * @hide
1731     */
1732    @SystemApi
1733    public boolean initDataInjection(boolean enable) {
1734          return initDataInjectionImpl(enable);
1735    }
1736
1737    /**
1738     * @hide
1739     */
1740    protected abstract boolean initDataInjectionImpl(boolean enable);
1741
1742    /**
1743     * For testing purposes only. Not for third party applications.
1744     *
1745     * This method is used to inject raw sensor data into the HAL.  Call {@link
1746     * initDataInjection(boolean)} before this method to set the HAL in data injection mode. This
1747     * method should be called only if a previous call to initDataInjection has been successful and
1748     * the HAL and SensorService are already opreating in data injection mode.
1749     *
1750     * @param sensor The sensor to inject.
1751     * @param values Sensor values to inject. The length of this
1752     *               array must be exactly equal to the number of
1753     *               values reported by the sensor type.
1754     * @param accuracy Accuracy of the sensor.
1755     * @param timestamp Sensor timestamp associated with the event.
1756     *
1757     * @return boolean True if the data injection succeeds, false
1758     *         otherwise.
1759     * @throws IllegalArgumentException when the sensor is null,
1760     *         data injection is not supported by the sensor, values
1761     *         are null, incorrect number of values for the sensor,
1762     *         sensor accuracy is incorrect or timestamps are
1763     *         invalid.
1764     * @hide
1765     */
1766    @SystemApi
1767    public boolean injectSensorData(Sensor sensor, float[] values, int accuracy,
1768                long timestamp) {
1769        if (sensor == null) {
1770            throw new IllegalArgumentException("sensor cannot be null");
1771        }
1772        if (!sensor.isDataInjectionSupported()) {
1773            throw new IllegalArgumentException("sensor does not support data injection");
1774        }
1775        if (values == null) {
1776            throw new IllegalArgumentException("sensor data cannot be null");
1777        }
1778        int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M);
1779        if (values.length != expectedNumValues) {
1780            throw new  IllegalArgumentException ("Wrong number of values for sensor " +
1781                    sensor.getName() + " actual=" + values.length + " expected=" +
1782                                                  expectedNumValues);
1783        }
1784        if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) {
1785            throw new IllegalArgumentException("Invalid sensor accuracy");
1786        }
1787        if (timestamp <= 0) {
1788            throw new IllegalArgumentException("Negative or zero sensor timestamp");
1789        }
1790        return injectSensorDataImpl(sensor, values, accuracy, timestamp);
1791    }
1792
1793    /**
1794     * @hide
1795     */
1796    protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy,
1797                long timestamp);
1798
1799    private LegacySensorManager getLegacySensorManager() {
1800        synchronized (mSensorListByType) {
1801            if (mLegacySensorManager == null) {
1802                Log.i(TAG, "This application is using deprecated SensorManager API which will "
1803                        + "be removed someday.  Please consider switching to the new API.");
1804                mLegacySensorManager = new LegacySensorManager(this);
1805            }
1806            return mLegacySensorManager;
1807        }
1808    }
1809
1810    private static int getDelay(int rate) {
1811        int delay = -1;
1812        switch (rate) {
1813            case SENSOR_DELAY_FASTEST:
1814                delay = 0;
1815                break;
1816            case SENSOR_DELAY_GAME:
1817                delay = 20000;
1818                break;
1819            case SENSOR_DELAY_UI:
1820                delay = 66667;
1821                break;
1822            case SENSOR_DELAY_NORMAL:
1823                delay = 200000;
1824                break;
1825            default:
1826                delay = rate;
1827                break;
1828        }
1829        return delay;
1830    }
1831}
1832