builder.cc revision 1cf95287364948689f6a1a320567acd7728e94a3
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "builder.h"
18
19#include "base/logging.h"
20#include "class_linker.h"
21#include "dex_file.h"
22#include "dex_file-inl.h"
23#include "dex_instruction.h"
24#include "dex_instruction-inl.h"
25#include "driver/compiler_driver-inl.h"
26#include "mirror/art_field.h"
27#include "mirror/art_field-inl.h"
28#include "mirror/class_loader.h"
29#include "mirror/dex_cache.h"
30#include "nodes.h"
31#include "primitive.h"
32#include "scoped_thread_state_change.h"
33#include "thread.h"
34
35namespace art {
36
37/**
38 * Helper class to add HTemporary instructions. This class is used when
39 * converting a DEX instruction to multiple HInstruction, and where those
40 * instructions do not die at the following instruction, but instead spans
41 * multiple instructions.
42 */
43class Temporaries : public ValueObject {
44 public:
45  explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
46
47  void Add(HInstruction* instruction) {
48    HInstruction* temp = new (graph_->GetArena()) HTemporary(index_);
49    instruction->GetBlock()->AddInstruction(temp);
50
51    DCHECK(temp->GetPrevious() == instruction);
52
53    size_t offset;
54    if (instruction->GetType() == Primitive::kPrimLong
55        || instruction->GetType() == Primitive::kPrimDouble) {
56      offset = 2;
57    } else {
58      offset = 1;
59    }
60    index_ += offset;
61
62    graph_->UpdateTemporariesVRegSlots(index_);
63  }
64
65 private:
66  HGraph* const graph_;
67
68  // Current index in the temporary stack, updated by `Add`.
69  size_t index_;
70};
71
72class SwitchTable : public ValueObject {
73 public:
74  SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
75      : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
76    int32_t table_offset = instruction.VRegB_31t();
77    const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
78    if (sparse) {
79      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
80    } else {
81      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
82    }
83    num_entries_ = table[1];
84    values_ = reinterpret_cast<const int32_t*>(&table[2]);
85  }
86
87  uint16_t GetNumEntries() const {
88    return num_entries_;
89  }
90
91  void CheckIndex(size_t index) const {
92    if (sparse_) {
93      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
94      DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
95    } else {
96      // In a packed table, we have the starting key and num_entries_ values.
97      DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
98    }
99  }
100
101  int32_t GetEntryAt(size_t index) const {
102    CheckIndex(index);
103    return values_[index];
104  }
105
106  uint32_t GetDexPcForIndex(size_t index) const {
107    CheckIndex(index);
108    return dex_pc_ +
109        (reinterpret_cast<const int16_t*>(values_ + index) -
110         reinterpret_cast<const int16_t*>(&instruction_));
111  }
112
113  // Index of the first value in the table.
114  size_t GetFirstValueIndex() const {
115    if (sparse_) {
116      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
117      return num_entries_;
118    } else {
119      // In a packed table, we have the starting key and num_entries_ values.
120      return 1;
121    }
122  }
123
124 private:
125  const Instruction& instruction_;
126  const uint32_t dex_pc_;
127
128  // Whether this is a sparse-switch table (or a packed-switch one).
129  const bool sparse_;
130
131  // This can't be const as it needs to be computed off of the given instruction, and complicated
132  // expressions in the initializer list seemed very ugly.
133  uint16_t num_entries_;
134
135  const int32_t* values_;
136
137  DISALLOW_COPY_AND_ASSIGN(SwitchTable);
138};
139
140void HGraphBuilder::InitializeLocals(uint16_t count) {
141  graph_->SetNumberOfVRegs(count);
142  locals_.SetSize(count);
143  for (int i = 0; i < count; i++) {
144    HLocal* local = new (arena_) HLocal(i);
145    entry_block_->AddInstruction(local);
146    locals_.Put(i, local);
147  }
148}
149
150void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
151  // dex_compilation_unit_ is null only when unit testing.
152  if (dex_compilation_unit_ == nullptr) {
153    return;
154  }
155
156  graph_->SetNumberOfInVRegs(number_of_parameters);
157  const char* shorty = dex_compilation_unit_->GetShorty();
158  int locals_index = locals_.Size() - number_of_parameters;
159  int parameter_index = 0;
160
161  if (!dex_compilation_unit_->IsStatic()) {
162    // Add the implicit 'this' argument, not expressed in the signature.
163    HParameterValue* parameter =
164        new (arena_) HParameterValue(parameter_index++, Primitive::kPrimNot);
165    entry_block_->AddInstruction(parameter);
166    HLocal* local = GetLocalAt(locals_index++);
167    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
168    number_of_parameters--;
169  }
170
171  uint32_t pos = 1;
172  for (int i = 0; i < number_of_parameters; i++) {
173    HParameterValue* parameter =
174        new (arena_) HParameterValue(parameter_index++, Primitive::GetType(shorty[pos++]));
175    entry_block_->AddInstruction(parameter);
176    HLocal* local = GetLocalAt(locals_index++);
177    // Store the parameter value in the local that the dex code will use
178    // to reference that parameter.
179    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
180    bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
181        || (parameter->GetType() == Primitive::kPrimDouble);
182    if (is_wide) {
183      i++;
184      locals_index++;
185      parameter_index++;
186    }
187  }
188}
189
190template<typename T>
191void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
192  int32_t target_offset = instruction.GetTargetOffset();
193  PotentiallyAddSuspendCheck(target_offset, dex_pc);
194  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
195  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
196  T* comparison = new (arena_) T(first, second);
197  current_block_->AddInstruction(comparison);
198  HInstruction* ifinst = new (arena_) HIf(comparison);
199  current_block_->AddInstruction(ifinst);
200  HBasicBlock* target = FindBlockStartingAt(dex_pc + target_offset);
201  DCHECK(target != nullptr);
202  current_block_->AddSuccessor(target);
203  target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
204  DCHECK(target != nullptr);
205  current_block_->AddSuccessor(target);
206  current_block_ = nullptr;
207}
208
209template<typename T>
210void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
211  int32_t target_offset = instruction.GetTargetOffset();
212  PotentiallyAddSuspendCheck(target_offset, dex_pc);
213  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
214  T* comparison = new (arena_) T(value, GetIntConstant(0));
215  current_block_->AddInstruction(comparison);
216  HInstruction* ifinst = new (arena_) HIf(comparison);
217  current_block_->AddInstruction(ifinst);
218  HBasicBlock* target = FindBlockStartingAt(dex_pc + target_offset);
219  DCHECK(target != nullptr);
220  current_block_->AddSuccessor(target);
221  target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
222  DCHECK(target != nullptr);
223  current_block_->AddSuccessor(target);
224  current_block_ = nullptr;
225}
226
227void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
228  if (compilation_stats_ != nullptr) {
229    compilation_stats_->RecordStat(compilation_stat);
230  }
231}
232
233bool HGraphBuilder::SkipCompilation(size_t number_of_dex_instructions,
234                                    size_t number_of_blocks ATTRIBUTE_UNUSED,
235                                    size_t number_of_branches) {
236  const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
237  CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
238  if (compiler_filter == CompilerOptions::kEverything) {
239    return false;
240  }
241
242  if (compiler_options.IsHugeMethod(number_of_dex_instructions)) {
243    VLOG(compiler) << "Skip compilation of huge method "
244                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
245                   << ": " << number_of_dex_instructions << " dex instructions";
246    MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
247    return true;
248  }
249
250  // If it's large and contains no branches, it's likely to be machine generated initialization.
251  if (compiler_options.IsLargeMethod(number_of_dex_instructions) && (number_of_branches == 0)) {
252    VLOG(compiler) << "Skip compilation of large method with no branch "
253                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
254                   << ": " << number_of_dex_instructions << " dex instructions";
255    MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
256    return true;
257  }
258
259  return false;
260}
261
262HGraph* HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item, int start_instruction_id) {
263  const uint16_t* code_ptr = code_item.insns_;
264  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
265  code_start_ = code_ptr;
266
267  // Setup the graph with the entry block and exit block.
268  graph_ = new (arena_) HGraph(arena_, start_instruction_id);
269  entry_block_ = new (arena_) HBasicBlock(graph_, 0);
270  graph_->AddBlock(entry_block_);
271  exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
272  graph_->SetEntryBlock(entry_block_);
273  graph_->SetExitBlock(exit_block_);
274
275  InitializeLocals(code_item.registers_size_);
276  graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
277
278  // Compute the number of dex instructions, blocks, and branches. We will
279  // check these values against limits given to the compiler.
280  size_t number_of_dex_instructions = 0;
281  size_t number_of_blocks = 0;
282  size_t number_of_branches = 0;
283
284  // To avoid splitting blocks, we compute ahead of time the instructions that
285  // start a new block, and create these blocks.
286  ComputeBranchTargets(
287      code_ptr, code_end, &number_of_dex_instructions, &number_of_blocks, &number_of_branches);
288
289  // Note that the compiler driver is null when unit testing.
290  if ((compiler_driver_ != nullptr)
291      && SkipCompilation(number_of_dex_instructions, number_of_blocks, number_of_branches)) {
292    return nullptr;
293  }
294
295  // Also create blocks for catch handlers.
296  if (code_item.tries_size_ != 0) {
297    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
298    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
299    for (uint32_t idx = 0; idx < handlers_size; ++idx) {
300      CatchHandlerIterator iterator(handlers_ptr);
301      for (; iterator.HasNext(); iterator.Next()) {
302        uint32_t address = iterator.GetHandlerAddress();
303        HBasicBlock* block = FindBlockStartingAt(address);
304        if (block == nullptr) {
305          block = new (arena_) HBasicBlock(graph_, address);
306          branch_targets_.Put(address, block);
307        }
308        block->SetIsCatchBlock();
309      }
310      handlers_ptr = iterator.EndDataPointer();
311    }
312  }
313
314  InitializeParameters(code_item.ins_size_);
315
316  size_t dex_pc = 0;
317  while (code_ptr < code_end) {
318    // Update the current block if dex_pc starts a new block.
319    MaybeUpdateCurrentBlock(dex_pc);
320    const Instruction& instruction = *Instruction::At(code_ptr);
321    if (!AnalyzeDexInstruction(instruction, dex_pc)) {
322      return nullptr;
323    }
324    dex_pc += instruction.SizeInCodeUnits();
325    code_ptr += instruction.SizeInCodeUnits();
326  }
327
328  // Add the exit block at the end to give it the highest id.
329  graph_->AddBlock(exit_block_);
330  exit_block_->AddInstruction(new (arena_) HExit());
331  // Add the suspend check to the entry block.
332  entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
333  entry_block_->AddInstruction(new (arena_) HGoto());
334  return graph_;
335}
336
337void HGraphBuilder::MaybeUpdateCurrentBlock(size_t index) {
338  HBasicBlock* block = FindBlockStartingAt(index);
339  if (block == nullptr) {
340    return;
341  }
342
343  if (current_block_ != nullptr) {
344    // Branching instructions clear current_block, so we know
345    // the last instruction of the current block is not a branching
346    // instruction. We add an unconditional goto to the found block.
347    current_block_->AddInstruction(new (arena_) HGoto());
348    current_block_->AddSuccessor(block);
349  }
350  graph_->AddBlock(block);
351  current_block_ = block;
352}
353
354void HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
355                                         const uint16_t* code_end,
356                                         size_t* number_of_dex_instructions,
357                                         size_t* number_of_blocks,
358                                         size_t* number_of_branches) {
359  branch_targets_.SetSize(code_end - code_ptr);
360
361  // Create the first block for the dex instructions, single successor of the entry block.
362  HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
363  branch_targets_.Put(0, block);
364  entry_block_->AddSuccessor(block);
365
366  // Iterate over all instructions and find branching instructions. Create blocks for
367  // the locations these instructions branch to.
368  uint32_t dex_pc = 0;
369  while (code_ptr < code_end) {
370    (*number_of_dex_instructions)++;
371    const Instruction& instruction = *Instruction::At(code_ptr);
372    if (instruction.IsBranch()) {
373      (*number_of_branches)++;
374      int32_t target = instruction.GetTargetOffset() + dex_pc;
375      // Create a block for the target instruction.
376      if (FindBlockStartingAt(target) == nullptr) {
377        block = new (arena_) HBasicBlock(graph_, target);
378        branch_targets_.Put(target, block);
379        (*number_of_blocks)++;
380      }
381      dex_pc += instruction.SizeInCodeUnits();
382      code_ptr += instruction.SizeInCodeUnits();
383      if ((code_ptr < code_end) && (FindBlockStartingAt(dex_pc) == nullptr)) {
384        block = new (arena_) HBasicBlock(graph_, dex_pc);
385        branch_targets_.Put(dex_pc, block);
386        (*number_of_blocks)++;
387      }
388    } else if (instruction.IsSwitch()) {
389      SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
390
391      uint16_t num_entries = table.GetNumEntries();
392
393      // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
394      // entry at index 0 is the first key, and values are after *all* keys.
395      size_t offset = table.GetFirstValueIndex();
396
397      // Use a larger loop counter type to avoid overflow issues.
398      for (size_t i = 0; i < num_entries; ++i) {
399        // The target of the case.
400        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
401        if (FindBlockStartingAt(target) == nullptr) {
402          block = new (arena_) HBasicBlock(graph_, target);
403          branch_targets_.Put(target, block);
404          (*number_of_blocks)++;
405        }
406
407        // The next case gets its own block.
408        if (i < num_entries) {
409          block = new (arena_) HBasicBlock(graph_, target);
410          branch_targets_.Put(table.GetDexPcForIndex(i), block);
411          (*number_of_blocks)++;
412        }
413      }
414
415      // Fall-through. Add a block if there is more code afterwards.
416      dex_pc += instruction.SizeInCodeUnits();
417      code_ptr += instruction.SizeInCodeUnits();
418      if ((code_ptr < code_end) && (FindBlockStartingAt(dex_pc) == nullptr)) {
419        block = new (arena_) HBasicBlock(graph_, dex_pc);
420        branch_targets_.Put(dex_pc, block);
421        (*number_of_blocks)++;
422      }
423    } else {
424      code_ptr += instruction.SizeInCodeUnits();
425      dex_pc += instruction.SizeInCodeUnits();
426    }
427  }
428}
429
430HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t index) const {
431  DCHECK_GE(index, 0);
432  return branch_targets_.Get(index);
433}
434
435template<typename T>
436void HGraphBuilder::Unop_12x(const Instruction& instruction, Primitive::Type type) {
437  HInstruction* first = LoadLocal(instruction.VRegB(), type);
438  current_block_->AddInstruction(new (arena_) T(type, first));
439  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
440}
441
442void HGraphBuilder::Conversion_12x(const Instruction& instruction,
443                                   Primitive::Type input_type,
444                                   Primitive::Type result_type,
445                                   uint32_t dex_pc) {
446  HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
447  current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
448  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
449}
450
451template<typename T>
452void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type) {
453  HInstruction* first = LoadLocal(instruction.VRegB(), type);
454  HInstruction* second = LoadLocal(instruction.VRegC(), type);
455  current_block_->AddInstruction(new (arena_) T(type, first, second));
456  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
457}
458
459template<typename T>
460void HGraphBuilder::Binop_23x(const Instruction& instruction,
461                              Primitive::Type type,
462                              uint32_t dex_pc) {
463  HInstruction* first = LoadLocal(instruction.VRegB(), type);
464  HInstruction* second = LoadLocal(instruction.VRegC(), type);
465  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
466  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
467}
468
469template<typename T>
470void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
471                                    Primitive::Type type) {
472  HInstruction* first = LoadLocal(instruction.VRegB(), type);
473  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
474  current_block_->AddInstruction(new (arena_) T(type, first, second));
475  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
476}
477
478void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
479                                  Primitive::Type type,
480                                  HCompare::Bias bias) {
481  HInstruction* first = LoadLocal(instruction.VRegB(), type);
482  HInstruction* second = LoadLocal(instruction.VRegC(), type);
483  current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias));
484  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
485}
486
487template<typename T>
488void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type) {
489  HInstruction* first = LoadLocal(instruction.VRegA(), type);
490  HInstruction* second = LoadLocal(instruction.VRegB(), type);
491  current_block_->AddInstruction(new (arena_) T(type, first, second));
492  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
493}
494
495template<typename T>
496void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type) {
497  HInstruction* first = LoadLocal(instruction.VRegA(), type);
498  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
499  current_block_->AddInstruction(new (arena_) T(type, first, second));
500  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
501}
502
503template<typename T>
504void HGraphBuilder::Binop_12x(const Instruction& instruction,
505                              Primitive::Type type,
506                              uint32_t dex_pc) {
507  HInstruction* first = LoadLocal(instruction.VRegA(), type);
508  HInstruction* second = LoadLocal(instruction.VRegB(), type);
509  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
510  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
511}
512
513template<typename T>
514void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse) {
515  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
516  HInstruction* second = GetIntConstant(instruction.VRegC_22s());
517  if (reverse) {
518    std::swap(first, second);
519  }
520  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
521  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
522}
523
524template<typename T>
525void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse) {
526  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
527  HInstruction* second = GetIntConstant(instruction.VRegC_22b());
528  if (reverse) {
529    std::swap(first, second);
530  }
531  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
532  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
533}
534
535void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type) {
536  if (type == Primitive::kPrimVoid) {
537    current_block_->AddInstruction(new (arena_) HReturnVoid());
538  } else {
539    HInstruction* value = LoadLocal(instruction.VRegA(), type);
540    current_block_->AddInstruction(new (arena_) HReturn(value));
541  }
542  current_block_->AddSuccessor(exit_block_);
543  current_block_ = nullptr;
544}
545
546bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
547                                uint32_t dex_pc,
548                                uint32_t method_idx,
549                                uint32_t number_of_vreg_arguments,
550                                bool is_range,
551                                uint32_t* args,
552                                uint32_t register_index) {
553  Instruction::Code opcode = instruction.Opcode();
554  InvokeType invoke_type;
555  switch (opcode) {
556    case Instruction::INVOKE_STATIC:
557    case Instruction::INVOKE_STATIC_RANGE:
558      invoke_type = kStatic;
559      break;
560    case Instruction::INVOKE_DIRECT:
561    case Instruction::INVOKE_DIRECT_RANGE:
562      invoke_type = kDirect;
563      break;
564    case Instruction::INVOKE_VIRTUAL:
565    case Instruction::INVOKE_VIRTUAL_RANGE:
566      invoke_type = kVirtual;
567      break;
568    case Instruction::INVOKE_INTERFACE:
569    case Instruction::INVOKE_INTERFACE_RANGE:
570      invoke_type = kInterface;
571      break;
572    case Instruction::INVOKE_SUPER_RANGE:
573    case Instruction::INVOKE_SUPER:
574      invoke_type = kSuper;
575      break;
576    default:
577      LOG(FATAL) << "Unexpected invoke op: " << opcode;
578      return false;
579  }
580
581  const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
582  const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(method_id.proto_idx_);
583  const char* descriptor = dex_file_->StringDataByIdx(proto_id.shorty_idx_);
584  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
585  bool is_instance_call = invoke_type != kStatic;
586  const size_t number_of_arguments = strlen(descriptor) - (is_instance_call ? 0 : 1);
587
588  MethodReference target_method(dex_file_, method_idx);
589  uintptr_t direct_code;
590  uintptr_t direct_method;
591  int table_index;
592  InvokeType optimized_invoke_type = invoke_type;
593
594  if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_, dex_pc, true, true,
595                                           &optimized_invoke_type, &target_method, &table_index,
596                                           &direct_code, &direct_method)) {
597    VLOG(compiler) << "Did not compile " << PrettyMethod(method_idx, *dex_file_)
598                   << " because a method call could not be resolved";
599    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod);
600    return false;
601  }
602  DCHECK(optimized_invoke_type != kSuper);
603
604  HInvoke* invoke = nullptr;
605  if (optimized_invoke_type == kVirtual) {
606    invoke = new (arena_) HInvokeVirtual(
607        arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
608  } else if (optimized_invoke_type == kInterface) {
609    invoke = new (arena_) HInvokeInterface(
610        arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
611  } else {
612    DCHECK(optimized_invoke_type == kDirect || optimized_invoke_type == kStatic);
613    // Sharpening to kDirect only works if we compile PIC.
614    DCHECK((optimized_invoke_type == invoke_type) || (optimized_invoke_type != kDirect)
615           || compiler_driver_->GetCompilerOptions().GetCompilePic());
616    bool is_recursive =
617        (target_method.dex_method_index == outer_compilation_unit_->GetDexMethodIndex());
618    DCHECK(!is_recursive || (target_method.dex_file == outer_compilation_unit_->GetDexFile()));
619    invoke = new (arena_) HInvokeStaticOrDirect(
620        arena_, number_of_arguments, return_type, dex_pc, target_method.dex_method_index,
621        is_recursive, optimized_invoke_type);
622  }
623
624  size_t start_index = 0;
625  Temporaries temps(graph_);
626  if (is_instance_call) {
627    HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot);
628    HNullCheck* null_check = new (arena_) HNullCheck(arg, dex_pc);
629    current_block_->AddInstruction(null_check);
630    temps.Add(null_check);
631    invoke->SetArgumentAt(0, null_check);
632    start_index = 1;
633  }
634
635  uint32_t descriptor_index = 1;
636  uint32_t argument_index = start_index;
637  for (size_t i = start_index; i < number_of_vreg_arguments; i++, argument_index++) {
638    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
639    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
640    if (!is_range && is_wide && args[i] + 1 != args[i + 1]) {
641      LOG(WARNING) << "Non sequential register pair in " << dex_compilation_unit_->GetSymbol()
642                   << " at " << dex_pc;
643      // We do not implement non sequential register pair.
644      MaybeRecordStat(MethodCompilationStat::kNotCompiledNonSequentialRegPair);
645      return false;
646    }
647    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
648    invoke->SetArgumentAt(argument_index, arg);
649    if (is_wide) {
650      i++;
651    }
652  }
653
654  DCHECK_EQ(argument_index, number_of_arguments);
655  current_block_->AddInstruction(invoke);
656  latest_result_ = invoke;
657  return true;
658}
659
660bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
661                                             uint32_t dex_pc,
662                                             bool is_put) {
663  uint32_t source_or_dest_reg = instruction.VRegA_22c();
664  uint32_t obj_reg = instruction.VRegB_22c();
665  uint16_t field_index = instruction.VRegC_22c();
666
667  ScopedObjectAccess soa(Thread::Current());
668  StackHandleScope<1> hs(soa.Self());
669  Handle<mirror::ArtField> resolved_field(hs.NewHandle(
670      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa)));
671
672  if (resolved_field.Get() == nullptr) {
673    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
674    return false;
675  }
676
677  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
678
679  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot);
680  current_block_->AddInstruction(new (arena_) HNullCheck(object, dex_pc));
681  if (is_put) {
682    Temporaries temps(graph_);
683    HInstruction* null_check = current_block_->GetLastInstruction();
684    // We need one temporary for the null check.
685    temps.Add(null_check);
686    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
687    current_block_->AddInstruction(new (arena_) HInstanceFieldSet(
688        null_check,
689        value,
690        field_type,
691        resolved_field->GetOffset(),
692        resolved_field->IsVolatile()));
693  } else {
694    current_block_->AddInstruction(new (arena_) HInstanceFieldGet(
695        current_block_->GetLastInstruction(),
696        field_type,
697        resolved_field->GetOffset(),
698        resolved_field->IsVolatile()));
699
700    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
701  }
702  return true;
703}
704
705bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
706                                           uint32_t dex_pc,
707                                           bool is_put) {
708  uint32_t source_or_dest_reg = instruction.VRegA_21c();
709  uint16_t field_index = instruction.VRegB_21c();
710
711  ScopedObjectAccess soa(Thread::Current());
712  StackHandleScope<4> hs(soa.Self());
713  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
714      dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile())));
715  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
716      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
717  Handle<mirror::ArtField> resolved_field(hs.NewHandle(compiler_driver_->ResolveField(
718      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true)));
719
720  if (resolved_field.Get() == nullptr) {
721    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
722    return false;
723  }
724
725  Handle<mirror::Class> referrer_class(hs.NewHandle(compiler_driver_->ResolveCompilingMethodsClass(
726      soa, dex_cache, class_loader, outer_compilation_unit_)));
727
728  // The index at which the field's class is stored in the DexCache's type array.
729  uint32_t storage_index;
730  std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
731      dex_cache.Get(), referrer_class.Get(), resolved_field.Get(), field_index, &storage_index);
732  bool can_easily_access = is_put ? pair.second : pair.first;
733  if (!can_easily_access) {
734    return false;
735  }
736
737  // TODO: find out why this check is needed.
738  bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
739      *outer_compilation_unit_->GetDexFile(), storage_index);
740  bool is_initialized = resolved_field->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
741  bool is_referrer_class = (referrer_class.Get() == resolved_field->GetDeclaringClass());
742
743  HLoadClass* constant = new (arena_) HLoadClass(storage_index, is_referrer_class, dex_pc);
744  current_block_->AddInstruction(constant);
745
746  HInstruction* cls = constant;
747  if (!is_initialized && !is_referrer_class) {
748    cls = new (arena_) HClinitCheck(constant, dex_pc);
749    current_block_->AddInstruction(cls);
750  }
751
752  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
753  if (is_put) {
754    // We need to keep the class alive before loading the value.
755    Temporaries temps(graph_);
756    temps.Add(cls);
757    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
758    DCHECK_EQ(value->GetType(), field_type);
759    current_block_->AddInstruction(
760        new (arena_) HStaticFieldSet(cls, value, field_type, resolved_field->GetOffset(),
761            resolved_field->IsVolatile()));
762  } else {
763    current_block_->AddInstruction(
764        new (arena_) HStaticFieldGet(cls, field_type, resolved_field->GetOffset(),
765            resolved_field->IsVolatile()));
766    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
767  }
768  return true;
769}
770
771void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
772                                       uint16_t first_vreg,
773                                       int64_t second_vreg_or_constant,
774                                       uint32_t dex_pc,
775                                       Primitive::Type type,
776                                       bool second_is_constant,
777                                       bool isDiv) {
778  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
779
780  HInstruction* first = LoadLocal(first_vreg, type);
781  HInstruction* second = nullptr;
782  if (second_is_constant) {
783    if (type == Primitive::kPrimInt) {
784      second = GetIntConstant(second_vreg_or_constant);
785    } else {
786      second = GetLongConstant(second_vreg_or_constant);
787    }
788  } else {
789    second = LoadLocal(second_vreg_or_constant, type);
790  }
791
792  if (!second_is_constant
793      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
794      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
795    second = new (arena_) HDivZeroCheck(second, dex_pc);
796    Temporaries temps(graph_);
797    current_block_->AddInstruction(second);
798    temps.Add(current_block_->GetLastInstruction());
799  }
800
801  if (isDiv) {
802    current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
803  } else {
804    current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
805  }
806  UpdateLocal(out_vreg, current_block_->GetLastInstruction());
807}
808
809void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
810                                     uint32_t dex_pc,
811                                     bool is_put,
812                                     Primitive::Type anticipated_type) {
813  uint8_t source_or_dest_reg = instruction.VRegA_23x();
814  uint8_t array_reg = instruction.VRegB_23x();
815  uint8_t index_reg = instruction.VRegC_23x();
816
817  // We need one temporary for the null check, one for the index, and one for the length.
818  Temporaries temps(graph_);
819
820  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot);
821  object = new (arena_) HNullCheck(object, dex_pc);
822  current_block_->AddInstruction(object);
823  temps.Add(object);
824
825  HInstruction* length = new (arena_) HArrayLength(object);
826  current_block_->AddInstruction(length);
827  temps.Add(length);
828  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
829  index = new (arena_) HBoundsCheck(index, length, dex_pc);
830  current_block_->AddInstruction(index);
831  temps.Add(index);
832  if (is_put) {
833    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
834    // TODO: Insert a type check node if the type is Object.
835    current_block_->AddInstruction(new (arena_) HArraySet(
836        object, index, value, anticipated_type, dex_pc));
837  } else {
838    current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type));
839    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
840  }
841}
842
843void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
844                                        uint32_t type_index,
845                                        uint32_t number_of_vreg_arguments,
846                                        bool is_range,
847                                        uint32_t* args,
848                                        uint32_t register_index) {
849  HInstruction* length = GetIntConstant(number_of_vreg_arguments);
850  HInstruction* object = new (arena_) HNewArray(length, dex_pc, type_index);
851  current_block_->AddInstruction(object);
852
853  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
854  DCHECK_EQ(descriptor[0], '[') << descriptor;
855  char primitive = descriptor[1];
856  DCHECK(primitive == 'I'
857      || primitive == 'L'
858      || primitive == '[') << descriptor;
859  bool is_reference_array = (primitive == 'L') || (primitive == '[');
860  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
861
862  Temporaries temps(graph_);
863  temps.Add(object);
864  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
865    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
866    HInstruction* index = GetIntConstant(i);
867    current_block_->AddInstruction(
868        new (arena_) HArraySet(object, index, value, type, dex_pc));
869  }
870  latest_result_ = object;
871}
872
873template <typename T>
874void HGraphBuilder::BuildFillArrayData(HInstruction* object,
875                                       const T* data,
876                                       uint32_t element_count,
877                                       Primitive::Type anticipated_type,
878                                       uint32_t dex_pc) {
879  for (uint32_t i = 0; i < element_count; ++i) {
880    HInstruction* index = GetIntConstant(i);
881    HInstruction* value = GetIntConstant(data[i]);
882    current_block_->AddInstruction(new (arena_) HArraySet(
883      object, index, value, anticipated_type, dex_pc));
884  }
885}
886
887void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
888  Temporaries temps(graph_);
889  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot);
890  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
891  current_block_->AddInstruction(null_check);
892  temps.Add(null_check);
893
894  HInstruction* length = new (arena_) HArrayLength(null_check);
895  current_block_->AddInstruction(length);
896
897  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
898  const Instruction::ArrayDataPayload* payload =
899      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
900  const uint8_t* data = payload->data;
901  uint32_t element_count = payload->element_count;
902
903  // Implementation of this DEX instruction seems to be that the bounds check is
904  // done before doing any stores.
905  HInstruction* last_index = GetIntConstant(payload->element_count - 1);
906  current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
907
908  switch (payload->element_width) {
909    case 1:
910      BuildFillArrayData(null_check,
911                         reinterpret_cast<const int8_t*>(data),
912                         element_count,
913                         Primitive::kPrimByte,
914                         dex_pc);
915      break;
916    case 2:
917      BuildFillArrayData(null_check,
918                         reinterpret_cast<const int16_t*>(data),
919                         element_count,
920                         Primitive::kPrimShort,
921                         dex_pc);
922      break;
923    case 4:
924      BuildFillArrayData(null_check,
925                         reinterpret_cast<const int32_t*>(data),
926                         element_count,
927                         Primitive::kPrimInt,
928                         dex_pc);
929      break;
930    case 8:
931      BuildFillWideArrayData(null_check,
932                             reinterpret_cast<const int64_t*>(data),
933                             element_count,
934                             dex_pc);
935      break;
936    default:
937      LOG(FATAL) << "Unknown element width for " << payload->element_width;
938  }
939}
940
941void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
942                                           const int64_t* data,
943                                           uint32_t element_count,
944                                           uint32_t dex_pc) {
945  for (uint32_t i = 0; i < element_count; ++i) {
946    HInstruction* index = GetIntConstant(i);
947    HInstruction* value = GetLongConstant(data[i]);
948    current_block_->AddInstruction(new (arena_) HArraySet(
949      object, index, value, Primitive::kPrimLong, dex_pc));
950  }
951}
952
953bool HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
954                                   uint8_t destination,
955                                   uint8_t reference,
956                                   uint16_t type_index,
957                                   uint32_t dex_pc) {
958  bool type_known_final;
959  bool type_known_abstract;
960  // `CanAccessTypeWithoutChecks` will tell whether the method being
961  // built is trying to access its own class, so that the generated
962  // code can optimize for this case. However, the optimization does not
963  // work for inlining, so we use `IsCompilingClass` instead.
964  bool dont_use_is_referrers_class;
965  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
966      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
967      &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
968  if (!can_access) {
969    MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
970    return false;
971  }
972  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
973  HLoadClass* cls = new (arena_) HLoadClass(type_index, IsCompilingClass(type_index), dex_pc);
974  current_block_->AddInstruction(cls);
975  // The class needs a temporary before being used by the type check.
976  Temporaries temps(graph_);
977  temps.Add(cls);
978  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
979    current_block_->AddInstruction(
980        new (arena_) HInstanceOf(object, cls, type_known_final, dex_pc));
981    UpdateLocal(destination, current_block_->GetLastInstruction());
982  } else {
983    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
984    current_block_->AddInstruction(
985        new (arena_) HCheckCast(object, cls, type_known_final, dex_pc));
986  }
987  return true;
988}
989
990void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
991  SwitchTable table(instruction, dex_pc, false);
992
993  // Value to test against.
994  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
995
996  uint16_t num_entries = table.GetNumEntries();
997  // There should be at least one entry here.
998  DCHECK_GT(num_entries, 0U);
999
1000  // Chained cmp-and-branch, starting from starting_key.
1001  int32_t starting_key = table.GetEntryAt(0);
1002
1003  for (size_t i = 1; i <= num_entries; i++) {
1004    BuildSwitchCaseHelper(instruction, i, i == num_entries, table, value, starting_key + i - 1,
1005                          table.GetEntryAt(i), dex_pc);
1006  }
1007}
1008
1009void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
1010  SwitchTable table(instruction, dex_pc, true);
1011
1012  // Value to test against.
1013  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
1014
1015  uint16_t num_entries = table.GetNumEntries();
1016  // There should be at least one entry here.
1017  DCHECK_GT(num_entries, 0U);
1018
1019  for (size_t i = 0; i < num_entries; i++) {
1020    BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
1021                          table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
1022  }
1023}
1024
1025void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
1026                                          bool is_last_case, const SwitchTable& table,
1027                                          HInstruction* value, int32_t case_value_int,
1028                                          int32_t target_offset, uint32_t dex_pc) {
1029  PotentiallyAddSuspendCheck(target_offset, dex_pc);
1030
1031  // The current case's value.
1032  HInstruction* this_case_value = GetIntConstant(case_value_int);
1033
1034  // Compare value and this_case_value.
1035  HEqual* comparison = new (arena_) HEqual(value, this_case_value);
1036  current_block_->AddInstruction(comparison);
1037  HInstruction* ifinst = new (arena_) HIf(comparison);
1038  current_block_->AddInstruction(ifinst);
1039
1040  // Case hit: use the target offset to determine where to go.
1041  HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1042  DCHECK(case_target != nullptr);
1043  current_block_->AddSuccessor(case_target);
1044
1045  // Case miss: go to the next case (or default fall-through).
1046  // When there is a next case, we use the block stored with the table offset representing this
1047  // case (that is where we registered them in ComputeBranchTargets).
1048  // When there is no next case, we use the following instruction.
1049  // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
1050  if (!is_last_case) {
1051    HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
1052    DCHECK(next_case_target != nullptr);
1053    current_block_->AddSuccessor(next_case_target);
1054
1055    // Need to manually add the block, as there is no dex-pc transition for the cases.
1056    graph_->AddBlock(next_case_target);
1057
1058    current_block_ = next_case_target;
1059  } else {
1060    HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1061    DCHECK(default_target != nullptr);
1062    current_block_->AddSuccessor(default_target);
1063    current_block_ = nullptr;
1064  }
1065}
1066
1067void HGraphBuilder::PotentiallyAddSuspendCheck(int32_t target_offset, uint32_t dex_pc) {
1068  if (target_offset <= 0) {
1069    // Unconditionnally add a suspend check to backward branches. We can remove
1070    // them after we recognize loops in the graph.
1071    current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
1072  }
1073}
1074
1075bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1076  if (current_block_ == nullptr) {
1077    return true;  // Dead code
1078  }
1079
1080  switch (instruction.Opcode()) {
1081    case Instruction::CONST_4: {
1082      int32_t register_index = instruction.VRegA();
1083      HIntConstant* constant = GetIntConstant(instruction.VRegB_11n());
1084      UpdateLocal(register_index, constant);
1085      break;
1086    }
1087
1088    case Instruction::CONST_16: {
1089      int32_t register_index = instruction.VRegA();
1090      HIntConstant* constant = GetIntConstant(instruction.VRegB_21s());
1091      UpdateLocal(register_index, constant);
1092      break;
1093    }
1094
1095    case Instruction::CONST: {
1096      int32_t register_index = instruction.VRegA();
1097      HIntConstant* constant = GetIntConstant(instruction.VRegB_31i());
1098      UpdateLocal(register_index, constant);
1099      break;
1100    }
1101
1102    case Instruction::CONST_HIGH16: {
1103      int32_t register_index = instruction.VRegA();
1104      HIntConstant* constant = GetIntConstant(instruction.VRegB_21h() << 16);
1105      UpdateLocal(register_index, constant);
1106      break;
1107    }
1108
1109    case Instruction::CONST_WIDE_16: {
1110      int32_t register_index = instruction.VRegA();
1111      // Get 16 bits of constant value, sign extended to 64 bits.
1112      int64_t value = instruction.VRegB_21s();
1113      value <<= 48;
1114      value >>= 48;
1115      HLongConstant* constant = GetLongConstant(value);
1116      UpdateLocal(register_index, constant);
1117      break;
1118    }
1119
1120    case Instruction::CONST_WIDE_32: {
1121      int32_t register_index = instruction.VRegA();
1122      // Get 32 bits of constant value, sign extended to 64 bits.
1123      int64_t value = instruction.VRegB_31i();
1124      value <<= 32;
1125      value >>= 32;
1126      HLongConstant* constant = GetLongConstant(value);
1127      UpdateLocal(register_index, constant);
1128      break;
1129    }
1130
1131    case Instruction::CONST_WIDE: {
1132      int32_t register_index = instruction.VRegA();
1133      HLongConstant* constant = GetLongConstant(instruction.VRegB_51l());
1134      UpdateLocal(register_index, constant);
1135      break;
1136    }
1137
1138    case Instruction::CONST_WIDE_HIGH16: {
1139      int32_t register_index = instruction.VRegA();
1140      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
1141      HLongConstant* constant = GetLongConstant(value);
1142      UpdateLocal(register_index, constant);
1143      break;
1144    }
1145
1146    // Note that the SSA building will refine the types.
1147    case Instruction::MOVE:
1148    case Instruction::MOVE_FROM16:
1149    case Instruction::MOVE_16: {
1150      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
1151      UpdateLocal(instruction.VRegA(), value);
1152      break;
1153    }
1154
1155    // Note that the SSA building will refine the types.
1156    case Instruction::MOVE_WIDE:
1157    case Instruction::MOVE_WIDE_FROM16:
1158    case Instruction::MOVE_WIDE_16: {
1159      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
1160      UpdateLocal(instruction.VRegA(), value);
1161      break;
1162    }
1163
1164    case Instruction::MOVE_OBJECT:
1165    case Instruction::MOVE_OBJECT_16:
1166    case Instruction::MOVE_OBJECT_FROM16: {
1167      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
1168      UpdateLocal(instruction.VRegA(), value);
1169      break;
1170    }
1171
1172    case Instruction::RETURN_VOID: {
1173      BuildReturn(instruction, Primitive::kPrimVoid);
1174      break;
1175    }
1176
1177#define IF_XX(comparison, cond) \
1178    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
1179    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
1180
1181    IF_XX(HEqual, EQ);
1182    IF_XX(HNotEqual, NE);
1183    IF_XX(HLessThan, LT);
1184    IF_XX(HLessThanOrEqual, LE);
1185    IF_XX(HGreaterThan, GT);
1186    IF_XX(HGreaterThanOrEqual, GE);
1187
1188    case Instruction::GOTO:
1189    case Instruction::GOTO_16:
1190    case Instruction::GOTO_32: {
1191      int32_t offset = instruction.GetTargetOffset();
1192      PotentiallyAddSuspendCheck(offset, dex_pc);
1193      HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
1194      DCHECK(target != nullptr);
1195      current_block_->AddInstruction(new (arena_) HGoto());
1196      current_block_->AddSuccessor(target);
1197      current_block_ = nullptr;
1198      break;
1199    }
1200
1201    case Instruction::RETURN: {
1202      DCHECK_NE(return_type_, Primitive::kPrimNot);
1203      DCHECK_NE(return_type_, Primitive::kPrimLong);
1204      DCHECK_NE(return_type_, Primitive::kPrimDouble);
1205      BuildReturn(instruction, return_type_);
1206      break;
1207    }
1208
1209    case Instruction::RETURN_OBJECT: {
1210      DCHECK(return_type_ == Primitive::kPrimNot);
1211      BuildReturn(instruction, return_type_);
1212      break;
1213    }
1214
1215    case Instruction::RETURN_WIDE: {
1216      DCHECK(return_type_ == Primitive::kPrimDouble || return_type_ == Primitive::kPrimLong);
1217      BuildReturn(instruction, return_type_);
1218      break;
1219    }
1220
1221    case Instruction::INVOKE_DIRECT:
1222    case Instruction::INVOKE_INTERFACE:
1223    case Instruction::INVOKE_STATIC:
1224    case Instruction::INVOKE_SUPER:
1225    case Instruction::INVOKE_VIRTUAL: {
1226      uint32_t method_idx = instruction.VRegB_35c();
1227      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
1228      uint32_t args[5];
1229      instruction.GetVarArgs(args);
1230      if (!BuildInvoke(instruction, dex_pc, method_idx,
1231                       number_of_vreg_arguments, false, args, -1)) {
1232        return false;
1233      }
1234      break;
1235    }
1236
1237    case Instruction::INVOKE_DIRECT_RANGE:
1238    case Instruction::INVOKE_INTERFACE_RANGE:
1239    case Instruction::INVOKE_STATIC_RANGE:
1240    case Instruction::INVOKE_SUPER_RANGE:
1241    case Instruction::INVOKE_VIRTUAL_RANGE: {
1242      uint32_t method_idx = instruction.VRegB_3rc();
1243      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
1244      uint32_t register_index = instruction.VRegC();
1245      if (!BuildInvoke(instruction, dex_pc, method_idx,
1246                       number_of_vreg_arguments, true, nullptr, register_index)) {
1247        return false;
1248      }
1249      break;
1250    }
1251
1252    case Instruction::NEG_INT: {
1253      Unop_12x<HNeg>(instruction, Primitive::kPrimInt);
1254      break;
1255    }
1256
1257    case Instruction::NEG_LONG: {
1258      Unop_12x<HNeg>(instruction, Primitive::kPrimLong);
1259      break;
1260    }
1261
1262    case Instruction::NEG_FLOAT: {
1263      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat);
1264      break;
1265    }
1266
1267    case Instruction::NEG_DOUBLE: {
1268      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble);
1269      break;
1270    }
1271
1272    case Instruction::NOT_INT: {
1273      Unop_12x<HNot>(instruction, Primitive::kPrimInt);
1274      break;
1275    }
1276
1277    case Instruction::NOT_LONG: {
1278      Unop_12x<HNot>(instruction, Primitive::kPrimLong);
1279      break;
1280    }
1281
1282    case Instruction::INT_TO_LONG: {
1283      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
1284      break;
1285    }
1286
1287    case Instruction::INT_TO_FLOAT: {
1288      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
1289      break;
1290    }
1291
1292    case Instruction::INT_TO_DOUBLE: {
1293      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
1294      break;
1295    }
1296
1297    case Instruction::LONG_TO_INT: {
1298      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
1299      break;
1300    }
1301
1302    case Instruction::LONG_TO_FLOAT: {
1303      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
1304      break;
1305    }
1306
1307    case Instruction::LONG_TO_DOUBLE: {
1308      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
1309      break;
1310    }
1311
1312    case Instruction::FLOAT_TO_INT: {
1313      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
1314      break;
1315    }
1316
1317    case Instruction::FLOAT_TO_LONG: {
1318      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
1319      break;
1320    }
1321
1322    case Instruction::FLOAT_TO_DOUBLE: {
1323      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
1324      break;
1325    }
1326
1327    case Instruction::DOUBLE_TO_INT: {
1328      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
1329      break;
1330    }
1331
1332    case Instruction::DOUBLE_TO_LONG: {
1333      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
1334      break;
1335    }
1336
1337    case Instruction::DOUBLE_TO_FLOAT: {
1338      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
1339      break;
1340    }
1341
1342    case Instruction::INT_TO_BYTE: {
1343      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
1344      break;
1345    }
1346
1347    case Instruction::INT_TO_SHORT: {
1348      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
1349      break;
1350    }
1351
1352    case Instruction::INT_TO_CHAR: {
1353      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
1354      break;
1355    }
1356
1357    case Instruction::ADD_INT: {
1358      Binop_23x<HAdd>(instruction, Primitive::kPrimInt);
1359      break;
1360    }
1361
1362    case Instruction::ADD_LONG: {
1363      Binop_23x<HAdd>(instruction, Primitive::kPrimLong);
1364      break;
1365    }
1366
1367    case Instruction::ADD_DOUBLE: {
1368      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble);
1369      break;
1370    }
1371
1372    case Instruction::ADD_FLOAT: {
1373      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat);
1374      break;
1375    }
1376
1377    case Instruction::SUB_INT: {
1378      Binop_23x<HSub>(instruction, Primitive::kPrimInt);
1379      break;
1380    }
1381
1382    case Instruction::SUB_LONG: {
1383      Binop_23x<HSub>(instruction, Primitive::kPrimLong);
1384      break;
1385    }
1386
1387    case Instruction::SUB_FLOAT: {
1388      Binop_23x<HSub>(instruction, Primitive::kPrimFloat);
1389      break;
1390    }
1391
1392    case Instruction::SUB_DOUBLE: {
1393      Binop_23x<HSub>(instruction, Primitive::kPrimDouble);
1394      break;
1395    }
1396
1397    case Instruction::ADD_INT_2ADDR: {
1398      Binop_12x<HAdd>(instruction, Primitive::kPrimInt);
1399      break;
1400    }
1401
1402    case Instruction::MUL_INT: {
1403      Binop_23x<HMul>(instruction, Primitive::kPrimInt);
1404      break;
1405    }
1406
1407    case Instruction::MUL_LONG: {
1408      Binop_23x<HMul>(instruction, Primitive::kPrimLong);
1409      break;
1410    }
1411
1412    case Instruction::MUL_FLOAT: {
1413      Binop_23x<HMul>(instruction, Primitive::kPrimFloat);
1414      break;
1415    }
1416
1417    case Instruction::MUL_DOUBLE: {
1418      Binop_23x<HMul>(instruction, Primitive::kPrimDouble);
1419      break;
1420    }
1421
1422    case Instruction::DIV_INT: {
1423      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1424                         dex_pc, Primitive::kPrimInt, false, true);
1425      break;
1426    }
1427
1428    case Instruction::DIV_LONG: {
1429      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1430                         dex_pc, Primitive::kPrimLong, false, true);
1431      break;
1432    }
1433
1434    case Instruction::DIV_FLOAT: {
1435      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
1436      break;
1437    }
1438
1439    case Instruction::DIV_DOUBLE: {
1440      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
1441      break;
1442    }
1443
1444    case Instruction::REM_INT: {
1445      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1446                         dex_pc, Primitive::kPrimInt, false, false);
1447      break;
1448    }
1449
1450    case Instruction::REM_LONG: {
1451      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1452                         dex_pc, Primitive::kPrimLong, false, false);
1453      break;
1454    }
1455
1456    case Instruction::REM_FLOAT: {
1457      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
1458      break;
1459    }
1460
1461    case Instruction::REM_DOUBLE: {
1462      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
1463      break;
1464    }
1465
1466    case Instruction::AND_INT: {
1467      Binop_23x<HAnd>(instruction, Primitive::kPrimInt);
1468      break;
1469    }
1470
1471    case Instruction::AND_LONG: {
1472      Binop_23x<HAnd>(instruction, Primitive::kPrimLong);
1473      break;
1474    }
1475
1476    case Instruction::SHL_INT: {
1477      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt);
1478      break;
1479    }
1480
1481    case Instruction::SHL_LONG: {
1482      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong);
1483      break;
1484    }
1485
1486    case Instruction::SHR_INT: {
1487      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt);
1488      break;
1489    }
1490
1491    case Instruction::SHR_LONG: {
1492      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong);
1493      break;
1494    }
1495
1496    case Instruction::USHR_INT: {
1497      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt);
1498      break;
1499    }
1500
1501    case Instruction::USHR_LONG: {
1502      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong);
1503      break;
1504    }
1505
1506    case Instruction::OR_INT: {
1507      Binop_23x<HOr>(instruction, Primitive::kPrimInt);
1508      break;
1509    }
1510
1511    case Instruction::OR_LONG: {
1512      Binop_23x<HOr>(instruction, Primitive::kPrimLong);
1513      break;
1514    }
1515
1516    case Instruction::XOR_INT: {
1517      Binop_23x<HXor>(instruction, Primitive::kPrimInt);
1518      break;
1519    }
1520
1521    case Instruction::XOR_LONG: {
1522      Binop_23x<HXor>(instruction, Primitive::kPrimLong);
1523      break;
1524    }
1525
1526    case Instruction::ADD_LONG_2ADDR: {
1527      Binop_12x<HAdd>(instruction, Primitive::kPrimLong);
1528      break;
1529    }
1530
1531    case Instruction::ADD_DOUBLE_2ADDR: {
1532      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble);
1533      break;
1534    }
1535
1536    case Instruction::ADD_FLOAT_2ADDR: {
1537      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat);
1538      break;
1539    }
1540
1541    case Instruction::SUB_INT_2ADDR: {
1542      Binop_12x<HSub>(instruction, Primitive::kPrimInt);
1543      break;
1544    }
1545
1546    case Instruction::SUB_LONG_2ADDR: {
1547      Binop_12x<HSub>(instruction, Primitive::kPrimLong);
1548      break;
1549    }
1550
1551    case Instruction::SUB_FLOAT_2ADDR: {
1552      Binop_12x<HSub>(instruction, Primitive::kPrimFloat);
1553      break;
1554    }
1555
1556    case Instruction::SUB_DOUBLE_2ADDR: {
1557      Binop_12x<HSub>(instruction, Primitive::kPrimDouble);
1558      break;
1559    }
1560
1561    case Instruction::MUL_INT_2ADDR: {
1562      Binop_12x<HMul>(instruction, Primitive::kPrimInt);
1563      break;
1564    }
1565
1566    case Instruction::MUL_LONG_2ADDR: {
1567      Binop_12x<HMul>(instruction, Primitive::kPrimLong);
1568      break;
1569    }
1570
1571    case Instruction::MUL_FLOAT_2ADDR: {
1572      Binop_12x<HMul>(instruction, Primitive::kPrimFloat);
1573      break;
1574    }
1575
1576    case Instruction::MUL_DOUBLE_2ADDR: {
1577      Binop_12x<HMul>(instruction, Primitive::kPrimDouble);
1578      break;
1579    }
1580
1581    case Instruction::DIV_INT_2ADDR: {
1582      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1583                         dex_pc, Primitive::kPrimInt, false, true);
1584      break;
1585    }
1586
1587    case Instruction::DIV_LONG_2ADDR: {
1588      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1589                         dex_pc, Primitive::kPrimLong, false, true);
1590      break;
1591    }
1592
1593    case Instruction::REM_INT_2ADDR: {
1594      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1595                         dex_pc, Primitive::kPrimInt, false, false);
1596      break;
1597    }
1598
1599    case Instruction::REM_LONG_2ADDR: {
1600      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1601                         dex_pc, Primitive::kPrimLong, false, false);
1602      break;
1603    }
1604
1605    case Instruction::REM_FLOAT_2ADDR: {
1606      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
1607      break;
1608    }
1609
1610    case Instruction::REM_DOUBLE_2ADDR: {
1611      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
1612      break;
1613    }
1614
1615    case Instruction::SHL_INT_2ADDR: {
1616      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt);
1617      break;
1618    }
1619
1620    case Instruction::SHL_LONG_2ADDR: {
1621      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong);
1622      break;
1623    }
1624
1625    case Instruction::SHR_INT_2ADDR: {
1626      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt);
1627      break;
1628    }
1629
1630    case Instruction::SHR_LONG_2ADDR: {
1631      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong);
1632      break;
1633    }
1634
1635    case Instruction::USHR_INT_2ADDR: {
1636      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt);
1637      break;
1638    }
1639
1640    case Instruction::USHR_LONG_2ADDR: {
1641      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong);
1642      break;
1643    }
1644
1645    case Instruction::DIV_FLOAT_2ADDR: {
1646      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
1647      break;
1648    }
1649
1650    case Instruction::DIV_DOUBLE_2ADDR: {
1651      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
1652      break;
1653    }
1654
1655    case Instruction::AND_INT_2ADDR: {
1656      Binop_12x<HAnd>(instruction, Primitive::kPrimInt);
1657      break;
1658    }
1659
1660    case Instruction::AND_LONG_2ADDR: {
1661      Binop_12x<HAnd>(instruction, Primitive::kPrimLong);
1662      break;
1663    }
1664
1665    case Instruction::OR_INT_2ADDR: {
1666      Binop_12x<HOr>(instruction, Primitive::kPrimInt);
1667      break;
1668    }
1669
1670    case Instruction::OR_LONG_2ADDR: {
1671      Binop_12x<HOr>(instruction, Primitive::kPrimLong);
1672      break;
1673    }
1674
1675    case Instruction::XOR_INT_2ADDR: {
1676      Binop_12x<HXor>(instruction, Primitive::kPrimInt);
1677      break;
1678    }
1679
1680    case Instruction::XOR_LONG_2ADDR: {
1681      Binop_12x<HXor>(instruction, Primitive::kPrimLong);
1682      break;
1683    }
1684
1685    case Instruction::ADD_INT_LIT16: {
1686      Binop_22s<HAdd>(instruction, false);
1687      break;
1688    }
1689
1690    case Instruction::AND_INT_LIT16: {
1691      Binop_22s<HAnd>(instruction, false);
1692      break;
1693    }
1694
1695    case Instruction::OR_INT_LIT16: {
1696      Binop_22s<HOr>(instruction, false);
1697      break;
1698    }
1699
1700    case Instruction::XOR_INT_LIT16: {
1701      Binop_22s<HXor>(instruction, false);
1702      break;
1703    }
1704
1705    case Instruction::RSUB_INT: {
1706      Binop_22s<HSub>(instruction, true);
1707      break;
1708    }
1709
1710    case Instruction::MUL_INT_LIT16: {
1711      Binop_22s<HMul>(instruction, false);
1712      break;
1713    }
1714
1715    case Instruction::ADD_INT_LIT8: {
1716      Binop_22b<HAdd>(instruction, false);
1717      break;
1718    }
1719
1720    case Instruction::AND_INT_LIT8: {
1721      Binop_22b<HAnd>(instruction, false);
1722      break;
1723    }
1724
1725    case Instruction::OR_INT_LIT8: {
1726      Binop_22b<HOr>(instruction, false);
1727      break;
1728    }
1729
1730    case Instruction::XOR_INT_LIT8: {
1731      Binop_22b<HXor>(instruction, false);
1732      break;
1733    }
1734
1735    case Instruction::RSUB_INT_LIT8: {
1736      Binop_22b<HSub>(instruction, true);
1737      break;
1738    }
1739
1740    case Instruction::MUL_INT_LIT8: {
1741      Binop_22b<HMul>(instruction, false);
1742      break;
1743    }
1744
1745    case Instruction::DIV_INT_LIT16:
1746    case Instruction::DIV_INT_LIT8: {
1747      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1748                         dex_pc, Primitive::kPrimInt, true, true);
1749      break;
1750    }
1751
1752    case Instruction::REM_INT_LIT16:
1753    case Instruction::REM_INT_LIT8: {
1754      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1755                         dex_pc, Primitive::kPrimInt, true, false);
1756      break;
1757    }
1758
1759    case Instruction::SHL_INT_LIT8: {
1760      Binop_22b<HShl>(instruction, false);
1761      break;
1762    }
1763
1764    case Instruction::SHR_INT_LIT8: {
1765      Binop_22b<HShr>(instruction, false);
1766      break;
1767    }
1768
1769    case Instruction::USHR_INT_LIT8: {
1770      Binop_22b<HUShr>(instruction, false);
1771      break;
1772    }
1773
1774    case Instruction::NEW_INSTANCE: {
1775      current_block_->AddInstruction(
1776          new (arena_) HNewInstance(dex_pc, instruction.VRegB_21c()));
1777      UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
1778      break;
1779    }
1780
1781    case Instruction::NEW_ARRAY: {
1782      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
1783      current_block_->AddInstruction(
1784          new (arena_) HNewArray(length, dex_pc, instruction.VRegC_22c()));
1785      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
1786      break;
1787    }
1788
1789    case Instruction::FILLED_NEW_ARRAY: {
1790      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
1791      uint32_t type_index = instruction.VRegB_35c();
1792      uint32_t args[5];
1793      instruction.GetVarArgs(args);
1794      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
1795      break;
1796    }
1797
1798    case Instruction::FILLED_NEW_ARRAY_RANGE: {
1799      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
1800      uint32_t type_index = instruction.VRegB_3rc();
1801      uint32_t register_index = instruction.VRegC_3rc();
1802      BuildFilledNewArray(
1803          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
1804      break;
1805    }
1806
1807    case Instruction::FILL_ARRAY_DATA: {
1808      BuildFillArrayData(instruction, dex_pc);
1809      break;
1810    }
1811
1812    case Instruction::MOVE_RESULT:
1813    case Instruction::MOVE_RESULT_WIDE:
1814    case Instruction::MOVE_RESULT_OBJECT:
1815      UpdateLocal(instruction.VRegA(), latest_result_);
1816      latest_result_ = nullptr;
1817      break;
1818
1819    case Instruction::CMP_LONG: {
1820      Binop_23x_cmp(instruction, Primitive::kPrimLong, HCompare::kNoBias);
1821      break;
1822    }
1823
1824    case Instruction::CMPG_FLOAT: {
1825      Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kGtBias);
1826      break;
1827    }
1828
1829    case Instruction::CMPG_DOUBLE: {
1830      Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kGtBias);
1831      break;
1832    }
1833
1834    case Instruction::CMPL_FLOAT: {
1835      Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kLtBias);
1836      break;
1837    }
1838
1839    case Instruction::CMPL_DOUBLE: {
1840      Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kLtBias);
1841      break;
1842    }
1843
1844    case Instruction::NOP:
1845      break;
1846
1847    case Instruction::IGET:
1848    case Instruction::IGET_WIDE:
1849    case Instruction::IGET_OBJECT:
1850    case Instruction::IGET_BOOLEAN:
1851    case Instruction::IGET_BYTE:
1852    case Instruction::IGET_CHAR:
1853    case Instruction::IGET_SHORT: {
1854      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
1855        return false;
1856      }
1857      break;
1858    }
1859
1860    case Instruction::IPUT:
1861    case Instruction::IPUT_WIDE:
1862    case Instruction::IPUT_OBJECT:
1863    case Instruction::IPUT_BOOLEAN:
1864    case Instruction::IPUT_BYTE:
1865    case Instruction::IPUT_CHAR:
1866    case Instruction::IPUT_SHORT: {
1867      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
1868        return false;
1869      }
1870      break;
1871    }
1872
1873    case Instruction::SGET:
1874    case Instruction::SGET_WIDE:
1875    case Instruction::SGET_OBJECT:
1876    case Instruction::SGET_BOOLEAN:
1877    case Instruction::SGET_BYTE:
1878    case Instruction::SGET_CHAR:
1879    case Instruction::SGET_SHORT: {
1880      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
1881        return false;
1882      }
1883      break;
1884    }
1885
1886    case Instruction::SPUT:
1887    case Instruction::SPUT_WIDE:
1888    case Instruction::SPUT_OBJECT:
1889    case Instruction::SPUT_BOOLEAN:
1890    case Instruction::SPUT_BYTE:
1891    case Instruction::SPUT_CHAR:
1892    case Instruction::SPUT_SHORT: {
1893      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
1894        return false;
1895      }
1896      break;
1897    }
1898
1899#define ARRAY_XX(kind, anticipated_type)                                          \
1900    case Instruction::AGET##kind: {                                               \
1901      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
1902      break;                                                                      \
1903    }                                                                             \
1904    case Instruction::APUT##kind: {                                               \
1905      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
1906      break;                                                                      \
1907    }
1908
1909    ARRAY_XX(, Primitive::kPrimInt);
1910    ARRAY_XX(_WIDE, Primitive::kPrimLong);
1911    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
1912    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
1913    ARRAY_XX(_BYTE, Primitive::kPrimByte);
1914    ARRAY_XX(_CHAR, Primitive::kPrimChar);
1915    ARRAY_XX(_SHORT, Primitive::kPrimShort);
1916
1917    case Instruction::ARRAY_LENGTH: {
1918      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot);
1919      // No need for a temporary for the null check, it is the only input of the following
1920      // instruction.
1921      object = new (arena_) HNullCheck(object, dex_pc);
1922      current_block_->AddInstruction(object);
1923      current_block_->AddInstruction(new (arena_) HArrayLength(object));
1924      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
1925      break;
1926    }
1927
1928    case Instruction::CONST_STRING: {
1929      current_block_->AddInstruction(new (arena_) HLoadString(instruction.VRegB_21c(), dex_pc));
1930      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
1931      break;
1932    }
1933
1934    case Instruction::CONST_STRING_JUMBO: {
1935      current_block_->AddInstruction(new (arena_) HLoadString(instruction.VRegB_31c(), dex_pc));
1936      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
1937      break;
1938    }
1939
1940    case Instruction::CONST_CLASS: {
1941      uint16_t type_index = instruction.VRegB_21c();
1942      bool type_known_final;
1943      bool type_known_abstract;
1944      bool dont_use_is_referrers_class;
1945      // `CanAccessTypeWithoutChecks` will tell whether the method being
1946      // built is trying to access its own class, so that the generated
1947      // code can optimize for this case. However, the optimization does not
1948      // work for inlining, so we use `IsCompilingClass` instead.
1949      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
1950          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
1951          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
1952      if (!can_access) {
1953        MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
1954        return false;
1955      }
1956      current_block_->AddInstruction(
1957          new (arena_) HLoadClass(type_index, IsCompilingClass(type_index), dex_pc));
1958      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
1959      break;
1960    }
1961
1962    case Instruction::MOVE_EXCEPTION: {
1963      current_block_->AddInstruction(new (arena_) HLoadException());
1964      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
1965      break;
1966    }
1967
1968    case Instruction::THROW: {
1969      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
1970      current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
1971      // A throw instruction must branch to the exit block.
1972      current_block_->AddSuccessor(exit_block_);
1973      // We finished building this block. Set the current block to null to avoid
1974      // adding dead instructions to it.
1975      current_block_ = nullptr;
1976      break;
1977    }
1978
1979    case Instruction::INSTANCE_OF: {
1980      uint8_t destination = instruction.VRegA_22c();
1981      uint8_t reference = instruction.VRegB_22c();
1982      uint16_t type_index = instruction.VRegC_22c();
1983      if (!BuildTypeCheck(instruction, destination, reference, type_index, dex_pc)) {
1984        return false;
1985      }
1986      break;
1987    }
1988
1989    case Instruction::CHECK_CAST: {
1990      uint8_t reference = instruction.VRegA_21c();
1991      uint16_t type_index = instruction.VRegB_21c();
1992      if (!BuildTypeCheck(instruction, -1, reference, type_index, dex_pc)) {
1993        return false;
1994      }
1995      break;
1996    }
1997
1998    case Instruction::MONITOR_ENTER: {
1999      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2000          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2001          HMonitorOperation::kEnter,
2002          dex_pc));
2003      break;
2004    }
2005
2006    case Instruction::MONITOR_EXIT: {
2007      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2008          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2009          HMonitorOperation::kExit,
2010          dex_pc));
2011      break;
2012    }
2013
2014    case Instruction::PACKED_SWITCH: {
2015      BuildPackedSwitch(instruction, dex_pc);
2016      break;
2017    }
2018
2019    case Instruction::SPARSE_SWITCH: {
2020      BuildSparseSwitch(instruction, dex_pc);
2021      break;
2022    }
2023
2024    default:
2025      VLOG(compiler) << "Did not compile "
2026                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
2027                     << " because of unhandled instruction "
2028                     << instruction.Name();
2029      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
2030      return false;
2031  }
2032  return true;
2033}  // NOLINT(readability/fn_size)
2034
2035HIntConstant* HGraphBuilder::GetIntConstant0() {
2036  if (constant0_ != nullptr) {
2037    return constant0_;
2038  }
2039  constant0_ = new(arena_) HIntConstant(0);
2040  entry_block_->AddInstruction(constant0_);
2041  return constant0_;
2042}
2043
2044HIntConstant* HGraphBuilder::GetIntConstant1() {
2045  if (constant1_ != nullptr) {
2046    return constant1_;
2047  }
2048  constant1_ = new(arena_) HIntConstant(1);
2049  entry_block_->AddInstruction(constant1_);
2050  return constant1_;
2051}
2052
2053HIntConstant* HGraphBuilder::GetIntConstant(int32_t constant) {
2054  switch (constant) {
2055    case 0: return GetIntConstant0();
2056    case 1: return GetIntConstant1();
2057    default: {
2058      HIntConstant* instruction = new (arena_) HIntConstant(constant);
2059      entry_block_->AddInstruction(instruction);
2060      return instruction;
2061    }
2062  }
2063}
2064
2065HLongConstant* HGraphBuilder::GetLongConstant(int64_t constant) {
2066  HLongConstant* instruction = new (arena_) HLongConstant(constant);
2067  entry_block_->AddInstruction(instruction);
2068  return instruction;
2069}
2070
2071HLocal* HGraphBuilder::GetLocalAt(int register_index) const {
2072  return locals_.Get(register_index);
2073}
2074
2075void HGraphBuilder::UpdateLocal(int register_index, HInstruction* instruction) const {
2076  HLocal* local = GetLocalAt(register_index);
2077  current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction));
2078}
2079
2080HInstruction* HGraphBuilder::LoadLocal(int register_index, Primitive::Type type) const {
2081  HLocal* local = GetLocalAt(register_index);
2082  current_block_->AddInstruction(new (arena_) HLoadLocal(local, type));
2083  return current_block_->GetLastInstruction();
2084}
2085
2086}  // namespace art
2087