builder.cc revision 104fd8a3f30ddcf07831250571aa2a233cd5c04d
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "builder.h"
18
19#include "art_field-inl.h"
20#include "base/logging.h"
21#include "class_linker.h"
22#include "dex/verified_method.h"
23#include "dex_file-inl.h"
24#include "dex_instruction-inl.h"
25#include "dex/verified_method.h"
26#include "driver/compiler_driver-inl.h"
27#include "driver/compiler_options.h"
28#include "mirror/class_loader.h"
29#include "mirror/dex_cache.h"
30#include "nodes.h"
31#include "primitive.h"
32#include "scoped_thread_state_change.h"
33#include "thread.h"
34
35namespace art {
36
37/**
38 * Helper class to add HTemporary instructions. This class is used when
39 * converting a DEX instruction to multiple HInstruction, and where those
40 * instructions do not die at the following instruction, but instead spans
41 * multiple instructions.
42 */
43class Temporaries : public ValueObject {
44 public:
45  explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
46
47  void Add(HInstruction* instruction) {
48    HInstruction* temp = new (graph_->GetArena()) HTemporary(index_);
49    instruction->GetBlock()->AddInstruction(temp);
50
51    DCHECK(temp->GetPrevious() == instruction);
52
53    size_t offset;
54    if (instruction->GetType() == Primitive::kPrimLong
55        || instruction->GetType() == Primitive::kPrimDouble) {
56      offset = 2;
57    } else {
58      offset = 1;
59    }
60    index_ += offset;
61
62    graph_->UpdateTemporariesVRegSlots(index_);
63  }
64
65 private:
66  HGraph* const graph_;
67
68  // Current index in the temporary stack, updated by `Add`.
69  size_t index_;
70};
71
72class SwitchTable : public ValueObject {
73 public:
74  SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
75      : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
76    int32_t table_offset = instruction.VRegB_31t();
77    const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
78    if (sparse) {
79      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
80    } else {
81      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
82    }
83    num_entries_ = table[1];
84    values_ = reinterpret_cast<const int32_t*>(&table[2]);
85  }
86
87  uint16_t GetNumEntries() const {
88    return num_entries_;
89  }
90
91  void CheckIndex(size_t index) const {
92    if (sparse_) {
93      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
94      DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
95    } else {
96      // In a packed table, we have the starting key and num_entries_ values.
97      DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
98    }
99  }
100
101  int32_t GetEntryAt(size_t index) const {
102    CheckIndex(index);
103    return values_[index];
104  }
105
106  uint32_t GetDexPcForIndex(size_t index) const {
107    CheckIndex(index);
108    return dex_pc_ +
109        (reinterpret_cast<const int16_t*>(values_ + index) -
110         reinterpret_cast<const int16_t*>(&instruction_));
111  }
112
113  // Index of the first value in the table.
114  size_t GetFirstValueIndex() const {
115    if (sparse_) {
116      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
117      return num_entries_;
118    } else {
119      // In a packed table, we have the starting key and num_entries_ values.
120      return 1;
121    }
122  }
123
124 private:
125  const Instruction& instruction_;
126  const uint32_t dex_pc_;
127
128  // Whether this is a sparse-switch table (or a packed-switch one).
129  const bool sparse_;
130
131  // This can't be const as it needs to be computed off of the given instruction, and complicated
132  // expressions in the initializer list seemed very ugly.
133  uint16_t num_entries_;
134
135  const int32_t* values_;
136
137  DISALLOW_COPY_AND_ASSIGN(SwitchTable);
138};
139
140void HGraphBuilder::InitializeLocals(uint16_t count) {
141  graph_->SetNumberOfVRegs(count);
142  locals_.SetSize(count);
143  for (int i = 0; i < count; i++) {
144    HLocal* local = new (arena_) HLocal(i);
145    entry_block_->AddInstruction(local);
146    locals_.Put(i, local);
147  }
148}
149
150void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
151  // dex_compilation_unit_ is null only when unit testing.
152  if (dex_compilation_unit_ == nullptr) {
153    return;
154  }
155
156  graph_->SetNumberOfInVRegs(number_of_parameters);
157  const char* shorty = dex_compilation_unit_->GetShorty();
158  int locals_index = locals_.Size() - number_of_parameters;
159  int parameter_index = 0;
160
161  if (!dex_compilation_unit_->IsStatic()) {
162    // Add the implicit 'this' argument, not expressed in the signature.
163    HParameterValue* parameter =
164        new (arena_) HParameterValue(parameter_index++, Primitive::kPrimNot, true);
165    entry_block_->AddInstruction(parameter);
166    HLocal* local = GetLocalAt(locals_index++);
167    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
168    number_of_parameters--;
169  }
170
171  uint32_t pos = 1;
172  for (int i = 0; i < number_of_parameters; i++) {
173    HParameterValue* parameter =
174        new (arena_) HParameterValue(parameter_index++, Primitive::GetType(shorty[pos++]));
175    entry_block_->AddInstruction(parameter);
176    HLocal* local = GetLocalAt(locals_index++);
177    // Store the parameter value in the local that the dex code will use
178    // to reference that parameter.
179    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
180    bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
181        || (parameter->GetType() == Primitive::kPrimDouble);
182    if (is_wide) {
183      i++;
184      locals_index++;
185      parameter_index++;
186    }
187  }
188}
189
190template<typename T>
191void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
192  int32_t target_offset = instruction.GetTargetOffset();
193  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
194  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
195  DCHECK(branch_target != nullptr);
196  DCHECK(fallthrough_target != nullptr);
197  PotentiallyAddSuspendCheck(branch_target, dex_pc);
198  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
199  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
200  T* comparison = new (arena_) T(first, second);
201  current_block_->AddInstruction(comparison);
202  HInstruction* ifinst = new (arena_) HIf(comparison);
203  current_block_->AddInstruction(ifinst);
204  current_block_->AddSuccessor(branch_target);
205  current_block_->AddSuccessor(fallthrough_target);
206  current_block_ = nullptr;
207}
208
209template<typename T>
210void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
211  int32_t target_offset = instruction.GetTargetOffset();
212  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
213  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
214  DCHECK(branch_target != nullptr);
215  DCHECK(fallthrough_target != nullptr);
216  PotentiallyAddSuspendCheck(branch_target, dex_pc);
217  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
218  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0));
219  current_block_->AddInstruction(comparison);
220  HInstruction* ifinst = new (arena_) HIf(comparison);
221  current_block_->AddInstruction(ifinst);
222  current_block_->AddSuccessor(branch_target);
223  current_block_->AddSuccessor(fallthrough_target);
224  current_block_ = nullptr;
225}
226
227void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
228  if (compilation_stats_ != nullptr) {
229    compilation_stats_->RecordStat(compilation_stat);
230  }
231}
232
233bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item,
234                                    size_t number_of_branches) {
235  const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
236  CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
237  if (compiler_filter == CompilerOptions::kEverything) {
238    return false;
239  }
240
241  if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) {
242    VLOG(compiler) << "Skip compilation of huge method "
243                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
244                   << ": " << code_item.insns_size_in_code_units_ << " code units";
245    MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
246    return true;
247  }
248
249  // If it's large and contains no branches, it's likely to be machine generated initialization.
250  if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_)
251      && (number_of_branches == 0)) {
252    VLOG(compiler) << "Skip compilation of large method with no branch "
253                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
254                   << ": " << code_item.insns_size_in_code_units_ << " code units";
255    MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
256    return true;
257  }
258
259  return false;
260}
261
262bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
263  DCHECK(graph_->GetBlocks().IsEmpty());
264
265  const uint16_t* code_ptr = code_item.insns_;
266  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
267  code_start_ = code_ptr;
268
269  // Setup the graph with the entry block and exit block.
270  entry_block_ = new (arena_) HBasicBlock(graph_, 0);
271  graph_->AddBlock(entry_block_);
272  exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
273  graph_->SetEntryBlock(entry_block_);
274  graph_->SetExitBlock(exit_block_);
275
276  InitializeLocals(code_item.registers_size_);
277  graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
278
279  // Compute the number of dex instructions, blocks, and branches. We will
280  // check these values against limits given to the compiler.
281  size_t number_of_branches = 0;
282
283  // To avoid splitting blocks, we compute ahead of time the instructions that
284  // start a new block, and create these blocks.
285  if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) {
286    MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode);
287    return false;
288  }
289
290  // Note that the compiler driver is null when unit testing.
291  if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) {
292    return false;
293  }
294
295  // Also create blocks for catch handlers.
296  if (code_item.tries_size_ != 0) {
297    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
298    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
299    for (uint32_t idx = 0; idx < handlers_size; ++idx) {
300      CatchHandlerIterator iterator(handlers_ptr);
301      for (; iterator.HasNext(); iterator.Next()) {
302        uint32_t address = iterator.GetHandlerAddress();
303        HBasicBlock* block = FindBlockStartingAt(address);
304        if (block == nullptr) {
305          block = new (arena_) HBasicBlock(graph_, address);
306          branch_targets_.Put(address, block);
307        }
308        block->SetIsCatchBlock();
309      }
310      handlers_ptr = iterator.EndDataPointer();
311    }
312  }
313
314  InitializeParameters(code_item.ins_size_);
315
316  size_t dex_pc = 0;
317  while (code_ptr < code_end) {
318    // Update the current block if dex_pc starts a new block.
319    MaybeUpdateCurrentBlock(dex_pc);
320    const Instruction& instruction = *Instruction::At(code_ptr);
321    if (!AnalyzeDexInstruction(instruction, dex_pc)) {
322      return false;
323    }
324    dex_pc += instruction.SizeInCodeUnits();
325    code_ptr += instruction.SizeInCodeUnits();
326  }
327
328  // Add the exit block at the end to give it the highest id.
329  graph_->AddBlock(exit_block_);
330  exit_block_->AddInstruction(new (arena_) HExit());
331  // Add the suspend check to the entry block.
332  entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
333  entry_block_->AddInstruction(new (arena_) HGoto());
334
335  return true;
336}
337
338void HGraphBuilder::MaybeUpdateCurrentBlock(size_t index) {
339  HBasicBlock* block = FindBlockStartingAt(index);
340  if (block == nullptr) {
341    return;
342  }
343
344  if (current_block_ != nullptr) {
345    // Branching instructions clear current_block, so we know
346    // the last instruction of the current block is not a branching
347    // instruction. We add an unconditional goto to the found block.
348    current_block_->AddInstruction(new (arena_) HGoto());
349    current_block_->AddSuccessor(block);
350  }
351  graph_->AddBlock(block);
352  current_block_ = block;
353}
354
355bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
356                                         const uint16_t* code_end,
357                                         size_t* number_of_branches) {
358  branch_targets_.SetSize(code_end - code_ptr);
359
360  // Create the first block for the dex instructions, single successor of the entry block.
361  HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
362  branch_targets_.Put(0, block);
363  entry_block_->AddSuccessor(block);
364
365  // Iterate over all instructions and find branching instructions. Create blocks for
366  // the locations these instructions branch to.
367  uint32_t dex_pc = 0;
368  while (code_ptr < code_end) {
369    const Instruction& instruction = *Instruction::At(code_ptr);
370    if (instruction.IsBranch()) {
371      (*number_of_branches)++;
372      int32_t target = instruction.GetTargetOffset() + dex_pc;
373      // Create a block for the target instruction.
374      if (FindBlockStartingAt(target) == nullptr) {
375        block = new (arena_) HBasicBlock(graph_, target);
376        branch_targets_.Put(target, block);
377      }
378      dex_pc += instruction.SizeInCodeUnits();
379      code_ptr += instruction.SizeInCodeUnits();
380
381      if (code_ptr >= code_end) {
382        if (instruction.CanFlowThrough()) {
383          // In the normal case we should never hit this but someone can artificially forge a dex
384          // file to fall-through out the method code. In this case we bail out compilation.
385          return false;
386        }
387      } else if (FindBlockStartingAt(dex_pc) == nullptr) {
388        block = new (arena_) HBasicBlock(graph_, dex_pc);
389        branch_targets_.Put(dex_pc, block);
390      }
391    } else if (instruction.IsSwitch()) {
392      SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
393
394      uint16_t num_entries = table.GetNumEntries();
395
396      // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
397      // entry at index 0 is the first key, and values are after *all* keys.
398      size_t offset = table.GetFirstValueIndex();
399
400      // Use a larger loop counter type to avoid overflow issues.
401      for (size_t i = 0; i < num_entries; ++i) {
402        // The target of the case.
403        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
404        if (FindBlockStartingAt(target) == nullptr) {
405          block = new (arena_) HBasicBlock(graph_, target);
406          branch_targets_.Put(target, block);
407        }
408
409        // The next case gets its own block.
410        if (i < num_entries) {
411          block = new (arena_) HBasicBlock(graph_, target);
412          branch_targets_.Put(table.GetDexPcForIndex(i), block);
413        }
414      }
415
416      // Fall-through. Add a block if there is more code afterwards.
417      dex_pc += instruction.SizeInCodeUnits();
418      code_ptr += instruction.SizeInCodeUnits();
419      if (code_ptr >= code_end) {
420        // In the normal case we should never hit this but someone can artificially forge a dex
421        // file to fall-through out the method code. In this case we bail out compilation.
422        // (A switch can fall-through so we don't need to check CanFlowThrough().)
423        return false;
424      } else if (FindBlockStartingAt(dex_pc) == nullptr) {
425        block = new (arena_) HBasicBlock(graph_, dex_pc);
426        branch_targets_.Put(dex_pc, block);
427      }
428    } else {
429      code_ptr += instruction.SizeInCodeUnits();
430      dex_pc += instruction.SizeInCodeUnits();
431    }
432  }
433  return true;
434}
435
436HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t index) const {
437  DCHECK_GE(index, 0);
438  return branch_targets_.Get(index);
439}
440
441template<typename T>
442void HGraphBuilder::Unop_12x(const Instruction& instruction, Primitive::Type type) {
443  HInstruction* first = LoadLocal(instruction.VRegB(), type);
444  current_block_->AddInstruction(new (arena_) T(type, first));
445  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
446}
447
448void HGraphBuilder::Conversion_12x(const Instruction& instruction,
449                                   Primitive::Type input_type,
450                                   Primitive::Type result_type,
451                                   uint32_t dex_pc) {
452  HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
453  current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
454  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
455}
456
457template<typename T>
458void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type) {
459  HInstruction* first = LoadLocal(instruction.VRegB(), type);
460  HInstruction* second = LoadLocal(instruction.VRegC(), type);
461  current_block_->AddInstruction(new (arena_) T(type, first, second));
462  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
463}
464
465template<typename T>
466void HGraphBuilder::Binop_23x(const Instruction& instruction,
467                              Primitive::Type type,
468                              uint32_t dex_pc) {
469  HInstruction* first = LoadLocal(instruction.VRegB(), type);
470  HInstruction* second = LoadLocal(instruction.VRegC(), type);
471  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
472  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
473}
474
475template<typename T>
476void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
477                                    Primitive::Type type) {
478  HInstruction* first = LoadLocal(instruction.VRegB(), type);
479  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
480  current_block_->AddInstruction(new (arena_) T(type, first, second));
481  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
482}
483
484void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
485                                  Primitive::Type type,
486                                  HCompare::Bias bias) {
487  HInstruction* first = LoadLocal(instruction.VRegB(), type);
488  HInstruction* second = LoadLocal(instruction.VRegC(), type);
489  current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias));
490  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
491}
492
493template<typename T>
494void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type) {
495  HInstruction* first = LoadLocal(instruction.VRegA(), type);
496  HInstruction* second = LoadLocal(instruction.VRegB(), type);
497  current_block_->AddInstruction(new (arena_) T(type, first, second));
498  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
499}
500
501template<typename T>
502void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type) {
503  HInstruction* first = LoadLocal(instruction.VRegA(), type);
504  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
505  current_block_->AddInstruction(new (arena_) T(type, first, second));
506  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
507}
508
509template<typename T>
510void HGraphBuilder::Binop_12x(const Instruction& instruction,
511                              Primitive::Type type,
512                              uint32_t dex_pc) {
513  HInstruction* first = LoadLocal(instruction.VRegA(), type);
514  HInstruction* second = LoadLocal(instruction.VRegB(), type);
515  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
516  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
517}
518
519template<typename T>
520void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse) {
521  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
522  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s());
523  if (reverse) {
524    std::swap(first, second);
525  }
526  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
527  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
528}
529
530template<typename T>
531void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse) {
532  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
533  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b());
534  if (reverse) {
535    std::swap(first, second);
536  }
537  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
538  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
539}
540
541static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
542  Thread* self = Thread::Current();
543  return cu->IsConstructor()
544      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
545}
546
547void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type) {
548  if (type == Primitive::kPrimVoid) {
549    if (graph_->ShouldGenerateConstructorBarrier()) {
550      // The compilation unit is null during testing.
551      if (dex_compilation_unit_ != nullptr) {
552        DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
553          << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
554      }
555      current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore));
556    }
557    current_block_->AddInstruction(new (arena_) HReturnVoid());
558  } else {
559    HInstruction* value = LoadLocal(instruction.VRegA(), type);
560    current_block_->AddInstruction(new (arena_) HReturn(value));
561  }
562  current_block_->AddSuccessor(exit_block_);
563  current_block_ = nullptr;
564}
565
566bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
567                                uint32_t dex_pc,
568                                uint32_t method_idx,
569                                uint32_t number_of_vreg_arguments,
570                                bool is_range,
571                                uint32_t* args,
572                                uint32_t register_index) {
573  Instruction::Code opcode = instruction.Opcode();
574  InvokeType invoke_type;
575  switch (opcode) {
576    case Instruction::INVOKE_STATIC:
577    case Instruction::INVOKE_STATIC_RANGE:
578      invoke_type = kStatic;
579      break;
580    case Instruction::INVOKE_DIRECT:
581    case Instruction::INVOKE_DIRECT_RANGE:
582      invoke_type = kDirect;
583      break;
584    case Instruction::INVOKE_VIRTUAL:
585    case Instruction::INVOKE_VIRTUAL_RANGE:
586      invoke_type = kVirtual;
587      break;
588    case Instruction::INVOKE_INTERFACE:
589    case Instruction::INVOKE_INTERFACE_RANGE:
590      invoke_type = kInterface;
591      break;
592    case Instruction::INVOKE_SUPER_RANGE:
593    case Instruction::INVOKE_SUPER:
594      invoke_type = kSuper;
595      break;
596    default:
597      LOG(FATAL) << "Unexpected invoke op: " << opcode;
598      return false;
599  }
600
601  const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
602  const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(method_id.proto_idx_);
603  const char* descriptor = dex_file_->StringDataByIdx(proto_id.shorty_idx_);
604  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
605  bool is_instance_call = invoke_type != kStatic;
606  size_t number_of_arguments = strlen(descriptor) - (is_instance_call ? 0 : 1);
607
608  MethodReference target_method(dex_file_, method_idx);
609  uintptr_t direct_code;
610  uintptr_t direct_method;
611  int table_index;
612  InvokeType optimized_invoke_type = invoke_type;
613
614  if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_, dex_pc, true, true,
615                                           &optimized_invoke_type, &target_method, &table_index,
616                                           &direct_code, &direct_method)) {
617    VLOG(compiler) << "Did not compile " << PrettyMethod(method_idx, *dex_file_)
618                   << " because a method call could not be resolved";
619    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod);
620    return false;
621  }
622  DCHECK(optimized_invoke_type != kSuper);
623
624  // By default, consider that the called method implicitly requires
625  // an initialization check of its declaring method.
626  HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
627      HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
628  // Potential class initialization check, in the case of a static method call.
629  HClinitCheck* clinit_check = nullptr;
630  // Replace calls to String.<init> with StringFactory.
631  int32_t string_init_offset = 0;
632  bool is_string_init = compiler_driver_->IsStringInit(method_idx, dex_file_, &string_init_offset);
633  if (is_string_init) {
634    return_type = Primitive::kPrimNot;
635    is_instance_call = false;
636    number_of_arguments--;
637    invoke_type = kStatic;
638    optimized_invoke_type = kStatic;
639  }
640
641  HInvoke* invoke = nullptr;
642
643  if (optimized_invoke_type == kVirtual) {
644    invoke = new (arena_) HInvokeVirtual(
645        arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
646  } else if (optimized_invoke_type == kInterface) {
647    invoke = new (arena_) HInvokeInterface(
648        arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
649  } else {
650    DCHECK(optimized_invoke_type == kDirect || optimized_invoke_type == kStatic);
651    // Sharpening to kDirect only works if we compile PIC.
652    DCHECK((optimized_invoke_type == invoke_type) || (optimized_invoke_type != kDirect)
653           || compiler_driver_->GetCompilerOptions().GetCompilePic());
654    bool is_recursive =
655        (target_method.dex_method_index == dex_compilation_unit_->GetDexMethodIndex());
656    DCHECK(!is_recursive || (target_method.dex_file == dex_compilation_unit_->GetDexFile()));
657
658    if (optimized_invoke_type == kStatic) {
659      ScopedObjectAccess soa(Thread::Current());
660      StackHandleScope<4> hs(soa.Self());
661      Handle<mirror::DexCache> dex_cache(hs.NewHandle(
662          dex_compilation_unit_->GetClassLinker()->FindDexCache(
663              *dex_compilation_unit_->GetDexFile())));
664      Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
665          soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
666      mirror::ArtMethod* resolved_method = compiler_driver_->ResolveMethod(
667          soa, dex_cache, class_loader, dex_compilation_unit_, method_idx,
668          optimized_invoke_type);
669
670      if (resolved_method == nullptr) {
671        MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod);
672        return false;
673      }
674
675      const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
676      Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
677          outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
678      Handle<mirror::Class> referrer_class(hs.NewHandle(GetOutermostCompilingClass()));
679
680      // The index at which the method's class is stored in the DexCache's type array.
681      uint32_t storage_index = DexFile::kDexNoIndex;
682      bool is_referrer_class = (resolved_method->GetDeclaringClass() == referrer_class.Get());
683      if (is_referrer_class) {
684        storage_index = referrer_class->GetDexTypeIndex();
685      } else if (outer_dex_cache.Get() == dex_cache.Get()) {
686        // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
687        compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
688                                                                   referrer_class.Get(),
689                                                                   resolved_method,
690                                                                   method_idx,
691                                                                   &storage_index);
692      }
693
694      if (referrer_class.Get()->IsSubClass(resolved_method->GetDeclaringClass())) {
695        // If the referrer class is the declaring class or a subclass
696        // of the declaring class, no class initialization is needed
697        // before the static method call.
698        clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
699      } else if (storage_index != DexFile::kDexNoIndex) {
700        // If the method's class type index is available, check
701        // whether we should add an explicit class initialization
702        // check for its declaring class before the static method call.
703
704        // TODO: find out why this check is needed.
705        bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
706            *outer_compilation_unit_->GetDexFile(), storage_index);
707        bool is_initialized =
708            resolved_method->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
709
710        if (is_initialized) {
711          clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
712        } else {
713          clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
714          HLoadClass* load_class = new (arena_) HLoadClass(
715              storage_index, *dex_compilation_unit_->GetDexFile(), is_referrer_class, dex_pc);
716          current_block_->AddInstruction(load_class);
717          clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
718          current_block_->AddInstruction(clinit_check);
719        }
720      }
721    }
722
723    invoke = new (arena_) HInvokeStaticOrDirect(
724        arena_, number_of_arguments, return_type, dex_pc, target_method.dex_method_index,
725        is_recursive, string_init_offset, invoke_type, optimized_invoke_type,
726        clinit_check_requirement);
727  }
728
729  size_t start_index = 0;
730  Temporaries temps(graph_);
731  if (is_instance_call) {
732    HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot);
733    HNullCheck* null_check = new (arena_) HNullCheck(arg, dex_pc);
734    current_block_->AddInstruction(null_check);
735    temps.Add(null_check);
736    invoke->SetArgumentAt(0, null_check);
737    start_index = 1;
738  }
739
740  uint32_t descriptor_index = 1;
741  uint32_t argument_index = start_index;
742  if (is_string_init) {
743    start_index = 1;
744  }
745  for (size_t i = start_index; i < number_of_vreg_arguments; i++, argument_index++) {
746    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
747    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
748    if (!is_range && is_wide && args[i] + 1 != args[i + 1]) {
749      LOG(WARNING) << "Non sequential register pair in " << dex_compilation_unit_->GetSymbol()
750                   << " at " << dex_pc;
751      // We do not implement non sequential register pair.
752      MaybeRecordStat(MethodCompilationStat::kNotCompiledNonSequentialRegPair);
753      return false;
754    }
755    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
756    invoke->SetArgumentAt(argument_index, arg);
757    if (is_wide) {
758      i++;
759    }
760  }
761  DCHECK_EQ(argument_index, number_of_arguments);
762
763  if (clinit_check_requirement == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit) {
764    // Add the class initialization check as last input of `invoke`.
765    DCHECK(clinit_check != nullptr);
766    invoke->SetArgumentAt(argument_index, clinit_check);
767  }
768
769  current_block_->AddInstruction(invoke);
770  latest_result_ = invoke;
771
772  // Add move-result for StringFactory method.
773  if (is_string_init) {
774    uint32_t orig_this_reg = is_range ? register_index : args[0];
775    const VerifiedMethod* verified_method =
776        compiler_driver_->GetVerifiedMethod(dex_file_, dex_compilation_unit_->GetDexMethodIndex());
777    if (verified_method == nullptr) {
778      LOG(WARNING) << "No verified method for method calling String.<init>: "
779                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_);
780      return false;
781    }
782    const SafeMap<uint32_t, std::set<uint32_t>>& string_init_map =
783        verified_method->GetStringInitPcRegMap();
784    auto map_it = string_init_map.find(dex_pc);
785    if (map_it != string_init_map.end()) {
786      std::set<uint32_t> reg_set = map_it->second;
787      for (auto set_it = reg_set.begin(); set_it != reg_set.end(); ++set_it) {
788        UpdateLocal(*set_it, invoke);
789      }
790    }
791    UpdateLocal(orig_this_reg, invoke);
792  }
793  return true;
794}
795
796bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
797                                             uint32_t dex_pc,
798                                             bool is_put) {
799  uint32_t source_or_dest_reg = instruction.VRegA_22c();
800  uint32_t obj_reg = instruction.VRegB_22c();
801  uint16_t field_index = instruction.VRegC_22c();
802
803  ScopedObjectAccess soa(Thread::Current());
804  ArtField* resolved_field =
805      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
806
807  if (resolved_field == nullptr) {
808    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
809    return false;
810  }
811
812  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
813
814  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot);
815  current_block_->AddInstruction(new (arena_) HNullCheck(object, dex_pc));
816  if (is_put) {
817    Temporaries temps(graph_);
818    HInstruction* null_check = current_block_->GetLastInstruction();
819    // We need one temporary for the null check.
820    temps.Add(null_check);
821    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
822    current_block_->AddInstruction(new (arena_) HInstanceFieldSet(
823        null_check,
824        value,
825        field_type,
826        resolved_field->GetOffset(),
827        resolved_field->IsVolatile(),
828        field_index,
829        *dex_file_));
830  } else {
831    current_block_->AddInstruction(new (arena_) HInstanceFieldGet(
832        current_block_->GetLastInstruction(),
833        field_type,
834        resolved_field->GetOffset(),
835        resolved_field->IsVolatile(),
836        field_index,
837        *dex_file_));
838
839    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
840  }
841  return true;
842}
843
844mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const {
845  ScopedObjectAccess soa(Thread::Current());
846  StackHandleScope<2> hs(soa.Self());
847  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
848  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
849      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
850  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
851      outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
852
853  return compiler_driver_->ResolveCompilingMethodsClass(
854      soa, outer_dex_cache, class_loader, outer_compilation_unit_);
855}
856
857bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
858  ScopedObjectAccess soa(Thread::Current());
859  StackHandleScope<4> hs(soa.Self());
860  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
861      dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile())));
862  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
863      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
864  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
865      soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
866  Handle<mirror::Class> compiling_class(hs.NewHandle(GetOutermostCompilingClass()));
867
868  return compiling_class.Get() == cls.Get();
869}
870
871bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
872                                           uint32_t dex_pc,
873                                           bool is_put) {
874  uint32_t source_or_dest_reg = instruction.VRegA_21c();
875  uint16_t field_index = instruction.VRegB_21c();
876
877  ScopedObjectAccess soa(Thread::Current());
878  StackHandleScope<4> hs(soa.Self());
879  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
880      dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile())));
881  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
882      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
883  ArtField* resolved_field = compiler_driver_->ResolveField(
884      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
885
886  if (resolved_field == nullptr) {
887    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
888    return false;
889  }
890
891  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
892  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
893      outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
894  Handle<mirror::Class> referrer_class(hs.NewHandle(GetOutermostCompilingClass()));
895
896  // The index at which the field's class is stored in the DexCache's type array.
897  uint32_t storage_index;
898  bool is_referrer_class = (referrer_class.Get() == resolved_field->GetDeclaringClass());
899  if (is_referrer_class) {
900    storage_index = referrer_class->GetDexTypeIndex();
901  } else if (outer_dex_cache.Get() != dex_cache.Get()) {
902    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
903    return false;
904  } else {
905    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
906        outer_dex_cache.Get(),
907        referrer_class.Get(),
908        resolved_field,
909        field_index,
910        &storage_index);
911    bool can_easily_access = is_put ? pair.second : pair.first;
912    if (!can_easily_access) {
913      return false;
914    }
915  }
916
917  // TODO: find out why this check is needed.
918  bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
919      *outer_compilation_unit_->GetDexFile(), storage_index);
920  bool is_initialized = resolved_field->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
921
922  HLoadClass* constant = new (arena_) HLoadClass(
923      storage_index, *dex_compilation_unit_->GetDexFile(), is_referrer_class, dex_pc);
924  current_block_->AddInstruction(constant);
925
926  HInstruction* cls = constant;
927  if (!is_initialized && !is_referrer_class) {
928    cls = new (arena_) HClinitCheck(constant, dex_pc);
929    current_block_->AddInstruction(cls);
930  }
931
932  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
933  if (is_put) {
934    // We need to keep the class alive before loading the value.
935    Temporaries temps(graph_);
936    temps.Add(cls);
937    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
938    DCHECK_EQ(value->GetType(), field_type);
939    current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls,
940                                                                value,
941                                                                field_type,
942                                                                resolved_field->GetOffset(),
943                                                                resolved_field->IsVolatile(),
944                                                                field_index,
945                                                                *dex_file_));
946  } else {
947    current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls,
948                                                                field_type,
949                                                                resolved_field->GetOffset(),
950                                                                resolved_field->IsVolatile(),
951                                                                field_index,
952                                                                *dex_file_));
953    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
954  }
955  return true;
956}
957
958void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
959                                       uint16_t first_vreg,
960                                       int64_t second_vreg_or_constant,
961                                       uint32_t dex_pc,
962                                       Primitive::Type type,
963                                       bool second_is_constant,
964                                       bool isDiv) {
965  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
966
967  HInstruction* first = LoadLocal(first_vreg, type);
968  HInstruction* second = nullptr;
969  if (second_is_constant) {
970    if (type == Primitive::kPrimInt) {
971      second = graph_->GetIntConstant(second_vreg_or_constant);
972    } else {
973      second = graph_->GetLongConstant(second_vreg_or_constant);
974    }
975  } else {
976    second = LoadLocal(second_vreg_or_constant, type);
977  }
978
979  if (!second_is_constant
980      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
981      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
982    second = new (arena_) HDivZeroCheck(second, dex_pc);
983    Temporaries temps(graph_);
984    current_block_->AddInstruction(second);
985    temps.Add(current_block_->GetLastInstruction());
986  }
987
988  if (isDiv) {
989    current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
990  } else {
991    current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
992  }
993  UpdateLocal(out_vreg, current_block_->GetLastInstruction());
994}
995
996void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
997                                     uint32_t dex_pc,
998                                     bool is_put,
999                                     Primitive::Type anticipated_type) {
1000  uint8_t source_or_dest_reg = instruction.VRegA_23x();
1001  uint8_t array_reg = instruction.VRegB_23x();
1002  uint8_t index_reg = instruction.VRegC_23x();
1003
1004  // We need one temporary for the null check, one for the index, and one for the length.
1005  Temporaries temps(graph_);
1006
1007  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot);
1008  object = new (arena_) HNullCheck(object, dex_pc);
1009  current_block_->AddInstruction(object);
1010  temps.Add(object);
1011
1012  HInstruction* length = new (arena_) HArrayLength(object);
1013  current_block_->AddInstruction(length);
1014  temps.Add(length);
1015  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
1016  index = new (arena_) HBoundsCheck(index, length, dex_pc);
1017  current_block_->AddInstruction(index);
1018  temps.Add(index);
1019  if (is_put) {
1020    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
1021    // TODO: Insert a type check node if the type is Object.
1022    current_block_->AddInstruction(new (arena_) HArraySet(
1023        object, index, value, anticipated_type, dex_pc));
1024  } else {
1025    current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type));
1026    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1027  }
1028  graph_->SetHasBoundsChecks(true);
1029}
1030
1031void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
1032                                        uint32_t type_index,
1033                                        uint32_t number_of_vreg_arguments,
1034                                        bool is_range,
1035                                        uint32_t* args,
1036                                        uint32_t register_index) {
1037  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments);
1038  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
1039      ? kQuickAllocArrayWithAccessCheck
1040      : kQuickAllocArray;
1041  HInstruction* object = new (arena_) HNewArray(length,
1042                                                dex_pc,
1043                                                type_index,
1044                                                *dex_compilation_unit_->GetDexFile(),
1045                                                entrypoint);
1046  current_block_->AddInstruction(object);
1047
1048  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1049  DCHECK_EQ(descriptor[0], '[') << descriptor;
1050  char primitive = descriptor[1];
1051  DCHECK(primitive == 'I'
1052      || primitive == 'L'
1053      || primitive == '[') << descriptor;
1054  bool is_reference_array = (primitive == 'L') || (primitive == '[');
1055  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
1056
1057  Temporaries temps(graph_);
1058  temps.Add(object);
1059  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
1060    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
1061    HInstruction* index = graph_->GetIntConstant(i);
1062    current_block_->AddInstruction(
1063        new (arena_) HArraySet(object, index, value, type, dex_pc));
1064  }
1065  latest_result_ = object;
1066}
1067
1068template <typename T>
1069void HGraphBuilder::BuildFillArrayData(HInstruction* object,
1070                                       const T* data,
1071                                       uint32_t element_count,
1072                                       Primitive::Type anticipated_type,
1073                                       uint32_t dex_pc) {
1074  for (uint32_t i = 0; i < element_count; ++i) {
1075    HInstruction* index = graph_->GetIntConstant(i);
1076    HInstruction* value = graph_->GetIntConstant(data[i]);
1077    current_block_->AddInstruction(new (arena_) HArraySet(
1078      object, index, value, anticipated_type, dex_pc));
1079  }
1080}
1081
1082void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1083  Temporaries temps(graph_);
1084  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot);
1085  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
1086  current_block_->AddInstruction(null_check);
1087  temps.Add(null_check);
1088
1089  HInstruction* length = new (arena_) HArrayLength(null_check);
1090  current_block_->AddInstruction(length);
1091
1092  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1093  const Instruction::ArrayDataPayload* payload =
1094      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
1095  const uint8_t* data = payload->data;
1096  uint32_t element_count = payload->element_count;
1097
1098  // Implementation of this DEX instruction seems to be that the bounds check is
1099  // done before doing any stores.
1100  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1);
1101  current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
1102
1103  switch (payload->element_width) {
1104    case 1:
1105      BuildFillArrayData(null_check,
1106                         reinterpret_cast<const int8_t*>(data),
1107                         element_count,
1108                         Primitive::kPrimByte,
1109                         dex_pc);
1110      break;
1111    case 2:
1112      BuildFillArrayData(null_check,
1113                         reinterpret_cast<const int16_t*>(data),
1114                         element_count,
1115                         Primitive::kPrimShort,
1116                         dex_pc);
1117      break;
1118    case 4:
1119      BuildFillArrayData(null_check,
1120                         reinterpret_cast<const int32_t*>(data),
1121                         element_count,
1122                         Primitive::kPrimInt,
1123                         dex_pc);
1124      break;
1125    case 8:
1126      BuildFillWideArrayData(null_check,
1127                             reinterpret_cast<const int64_t*>(data),
1128                             element_count,
1129                             dex_pc);
1130      break;
1131    default:
1132      LOG(FATAL) << "Unknown element width for " << payload->element_width;
1133  }
1134  graph_->SetHasBoundsChecks(true);
1135}
1136
1137void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
1138                                           const int64_t* data,
1139                                           uint32_t element_count,
1140                                           uint32_t dex_pc) {
1141  for (uint32_t i = 0; i < element_count; ++i) {
1142    HInstruction* index = graph_->GetIntConstant(i);
1143    HInstruction* value = graph_->GetLongConstant(data[i]);
1144    current_block_->AddInstruction(new (arena_) HArraySet(
1145      object, index, value, Primitive::kPrimLong, dex_pc));
1146  }
1147}
1148
1149bool HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
1150                                   uint8_t destination,
1151                                   uint8_t reference,
1152                                   uint16_t type_index,
1153                                   uint32_t dex_pc) {
1154  bool type_known_final;
1155  bool type_known_abstract;
1156  // `CanAccessTypeWithoutChecks` will tell whether the method being
1157  // built is trying to access its own class, so that the generated
1158  // code can optimize for this case. However, the optimization does not
1159  // work for inlining, so we use `IsOutermostCompilingClass` instead.
1160  bool dont_use_is_referrers_class;
1161  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
1162      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
1163      &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
1164  if (!can_access) {
1165    MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
1166    return false;
1167  }
1168  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
1169  HLoadClass* cls = new (arena_) HLoadClass(
1170      type_index,
1171      *dex_compilation_unit_->GetDexFile(),
1172      IsOutermostCompilingClass(type_index),
1173      dex_pc);
1174  current_block_->AddInstruction(cls);
1175  // The class needs a temporary before being used by the type check.
1176  Temporaries temps(graph_);
1177  temps.Add(cls);
1178  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1179    current_block_->AddInstruction(
1180        new (arena_) HInstanceOf(object, cls, type_known_final, dex_pc));
1181    UpdateLocal(destination, current_block_->GetLastInstruction());
1182  } else {
1183    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1184    current_block_->AddInstruction(
1185        new (arena_) HCheckCast(object, cls, type_known_final, dex_pc));
1186  }
1187  return true;
1188}
1189
1190bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index) const {
1191  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
1192      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index);
1193}
1194
1195void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
1196  SwitchTable table(instruction, dex_pc, false);
1197
1198  // Value to test against.
1199  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
1200
1201  uint16_t num_entries = table.GetNumEntries();
1202  // There should be at least one entry here.
1203  DCHECK_GT(num_entries, 0U);
1204
1205  // Chained cmp-and-branch, starting from starting_key.
1206  int32_t starting_key = table.GetEntryAt(0);
1207
1208  for (size_t i = 1; i <= num_entries; i++) {
1209    BuildSwitchCaseHelper(instruction, i, i == num_entries, table, value, starting_key + i - 1,
1210                          table.GetEntryAt(i), dex_pc);
1211  }
1212}
1213
1214void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
1215  SwitchTable table(instruction, dex_pc, true);
1216
1217  // Value to test against.
1218  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
1219
1220  uint16_t num_entries = table.GetNumEntries();
1221
1222  for (size_t i = 0; i < num_entries; i++) {
1223    BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
1224                          table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
1225  }
1226}
1227
1228void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
1229                                          bool is_last_case, const SwitchTable& table,
1230                                          HInstruction* value, int32_t case_value_int,
1231                                          int32_t target_offset, uint32_t dex_pc) {
1232  HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1233  DCHECK(case_target != nullptr);
1234  PotentiallyAddSuspendCheck(case_target, dex_pc);
1235
1236  // The current case's value.
1237  HInstruction* this_case_value = graph_->GetIntConstant(case_value_int);
1238
1239  // Compare value and this_case_value.
1240  HEqual* comparison = new (arena_) HEqual(value, this_case_value);
1241  current_block_->AddInstruction(comparison);
1242  HInstruction* ifinst = new (arena_) HIf(comparison);
1243  current_block_->AddInstruction(ifinst);
1244
1245  // Case hit: use the target offset to determine where to go.
1246  current_block_->AddSuccessor(case_target);
1247
1248  // Case miss: go to the next case (or default fall-through).
1249  // When there is a next case, we use the block stored with the table offset representing this
1250  // case (that is where we registered them in ComputeBranchTargets).
1251  // When there is no next case, we use the following instruction.
1252  // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
1253  if (!is_last_case) {
1254    HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
1255    DCHECK(next_case_target != nullptr);
1256    current_block_->AddSuccessor(next_case_target);
1257
1258    // Need to manually add the block, as there is no dex-pc transition for the cases.
1259    graph_->AddBlock(next_case_target);
1260
1261    current_block_ = next_case_target;
1262  } else {
1263    HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1264    DCHECK(default_target != nullptr);
1265    current_block_->AddSuccessor(default_target);
1266    current_block_ = nullptr;
1267  }
1268}
1269
1270void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) {
1271  int32_t target_offset = target->GetDexPc() - dex_pc;
1272  if (target_offset <= 0) {
1273    // DX generates back edges to the first encountered return. We can save
1274    // time of later passes by not adding redundant suspend checks.
1275    HInstruction* last_in_target = target->GetLastInstruction();
1276    if (last_in_target != nullptr &&
1277        (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) {
1278      return;
1279    }
1280
1281    // Add a suspend check to backward branches which may potentially loop. We
1282    // can remove them after we recognize loops in the graph.
1283    current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
1284  }
1285}
1286
1287bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1288  if (current_block_ == nullptr) {
1289    return true;  // Dead code
1290  }
1291
1292  switch (instruction.Opcode()) {
1293    case Instruction::CONST_4: {
1294      int32_t register_index = instruction.VRegA();
1295      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n());
1296      UpdateLocal(register_index, constant);
1297      break;
1298    }
1299
1300    case Instruction::CONST_16: {
1301      int32_t register_index = instruction.VRegA();
1302      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s());
1303      UpdateLocal(register_index, constant);
1304      break;
1305    }
1306
1307    case Instruction::CONST: {
1308      int32_t register_index = instruction.VRegA();
1309      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i());
1310      UpdateLocal(register_index, constant);
1311      break;
1312    }
1313
1314    case Instruction::CONST_HIGH16: {
1315      int32_t register_index = instruction.VRegA();
1316      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16);
1317      UpdateLocal(register_index, constant);
1318      break;
1319    }
1320
1321    case Instruction::CONST_WIDE_16: {
1322      int32_t register_index = instruction.VRegA();
1323      // Get 16 bits of constant value, sign extended to 64 bits.
1324      int64_t value = instruction.VRegB_21s();
1325      value <<= 48;
1326      value >>= 48;
1327      HLongConstant* constant = graph_->GetLongConstant(value);
1328      UpdateLocal(register_index, constant);
1329      break;
1330    }
1331
1332    case Instruction::CONST_WIDE_32: {
1333      int32_t register_index = instruction.VRegA();
1334      // Get 32 bits of constant value, sign extended to 64 bits.
1335      int64_t value = instruction.VRegB_31i();
1336      value <<= 32;
1337      value >>= 32;
1338      HLongConstant* constant = graph_->GetLongConstant(value);
1339      UpdateLocal(register_index, constant);
1340      break;
1341    }
1342
1343    case Instruction::CONST_WIDE: {
1344      int32_t register_index = instruction.VRegA();
1345      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l());
1346      UpdateLocal(register_index, constant);
1347      break;
1348    }
1349
1350    case Instruction::CONST_WIDE_HIGH16: {
1351      int32_t register_index = instruction.VRegA();
1352      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
1353      HLongConstant* constant = graph_->GetLongConstant(value);
1354      UpdateLocal(register_index, constant);
1355      break;
1356    }
1357
1358    // Note that the SSA building will refine the types.
1359    case Instruction::MOVE:
1360    case Instruction::MOVE_FROM16:
1361    case Instruction::MOVE_16: {
1362      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
1363      UpdateLocal(instruction.VRegA(), value);
1364      break;
1365    }
1366
1367    // Note that the SSA building will refine the types.
1368    case Instruction::MOVE_WIDE:
1369    case Instruction::MOVE_WIDE_FROM16:
1370    case Instruction::MOVE_WIDE_16: {
1371      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
1372      UpdateLocal(instruction.VRegA(), value);
1373      break;
1374    }
1375
1376    case Instruction::MOVE_OBJECT:
1377    case Instruction::MOVE_OBJECT_16:
1378    case Instruction::MOVE_OBJECT_FROM16: {
1379      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
1380      UpdateLocal(instruction.VRegA(), value);
1381      break;
1382    }
1383
1384    case Instruction::RETURN_VOID: {
1385      BuildReturn(instruction, Primitive::kPrimVoid);
1386      break;
1387    }
1388
1389#define IF_XX(comparison, cond) \
1390    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
1391    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
1392
1393    IF_XX(HEqual, EQ);
1394    IF_XX(HNotEqual, NE);
1395    IF_XX(HLessThan, LT);
1396    IF_XX(HLessThanOrEqual, LE);
1397    IF_XX(HGreaterThan, GT);
1398    IF_XX(HGreaterThanOrEqual, GE);
1399
1400    case Instruction::GOTO:
1401    case Instruction::GOTO_16:
1402    case Instruction::GOTO_32: {
1403      int32_t offset = instruction.GetTargetOffset();
1404      HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
1405      DCHECK(target != nullptr);
1406      PotentiallyAddSuspendCheck(target, dex_pc);
1407      current_block_->AddInstruction(new (arena_) HGoto());
1408      current_block_->AddSuccessor(target);
1409      current_block_ = nullptr;
1410      break;
1411    }
1412
1413    case Instruction::RETURN: {
1414      DCHECK_NE(return_type_, Primitive::kPrimNot);
1415      DCHECK_NE(return_type_, Primitive::kPrimLong);
1416      DCHECK_NE(return_type_, Primitive::kPrimDouble);
1417      BuildReturn(instruction, return_type_);
1418      break;
1419    }
1420
1421    case Instruction::RETURN_OBJECT: {
1422      DCHECK(return_type_ == Primitive::kPrimNot);
1423      BuildReturn(instruction, return_type_);
1424      break;
1425    }
1426
1427    case Instruction::RETURN_WIDE: {
1428      DCHECK(return_type_ == Primitive::kPrimDouble || return_type_ == Primitive::kPrimLong);
1429      BuildReturn(instruction, return_type_);
1430      break;
1431    }
1432
1433    case Instruction::INVOKE_DIRECT:
1434    case Instruction::INVOKE_INTERFACE:
1435    case Instruction::INVOKE_STATIC:
1436    case Instruction::INVOKE_SUPER:
1437    case Instruction::INVOKE_VIRTUAL: {
1438      uint32_t method_idx = instruction.VRegB_35c();
1439      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
1440      uint32_t args[5];
1441      instruction.GetVarArgs(args);
1442      if (!BuildInvoke(instruction, dex_pc, method_idx,
1443                       number_of_vreg_arguments, false, args, -1)) {
1444        return false;
1445      }
1446      break;
1447    }
1448
1449    case Instruction::INVOKE_DIRECT_RANGE:
1450    case Instruction::INVOKE_INTERFACE_RANGE:
1451    case Instruction::INVOKE_STATIC_RANGE:
1452    case Instruction::INVOKE_SUPER_RANGE:
1453    case Instruction::INVOKE_VIRTUAL_RANGE: {
1454      uint32_t method_idx = instruction.VRegB_3rc();
1455      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
1456      uint32_t register_index = instruction.VRegC();
1457      if (!BuildInvoke(instruction, dex_pc, method_idx,
1458                       number_of_vreg_arguments, true, nullptr, register_index)) {
1459        return false;
1460      }
1461      break;
1462    }
1463
1464    case Instruction::NEG_INT: {
1465      Unop_12x<HNeg>(instruction, Primitive::kPrimInt);
1466      break;
1467    }
1468
1469    case Instruction::NEG_LONG: {
1470      Unop_12x<HNeg>(instruction, Primitive::kPrimLong);
1471      break;
1472    }
1473
1474    case Instruction::NEG_FLOAT: {
1475      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat);
1476      break;
1477    }
1478
1479    case Instruction::NEG_DOUBLE: {
1480      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble);
1481      break;
1482    }
1483
1484    case Instruction::NOT_INT: {
1485      Unop_12x<HNot>(instruction, Primitive::kPrimInt);
1486      break;
1487    }
1488
1489    case Instruction::NOT_LONG: {
1490      Unop_12x<HNot>(instruction, Primitive::kPrimLong);
1491      break;
1492    }
1493
1494    case Instruction::INT_TO_LONG: {
1495      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
1496      break;
1497    }
1498
1499    case Instruction::INT_TO_FLOAT: {
1500      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
1501      break;
1502    }
1503
1504    case Instruction::INT_TO_DOUBLE: {
1505      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
1506      break;
1507    }
1508
1509    case Instruction::LONG_TO_INT: {
1510      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
1511      break;
1512    }
1513
1514    case Instruction::LONG_TO_FLOAT: {
1515      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
1516      break;
1517    }
1518
1519    case Instruction::LONG_TO_DOUBLE: {
1520      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
1521      break;
1522    }
1523
1524    case Instruction::FLOAT_TO_INT: {
1525      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
1526      break;
1527    }
1528
1529    case Instruction::FLOAT_TO_LONG: {
1530      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
1531      break;
1532    }
1533
1534    case Instruction::FLOAT_TO_DOUBLE: {
1535      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
1536      break;
1537    }
1538
1539    case Instruction::DOUBLE_TO_INT: {
1540      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
1541      break;
1542    }
1543
1544    case Instruction::DOUBLE_TO_LONG: {
1545      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
1546      break;
1547    }
1548
1549    case Instruction::DOUBLE_TO_FLOAT: {
1550      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
1551      break;
1552    }
1553
1554    case Instruction::INT_TO_BYTE: {
1555      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
1556      break;
1557    }
1558
1559    case Instruction::INT_TO_SHORT: {
1560      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
1561      break;
1562    }
1563
1564    case Instruction::INT_TO_CHAR: {
1565      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
1566      break;
1567    }
1568
1569    case Instruction::ADD_INT: {
1570      Binop_23x<HAdd>(instruction, Primitive::kPrimInt);
1571      break;
1572    }
1573
1574    case Instruction::ADD_LONG: {
1575      Binop_23x<HAdd>(instruction, Primitive::kPrimLong);
1576      break;
1577    }
1578
1579    case Instruction::ADD_DOUBLE: {
1580      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble);
1581      break;
1582    }
1583
1584    case Instruction::ADD_FLOAT: {
1585      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat);
1586      break;
1587    }
1588
1589    case Instruction::SUB_INT: {
1590      Binop_23x<HSub>(instruction, Primitive::kPrimInt);
1591      break;
1592    }
1593
1594    case Instruction::SUB_LONG: {
1595      Binop_23x<HSub>(instruction, Primitive::kPrimLong);
1596      break;
1597    }
1598
1599    case Instruction::SUB_FLOAT: {
1600      Binop_23x<HSub>(instruction, Primitive::kPrimFloat);
1601      break;
1602    }
1603
1604    case Instruction::SUB_DOUBLE: {
1605      Binop_23x<HSub>(instruction, Primitive::kPrimDouble);
1606      break;
1607    }
1608
1609    case Instruction::ADD_INT_2ADDR: {
1610      Binop_12x<HAdd>(instruction, Primitive::kPrimInt);
1611      break;
1612    }
1613
1614    case Instruction::MUL_INT: {
1615      Binop_23x<HMul>(instruction, Primitive::kPrimInt);
1616      break;
1617    }
1618
1619    case Instruction::MUL_LONG: {
1620      Binop_23x<HMul>(instruction, Primitive::kPrimLong);
1621      break;
1622    }
1623
1624    case Instruction::MUL_FLOAT: {
1625      Binop_23x<HMul>(instruction, Primitive::kPrimFloat);
1626      break;
1627    }
1628
1629    case Instruction::MUL_DOUBLE: {
1630      Binop_23x<HMul>(instruction, Primitive::kPrimDouble);
1631      break;
1632    }
1633
1634    case Instruction::DIV_INT: {
1635      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1636                         dex_pc, Primitive::kPrimInt, false, true);
1637      break;
1638    }
1639
1640    case Instruction::DIV_LONG: {
1641      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1642                         dex_pc, Primitive::kPrimLong, false, true);
1643      break;
1644    }
1645
1646    case Instruction::DIV_FLOAT: {
1647      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
1648      break;
1649    }
1650
1651    case Instruction::DIV_DOUBLE: {
1652      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
1653      break;
1654    }
1655
1656    case Instruction::REM_INT: {
1657      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1658                         dex_pc, Primitive::kPrimInt, false, false);
1659      break;
1660    }
1661
1662    case Instruction::REM_LONG: {
1663      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1664                         dex_pc, Primitive::kPrimLong, false, false);
1665      break;
1666    }
1667
1668    case Instruction::REM_FLOAT: {
1669      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
1670      break;
1671    }
1672
1673    case Instruction::REM_DOUBLE: {
1674      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
1675      break;
1676    }
1677
1678    case Instruction::AND_INT: {
1679      Binop_23x<HAnd>(instruction, Primitive::kPrimInt);
1680      break;
1681    }
1682
1683    case Instruction::AND_LONG: {
1684      Binop_23x<HAnd>(instruction, Primitive::kPrimLong);
1685      break;
1686    }
1687
1688    case Instruction::SHL_INT: {
1689      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt);
1690      break;
1691    }
1692
1693    case Instruction::SHL_LONG: {
1694      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong);
1695      break;
1696    }
1697
1698    case Instruction::SHR_INT: {
1699      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt);
1700      break;
1701    }
1702
1703    case Instruction::SHR_LONG: {
1704      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong);
1705      break;
1706    }
1707
1708    case Instruction::USHR_INT: {
1709      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt);
1710      break;
1711    }
1712
1713    case Instruction::USHR_LONG: {
1714      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong);
1715      break;
1716    }
1717
1718    case Instruction::OR_INT: {
1719      Binop_23x<HOr>(instruction, Primitive::kPrimInt);
1720      break;
1721    }
1722
1723    case Instruction::OR_LONG: {
1724      Binop_23x<HOr>(instruction, Primitive::kPrimLong);
1725      break;
1726    }
1727
1728    case Instruction::XOR_INT: {
1729      Binop_23x<HXor>(instruction, Primitive::kPrimInt);
1730      break;
1731    }
1732
1733    case Instruction::XOR_LONG: {
1734      Binop_23x<HXor>(instruction, Primitive::kPrimLong);
1735      break;
1736    }
1737
1738    case Instruction::ADD_LONG_2ADDR: {
1739      Binop_12x<HAdd>(instruction, Primitive::kPrimLong);
1740      break;
1741    }
1742
1743    case Instruction::ADD_DOUBLE_2ADDR: {
1744      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble);
1745      break;
1746    }
1747
1748    case Instruction::ADD_FLOAT_2ADDR: {
1749      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat);
1750      break;
1751    }
1752
1753    case Instruction::SUB_INT_2ADDR: {
1754      Binop_12x<HSub>(instruction, Primitive::kPrimInt);
1755      break;
1756    }
1757
1758    case Instruction::SUB_LONG_2ADDR: {
1759      Binop_12x<HSub>(instruction, Primitive::kPrimLong);
1760      break;
1761    }
1762
1763    case Instruction::SUB_FLOAT_2ADDR: {
1764      Binop_12x<HSub>(instruction, Primitive::kPrimFloat);
1765      break;
1766    }
1767
1768    case Instruction::SUB_DOUBLE_2ADDR: {
1769      Binop_12x<HSub>(instruction, Primitive::kPrimDouble);
1770      break;
1771    }
1772
1773    case Instruction::MUL_INT_2ADDR: {
1774      Binop_12x<HMul>(instruction, Primitive::kPrimInt);
1775      break;
1776    }
1777
1778    case Instruction::MUL_LONG_2ADDR: {
1779      Binop_12x<HMul>(instruction, Primitive::kPrimLong);
1780      break;
1781    }
1782
1783    case Instruction::MUL_FLOAT_2ADDR: {
1784      Binop_12x<HMul>(instruction, Primitive::kPrimFloat);
1785      break;
1786    }
1787
1788    case Instruction::MUL_DOUBLE_2ADDR: {
1789      Binop_12x<HMul>(instruction, Primitive::kPrimDouble);
1790      break;
1791    }
1792
1793    case Instruction::DIV_INT_2ADDR: {
1794      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1795                         dex_pc, Primitive::kPrimInt, false, true);
1796      break;
1797    }
1798
1799    case Instruction::DIV_LONG_2ADDR: {
1800      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1801                         dex_pc, Primitive::kPrimLong, false, true);
1802      break;
1803    }
1804
1805    case Instruction::REM_INT_2ADDR: {
1806      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1807                         dex_pc, Primitive::kPrimInt, false, false);
1808      break;
1809    }
1810
1811    case Instruction::REM_LONG_2ADDR: {
1812      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1813                         dex_pc, Primitive::kPrimLong, false, false);
1814      break;
1815    }
1816
1817    case Instruction::REM_FLOAT_2ADDR: {
1818      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
1819      break;
1820    }
1821
1822    case Instruction::REM_DOUBLE_2ADDR: {
1823      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
1824      break;
1825    }
1826
1827    case Instruction::SHL_INT_2ADDR: {
1828      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt);
1829      break;
1830    }
1831
1832    case Instruction::SHL_LONG_2ADDR: {
1833      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong);
1834      break;
1835    }
1836
1837    case Instruction::SHR_INT_2ADDR: {
1838      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt);
1839      break;
1840    }
1841
1842    case Instruction::SHR_LONG_2ADDR: {
1843      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong);
1844      break;
1845    }
1846
1847    case Instruction::USHR_INT_2ADDR: {
1848      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt);
1849      break;
1850    }
1851
1852    case Instruction::USHR_LONG_2ADDR: {
1853      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong);
1854      break;
1855    }
1856
1857    case Instruction::DIV_FLOAT_2ADDR: {
1858      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
1859      break;
1860    }
1861
1862    case Instruction::DIV_DOUBLE_2ADDR: {
1863      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
1864      break;
1865    }
1866
1867    case Instruction::AND_INT_2ADDR: {
1868      Binop_12x<HAnd>(instruction, Primitive::kPrimInt);
1869      break;
1870    }
1871
1872    case Instruction::AND_LONG_2ADDR: {
1873      Binop_12x<HAnd>(instruction, Primitive::kPrimLong);
1874      break;
1875    }
1876
1877    case Instruction::OR_INT_2ADDR: {
1878      Binop_12x<HOr>(instruction, Primitive::kPrimInt);
1879      break;
1880    }
1881
1882    case Instruction::OR_LONG_2ADDR: {
1883      Binop_12x<HOr>(instruction, Primitive::kPrimLong);
1884      break;
1885    }
1886
1887    case Instruction::XOR_INT_2ADDR: {
1888      Binop_12x<HXor>(instruction, Primitive::kPrimInt);
1889      break;
1890    }
1891
1892    case Instruction::XOR_LONG_2ADDR: {
1893      Binop_12x<HXor>(instruction, Primitive::kPrimLong);
1894      break;
1895    }
1896
1897    case Instruction::ADD_INT_LIT16: {
1898      Binop_22s<HAdd>(instruction, false);
1899      break;
1900    }
1901
1902    case Instruction::AND_INT_LIT16: {
1903      Binop_22s<HAnd>(instruction, false);
1904      break;
1905    }
1906
1907    case Instruction::OR_INT_LIT16: {
1908      Binop_22s<HOr>(instruction, false);
1909      break;
1910    }
1911
1912    case Instruction::XOR_INT_LIT16: {
1913      Binop_22s<HXor>(instruction, false);
1914      break;
1915    }
1916
1917    case Instruction::RSUB_INT: {
1918      Binop_22s<HSub>(instruction, true);
1919      break;
1920    }
1921
1922    case Instruction::MUL_INT_LIT16: {
1923      Binop_22s<HMul>(instruction, false);
1924      break;
1925    }
1926
1927    case Instruction::ADD_INT_LIT8: {
1928      Binop_22b<HAdd>(instruction, false);
1929      break;
1930    }
1931
1932    case Instruction::AND_INT_LIT8: {
1933      Binop_22b<HAnd>(instruction, false);
1934      break;
1935    }
1936
1937    case Instruction::OR_INT_LIT8: {
1938      Binop_22b<HOr>(instruction, false);
1939      break;
1940    }
1941
1942    case Instruction::XOR_INT_LIT8: {
1943      Binop_22b<HXor>(instruction, false);
1944      break;
1945    }
1946
1947    case Instruction::RSUB_INT_LIT8: {
1948      Binop_22b<HSub>(instruction, true);
1949      break;
1950    }
1951
1952    case Instruction::MUL_INT_LIT8: {
1953      Binop_22b<HMul>(instruction, false);
1954      break;
1955    }
1956
1957    case Instruction::DIV_INT_LIT16:
1958    case Instruction::DIV_INT_LIT8: {
1959      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1960                         dex_pc, Primitive::kPrimInt, true, true);
1961      break;
1962    }
1963
1964    case Instruction::REM_INT_LIT16:
1965    case Instruction::REM_INT_LIT8: {
1966      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1967                         dex_pc, Primitive::kPrimInt, true, false);
1968      break;
1969    }
1970
1971    case Instruction::SHL_INT_LIT8: {
1972      Binop_22b<HShl>(instruction, false);
1973      break;
1974    }
1975
1976    case Instruction::SHR_INT_LIT8: {
1977      Binop_22b<HShr>(instruction, false);
1978      break;
1979    }
1980
1981    case Instruction::USHR_INT_LIT8: {
1982      Binop_22b<HUShr>(instruction, false);
1983      break;
1984    }
1985
1986    case Instruction::NEW_INSTANCE: {
1987      uint16_t type_index = instruction.VRegB_21c();
1988      if (compiler_driver_->IsStringTypeIndex(type_index, dex_file_)) {
1989        // Turn new-instance of string into a const 0.
1990        int32_t register_index = instruction.VRegA();
1991        HNullConstant* constant = graph_->GetNullConstant();
1992        UpdateLocal(register_index, constant);
1993      } else {
1994        QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
1995            ? kQuickAllocObjectWithAccessCheck
1996            : kQuickAllocObject;
1997
1998        current_block_->AddInstruction(new (arena_) HNewInstance(
1999            dex_pc, type_index, *dex_compilation_unit_->GetDexFile(), entrypoint));
2000        UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
2001      }
2002      break;
2003    }
2004
2005    case Instruction::NEW_ARRAY: {
2006      uint16_t type_index = instruction.VRegC_22c();
2007      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
2008      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
2009          ? kQuickAllocArrayWithAccessCheck
2010          : kQuickAllocArray;
2011      current_block_->AddInstruction(new (arena_) HNewArray(
2012          length, dex_pc, type_index, *dex_compilation_unit_->GetDexFile(), entrypoint));
2013      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
2014      break;
2015    }
2016
2017    case Instruction::FILLED_NEW_ARRAY: {
2018      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2019      uint32_t type_index = instruction.VRegB_35c();
2020      uint32_t args[5];
2021      instruction.GetVarArgs(args);
2022      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
2023      break;
2024    }
2025
2026    case Instruction::FILLED_NEW_ARRAY_RANGE: {
2027      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2028      uint32_t type_index = instruction.VRegB_3rc();
2029      uint32_t register_index = instruction.VRegC_3rc();
2030      BuildFilledNewArray(
2031          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
2032      break;
2033    }
2034
2035    case Instruction::FILL_ARRAY_DATA: {
2036      BuildFillArrayData(instruction, dex_pc);
2037      break;
2038    }
2039
2040    case Instruction::MOVE_RESULT:
2041    case Instruction::MOVE_RESULT_WIDE:
2042    case Instruction::MOVE_RESULT_OBJECT:
2043      UpdateLocal(instruction.VRegA(), latest_result_);
2044      latest_result_ = nullptr;
2045      break;
2046
2047    case Instruction::CMP_LONG: {
2048      Binop_23x_cmp(instruction, Primitive::kPrimLong, HCompare::kNoBias);
2049      break;
2050    }
2051
2052    case Instruction::CMPG_FLOAT: {
2053      Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kGtBias);
2054      break;
2055    }
2056
2057    case Instruction::CMPG_DOUBLE: {
2058      Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kGtBias);
2059      break;
2060    }
2061
2062    case Instruction::CMPL_FLOAT: {
2063      Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kLtBias);
2064      break;
2065    }
2066
2067    case Instruction::CMPL_DOUBLE: {
2068      Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kLtBias);
2069      break;
2070    }
2071
2072    case Instruction::NOP:
2073      break;
2074
2075    case Instruction::IGET:
2076    case Instruction::IGET_WIDE:
2077    case Instruction::IGET_OBJECT:
2078    case Instruction::IGET_BOOLEAN:
2079    case Instruction::IGET_BYTE:
2080    case Instruction::IGET_CHAR:
2081    case Instruction::IGET_SHORT: {
2082      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
2083        return false;
2084      }
2085      break;
2086    }
2087
2088    case Instruction::IPUT:
2089    case Instruction::IPUT_WIDE:
2090    case Instruction::IPUT_OBJECT:
2091    case Instruction::IPUT_BOOLEAN:
2092    case Instruction::IPUT_BYTE:
2093    case Instruction::IPUT_CHAR:
2094    case Instruction::IPUT_SHORT: {
2095      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
2096        return false;
2097      }
2098      break;
2099    }
2100
2101    case Instruction::SGET:
2102    case Instruction::SGET_WIDE:
2103    case Instruction::SGET_OBJECT:
2104    case Instruction::SGET_BOOLEAN:
2105    case Instruction::SGET_BYTE:
2106    case Instruction::SGET_CHAR:
2107    case Instruction::SGET_SHORT: {
2108      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
2109        return false;
2110      }
2111      break;
2112    }
2113
2114    case Instruction::SPUT:
2115    case Instruction::SPUT_WIDE:
2116    case Instruction::SPUT_OBJECT:
2117    case Instruction::SPUT_BOOLEAN:
2118    case Instruction::SPUT_BYTE:
2119    case Instruction::SPUT_CHAR:
2120    case Instruction::SPUT_SHORT: {
2121      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
2122        return false;
2123      }
2124      break;
2125    }
2126
2127#define ARRAY_XX(kind, anticipated_type)                                          \
2128    case Instruction::AGET##kind: {                                               \
2129      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
2130      break;                                                                      \
2131    }                                                                             \
2132    case Instruction::APUT##kind: {                                               \
2133      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
2134      break;                                                                      \
2135    }
2136
2137    ARRAY_XX(, Primitive::kPrimInt);
2138    ARRAY_XX(_WIDE, Primitive::kPrimLong);
2139    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
2140    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
2141    ARRAY_XX(_BYTE, Primitive::kPrimByte);
2142    ARRAY_XX(_CHAR, Primitive::kPrimChar);
2143    ARRAY_XX(_SHORT, Primitive::kPrimShort);
2144
2145    case Instruction::ARRAY_LENGTH: {
2146      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot);
2147      // No need for a temporary for the null check, it is the only input of the following
2148      // instruction.
2149      object = new (arena_) HNullCheck(object, dex_pc);
2150      current_block_->AddInstruction(object);
2151      current_block_->AddInstruction(new (arena_) HArrayLength(object));
2152      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
2153      break;
2154    }
2155
2156    case Instruction::CONST_STRING: {
2157      current_block_->AddInstruction(new (arena_) HLoadString(instruction.VRegB_21c(), dex_pc));
2158      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2159      break;
2160    }
2161
2162    case Instruction::CONST_STRING_JUMBO: {
2163      current_block_->AddInstruction(new (arena_) HLoadString(instruction.VRegB_31c(), dex_pc));
2164      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
2165      break;
2166    }
2167
2168    case Instruction::CONST_CLASS: {
2169      uint16_t type_index = instruction.VRegB_21c();
2170      bool type_known_final;
2171      bool type_known_abstract;
2172      bool dont_use_is_referrers_class;
2173      // `CanAccessTypeWithoutChecks` will tell whether the method being
2174      // built is trying to access its own class, so that the generated
2175      // code can optimize for this case. However, the optimization does not
2176      // work for inlining, so we use `IsOutermostCompilingClass` instead.
2177      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
2178          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
2179          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
2180      if (!can_access) {
2181        MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
2182        return false;
2183      }
2184      current_block_->AddInstruction(new (arena_) HLoadClass(
2185          type_index,
2186          *dex_compilation_unit_->GetDexFile(),
2187          IsOutermostCompilingClass(type_index),
2188          dex_pc));
2189      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2190      break;
2191    }
2192
2193    case Instruction::MOVE_EXCEPTION: {
2194      current_block_->AddInstruction(new (arena_) HLoadException());
2195      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
2196      break;
2197    }
2198
2199    case Instruction::THROW: {
2200      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
2201      current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
2202      // A throw instruction must branch to the exit block.
2203      current_block_->AddSuccessor(exit_block_);
2204      // We finished building this block. Set the current block to null to avoid
2205      // adding dead instructions to it.
2206      current_block_ = nullptr;
2207      break;
2208    }
2209
2210    case Instruction::INSTANCE_OF: {
2211      uint8_t destination = instruction.VRegA_22c();
2212      uint8_t reference = instruction.VRegB_22c();
2213      uint16_t type_index = instruction.VRegC_22c();
2214      if (!BuildTypeCheck(instruction, destination, reference, type_index, dex_pc)) {
2215        return false;
2216      }
2217      break;
2218    }
2219
2220    case Instruction::CHECK_CAST: {
2221      uint8_t reference = instruction.VRegA_21c();
2222      uint16_t type_index = instruction.VRegB_21c();
2223      if (!BuildTypeCheck(instruction, -1, reference, type_index, dex_pc)) {
2224        return false;
2225      }
2226      break;
2227    }
2228
2229    case Instruction::MONITOR_ENTER: {
2230      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2231          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2232          HMonitorOperation::kEnter,
2233          dex_pc));
2234      break;
2235    }
2236
2237    case Instruction::MONITOR_EXIT: {
2238      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2239          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2240          HMonitorOperation::kExit,
2241          dex_pc));
2242      break;
2243    }
2244
2245    case Instruction::PACKED_SWITCH: {
2246      BuildPackedSwitch(instruction, dex_pc);
2247      break;
2248    }
2249
2250    case Instruction::SPARSE_SWITCH: {
2251      BuildSparseSwitch(instruction, dex_pc);
2252      break;
2253    }
2254
2255    default:
2256      VLOG(compiler) << "Did not compile "
2257                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
2258                     << " because of unhandled instruction "
2259                     << instruction.Name();
2260      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
2261      return false;
2262  }
2263  return true;
2264}  // NOLINT(readability/fn_size)
2265
2266HLocal* HGraphBuilder::GetLocalAt(int register_index) const {
2267  return locals_.Get(register_index);
2268}
2269
2270void HGraphBuilder::UpdateLocal(int register_index, HInstruction* instruction) const {
2271  HLocal* local = GetLocalAt(register_index);
2272  current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction));
2273}
2274
2275HInstruction* HGraphBuilder::LoadLocal(int register_index, Primitive::Type type) const {
2276  HLocal* local = GetLocalAt(register_index);
2277  current_block_->AddInstruction(new (arena_) HLoadLocal(local, type));
2278  return current_block_->GetLastInstruction();
2279}
2280
2281}  // namespace art
2282