builder.cc revision 5f02c6caf9f38be49e655f8bdeeeb99b6faf9383
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "builder.h"
18
19#include "art_field-inl.h"
20#include "base/logging.h"
21#include "class_linker.h"
22#include "dex_file-inl.h"
23#include "dex_instruction-inl.h"
24#include "dex/verified_method.h"
25#include "driver/compiler_driver-inl.h"
26#include "driver/compiler_options.h"
27#include "mirror/class_loader.h"
28#include "mirror/dex_cache.h"
29#include "nodes.h"
30#include "primitive.h"
31#include "scoped_thread_state_change.h"
32#include "thread.h"
33
34namespace art {
35
36/**
37 * Helper class to add HTemporary instructions. This class is used when
38 * converting a DEX instruction to multiple HInstruction, and where those
39 * instructions do not die at the following instruction, but instead spans
40 * multiple instructions.
41 */
42class Temporaries : public ValueObject {
43 public:
44  explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
45
46  void Add(HInstruction* instruction) {
47    HInstruction* temp = new (graph_->GetArena()) HTemporary(index_);
48    instruction->GetBlock()->AddInstruction(temp);
49
50    DCHECK(temp->GetPrevious() == instruction);
51
52    size_t offset;
53    if (instruction->GetType() == Primitive::kPrimLong
54        || instruction->GetType() == Primitive::kPrimDouble) {
55      offset = 2;
56    } else {
57      offset = 1;
58    }
59    index_ += offset;
60
61    graph_->UpdateTemporariesVRegSlots(index_);
62  }
63
64 private:
65  HGraph* const graph_;
66
67  // Current index in the temporary stack, updated by `Add`.
68  size_t index_;
69};
70
71class SwitchTable : public ValueObject {
72 public:
73  SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
74      : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
75    int32_t table_offset = instruction.VRegB_31t();
76    const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
77    if (sparse) {
78      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
79    } else {
80      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
81    }
82    num_entries_ = table[1];
83    values_ = reinterpret_cast<const int32_t*>(&table[2]);
84  }
85
86  uint16_t GetNumEntries() const {
87    return num_entries_;
88  }
89
90  void CheckIndex(size_t index) const {
91    if (sparse_) {
92      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
93      DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
94    } else {
95      // In a packed table, we have the starting key and num_entries_ values.
96      DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
97    }
98  }
99
100  int32_t GetEntryAt(size_t index) const {
101    CheckIndex(index);
102    return values_[index];
103  }
104
105  uint32_t GetDexPcForIndex(size_t index) const {
106    CheckIndex(index);
107    return dex_pc_ +
108        (reinterpret_cast<const int16_t*>(values_ + index) -
109         reinterpret_cast<const int16_t*>(&instruction_));
110  }
111
112  // Index of the first value in the table.
113  size_t GetFirstValueIndex() const {
114    if (sparse_) {
115      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
116      return num_entries_;
117    } else {
118      // In a packed table, we have the starting key and num_entries_ values.
119      return 1;
120    }
121  }
122
123 private:
124  const Instruction& instruction_;
125  const uint32_t dex_pc_;
126
127  // Whether this is a sparse-switch table (or a packed-switch one).
128  const bool sparse_;
129
130  // This can't be const as it needs to be computed off of the given instruction, and complicated
131  // expressions in the initializer list seemed very ugly.
132  uint16_t num_entries_;
133
134  const int32_t* values_;
135
136  DISALLOW_COPY_AND_ASSIGN(SwitchTable);
137};
138
139void HGraphBuilder::InitializeLocals(uint16_t count) {
140  graph_->SetNumberOfVRegs(count);
141  locals_.SetSize(count);
142  for (int i = 0; i < count; i++) {
143    HLocal* local = new (arena_) HLocal(i);
144    entry_block_->AddInstruction(local);
145    locals_.Put(i, local);
146  }
147}
148
149void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
150  // dex_compilation_unit_ is null only when unit testing.
151  if (dex_compilation_unit_ == nullptr) {
152    return;
153  }
154
155  graph_->SetNumberOfInVRegs(number_of_parameters);
156  const char* shorty = dex_compilation_unit_->GetShorty();
157  int locals_index = locals_.Size() - number_of_parameters;
158  int parameter_index = 0;
159
160  if (!dex_compilation_unit_->IsStatic()) {
161    // Add the implicit 'this' argument, not expressed in the signature.
162    HParameterValue* parameter =
163        new (arena_) HParameterValue(parameter_index++, Primitive::kPrimNot, true);
164    entry_block_->AddInstruction(parameter);
165    HLocal* local = GetLocalAt(locals_index++);
166    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
167    number_of_parameters--;
168  }
169
170  uint32_t pos = 1;
171  for (int i = 0; i < number_of_parameters; i++) {
172    HParameterValue* parameter =
173        new (arena_) HParameterValue(parameter_index++, Primitive::GetType(shorty[pos++]));
174    entry_block_->AddInstruction(parameter);
175    HLocal* local = GetLocalAt(locals_index++);
176    // Store the parameter value in the local that the dex code will use
177    // to reference that parameter.
178    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
179    bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
180        || (parameter->GetType() == Primitive::kPrimDouble);
181    if (is_wide) {
182      i++;
183      locals_index++;
184      parameter_index++;
185    }
186  }
187}
188
189template<typename T>
190void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
191  int32_t target_offset = instruction.GetTargetOffset();
192  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
193  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
194  DCHECK(branch_target != nullptr);
195  DCHECK(fallthrough_target != nullptr);
196  PotentiallyAddSuspendCheck(branch_target, dex_pc);
197  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
198  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
199  T* comparison = new (arena_) T(first, second);
200  current_block_->AddInstruction(comparison);
201  HInstruction* ifinst = new (arena_) HIf(comparison);
202  current_block_->AddInstruction(ifinst);
203  current_block_->AddSuccessor(branch_target);
204  current_block_->AddSuccessor(fallthrough_target);
205  current_block_ = nullptr;
206}
207
208template<typename T>
209void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
210  int32_t target_offset = instruction.GetTargetOffset();
211  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
212  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
213  DCHECK(branch_target != nullptr);
214  DCHECK(fallthrough_target != nullptr);
215  PotentiallyAddSuspendCheck(branch_target, dex_pc);
216  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
217  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0));
218  current_block_->AddInstruction(comparison);
219  HInstruction* ifinst = new (arena_) HIf(comparison);
220  current_block_->AddInstruction(ifinst);
221  current_block_->AddSuccessor(branch_target);
222  current_block_->AddSuccessor(fallthrough_target);
223  current_block_ = nullptr;
224}
225
226void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
227  if (compilation_stats_ != nullptr) {
228    compilation_stats_->RecordStat(compilation_stat);
229  }
230}
231
232bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item,
233                                    size_t number_of_branches) {
234  const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
235  CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
236  if (compiler_filter == CompilerOptions::kEverything) {
237    return false;
238  }
239
240  if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) {
241    VLOG(compiler) << "Skip compilation of huge method "
242                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
243                   << ": " << code_item.insns_size_in_code_units_ << " code units";
244    MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
245    return true;
246  }
247
248  // If it's large and contains no branches, it's likely to be machine generated initialization.
249  if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_)
250      && (number_of_branches == 0)) {
251    VLOG(compiler) << "Skip compilation of large method with no branch "
252                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
253                   << ": " << code_item.insns_size_in_code_units_ << " code units";
254    MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
255    return true;
256  }
257
258  return false;
259}
260
261bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
262  DCHECK(graph_->GetBlocks().IsEmpty());
263
264  const uint16_t* code_ptr = code_item.insns_;
265  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
266  code_start_ = code_ptr;
267
268  // Setup the graph with the entry block and exit block.
269  entry_block_ = new (arena_) HBasicBlock(graph_, 0);
270  graph_->AddBlock(entry_block_);
271  exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
272  graph_->SetEntryBlock(entry_block_);
273  graph_->SetExitBlock(exit_block_);
274
275  InitializeLocals(code_item.registers_size_);
276  graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
277
278  // Compute the number of dex instructions, blocks, and branches. We will
279  // check these values against limits given to the compiler.
280  size_t number_of_branches = 0;
281
282  // To avoid splitting blocks, we compute ahead of time the instructions that
283  // start a new block, and create these blocks.
284  ComputeBranchTargets(code_ptr, code_end, &number_of_branches);
285
286  // Note that the compiler driver is null when unit testing.
287  if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) {
288    return false;
289  }
290
291  // Also create blocks for catch handlers.
292  if (code_item.tries_size_ != 0) {
293    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
294    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
295    for (uint32_t idx = 0; idx < handlers_size; ++idx) {
296      CatchHandlerIterator iterator(handlers_ptr);
297      for (; iterator.HasNext(); iterator.Next()) {
298        uint32_t address = iterator.GetHandlerAddress();
299        HBasicBlock* block = FindBlockStartingAt(address);
300        if (block == nullptr) {
301          block = new (arena_) HBasicBlock(graph_, address);
302          branch_targets_.Put(address, block);
303        }
304        block->SetIsCatchBlock();
305      }
306      handlers_ptr = iterator.EndDataPointer();
307    }
308  }
309
310  InitializeParameters(code_item.ins_size_);
311
312  size_t dex_pc = 0;
313  while (code_ptr < code_end) {
314    // Update the current block if dex_pc starts a new block.
315    MaybeUpdateCurrentBlock(dex_pc);
316    const Instruction& instruction = *Instruction::At(code_ptr);
317    if (!AnalyzeDexInstruction(instruction, dex_pc)) {
318      return false;
319    }
320    dex_pc += instruction.SizeInCodeUnits();
321    code_ptr += instruction.SizeInCodeUnits();
322  }
323
324  // Add the exit block at the end to give it the highest id.
325  graph_->AddBlock(exit_block_);
326  exit_block_->AddInstruction(new (arena_) HExit());
327  // Add the suspend check to the entry block.
328  entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
329  entry_block_->AddInstruction(new (arena_) HGoto());
330
331  return true;
332}
333
334void HGraphBuilder::MaybeUpdateCurrentBlock(size_t index) {
335  HBasicBlock* block = FindBlockStartingAt(index);
336  if (block == nullptr) {
337    return;
338  }
339
340  if (current_block_ != nullptr) {
341    // Branching instructions clear current_block, so we know
342    // the last instruction of the current block is not a branching
343    // instruction. We add an unconditional goto to the found block.
344    current_block_->AddInstruction(new (arena_) HGoto());
345    current_block_->AddSuccessor(block);
346  }
347  graph_->AddBlock(block);
348  current_block_ = block;
349}
350
351void HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
352                                         const uint16_t* code_end,
353                                         size_t* number_of_branches) {
354  branch_targets_.SetSize(code_end - code_ptr);
355
356  // Create the first block for the dex instructions, single successor of the entry block.
357  HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
358  branch_targets_.Put(0, block);
359  entry_block_->AddSuccessor(block);
360
361  // Iterate over all instructions and find branching instructions. Create blocks for
362  // the locations these instructions branch to.
363  uint32_t dex_pc = 0;
364  while (code_ptr < code_end) {
365    const Instruction& instruction = *Instruction::At(code_ptr);
366    if (instruction.IsBranch()) {
367      (*number_of_branches)++;
368      int32_t target = instruction.GetTargetOffset() + dex_pc;
369      // Create a block for the target instruction.
370      if (FindBlockStartingAt(target) == nullptr) {
371        block = new (arena_) HBasicBlock(graph_, target);
372        branch_targets_.Put(target, block);
373      }
374      dex_pc += instruction.SizeInCodeUnits();
375      code_ptr += instruction.SizeInCodeUnits();
376      if ((code_ptr < code_end) && (FindBlockStartingAt(dex_pc) == nullptr)) {
377        block = new (arena_) HBasicBlock(graph_, dex_pc);
378        branch_targets_.Put(dex_pc, block);
379      }
380    } else if (instruction.IsSwitch()) {
381      SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
382
383      uint16_t num_entries = table.GetNumEntries();
384
385      // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
386      // entry at index 0 is the first key, and values are after *all* keys.
387      size_t offset = table.GetFirstValueIndex();
388
389      // Use a larger loop counter type to avoid overflow issues.
390      for (size_t i = 0; i < num_entries; ++i) {
391        // The target of the case.
392        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
393        if (FindBlockStartingAt(target) == nullptr) {
394          block = new (arena_) HBasicBlock(graph_, target);
395          branch_targets_.Put(target, block);
396        }
397
398        // The next case gets its own block.
399        if (i < num_entries) {
400          block = new (arena_) HBasicBlock(graph_, target);
401          branch_targets_.Put(table.GetDexPcForIndex(i), block);
402        }
403      }
404
405      // Fall-through. Add a block if there is more code afterwards.
406      dex_pc += instruction.SizeInCodeUnits();
407      code_ptr += instruction.SizeInCodeUnits();
408      if ((code_ptr < code_end) && (FindBlockStartingAt(dex_pc) == nullptr)) {
409        block = new (arena_) HBasicBlock(graph_, dex_pc);
410        branch_targets_.Put(dex_pc, block);
411      }
412    } else {
413      code_ptr += instruction.SizeInCodeUnits();
414      dex_pc += instruction.SizeInCodeUnits();
415    }
416  }
417}
418
419HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t index) const {
420  DCHECK_GE(index, 0);
421  return branch_targets_.Get(index);
422}
423
424template<typename T>
425void HGraphBuilder::Unop_12x(const Instruction& instruction, Primitive::Type type) {
426  HInstruction* first = LoadLocal(instruction.VRegB(), type);
427  current_block_->AddInstruction(new (arena_) T(type, first));
428  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
429}
430
431void HGraphBuilder::Conversion_12x(const Instruction& instruction,
432                                   Primitive::Type input_type,
433                                   Primitive::Type result_type,
434                                   uint32_t dex_pc) {
435  HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
436  current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
437  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
438}
439
440template<typename T>
441void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type) {
442  HInstruction* first = LoadLocal(instruction.VRegB(), type);
443  HInstruction* second = LoadLocal(instruction.VRegC(), type);
444  current_block_->AddInstruction(new (arena_) T(type, first, second));
445  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
446}
447
448template<typename T>
449void HGraphBuilder::Binop_23x(const Instruction& instruction,
450                              Primitive::Type type,
451                              uint32_t dex_pc) {
452  HInstruction* first = LoadLocal(instruction.VRegB(), type);
453  HInstruction* second = LoadLocal(instruction.VRegC(), type);
454  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
455  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
456}
457
458template<typename T>
459void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
460                                    Primitive::Type type) {
461  HInstruction* first = LoadLocal(instruction.VRegB(), type);
462  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
463  current_block_->AddInstruction(new (arena_) T(type, first, second));
464  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
465}
466
467void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
468                                  Primitive::Type type,
469                                  HCompare::Bias bias) {
470  HInstruction* first = LoadLocal(instruction.VRegB(), type);
471  HInstruction* second = LoadLocal(instruction.VRegC(), type);
472  current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias));
473  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
474}
475
476template<typename T>
477void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type) {
478  HInstruction* first = LoadLocal(instruction.VRegA(), type);
479  HInstruction* second = LoadLocal(instruction.VRegB(), type);
480  current_block_->AddInstruction(new (arena_) T(type, first, second));
481  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
482}
483
484template<typename T>
485void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type) {
486  HInstruction* first = LoadLocal(instruction.VRegA(), type);
487  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
488  current_block_->AddInstruction(new (arena_) T(type, first, second));
489  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
490}
491
492template<typename T>
493void HGraphBuilder::Binop_12x(const Instruction& instruction,
494                              Primitive::Type type,
495                              uint32_t dex_pc) {
496  HInstruction* first = LoadLocal(instruction.VRegA(), type);
497  HInstruction* second = LoadLocal(instruction.VRegB(), type);
498  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
499  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
500}
501
502template<typename T>
503void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse) {
504  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
505  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s());
506  if (reverse) {
507    std::swap(first, second);
508  }
509  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
510  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
511}
512
513template<typename T>
514void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse) {
515  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
516  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b());
517  if (reverse) {
518    std::swap(first, second);
519  }
520  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
521  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
522}
523
524static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
525  // dex compilation unit is null only when unit testing.
526  if (cu == nullptr) {
527    return false;
528  }
529
530  Thread* self = Thread::Current();
531  return cu->IsConstructor()
532      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
533}
534
535void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type) {
536  if (type == Primitive::kPrimVoid) {
537    // Note that we might insert redundant barriers when inlining `super` calls.
538    // TODO: add a data flow analysis to get rid of duplicate barriers.
539    if (RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_)) {
540      current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore));
541    }
542    current_block_->AddInstruction(new (arena_) HReturnVoid());
543  } else {
544    HInstruction* value = LoadLocal(instruction.VRegA(), type);
545    current_block_->AddInstruction(new (arena_) HReturn(value));
546  }
547  current_block_->AddSuccessor(exit_block_);
548  current_block_ = nullptr;
549}
550
551bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
552                                uint32_t dex_pc,
553                                uint32_t method_idx,
554                                uint32_t number_of_vreg_arguments,
555                                bool is_range,
556                                uint32_t* args,
557                                uint32_t register_index) {
558  Instruction::Code opcode = instruction.Opcode();
559  InvokeType invoke_type;
560  switch (opcode) {
561    case Instruction::INVOKE_STATIC:
562    case Instruction::INVOKE_STATIC_RANGE:
563      invoke_type = kStatic;
564      break;
565    case Instruction::INVOKE_DIRECT:
566    case Instruction::INVOKE_DIRECT_RANGE:
567      invoke_type = kDirect;
568      break;
569    case Instruction::INVOKE_VIRTUAL:
570    case Instruction::INVOKE_VIRTUAL_RANGE:
571      invoke_type = kVirtual;
572      break;
573    case Instruction::INVOKE_INTERFACE:
574    case Instruction::INVOKE_INTERFACE_RANGE:
575      invoke_type = kInterface;
576      break;
577    case Instruction::INVOKE_SUPER_RANGE:
578    case Instruction::INVOKE_SUPER:
579      invoke_type = kSuper;
580      break;
581    default:
582      LOG(FATAL) << "Unexpected invoke op: " << opcode;
583      return false;
584  }
585
586  const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
587  const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(method_id.proto_idx_);
588  const char* descriptor = dex_file_->StringDataByIdx(proto_id.shorty_idx_);
589  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
590  bool is_instance_call = invoke_type != kStatic;
591  size_t number_of_arguments = strlen(descriptor) - (is_instance_call ? 0 : 1);
592
593  MethodReference target_method(dex_file_, method_idx);
594  uintptr_t direct_code;
595  uintptr_t direct_method;
596  int table_index;
597  InvokeType optimized_invoke_type = invoke_type;
598
599  if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_, dex_pc, true, true,
600                                           &optimized_invoke_type, &target_method, &table_index,
601                                           &direct_code, &direct_method)) {
602    VLOG(compiler) << "Did not compile " << PrettyMethod(method_idx, *dex_file_)
603                   << " because a method call could not be resolved";
604    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod);
605    return false;
606  }
607  DCHECK(optimized_invoke_type != kSuper);
608
609  // By default, consider that the called method implicitly requires
610  // an initialization check of its declaring method.
611  HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
612      HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
613  // Potential class initialization check, in the case of a static method call.
614  HClinitCheck* clinit_check = nullptr;
615
616  HInvoke* invoke = nullptr;
617
618  if (optimized_invoke_type == kVirtual) {
619    invoke = new (arena_) HInvokeVirtual(
620        arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
621  } else if (optimized_invoke_type == kInterface) {
622    invoke = new (arena_) HInvokeInterface(
623        arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
624  } else {
625    DCHECK(optimized_invoke_type == kDirect || optimized_invoke_type == kStatic);
626    // Sharpening to kDirect only works if we compile PIC.
627    DCHECK((optimized_invoke_type == invoke_type) || (optimized_invoke_type != kDirect)
628           || compiler_driver_->GetCompilerOptions().GetCompilePic());
629    bool is_recursive =
630        (target_method.dex_method_index == dex_compilation_unit_->GetDexMethodIndex());
631    DCHECK(!is_recursive || (target_method.dex_file == dex_compilation_unit_->GetDexFile()));
632
633    if (optimized_invoke_type == kStatic) {
634      ScopedObjectAccess soa(Thread::Current());
635      StackHandleScope<4> hs(soa.Self());
636      Handle<mirror::DexCache> dex_cache(hs.NewHandle(
637          dex_compilation_unit_->GetClassLinker()->FindDexCache(
638              *dex_compilation_unit_->GetDexFile())));
639      Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
640          soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
641      mirror::ArtMethod* resolved_method = compiler_driver_->ResolveMethod(
642          soa, dex_cache, class_loader, dex_compilation_unit_, method_idx,
643          optimized_invoke_type);
644
645      if (resolved_method == nullptr) {
646        MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod);
647        return false;
648      }
649
650      const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
651      Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
652          outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
653      Handle<mirror::Class> referrer_class(hs.NewHandle(GetOutermostCompilingClass()));
654
655      // The index at which the method's class is stored in the DexCache's type array.
656      uint32_t storage_index = DexFile::kDexNoIndex;
657      bool is_referrer_class = (resolved_method->GetDeclaringClass() == referrer_class.Get());
658      if (is_referrer_class) {
659        storage_index = referrer_class->GetDexTypeIndex();
660      } else if (outer_dex_cache.Get() == dex_cache.Get()) {
661        // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
662        compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
663                                                                   referrer_class.Get(),
664                                                                   resolved_method,
665                                                                   method_idx,
666                                                                   &storage_index);
667      }
668
669      if (referrer_class.Get()->IsSubClass(resolved_method->GetDeclaringClass())) {
670        // If the referrer class is the declaring class or a subclass
671        // of the declaring class, no class initialization is needed
672        // before the static method call.
673        clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
674      } else if (storage_index != DexFile::kDexNoIndex) {
675        // If the method's class type index is available, check
676        // whether we should add an explicit class initialization
677        // check for its declaring class before the static method call.
678
679        // TODO: find out why this check is needed.
680        bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
681            *outer_compilation_unit_->GetDexFile(), storage_index);
682        bool is_initialized =
683            resolved_method->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
684
685        if (is_initialized) {
686          clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
687        } else {
688          clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
689          HLoadClass* load_class =
690              new (arena_) HLoadClass(storage_index, is_referrer_class, dex_pc);
691          current_block_->AddInstruction(load_class);
692          clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
693          current_block_->AddInstruction(clinit_check);
694          ++number_of_arguments;
695        }
696      }
697    }
698
699    invoke = new (arena_) HInvokeStaticOrDirect(
700        arena_, number_of_arguments, return_type, dex_pc, target_method.dex_method_index,
701        is_recursive, invoke_type, optimized_invoke_type, clinit_check_requirement);
702  }
703
704  size_t start_index = 0;
705  Temporaries temps(graph_);
706  if (is_instance_call) {
707    HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot);
708    HNullCheck* null_check = new (arena_) HNullCheck(arg, dex_pc);
709    current_block_->AddInstruction(null_check);
710    temps.Add(null_check);
711    invoke->SetArgumentAt(0, null_check);
712    start_index = 1;
713  }
714
715  uint32_t descriptor_index = 1;
716  uint32_t argument_index = start_index;
717  for (size_t i = start_index; i < number_of_vreg_arguments; i++, argument_index++) {
718    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
719    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
720    if (!is_range && is_wide && args[i] + 1 != args[i + 1]) {
721      LOG(WARNING) << "Non sequential register pair in " << dex_compilation_unit_->GetSymbol()
722                   << " at " << dex_pc;
723      // We do not implement non sequential register pair.
724      MaybeRecordStat(MethodCompilationStat::kNotCompiledNonSequentialRegPair);
725      return false;
726    }
727    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
728    invoke->SetArgumentAt(argument_index, arg);
729    if (is_wide) {
730      i++;
731    }
732  }
733
734  if (clinit_check_requirement == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit) {
735    // Add the class initialization check as last input of `invoke`.
736    DCHECK(clinit_check != nullptr);
737    invoke->SetArgumentAt(argument_index++, clinit_check);
738  }
739
740  DCHECK_EQ(argument_index, number_of_arguments);
741  current_block_->AddInstruction(invoke);
742  latest_result_ = invoke;
743  return true;
744}
745
746bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
747                                             uint32_t dex_pc,
748                                             bool is_put) {
749  uint32_t source_or_dest_reg = instruction.VRegA_22c();
750  uint32_t obj_reg = instruction.VRegB_22c();
751  uint16_t field_index = instruction.VRegC_22c();
752
753  ScopedObjectAccess soa(Thread::Current());
754  ArtField* resolved_field =
755      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
756
757  if (resolved_field == nullptr) {
758    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
759    return false;
760  }
761
762  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
763
764  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot);
765  current_block_->AddInstruction(new (arena_) HNullCheck(object, dex_pc));
766  if (is_put) {
767    Temporaries temps(graph_);
768    HInstruction* null_check = current_block_->GetLastInstruction();
769    // We need one temporary for the null check.
770    temps.Add(null_check);
771    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
772    current_block_->AddInstruction(new (arena_) HInstanceFieldSet(
773        null_check,
774        value,
775        field_type,
776        resolved_field->GetOffset(),
777        resolved_field->IsVolatile()));
778  } else {
779    current_block_->AddInstruction(new (arena_) HInstanceFieldGet(
780        current_block_->GetLastInstruction(),
781        field_type,
782        resolved_field->GetOffset(),
783        resolved_field->IsVolatile()));
784
785    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
786  }
787  return true;
788}
789
790mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const {
791  ScopedObjectAccess soa(Thread::Current());
792  StackHandleScope<2> hs(soa.Self());
793  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
794  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
795      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
796  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
797      outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
798
799  return compiler_driver_->ResolveCompilingMethodsClass(
800      soa, outer_dex_cache, class_loader, outer_compilation_unit_);
801}
802
803bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
804  ScopedObjectAccess soa(Thread::Current());
805  StackHandleScope<4> hs(soa.Self());
806  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
807      dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile())));
808  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
809      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
810  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
811      soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
812  Handle<mirror::Class> compiling_class(hs.NewHandle(GetOutermostCompilingClass()));
813
814  return compiling_class.Get() == cls.Get();
815}
816
817bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
818                                           uint32_t dex_pc,
819                                           bool is_put) {
820  uint32_t source_or_dest_reg = instruction.VRegA_21c();
821  uint16_t field_index = instruction.VRegB_21c();
822
823  ScopedObjectAccess soa(Thread::Current());
824  StackHandleScope<4> hs(soa.Self());
825  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
826      dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile())));
827  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
828      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
829  ArtField* resolved_field = compiler_driver_->ResolveField(
830      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
831
832  if (resolved_field == nullptr) {
833    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
834    return false;
835  }
836
837  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
838  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
839      outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
840  Handle<mirror::Class> referrer_class(hs.NewHandle(GetOutermostCompilingClass()));
841
842  // The index at which the field's class is stored in the DexCache's type array.
843  uint32_t storage_index;
844  bool is_referrer_class = (referrer_class.Get() == resolved_field->GetDeclaringClass());
845  if (is_referrer_class) {
846    storage_index = referrer_class->GetDexTypeIndex();
847  } else if (outer_dex_cache.Get() != dex_cache.Get()) {
848    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
849    return false;
850  } else {
851    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
852        outer_dex_cache.Get(),
853        referrer_class.Get(),
854        resolved_field,
855        field_index,
856        &storage_index);
857    bool can_easily_access = is_put ? pair.second : pair.first;
858    if (!can_easily_access) {
859      return false;
860    }
861  }
862
863  // TODO: find out why this check is needed.
864  bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
865      *outer_compilation_unit_->GetDexFile(), storage_index);
866  bool is_initialized = resolved_field->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
867
868  HLoadClass* constant = new (arena_) HLoadClass(storage_index, is_referrer_class, dex_pc);
869  current_block_->AddInstruction(constant);
870
871  HInstruction* cls = constant;
872  if (!is_initialized && !is_referrer_class) {
873    cls = new (arena_) HClinitCheck(constant, dex_pc);
874    current_block_->AddInstruction(cls);
875  }
876
877  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
878  if (is_put) {
879    // We need to keep the class alive before loading the value.
880    Temporaries temps(graph_);
881    temps.Add(cls);
882    HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
883    DCHECK_EQ(value->GetType(), field_type);
884    current_block_->AddInstruction(
885        new (arena_) HStaticFieldSet(cls, value, field_type, resolved_field->GetOffset(),
886            resolved_field->IsVolatile()));
887  } else {
888    current_block_->AddInstruction(
889        new (arena_) HStaticFieldGet(cls, field_type, resolved_field->GetOffset(),
890            resolved_field->IsVolatile()));
891    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
892  }
893  return true;
894}
895
896void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
897                                       uint16_t first_vreg,
898                                       int64_t second_vreg_or_constant,
899                                       uint32_t dex_pc,
900                                       Primitive::Type type,
901                                       bool second_is_constant,
902                                       bool isDiv) {
903  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
904
905  HInstruction* first = LoadLocal(first_vreg, type);
906  HInstruction* second = nullptr;
907  if (second_is_constant) {
908    if (type == Primitive::kPrimInt) {
909      second = graph_->GetIntConstant(second_vreg_or_constant);
910    } else {
911      second = graph_->GetLongConstant(second_vreg_or_constant);
912    }
913  } else {
914    second = LoadLocal(second_vreg_or_constant, type);
915  }
916
917  if (!second_is_constant
918      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
919      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
920    second = new (arena_) HDivZeroCheck(second, dex_pc);
921    Temporaries temps(graph_);
922    current_block_->AddInstruction(second);
923    temps.Add(current_block_->GetLastInstruction());
924  }
925
926  if (isDiv) {
927    current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
928  } else {
929    current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
930  }
931  UpdateLocal(out_vreg, current_block_->GetLastInstruction());
932}
933
934void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
935                                     uint32_t dex_pc,
936                                     bool is_put,
937                                     Primitive::Type anticipated_type) {
938  uint8_t source_or_dest_reg = instruction.VRegA_23x();
939  uint8_t array_reg = instruction.VRegB_23x();
940  uint8_t index_reg = instruction.VRegC_23x();
941
942  // We need one temporary for the null check, one for the index, and one for the length.
943  Temporaries temps(graph_);
944
945  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot);
946  object = new (arena_) HNullCheck(object, dex_pc);
947  current_block_->AddInstruction(object);
948  temps.Add(object);
949
950  HInstruction* length = new (arena_) HArrayLength(object);
951  current_block_->AddInstruction(length);
952  temps.Add(length);
953  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
954  index = new (arena_) HBoundsCheck(index, length, dex_pc);
955  current_block_->AddInstruction(index);
956  temps.Add(index);
957  if (is_put) {
958    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
959    // TODO: Insert a type check node if the type is Object.
960    current_block_->AddInstruction(new (arena_) HArraySet(
961        object, index, value, anticipated_type, dex_pc));
962  } else {
963    current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type));
964    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
965  }
966  graph_->SetHasArrayAccesses(true);
967}
968
969void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
970                                        uint32_t type_index,
971                                        uint32_t number_of_vreg_arguments,
972                                        bool is_range,
973                                        uint32_t* args,
974                                        uint32_t register_index) {
975  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments);
976  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
977      ? kQuickAllocArrayWithAccessCheck
978      : kQuickAllocArray;
979  HInstruction* object = new (arena_) HNewArray(length, dex_pc, type_index, entrypoint);
980  current_block_->AddInstruction(object);
981
982  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
983  DCHECK_EQ(descriptor[0], '[') << descriptor;
984  char primitive = descriptor[1];
985  DCHECK(primitive == 'I'
986      || primitive == 'L'
987      || primitive == '[') << descriptor;
988  bool is_reference_array = (primitive == 'L') || (primitive == '[');
989  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
990
991  Temporaries temps(graph_);
992  temps.Add(object);
993  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
994    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
995    HInstruction* index = graph_->GetIntConstant(i);
996    current_block_->AddInstruction(
997        new (arena_) HArraySet(object, index, value, type, dex_pc));
998  }
999  latest_result_ = object;
1000}
1001
1002template <typename T>
1003void HGraphBuilder::BuildFillArrayData(HInstruction* object,
1004                                       const T* data,
1005                                       uint32_t element_count,
1006                                       Primitive::Type anticipated_type,
1007                                       uint32_t dex_pc) {
1008  for (uint32_t i = 0; i < element_count; ++i) {
1009    HInstruction* index = graph_->GetIntConstant(i);
1010    HInstruction* value = graph_->GetIntConstant(data[i]);
1011    current_block_->AddInstruction(new (arena_) HArraySet(
1012      object, index, value, anticipated_type, dex_pc));
1013  }
1014}
1015
1016void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1017  Temporaries temps(graph_);
1018  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot);
1019  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
1020  current_block_->AddInstruction(null_check);
1021  temps.Add(null_check);
1022
1023  HInstruction* length = new (arena_) HArrayLength(null_check);
1024  current_block_->AddInstruction(length);
1025
1026  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1027  const Instruction::ArrayDataPayload* payload =
1028      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
1029  const uint8_t* data = payload->data;
1030  uint32_t element_count = payload->element_count;
1031
1032  // Implementation of this DEX instruction seems to be that the bounds check is
1033  // done before doing any stores.
1034  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1);
1035  current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
1036
1037  switch (payload->element_width) {
1038    case 1:
1039      BuildFillArrayData(null_check,
1040                         reinterpret_cast<const int8_t*>(data),
1041                         element_count,
1042                         Primitive::kPrimByte,
1043                         dex_pc);
1044      break;
1045    case 2:
1046      BuildFillArrayData(null_check,
1047                         reinterpret_cast<const int16_t*>(data),
1048                         element_count,
1049                         Primitive::kPrimShort,
1050                         dex_pc);
1051      break;
1052    case 4:
1053      BuildFillArrayData(null_check,
1054                         reinterpret_cast<const int32_t*>(data),
1055                         element_count,
1056                         Primitive::kPrimInt,
1057                         dex_pc);
1058      break;
1059    case 8:
1060      BuildFillWideArrayData(null_check,
1061                             reinterpret_cast<const int64_t*>(data),
1062                             element_count,
1063                             dex_pc);
1064      break;
1065    default:
1066      LOG(FATAL) << "Unknown element width for " << payload->element_width;
1067  }
1068}
1069
1070void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
1071                                           const int64_t* data,
1072                                           uint32_t element_count,
1073                                           uint32_t dex_pc) {
1074  for (uint32_t i = 0; i < element_count; ++i) {
1075    HInstruction* index = graph_->GetIntConstant(i);
1076    HInstruction* value = graph_->GetLongConstant(data[i]);
1077    current_block_->AddInstruction(new (arena_) HArraySet(
1078      object, index, value, Primitive::kPrimLong, dex_pc));
1079  }
1080}
1081
1082bool HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
1083                                   uint8_t destination,
1084                                   uint8_t reference,
1085                                   uint16_t type_index,
1086                                   uint32_t dex_pc) {
1087  bool type_known_final;
1088  bool type_known_abstract;
1089  // `CanAccessTypeWithoutChecks` will tell whether the method being
1090  // built is trying to access its own class, so that the generated
1091  // code can optimize for this case. However, the optimization does not
1092  // work for inlining, so we use `IsOutermostCompilingClass` instead.
1093  bool dont_use_is_referrers_class;
1094  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
1095      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
1096      &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
1097  if (!can_access) {
1098    MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
1099    return false;
1100  }
1101  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
1102  HLoadClass* cls = new (arena_) HLoadClass(
1103      type_index, IsOutermostCompilingClass(type_index), dex_pc);
1104  current_block_->AddInstruction(cls);
1105  // The class needs a temporary before being used by the type check.
1106  Temporaries temps(graph_);
1107  temps.Add(cls);
1108  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1109    current_block_->AddInstruction(
1110        new (arena_) HInstanceOf(object, cls, type_known_final, dex_pc));
1111    UpdateLocal(destination, current_block_->GetLastInstruction());
1112  } else {
1113    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1114    current_block_->AddInstruction(
1115        new (arena_) HCheckCast(object, cls, type_known_final, dex_pc));
1116  }
1117  return true;
1118}
1119
1120bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index) const {
1121  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
1122      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index);
1123}
1124
1125void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
1126  SwitchTable table(instruction, dex_pc, false);
1127
1128  // Value to test against.
1129  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
1130
1131  uint16_t num_entries = table.GetNumEntries();
1132  // There should be at least one entry here.
1133  DCHECK_GT(num_entries, 0U);
1134
1135  // Chained cmp-and-branch, starting from starting_key.
1136  int32_t starting_key = table.GetEntryAt(0);
1137
1138  for (size_t i = 1; i <= num_entries; i++) {
1139    BuildSwitchCaseHelper(instruction, i, i == num_entries, table, value, starting_key + i - 1,
1140                          table.GetEntryAt(i), dex_pc);
1141  }
1142}
1143
1144void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
1145  SwitchTable table(instruction, dex_pc, true);
1146
1147  // Value to test against.
1148  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
1149
1150  uint16_t num_entries = table.GetNumEntries();
1151
1152  for (size_t i = 0; i < num_entries; i++) {
1153    BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
1154                          table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
1155  }
1156}
1157
1158void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
1159                                          bool is_last_case, const SwitchTable& table,
1160                                          HInstruction* value, int32_t case_value_int,
1161                                          int32_t target_offset, uint32_t dex_pc) {
1162  HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1163  DCHECK(case_target != nullptr);
1164  PotentiallyAddSuspendCheck(case_target, dex_pc);
1165
1166  // The current case's value.
1167  HInstruction* this_case_value = graph_->GetIntConstant(case_value_int);
1168
1169  // Compare value and this_case_value.
1170  HEqual* comparison = new (arena_) HEqual(value, this_case_value);
1171  current_block_->AddInstruction(comparison);
1172  HInstruction* ifinst = new (arena_) HIf(comparison);
1173  current_block_->AddInstruction(ifinst);
1174
1175  // Case hit: use the target offset to determine where to go.
1176  current_block_->AddSuccessor(case_target);
1177
1178  // Case miss: go to the next case (or default fall-through).
1179  // When there is a next case, we use the block stored with the table offset representing this
1180  // case (that is where we registered them in ComputeBranchTargets).
1181  // When there is no next case, we use the following instruction.
1182  // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
1183  if (!is_last_case) {
1184    HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
1185    DCHECK(next_case_target != nullptr);
1186    current_block_->AddSuccessor(next_case_target);
1187
1188    // Need to manually add the block, as there is no dex-pc transition for the cases.
1189    graph_->AddBlock(next_case_target);
1190
1191    current_block_ = next_case_target;
1192  } else {
1193    HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1194    DCHECK(default_target != nullptr);
1195    current_block_->AddSuccessor(default_target);
1196    current_block_ = nullptr;
1197  }
1198}
1199
1200void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) {
1201  int32_t target_offset = target->GetDexPc() - dex_pc;
1202  if (target_offset <= 0) {
1203    // DX generates back edges to the first encountered return. We can save
1204    // time of later passes by not adding redundant suspend checks.
1205    HInstruction* last_in_target = target->GetLastInstruction();
1206    if (last_in_target != nullptr &&
1207        (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) {
1208      return;
1209    }
1210
1211    // Add a suspend check to backward branches which may potentially loop. We
1212    // can remove them after we recognize loops in the graph.
1213    current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
1214  }
1215}
1216
1217bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1218  if (current_block_ == nullptr) {
1219    return true;  // Dead code
1220  }
1221
1222  switch (instruction.Opcode()) {
1223    case Instruction::CONST_4: {
1224      int32_t register_index = instruction.VRegA();
1225      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n());
1226      UpdateLocal(register_index, constant);
1227      break;
1228    }
1229
1230    case Instruction::CONST_16: {
1231      int32_t register_index = instruction.VRegA();
1232      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s());
1233      UpdateLocal(register_index, constant);
1234      break;
1235    }
1236
1237    case Instruction::CONST: {
1238      int32_t register_index = instruction.VRegA();
1239      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i());
1240      UpdateLocal(register_index, constant);
1241      break;
1242    }
1243
1244    case Instruction::CONST_HIGH16: {
1245      int32_t register_index = instruction.VRegA();
1246      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16);
1247      UpdateLocal(register_index, constant);
1248      break;
1249    }
1250
1251    case Instruction::CONST_WIDE_16: {
1252      int32_t register_index = instruction.VRegA();
1253      // Get 16 bits of constant value, sign extended to 64 bits.
1254      int64_t value = instruction.VRegB_21s();
1255      value <<= 48;
1256      value >>= 48;
1257      HLongConstant* constant = graph_->GetLongConstant(value);
1258      UpdateLocal(register_index, constant);
1259      break;
1260    }
1261
1262    case Instruction::CONST_WIDE_32: {
1263      int32_t register_index = instruction.VRegA();
1264      // Get 32 bits of constant value, sign extended to 64 bits.
1265      int64_t value = instruction.VRegB_31i();
1266      value <<= 32;
1267      value >>= 32;
1268      HLongConstant* constant = graph_->GetLongConstant(value);
1269      UpdateLocal(register_index, constant);
1270      break;
1271    }
1272
1273    case Instruction::CONST_WIDE: {
1274      int32_t register_index = instruction.VRegA();
1275      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l());
1276      UpdateLocal(register_index, constant);
1277      break;
1278    }
1279
1280    case Instruction::CONST_WIDE_HIGH16: {
1281      int32_t register_index = instruction.VRegA();
1282      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
1283      HLongConstant* constant = graph_->GetLongConstant(value);
1284      UpdateLocal(register_index, constant);
1285      break;
1286    }
1287
1288    // Note that the SSA building will refine the types.
1289    case Instruction::MOVE:
1290    case Instruction::MOVE_FROM16:
1291    case Instruction::MOVE_16: {
1292      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
1293      UpdateLocal(instruction.VRegA(), value);
1294      break;
1295    }
1296
1297    // Note that the SSA building will refine the types.
1298    case Instruction::MOVE_WIDE:
1299    case Instruction::MOVE_WIDE_FROM16:
1300    case Instruction::MOVE_WIDE_16: {
1301      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
1302      UpdateLocal(instruction.VRegA(), value);
1303      break;
1304    }
1305
1306    case Instruction::MOVE_OBJECT:
1307    case Instruction::MOVE_OBJECT_16:
1308    case Instruction::MOVE_OBJECT_FROM16: {
1309      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
1310      UpdateLocal(instruction.VRegA(), value);
1311      break;
1312    }
1313
1314    case Instruction::RETURN_VOID: {
1315      BuildReturn(instruction, Primitive::kPrimVoid);
1316      break;
1317    }
1318
1319#define IF_XX(comparison, cond) \
1320    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
1321    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
1322
1323    IF_XX(HEqual, EQ);
1324    IF_XX(HNotEqual, NE);
1325    IF_XX(HLessThan, LT);
1326    IF_XX(HLessThanOrEqual, LE);
1327    IF_XX(HGreaterThan, GT);
1328    IF_XX(HGreaterThanOrEqual, GE);
1329
1330    case Instruction::GOTO:
1331    case Instruction::GOTO_16:
1332    case Instruction::GOTO_32: {
1333      int32_t offset = instruction.GetTargetOffset();
1334      HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
1335      DCHECK(target != nullptr);
1336      PotentiallyAddSuspendCheck(target, dex_pc);
1337      current_block_->AddInstruction(new (arena_) HGoto());
1338      current_block_->AddSuccessor(target);
1339      current_block_ = nullptr;
1340      break;
1341    }
1342
1343    case Instruction::RETURN: {
1344      DCHECK_NE(return_type_, Primitive::kPrimNot);
1345      DCHECK_NE(return_type_, Primitive::kPrimLong);
1346      DCHECK_NE(return_type_, Primitive::kPrimDouble);
1347      BuildReturn(instruction, return_type_);
1348      break;
1349    }
1350
1351    case Instruction::RETURN_OBJECT: {
1352      DCHECK(return_type_ == Primitive::kPrimNot);
1353      BuildReturn(instruction, return_type_);
1354      break;
1355    }
1356
1357    case Instruction::RETURN_WIDE: {
1358      DCHECK(return_type_ == Primitive::kPrimDouble || return_type_ == Primitive::kPrimLong);
1359      BuildReturn(instruction, return_type_);
1360      break;
1361    }
1362
1363    case Instruction::INVOKE_DIRECT:
1364    case Instruction::INVOKE_INTERFACE:
1365    case Instruction::INVOKE_STATIC:
1366    case Instruction::INVOKE_SUPER:
1367    case Instruction::INVOKE_VIRTUAL: {
1368      uint32_t method_idx = instruction.VRegB_35c();
1369      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
1370      uint32_t args[5];
1371      instruction.GetVarArgs(args);
1372      if (!BuildInvoke(instruction, dex_pc, method_idx,
1373                       number_of_vreg_arguments, false, args, -1)) {
1374        return false;
1375      }
1376      break;
1377    }
1378
1379    case Instruction::INVOKE_DIRECT_RANGE:
1380    case Instruction::INVOKE_INTERFACE_RANGE:
1381    case Instruction::INVOKE_STATIC_RANGE:
1382    case Instruction::INVOKE_SUPER_RANGE:
1383    case Instruction::INVOKE_VIRTUAL_RANGE: {
1384      uint32_t method_idx = instruction.VRegB_3rc();
1385      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
1386      uint32_t register_index = instruction.VRegC();
1387      if (!BuildInvoke(instruction, dex_pc, method_idx,
1388                       number_of_vreg_arguments, true, nullptr, register_index)) {
1389        return false;
1390      }
1391      break;
1392    }
1393
1394    case Instruction::NEG_INT: {
1395      Unop_12x<HNeg>(instruction, Primitive::kPrimInt);
1396      break;
1397    }
1398
1399    case Instruction::NEG_LONG: {
1400      Unop_12x<HNeg>(instruction, Primitive::kPrimLong);
1401      break;
1402    }
1403
1404    case Instruction::NEG_FLOAT: {
1405      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat);
1406      break;
1407    }
1408
1409    case Instruction::NEG_DOUBLE: {
1410      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble);
1411      break;
1412    }
1413
1414    case Instruction::NOT_INT: {
1415      Unop_12x<HNot>(instruction, Primitive::kPrimInt);
1416      break;
1417    }
1418
1419    case Instruction::NOT_LONG: {
1420      Unop_12x<HNot>(instruction, Primitive::kPrimLong);
1421      break;
1422    }
1423
1424    case Instruction::INT_TO_LONG: {
1425      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
1426      break;
1427    }
1428
1429    case Instruction::INT_TO_FLOAT: {
1430      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
1431      break;
1432    }
1433
1434    case Instruction::INT_TO_DOUBLE: {
1435      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
1436      break;
1437    }
1438
1439    case Instruction::LONG_TO_INT: {
1440      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
1441      break;
1442    }
1443
1444    case Instruction::LONG_TO_FLOAT: {
1445      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
1446      break;
1447    }
1448
1449    case Instruction::LONG_TO_DOUBLE: {
1450      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
1451      break;
1452    }
1453
1454    case Instruction::FLOAT_TO_INT: {
1455      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
1456      break;
1457    }
1458
1459    case Instruction::FLOAT_TO_LONG: {
1460      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
1461      break;
1462    }
1463
1464    case Instruction::FLOAT_TO_DOUBLE: {
1465      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
1466      break;
1467    }
1468
1469    case Instruction::DOUBLE_TO_INT: {
1470      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
1471      break;
1472    }
1473
1474    case Instruction::DOUBLE_TO_LONG: {
1475      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
1476      break;
1477    }
1478
1479    case Instruction::DOUBLE_TO_FLOAT: {
1480      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
1481      break;
1482    }
1483
1484    case Instruction::INT_TO_BYTE: {
1485      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
1486      break;
1487    }
1488
1489    case Instruction::INT_TO_SHORT: {
1490      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
1491      break;
1492    }
1493
1494    case Instruction::INT_TO_CHAR: {
1495      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
1496      break;
1497    }
1498
1499    case Instruction::ADD_INT: {
1500      Binop_23x<HAdd>(instruction, Primitive::kPrimInt);
1501      break;
1502    }
1503
1504    case Instruction::ADD_LONG: {
1505      Binop_23x<HAdd>(instruction, Primitive::kPrimLong);
1506      break;
1507    }
1508
1509    case Instruction::ADD_DOUBLE: {
1510      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble);
1511      break;
1512    }
1513
1514    case Instruction::ADD_FLOAT: {
1515      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat);
1516      break;
1517    }
1518
1519    case Instruction::SUB_INT: {
1520      Binop_23x<HSub>(instruction, Primitive::kPrimInt);
1521      break;
1522    }
1523
1524    case Instruction::SUB_LONG: {
1525      Binop_23x<HSub>(instruction, Primitive::kPrimLong);
1526      break;
1527    }
1528
1529    case Instruction::SUB_FLOAT: {
1530      Binop_23x<HSub>(instruction, Primitive::kPrimFloat);
1531      break;
1532    }
1533
1534    case Instruction::SUB_DOUBLE: {
1535      Binop_23x<HSub>(instruction, Primitive::kPrimDouble);
1536      break;
1537    }
1538
1539    case Instruction::ADD_INT_2ADDR: {
1540      Binop_12x<HAdd>(instruction, Primitive::kPrimInt);
1541      break;
1542    }
1543
1544    case Instruction::MUL_INT: {
1545      Binop_23x<HMul>(instruction, Primitive::kPrimInt);
1546      break;
1547    }
1548
1549    case Instruction::MUL_LONG: {
1550      Binop_23x<HMul>(instruction, Primitive::kPrimLong);
1551      break;
1552    }
1553
1554    case Instruction::MUL_FLOAT: {
1555      Binop_23x<HMul>(instruction, Primitive::kPrimFloat);
1556      break;
1557    }
1558
1559    case Instruction::MUL_DOUBLE: {
1560      Binop_23x<HMul>(instruction, Primitive::kPrimDouble);
1561      break;
1562    }
1563
1564    case Instruction::DIV_INT: {
1565      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1566                         dex_pc, Primitive::kPrimInt, false, true);
1567      break;
1568    }
1569
1570    case Instruction::DIV_LONG: {
1571      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1572                         dex_pc, Primitive::kPrimLong, false, true);
1573      break;
1574    }
1575
1576    case Instruction::DIV_FLOAT: {
1577      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
1578      break;
1579    }
1580
1581    case Instruction::DIV_DOUBLE: {
1582      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
1583      break;
1584    }
1585
1586    case Instruction::REM_INT: {
1587      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1588                         dex_pc, Primitive::kPrimInt, false, false);
1589      break;
1590    }
1591
1592    case Instruction::REM_LONG: {
1593      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1594                         dex_pc, Primitive::kPrimLong, false, false);
1595      break;
1596    }
1597
1598    case Instruction::REM_FLOAT: {
1599      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
1600      break;
1601    }
1602
1603    case Instruction::REM_DOUBLE: {
1604      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
1605      break;
1606    }
1607
1608    case Instruction::AND_INT: {
1609      Binop_23x<HAnd>(instruction, Primitive::kPrimInt);
1610      break;
1611    }
1612
1613    case Instruction::AND_LONG: {
1614      Binop_23x<HAnd>(instruction, Primitive::kPrimLong);
1615      break;
1616    }
1617
1618    case Instruction::SHL_INT: {
1619      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt);
1620      break;
1621    }
1622
1623    case Instruction::SHL_LONG: {
1624      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong);
1625      break;
1626    }
1627
1628    case Instruction::SHR_INT: {
1629      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt);
1630      break;
1631    }
1632
1633    case Instruction::SHR_LONG: {
1634      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong);
1635      break;
1636    }
1637
1638    case Instruction::USHR_INT: {
1639      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt);
1640      break;
1641    }
1642
1643    case Instruction::USHR_LONG: {
1644      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong);
1645      break;
1646    }
1647
1648    case Instruction::OR_INT: {
1649      Binop_23x<HOr>(instruction, Primitive::kPrimInt);
1650      break;
1651    }
1652
1653    case Instruction::OR_LONG: {
1654      Binop_23x<HOr>(instruction, Primitive::kPrimLong);
1655      break;
1656    }
1657
1658    case Instruction::XOR_INT: {
1659      Binop_23x<HXor>(instruction, Primitive::kPrimInt);
1660      break;
1661    }
1662
1663    case Instruction::XOR_LONG: {
1664      Binop_23x<HXor>(instruction, Primitive::kPrimLong);
1665      break;
1666    }
1667
1668    case Instruction::ADD_LONG_2ADDR: {
1669      Binop_12x<HAdd>(instruction, Primitive::kPrimLong);
1670      break;
1671    }
1672
1673    case Instruction::ADD_DOUBLE_2ADDR: {
1674      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble);
1675      break;
1676    }
1677
1678    case Instruction::ADD_FLOAT_2ADDR: {
1679      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat);
1680      break;
1681    }
1682
1683    case Instruction::SUB_INT_2ADDR: {
1684      Binop_12x<HSub>(instruction, Primitive::kPrimInt);
1685      break;
1686    }
1687
1688    case Instruction::SUB_LONG_2ADDR: {
1689      Binop_12x<HSub>(instruction, Primitive::kPrimLong);
1690      break;
1691    }
1692
1693    case Instruction::SUB_FLOAT_2ADDR: {
1694      Binop_12x<HSub>(instruction, Primitive::kPrimFloat);
1695      break;
1696    }
1697
1698    case Instruction::SUB_DOUBLE_2ADDR: {
1699      Binop_12x<HSub>(instruction, Primitive::kPrimDouble);
1700      break;
1701    }
1702
1703    case Instruction::MUL_INT_2ADDR: {
1704      Binop_12x<HMul>(instruction, Primitive::kPrimInt);
1705      break;
1706    }
1707
1708    case Instruction::MUL_LONG_2ADDR: {
1709      Binop_12x<HMul>(instruction, Primitive::kPrimLong);
1710      break;
1711    }
1712
1713    case Instruction::MUL_FLOAT_2ADDR: {
1714      Binop_12x<HMul>(instruction, Primitive::kPrimFloat);
1715      break;
1716    }
1717
1718    case Instruction::MUL_DOUBLE_2ADDR: {
1719      Binop_12x<HMul>(instruction, Primitive::kPrimDouble);
1720      break;
1721    }
1722
1723    case Instruction::DIV_INT_2ADDR: {
1724      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1725                         dex_pc, Primitive::kPrimInt, false, true);
1726      break;
1727    }
1728
1729    case Instruction::DIV_LONG_2ADDR: {
1730      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1731                         dex_pc, Primitive::kPrimLong, false, true);
1732      break;
1733    }
1734
1735    case Instruction::REM_INT_2ADDR: {
1736      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1737                         dex_pc, Primitive::kPrimInt, false, false);
1738      break;
1739    }
1740
1741    case Instruction::REM_LONG_2ADDR: {
1742      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
1743                         dex_pc, Primitive::kPrimLong, false, false);
1744      break;
1745    }
1746
1747    case Instruction::REM_FLOAT_2ADDR: {
1748      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
1749      break;
1750    }
1751
1752    case Instruction::REM_DOUBLE_2ADDR: {
1753      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
1754      break;
1755    }
1756
1757    case Instruction::SHL_INT_2ADDR: {
1758      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt);
1759      break;
1760    }
1761
1762    case Instruction::SHL_LONG_2ADDR: {
1763      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong);
1764      break;
1765    }
1766
1767    case Instruction::SHR_INT_2ADDR: {
1768      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt);
1769      break;
1770    }
1771
1772    case Instruction::SHR_LONG_2ADDR: {
1773      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong);
1774      break;
1775    }
1776
1777    case Instruction::USHR_INT_2ADDR: {
1778      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt);
1779      break;
1780    }
1781
1782    case Instruction::USHR_LONG_2ADDR: {
1783      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong);
1784      break;
1785    }
1786
1787    case Instruction::DIV_FLOAT_2ADDR: {
1788      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
1789      break;
1790    }
1791
1792    case Instruction::DIV_DOUBLE_2ADDR: {
1793      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
1794      break;
1795    }
1796
1797    case Instruction::AND_INT_2ADDR: {
1798      Binop_12x<HAnd>(instruction, Primitive::kPrimInt);
1799      break;
1800    }
1801
1802    case Instruction::AND_LONG_2ADDR: {
1803      Binop_12x<HAnd>(instruction, Primitive::kPrimLong);
1804      break;
1805    }
1806
1807    case Instruction::OR_INT_2ADDR: {
1808      Binop_12x<HOr>(instruction, Primitive::kPrimInt);
1809      break;
1810    }
1811
1812    case Instruction::OR_LONG_2ADDR: {
1813      Binop_12x<HOr>(instruction, Primitive::kPrimLong);
1814      break;
1815    }
1816
1817    case Instruction::XOR_INT_2ADDR: {
1818      Binop_12x<HXor>(instruction, Primitive::kPrimInt);
1819      break;
1820    }
1821
1822    case Instruction::XOR_LONG_2ADDR: {
1823      Binop_12x<HXor>(instruction, Primitive::kPrimLong);
1824      break;
1825    }
1826
1827    case Instruction::ADD_INT_LIT16: {
1828      Binop_22s<HAdd>(instruction, false);
1829      break;
1830    }
1831
1832    case Instruction::AND_INT_LIT16: {
1833      Binop_22s<HAnd>(instruction, false);
1834      break;
1835    }
1836
1837    case Instruction::OR_INT_LIT16: {
1838      Binop_22s<HOr>(instruction, false);
1839      break;
1840    }
1841
1842    case Instruction::XOR_INT_LIT16: {
1843      Binop_22s<HXor>(instruction, false);
1844      break;
1845    }
1846
1847    case Instruction::RSUB_INT: {
1848      Binop_22s<HSub>(instruction, true);
1849      break;
1850    }
1851
1852    case Instruction::MUL_INT_LIT16: {
1853      Binop_22s<HMul>(instruction, false);
1854      break;
1855    }
1856
1857    case Instruction::ADD_INT_LIT8: {
1858      Binop_22b<HAdd>(instruction, false);
1859      break;
1860    }
1861
1862    case Instruction::AND_INT_LIT8: {
1863      Binop_22b<HAnd>(instruction, false);
1864      break;
1865    }
1866
1867    case Instruction::OR_INT_LIT8: {
1868      Binop_22b<HOr>(instruction, false);
1869      break;
1870    }
1871
1872    case Instruction::XOR_INT_LIT8: {
1873      Binop_22b<HXor>(instruction, false);
1874      break;
1875    }
1876
1877    case Instruction::RSUB_INT_LIT8: {
1878      Binop_22b<HSub>(instruction, true);
1879      break;
1880    }
1881
1882    case Instruction::MUL_INT_LIT8: {
1883      Binop_22b<HMul>(instruction, false);
1884      break;
1885    }
1886
1887    case Instruction::DIV_INT_LIT16:
1888    case Instruction::DIV_INT_LIT8: {
1889      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1890                         dex_pc, Primitive::kPrimInt, true, true);
1891      break;
1892    }
1893
1894    case Instruction::REM_INT_LIT16:
1895    case Instruction::REM_INT_LIT8: {
1896      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
1897                         dex_pc, Primitive::kPrimInt, true, false);
1898      break;
1899    }
1900
1901    case Instruction::SHL_INT_LIT8: {
1902      Binop_22b<HShl>(instruction, false);
1903      break;
1904    }
1905
1906    case Instruction::SHR_INT_LIT8: {
1907      Binop_22b<HShr>(instruction, false);
1908      break;
1909    }
1910
1911    case Instruction::USHR_INT_LIT8: {
1912      Binop_22b<HUShr>(instruction, false);
1913      break;
1914    }
1915
1916    case Instruction::NEW_INSTANCE: {
1917      uint16_t type_index = instruction.VRegB_21c();
1918      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
1919          ? kQuickAllocObjectWithAccessCheck
1920          : kQuickAllocObject;
1921
1922      current_block_->AddInstruction(new (arena_) HNewInstance(dex_pc, type_index, entrypoint));
1923      UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
1924      break;
1925    }
1926
1927    case Instruction::NEW_ARRAY: {
1928      uint16_t type_index = instruction.VRegC_22c();
1929      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
1930      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
1931          ? kQuickAllocArrayWithAccessCheck
1932          : kQuickAllocArray;
1933      current_block_->AddInstruction(
1934          new (arena_) HNewArray(length, dex_pc, type_index, entrypoint));
1935      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
1936      break;
1937    }
1938
1939    case Instruction::FILLED_NEW_ARRAY: {
1940      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
1941      uint32_t type_index = instruction.VRegB_35c();
1942      uint32_t args[5];
1943      instruction.GetVarArgs(args);
1944      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
1945      break;
1946    }
1947
1948    case Instruction::FILLED_NEW_ARRAY_RANGE: {
1949      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
1950      uint32_t type_index = instruction.VRegB_3rc();
1951      uint32_t register_index = instruction.VRegC_3rc();
1952      BuildFilledNewArray(
1953          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
1954      break;
1955    }
1956
1957    case Instruction::FILL_ARRAY_DATA: {
1958      BuildFillArrayData(instruction, dex_pc);
1959      break;
1960    }
1961
1962    case Instruction::MOVE_RESULT:
1963    case Instruction::MOVE_RESULT_WIDE:
1964    case Instruction::MOVE_RESULT_OBJECT:
1965      UpdateLocal(instruction.VRegA(), latest_result_);
1966      latest_result_ = nullptr;
1967      break;
1968
1969    case Instruction::CMP_LONG: {
1970      Binop_23x_cmp(instruction, Primitive::kPrimLong, HCompare::kNoBias);
1971      break;
1972    }
1973
1974    case Instruction::CMPG_FLOAT: {
1975      Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kGtBias);
1976      break;
1977    }
1978
1979    case Instruction::CMPG_DOUBLE: {
1980      Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kGtBias);
1981      break;
1982    }
1983
1984    case Instruction::CMPL_FLOAT: {
1985      Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kLtBias);
1986      break;
1987    }
1988
1989    case Instruction::CMPL_DOUBLE: {
1990      Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kLtBias);
1991      break;
1992    }
1993
1994    case Instruction::NOP:
1995      break;
1996
1997    case Instruction::IGET:
1998    case Instruction::IGET_WIDE:
1999    case Instruction::IGET_OBJECT:
2000    case Instruction::IGET_BOOLEAN:
2001    case Instruction::IGET_BYTE:
2002    case Instruction::IGET_CHAR:
2003    case Instruction::IGET_SHORT: {
2004      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
2005        return false;
2006      }
2007      break;
2008    }
2009
2010    case Instruction::IPUT:
2011    case Instruction::IPUT_WIDE:
2012    case Instruction::IPUT_OBJECT:
2013    case Instruction::IPUT_BOOLEAN:
2014    case Instruction::IPUT_BYTE:
2015    case Instruction::IPUT_CHAR:
2016    case Instruction::IPUT_SHORT: {
2017      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
2018        return false;
2019      }
2020      break;
2021    }
2022
2023    case Instruction::SGET:
2024    case Instruction::SGET_WIDE:
2025    case Instruction::SGET_OBJECT:
2026    case Instruction::SGET_BOOLEAN:
2027    case Instruction::SGET_BYTE:
2028    case Instruction::SGET_CHAR:
2029    case Instruction::SGET_SHORT: {
2030      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
2031        return false;
2032      }
2033      break;
2034    }
2035
2036    case Instruction::SPUT:
2037    case Instruction::SPUT_WIDE:
2038    case Instruction::SPUT_OBJECT:
2039    case Instruction::SPUT_BOOLEAN:
2040    case Instruction::SPUT_BYTE:
2041    case Instruction::SPUT_CHAR:
2042    case Instruction::SPUT_SHORT: {
2043      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
2044        return false;
2045      }
2046      break;
2047    }
2048
2049#define ARRAY_XX(kind, anticipated_type)                                          \
2050    case Instruction::AGET##kind: {                                               \
2051      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
2052      break;                                                                      \
2053    }                                                                             \
2054    case Instruction::APUT##kind: {                                               \
2055      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
2056      break;                                                                      \
2057    }
2058
2059    ARRAY_XX(, Primitive::kPrimInt);
2060    ARRAY_XX(_WIDE, Primitive::kPrimLong);
2061    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
2062    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
2063    ARRAY_XX(_BYTE, Primitive::kPrimByte);
2064    ARRAY_XX(_CHAR, Primitive::kPrimChar);
2065    ARRAY_XX(_SHORT, Primitive::kPrimShort);
2066
2067    case Instruction::ARRAY_LENGTH: {
2068      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot);
2069      // No need for a temporary for the null check, it is the only input of the following
2070      // instruction.
2071      object = new (arena_) HNullCheck(object, dex_pc);
2072      current_block_->AddInstruction(object);
2073      current_block_->AddInstruction(new (arena_) HArrayLength(object));
2074      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
2075      break;
2076    }
2077
2078    case Instruction::CONST_STRING: {
2079      current_block_->AddInstruction(new (arena_) HLoadString(instruction.VRegB_21c(), dex_pc));
2080      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2081      break;
2082    }
2083
2084    case Instruction::CONST_STRING_JUMBO: {
2085      current_block_->AddInstruction(new (arena_) HLoadString(instruction.VRegB_31c(), dex_pc));
2086      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
2087      break;
2088    }
2089
2090    case Instruction::CONST_CLASS: {
2091      uint16_t type_index = instruction.VRegB_21c();
2092      bool type_known_final;
2093      bool type_known_abstract;
2094      bool dont_use_is_referrers_class;
2095      // `CanAccessTypeWithoutChecks` will tell whether the method being
2096      // built is trying to access its own class, so that the generated
2097      // code can optimize for this case. However, the optimization does not
2098      // work for inlining, so we use `IsOutermostCompilingClass` instead.
2099      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
2100          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
2101          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
2102      if (!can_access) {
2103        MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
2104        return false;
2105      }
2106      current_block_->AddInstruction(
2107          new (arena_) HLoadClass(type_index, IsOutermostCompilingClass(type_index), dex_pc));
2108      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2109      break;
2110    }
2111
2112    case Instruction::MOVE_EXCEPTION: {
2113      current_block_->AddInstruction(new (arena_) HLoadException());
2114      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
2115      break;
2116    }
2117
2118    case Instruction::THROW: {
2119      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
2120      current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
2121      // A throw instruction must branch to the exit block.
2122      current_block_->AddSuccessor(exit_block_);
2123      // We finished building this block. Set the current block to null to avoid
2124      // adding dead instructions to it.
2125      current_block_ = nullptr;
2126      break;
2127    }
2128
2129    case Instruction::INSTANCE_OF: {
2130      uint8_t destination = instruction.VRegA_22c();
2131      uint8_t reference = instruction.VRegB_22c();
2132      uint16_t type_index = instruction.VRegC_22c();
2133      if (!BuildTypeCheck(instruction, destination, reference, type_index, dex_pc)) {
2134        return false;
2135      }
2136      break;
2137    }
2138
2139    case Instruction::CHECK_CAST: {
2140      uint8_t reference = instruction.VRegA_21c();
2141      uint16_t type_index = instruction.VRegB_21c();
2142      if (!BuildTypeCheck(instruction, -1, reference, type_index, dex_pc)) {
2143        return false;
2144      }
2145      break;
2146    }
2147
2148    case Instruction::MONITOR_ENTER: {
2149      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2150          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2151          HMonitorOperation::kEnter,
2152          dex_pc));
2153      break;
2154    }
2155
2156    case Instruction::MONITOR_EXIT: {
2157      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2158          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2159          HMonitorOperation::kExit,
2160          dex_pc));
2161      break;
2162    }
2163
2164    case Instruction::PACKED_SWITCH: {
2165      BuildPackedSwitch(instruction, dex_pc);
2166      break;
2167    }
2168
2169    case Instruction::SPARSE_SWITCH: {
2170      BuildSparseSwitch(instruction, dex_pc);
2171      break;
2172    }
2173
2174    default:
2175      VLOG(compiler) << "Did not compile "
2176                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
2177                     << " because of unhandled instruction "
2178                     << instruction.Name();
2179      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
2180      return false;
2181  }
2182  return true;
2183}  // NOLINT(readability/fn_size)
2184
2185HLocal* HGraphBuilder::GetLocalAt(int register_index) const {
2186  return locals_.Get(register_index);
2187}
2188
2189void HGraphBuilder::UpdateLocal(int register_index, HInstruction* instruction) const {
2190  HLocal* local = GetLocalAt(register_index);
2191  current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction));
2192}
2193
2194HInstruction* HGraphBuilder::LoadLocal(int register_index, Primitive::Type type) const {
2195  HLocal* local = GetLocalAt(register_index);
2196  current_block_->AddInstruction(new (arena_) HLoadLocal(local, type));
2197  return current_block_->GetLastInstruction();
2198}
2199
2200}  // namespace art
2201