/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.util; import com.android.ide.common.rendering.api.LayoutLog; import com.android.layoutlib.bridge.Bridge; import com.android.layoutlib.bridge.impl.DelegateManager; import com.android.tools.layoutlib.annotations.LayoutlibDelegate; import android.annotation.NonNull; import android.graphics.Path_Delegate; import java.awt.geom.Path2D; import java.util.ArrayList; import java.util.Arrays; import java.util.logging.Level; import java.util.logging.Logger; /** * Delegate that provides implementation for native methods in {@link android.util.PathParser} *

* Through the layoutlib_create tool, selected methods of PathParser have been replaced by calls to * methods of the same name in this delegate class. * * Most of the code has been taken from the implementation in * {@code tools/base/sdk-common/src/main/java/com/android/ide/common/vectordrawable/PathParser.java} * revision be6fe89a3b686db5a75e7e692a148699973957f3 */ public class PathParser_Delegate { private static final Logger LOGGER = Logger.getLogger("PathParser"); // ---- Builder delegate manager ---- private static final DelegateManager sManager = new DelegateManager(PathParser_Delegate.class); // ---- delegate data ---- @NonNull private PathDataNode[] mPathDataNodes; private PathParser_Delegate(@NonNull PathDataNode[] nodes) { mPathDataNodes = nodes; } @LayoutlibDelegate /*package*/ static boolean nParseStringForPath(long pathPtr, @NonNull String pathString, int stringLength) { Path_Delegate path_delegate = Path_Delegate.getDelegate(pathPtr); if (path_delegate == null) { return false; } assert pathString.length() == stringLength; PathDataNode.nodesToPath(createNodesFromPathData(pathString), path_delegate.getJavaShape()); return true; } @LayoutlibDelegate /*package*/ static void nCreatePathFromPathData(long outPathPtr, long pathData) { Path_Delegate path_delegate = Path_Delegate.getDelegate(outPathPtr); PathParser_Delegate source = sManager.getDelegate(outPathPtr); if (source == null || path_delegate == null) { return; } PathDataNode.nodesToPath(source.mPathDataNodes, path_delegate.getJavaShape()); } @LayoutlibDelegate /*package*/ static long nCreateEmptyPathData() { PathParser_Delegate newDelegate = new PathParser_Delegate(new PathDataNode[0]); return sManager.addNewDelegate(newDelegate); } @LayoutlibDelegate /*package*/ static long nCreatePathData(long nativePtr) { PathParser_Delegate source = sManager.getDelegate(nativePtr); if (source == null) { return 0; } PathParser_Delegate dest = new PathParser_Delegate(deepCopyNodes(source.mPathDataNodes)); return sManager.addNewDelegate(dest); } @LayoutlibDelegate /*package*/ static long nCreatePathDataFromString(@NonNull String pathString, int stringLength) { assert pathString.length() == stringLength : "Inconsistent path string length."; PathDataNode[] nodes = createNodesFromPathData(pathString); PathParser_Delegate delegate = new PathParser_Delegate(nodes); return sManager.addNewDelegate(delegate); } @LayoutlibDelegate /*package*/ static boolean nInterpolatePathData(long outDataPtr, long fromDataPtr, long toDataPtr, float fraction) { PathParser_Delegate out = sManager.getDelegate(outDataPtr); PathParser_Delegate from = sManager.getDelegate(fromDataPtr); PathParser_Delegate to = sManager.getDelegate(toDataPtr); if (out == null || from == null || to == null) { return false; } int length = from.mPathDataNodes.length; if (length != to.mPathDataNodes.length) { Bridge.getLog().error(LayoutLog.TAG_BROKEN, "Cannot interpolate path data with different lengths (from " + length + " to " + to.mPathDataNodes.length + ").", null); return false; } if (out.mPathDataNodes.length != length) { out.mPathDataNodes = new PathDataNode[length]; } for (int i = 0; i < length; i++) { out.mPathDataNodes[i].interpolatePathDataNode(from.mPathDataNodes[i], to.mPathDataNodes[i], fraction); } return true; } @LayoutlibDelegate /*package*/ static void nFinalize(long nativePtr) { sManager.removeJavaReferenceFor(nativePtr); } @LayoutlibDelegate /*package*/ static boolean nCanMorph(long fromDataPtr, long toDataPtr) { Bridge.getLog().fidelityWarning(LayoutLog.TAG_UNSUPPORTED, "morphing path data isn't " + "supported", null, null); return false; } @LayoutlibDelegate /*package*/ static void nSetPathData(long outDataPtr, long fromDataPtr) { PathParser_Delegate out = sManager.getDelegate(outDataPtr); PathParser_Delegate from = sManager.getDelegate(fromDataPtr); if (from == null || out == null) { return; } out.mPathDataNodes = deepCopyNodes(from.mPathDataNodes); } /** * @param pathData The string representing a path, the same as "d" string in svg file. * * @return an array of the PathDataNode. */ @NonNull private static PathDataNode[] createNodesFromPathData(@NonNull String pathData) { int start = 0; int end = 1; ArrayList list = new ArrayList(); while (end < pathData.length()) { end = nextStart(pathData, end); String s = pathData.substring(start, end).trim(); if (s.length() > 0) { float[] val = getFloats(s); addNode(list, s.charAt(0), val); } start = end; end++; } if ((end - start) == 1 && start < pathData.length()) { addNode(list, pathData.charAt(start), new float[0]); } return list.toArray(new PathDataNode[list.size()]); } /** * @param source The array of PathDataNode to be duplicated. * * @return a deep copy of the source. */ @NonNull private static PathDataNode[] deepCopyNodes(@NonNull PathDataNode[] source) { PathDataNode[] copy = new PathDataNode[source.length]; for (int i = 0; i < source.length; i++) { copy[i] = new PathDataNode(source[i]); } return copy; } private static int nextStart(@NonNull String s, int end) { char c; while (end < s.length()) { c = s.charAt(end); // Note that 'e' or 'E' are not valid path commands, but could be // used for floating point numbers' scientific notation. // Therefore, when searching for next command, we should ignore 'e' // and 'E'. if ((((c - 'A') * (c - 'Z') <= 0) || ((c - 'a') * (c - 'z') <= 0)) && c != 'e' && c != 'E') { return end; } end++; } return end; } /** * Calculate the position of the next comma or space or negative sign * * @param s the string to search * @param start the position to start searching * @param result the result of the extraction, including the position of the the starting * position of next number, whether it is ending with a '-'. */ private static void extract(@NonNull String s, int start, @NonNull ExtractFloatResult result) { // Now looking for ' ', ',', '.' or '-' from the start. int currentIndex = start; boolean foundSeparator = false; result.mEndWithNegOrDot = false; boolean secondDot = false; boolean isExponential = false; for (; currentIndex < s.length(); currentIndex++) { boolean isPrevExponential = isExponential; isExponential = false; char currentChar = s.charAt(currentIndex); switch (currentChar) { case ' ': case ',': foundSeparator = true; break; case '-': // The negative sign following a 'e' or 'E' is not a separator. if (currentIndex != start && !isPrevExponential) { foundSeparator = true; result.mEndWithNegOrDot = true; } break; case '.': if (!secondDot) { secondDot = true; } else { // This is the second dot, and it is considered as a separator. foundSeparator = true; result.mEndWithNegOrDot = true; } break; case 'e': case 'E': isExponential = true; break; } if (foundSeparator) { break; } } // When there is nothing found, then we put the end position to the end // of the string. result.mEndPosition = currentIndex; } /** * Parse the floats in the string. This is an optimized version of * parseFloat(s.split(",|\\s")); * * @param s the string containing a command and list of floats * * @return array of floats */ @NonNull private static float[] getFloats(@NonNull String s) { if (s.charAt(0) == 'z' || s.charAt(0) == 'Z') { return new float[0]; } try { float[] results = new float[s.length()]; int count = 0; int startPosition = 1; int endPosition; ExtractFloatResult result = new ExtractFloatResult(); int totalLength = s.length(); // The startPosition should always be the first character of the // current number, and endPosition is the character after the current // number. while (startPosition < totalLength) { extract(s, startPosition, result); endPosition = result.mEndPosition; if (startPosition < endPosition) { results[count++] = Float.parseFloat( s.substring(startPosition, endPosition)); } if (result.mEndWithNegOrDot) { // Keep the '-' or '.' sign with next number. startPosition = endPosition; } else { startPosition = endPosition + 1; } } return Arrays.copyOf(results, count); } catch (NumberFormatException e) { throw new RuntimeException("error in parsing \"" + s + "\"", e); } } private static void addNode(@NonNull ArrayList list, char cmd, @NonNull float[] val) { list.add(new PathDataNode(cmd, val)); } private static class ExtractFloatResult { // We need to return the position of the next separator and whether the // next float starts with a '-' or a '.'. private int mEndPosition; private boolean mEndWithNegOrDot; } /** * Each PathDataNode represents one command in the "d" attribute of the svg file. An array of * PathDataNode can represent the whole "d" attribute. */ private static class PathDataNode { private char mType; @NonNull private float[] mParams; private PathDataNode(char type, @NonNull float[] params) { mType = type; mParams = params; } public char getType() { return mType; } @NonNull public float[] getParams() { return mParams; } private PathDataNode(@NonNull PathDataNode n) { mType = n.mType; mParams = Arrays.copyOf(n.mParams, n.mParams.length); } /** * Convert an array of PathDataNode to Path. * * @param node The source array of PathDataNode. * @param path The target Path object. */ private static void nodesToPath(@NonNull PathDataNode[] node, @NonNull Path2D path) { float[] current = new float[6]; char previousCommand = 'm'; //noinspection ForLoopReplaceableByForEach for (int i = 0; i < node.length; i++) { addCommand(path, current, previousCommand, node[i].mType, node[i].mParams); previousCommand = node[i].mType; } } /** * The current PathDataNode will be interpolated between the nodeFrom and * nodeTo according to the fraction. * * @param nodeFrom The start value as a PathDataNode. * @param nodeTo The end value as a PathDataNode * @param fraction The fraction to interpolate. */ private void interpolatePathDataNode(@NonNull PathDataNode nodeFrom, @NonNull PathDataNode nodeTo, float fraction) { for (int i = 0; i < nodeFrom.mParams.length; i++) { mParams[i] = nodeFrom.mParams[i] * (1 - fraction) + nodeTo.mParams[i] * fraction; } } @SuppressWarnings("PointlessArithmeticExpression") private static void addCommand(@NonNull Path2D path, float[] current, char cmd, char lastCmd, @NonNull float[] val) { int incr = 2; float cx = current[0]; float cy = current[1]; float cpx = current[2]; float cpy = current[3]; float loopX = current[4]; float loopY = current[5]; switch (cmd) { case 'z': case 'Z': path.closePath(); cx = loopX; cy = loopY; case 'm': case 'M': case 'l': case 'L': case 't': case 'T': incr = 2; break; case 'h': case 'H': case 'v': case 'V': incr = 1; break; case 'c': case 'C': incr = 6; break; case 's': case 'S': case 'q': case 'Q': incr = 4; break; case 'a': case 'A': incr = 7; } for (int k = 0; k < val.length; k += incr) { boolean reflectCtrl; float tempReflectedX, tempReflectedY; switch (cmd) { case 'm': cx += val[k + 0]; cy += val[k + 1]; if (k > 0) { // According to the spec, if a moveto is followed by multiple // pairs of coordinates, the subsequent pairs are treated as // implicit lineto commands. path.lineTo(cx, cy); } else { path.moveTo(cx, cy); loopX = cx; loopY = cy; } break; case 'M': cx = val[k + 0]; cy = val[k + 1]; if (k > 0) { // According to the spec, if a moveto is followed by multiple // pairs of coordinates, the subsequent pairs are treated as // implicit lineto commands. path.lineTo(cx, cy); } else { path.moveTo(cx, cy); loopX = cx; loopY = cy; } break; case 'l': cx += val[k + 0]; cy += val[k + 1]; path.lineTo(cx, cy); break; case 'L': cx = val[k + 0]; cy = val[k + 1]; path.lineTo(cx, cy); break; case 'z': case 'Z': path.closePath(); cx = loopX; cy = loopY; break; case 'h': cx += val[k + 0]; path.lineTo(cx, cy); break; case 'H': path.lineTo(val[k + 0], cy); cx = val[k + 0]; break; case 'v': cy += val[k + 0]; path.lineTo(cx, cy); break; case 'V': path.lineTo(cx, val[k + 0]); cy = val[k + 0]; break; case 'c': path.curveTo(cx + val[k + 0], cy + val[k + 1], cx + val[k + 2], cy + val[k + 3], cx + val[k + 4], cy + val[k + 5]); cpx = cx + val[k + 2]; cpy = cy + val[k + 3]; cx += val[k + 4]; cy += val[k + 5]; break; case 'C': path.curveTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3], val[k + 4], val[k + 5]); cx = val[k + 4]; cy = val[k + 5]; cpx = val[k + 2]; cpy = val[k + 3]; break; case 's': reflectCtrl = (lastCmd == 'c' || lastCmd == 's' || lastCmd == 'C' || lastCmd == 'S'); path.curveTo(reflectCtrl ? 2 * cx - cpx : cx, reflectCtrl ? 2 * cy - cpy : cy, cx + val[k + 0], cy + val[k + 1], cx + val[k + 2], cy + val[k + 3]); cpx = cx + val[k + 0]; cpy = cy + val[k + 1]; cx += val[k + 2]; cy += val[k + 3]; break; case 'S': reflectCtrl = (lastCmd == 'c' || lastCmd == 's' || lastCmd == 'C' || lastCmd == 'S'); path.curveTo(reflectCtrl ? 2 * cx - cpx : cx, reflectCtrl ? 2 * cy - cpy : cy, val[k + 0], val[k + 1], val[k + 2], val[k + 3]); cpx = (val[k + 0]); cpy = (val[k + 1]); cx = val[k + 2]; cy = val[k + 3]; break; case 'q': path.quadTo(cx + val[k + 0], cy + val[k + 1], cx + val[k + 2], cy + val[k + 3]); cpx = cx + val[k + 0]; cpy = cy + val[k + 1]; // Note that we have to update cpx first, since cx will be updated here. cx += val[k + 2]; cy += val[k + 3]; break; case 'Q': path.quadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]); cx = val[k + 2]; cy = val[k + 3]; cpx = val[k + 0]; cpy = val[k + 1]; break; case 't': reflectCtrl = (lastCmd == 'q' || lastCmd == 't' || lastCmd == 'Q' || lastCmd == 'T'); tempReflectedX = reflectCtrl ? 2 * cx - cpx : cx; tempReflectedY = reflectCtrl ? 2 * cy - cpy : cy; path.quadTo(tempReflectedX, tempReflectedY, cx + val[k + 0], cy + val[k + 1]); cpx = tempReflectedX; cpy = tempReflectedY; cx += val[k + 0]; cy += val[k + 1]; break; case 'T': reflectCtrl = (lastCmd == 'q' || lastCmd == 't' || lastCmd == 'Q' || lastCmd == 'T'); tempReflectedX = reflectCtrl ? 2 * cx - cpx : cx; tempReflectedY = reflectCtrl ? 2 * cy - cpy : cy; path.quadTo(tempReflectedX, tempReflectedY, val[k + 0], val[k + 1]); cx = val[k + 0]; cy = val[k + 1]; cpx = tempReflectedX; cpy = tempReflectedY; break; case 'a': // (rx ry x-axis-rotation large-arc-flag sweep-flag x y) drawArc(path, cx, cy, val[k + 5] + cx, val[k + 6] + cy, val[k + 0], val[k + 1], val[k + 2], val[k + 3] != 0, val[k + 4] != 0); cx += val[k + 5]; cy += val[k + 6]; cpx = cx; cpy = cy; break; case 'A': drawArc(path, cx, cy, val[k + 5], val[k + 6], val[k + 0], val[k + 1], val[k + 2], val[k + 3] != 0, val[k + 4] != 0); cx = val[k + 5]; cy = val[k + 6]; cpx = cx; cpy = cy; break; } lastCmd = cmd; } current[0] = cx; current[1] = cy; current[2] = cpx; current[3] = cpy; current[4] = loopX; current[5] = loopY; } private static void drawArc(@NonNull Path2D p, float x0, float y0, float x1, float y1, float a, float b, float theta, boolean isMoreThanHalf, boolean isPositiveArc) { LOGGER.log(Level.FINE, "(" + x0 + "," + y0 + ")-(" + x1 + "," + y1 + ") {" + a + " " + b + "}"); /* Convert rotation angle from degrees to radians */ double thetaD = theta * Math.PI / 180.0f; /* Pre-compute rotation matrix entries */ double cosTheta = Math.cos(thetaD); double sinTheta = Math.sin(thetaD); /* Transform (x0, y0) and (x1, y1) into unit space */ /* using (inverse) rotation, followed by (inverse) scale */ double x0p = (x0 * cosTheta + y0 * sinTheta) / a; double y0p = (-x0 * sinTheta + y0 * cosTheta) / b; double x1p = (x1 * cosTheta + y1 * sinTheta) / a; double y1p = (-x1 * sinTheta + y1 * cosTheta) / b; LOGGER.log(Level.FINE, "unit space (" + x0p + "," + y0p + ")-(" + x1p + "," + y1p + ")"); /* Compute differences and averages */ double dx = x0p - x1p; double dy = y0p - y1p; double xm = (x0p + x1p) / 2; double ym = (y0p + y1p) / 2; /* Solve for intersecting unit circles */ double dsq = dx * dx + dy * dy; if (dsq == 0.0) { LOGGER.log(Level.FINE, " Points are coincident"); return; /* Points are coincident */ } double disc = 1.0 / dsq - 1.0 / 4.0; if (disc < 0.0) { LOGGER.log(Level.FINE, "Points are too far apart " + dsq); float adjust = (float) (Math.sqrt(dsq) / 1.99999); drawArc(p, x0, y0, x1, y1, a * adjust, b * adjust, theta, isMoreThanHalf, isPositiveArc); return; /* Points are too far apart */ } double s = Math.sqrt(disc); double sdx = s * dx; double sdy = s * dy; double cx; double cy; if (isMoreThanHalf == isPositiveArc) { cx = xm - sdy; cy = ym + sdx; } else { cx = xm + sdy; cy = ym - sdx; } double eta0 = Math.atan2((y0p - cy), (x0p - cx)); LOGGER.log(Level.FINE, "eta0 = Math.atan2( " + (y0p - cy) + " , " + (x0p - cx) + ") = " + Math.toDegrees(eta0)); double eta1 = Math.atan2((y1p - cy), (x1p - cx)); LOGGER.log(Level.FINE, "eta1 = Math.atan2( " + (y1p - cy) + " , " + (x1p - cx) + ") = " + Math.toDegrees(eta1)); double sweep = (eta1 - eta0); if (isPositiveArc != (sweep >= 0)) { if (sweep > 0) { sweep -= 2 * Math.PI; } else { sweep += 2 * Math.PI; } } cx *= a; cy *= b; double tcx = cx; cx = cx * cosTheta - cy * sinTheta; cy = tcx * sinTheta + cy * cosTheta; LOGGER.log( Level.FINE, "cx, cy, a, b, x0, y0, thetaD, eta0, sweep = " + cx + " , " + cy + " , " + a + " , " + b + " , " + x0 + " , " + y0 + " , " + Math.toDegrees(thetaD) + " , " + Math.toDegrees(eta0) + " , " + Math.toDegrees(sweep)); arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep); } /** * Converts an arc to cubic Bezier segments and records them in p. * * @param p The target for the cubic Bezier segments * @param cx The x coordinate center of the ellipse * @param cy The y coordinate center of the ellipse * @param a The radius of the ellipse in the horizontal direction * @param b The radius of the ellipse in the vertical direction * @param e1x E(eta1) x coordinate of the starting point of the arc * @param e1y E(eta2) y coordinate of the starting point of the arc * @param theta The angle that the ellipse bounding rectangle makes with the horizontal * plane * @param start The start angle of the arc on the ellipse * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse */ private static void arcToBezier(@NonNull Path2D p, double cx, double cy, double a, double b, double e1x, double e1y, double theta, double start, double sweep) { // Taken from equations at: // http://spaceroots.org/documents/ellipse/node8.html // and http://www.spaceroots.org/documents/ellipse/node22.html // Maximum of 45 degrees per cubic Bezier segment int numSegments = (int) Math.ceil(Math.abs(sweep * 4 / Math.PI)); double eta1 = start; double cosTheta = Math.cos(theta); double sinTheta = Math.sin(theta); double cosEta1 = Math.cos(eta1); double sinEta1 = Math.sin(eta1); double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1); double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1); double anglePerSegment = sweep / numSegments; for (int i = 0; i < numSegments; i++) { double eta2 = eta1 + anglePerSegment; double sinEta2 = Math.sin(eta2); double cosEta2 = Math.cos(eta2); double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2); double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2); double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2; double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2; double tanDiff2 = Math.tan((eta2 - eta1) / 2); double alpha = Math.sin(eta2 - eta1) * (Math.sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3; double q1x = e1x + alpha * ep1x; double q1y = e1y + alpha * ep1y; double q2x = e2x - alpha * ep2x; double q2y = e2y - alpha * ep2y; p.curveTo((float) q1x, (float) q1y, (float) q2x, (float) q2y, (float) e2x, (float) e2y); eta1 = eta2; e1x = e2x; e1y = e2y; ep1x = ep2x; ep1y = ep2y; } } } }