builder.cc revision e460d1df1f789c7c8bb97024a8efbd713ac175e9
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "builder.h"
18
19#include "art_field-inl.h"
20#include "base/logging.h"
21#include "class_linker.h"
22#include "dex/verified_method.h"
23#include "dex_file-inl.h"
24#include "dex_instruction-inl.h"
25#include "dex/verified_method.h"
26#include "driver/compiler_driver-inl.h"
27#include "driver/compiler_options.h"
28#include "mirror/class_loader.h"
29#include "mirror/dex_cache.h"
30#include "nodes.h"
31#include "primitive.h"
32#include "scoped_thread_state_change.h"
33#include "thread.h"
34#include "utils/dex_cache_arrays_layout-inl.h"
35
36namespace art {
37
38/**
39 * Helper class to add HTemporary instructions. This class is used when
40 * converting a DEX instruction to multiple HInstruction, and where those
41 * instructions do not die at the following instruction, but instead spans
42 * multiple instructions.
43 */
44class Temporaries : public ValueObject {
45 public:
46  explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
47
48  void Add(HInstruction* instruction) {
49    HInstruction* temp = new (graph_->GetArena()) HTemporary(index_, instruction->GetDexPc());
50    instruction->GetBlock()->AddInstruction(temp);
51
52    DCHECK(temp->GetPrevious() == instruction);
53
54    size_t offset;
55    if (instruction->GetType() == Primitive::kPrimLong
56        || instruction->GetType() == Primitive::kPrimDouble) {
57      offset = 2;
58    } else {
59      offset = 1;
60    }
61    index_ += offset;
62
63    graph_->UpdateTemporariesVRegSlots(index_);
64  }
65
66 private:
67  HGraph* const graph_;
68
69  // Current index in the temporary stack, updated by `Add`.
70  size_t index_;
71};
72
73class SwitchTable : public ValueObject {
74 public:
75  SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
76      : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
77    int32_t table_offset = instruction.VRegB_31t();
78    const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
79    if (sparse) {
80      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
81    } else {
82      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
83    }
84    num_entries_ = table[1];
85    values_ = reinterpret_cast<const int32_t*>(&table[2]);
86  }
87
88  uint16_t GetNumEntries() const {
89    return num_entries_;
90  }
91
92  void CheckIndex(size_t index) const {
93    if (sparse_) {
94      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
95      DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
96    } else {
97      // In a packed table, we have the starting key and num_entries_ values.
98      DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
99    }
100  }
101
102  int32_t GetEntryAt(size_t index) const {
103    CheckIndex(index);
104    return values_[index];
105  }
106
107  uint32_t GetDexPcForIndex(size_t index) const {
108    CheckIndex(index);
109    return dex_pc_ +
110        (reinterpret_cast<const int16_t*>(values_ + index) -
111         reinterpret_cast<const int16_t*>(&instruction_));
112  }
113
114  // Index of the first value in the table.
115  size_t GetFirstValueIndex() const {
116    if (sparse_) {
117      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
118      return num_entries_;
119    } else {
120      // In a packed table, we have the starting key and num_entries_ values.
121      return 1;
122    }
123  }
124
125 private:
126  const Instruction& instruction_;
127  const uint32_t dex_pc_;
128
129  // Whether this is a sparse-switch table (or a packed-switch one).
130  const bool sparse_;
131
132  // This can't be const as it needs to be computed off of the given instruction, and complicated
133  // expressions in the initializer list seemed very ugly.
134  uint16_t num_entries_;
135
136  const int32_t* values_;
137
138  DISALLOW_COPY_AND_ASSIGN(SwitchTable);
139};
140
141void HGraphBuilder::InitializeLocals(uint16_t count) {
142  graph_->SetNumberOfVRegs(count);
143  locals_.resize(count);
144  for (int i = 0; i < count; i++) {
145    HLocal* local = new (arena_) HLocal(i);
146    entry_block_->AddInstruction(local);
147    locals_[i] = local;
148  }
149}
150
151void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
152  // dex_compilation_unit_ is null only when unit testing.
153  if (dex_compilation_unit_ == nullptr) {
154    return;
155  }
156
157  graph_->SetNumberOfInVRegs(number_of_parameters);
158  const char* shorty = dex_compilation_unit_->GetShorty();
159  int locals_index = locals_.size() - number_of_parameters;
160  int parameter_index = 0;
161
162  if (!dex_compilation_unit_->IsStatic()) {
163    // Add the implicit 'this' argument, not expressed in the signature.
164    HParameterValue* parameter = new (arena_) HParameterValue(parameter_index++,
165                                                              Primitive::kPrimNot,
166                                                              true);
167    entry_block_->AddInstruction(parameter);
168    HLocal* local = GetLocalAt(locals_index++);
169    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
170    number_of_parameters--;
171  }
172
173  uint32_t pos = 1;
174  for (int i = 0; i < number_of_parameters; i++) {
175    HParameterValue* parameter = new (arena_) HParameterValue(parameter_index++,
176                                                              Primitive::GetType(shorty[pos++]),
177                                                              false);
178    entry_block_->AddInstruction(parameter);
179    HLocal* local = GetLocalAt(locals_index++);
180    // Store the parameter value in the local that the dex code will use
181    // to reference that parameter.
182    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
183    bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
184        || (parameter->GetType() == Primitive::kPrimDouble);
185    if (is_wide) {
186      i++;
187      locals_index++;
188      parameter_index++;
189    }
190  }
191}
192
193template<typename T>
194void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
195  int32_t target_offset = instruction.GetTargetOffset();
196  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
197  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
198  DCHECK(branch_target != nullptr);
199  DCHECK(fallthrough_target != nullptr);
200  PotentiallyAddSuspendCheck(branch_target, dex_pc);
201  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
202  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
203  T* comparison = new (arena_) T(first, second, dex_pc);
204  current_block_->AddInstruction(comparison);
205  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
206  current_block_->AddInstruction(ifinst);
207  current_block_->AddSuccessor(branch_target);
208  current_block_->AddSuccessor(fallthrough_target);
209  current_block_ = nullptr;
210}
211
212template<typename T>
213void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
214  int32_t target_offset = instruction.GetTargetOffset();
215  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
216  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
217  DCHECK(branch_target != nullptr);
218  DCHECK(fallthrough_target != nullptr);
219  PotentiallyAddSuspendCheck(branch_target, dex_pc);
220  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
221  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
222  current_block_->AddInstruction(comparison);
223  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
224  current_block_->AddInstruction(ifinst);
225  current_block_->AddSuccessor(branch_target);
226  current_block_->AddSuccessor(fallthrough_target);
227  current_block_ = nullptr;
228}
229
230void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
231  if (compilation_stats_ != nullptr) {
232    compilation_stats_->RecordStat(compilation_stat);
233  }
234}
235
236bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item,
237                                    size_t number_of_branches) {
238  const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
239  CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
240  if (compiler_filter == CompilerOptions::kEverything) {
241    return false;
242  }
243
244  if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) {
245    VLOG(compiler) << "Skip compilation of huge method "
246                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
247                   << ": " << code_item.insns_size_in_code_units_ << " code units";
248    MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
249    return true;
250  }
251
252  // If it's large and contains no branches, it's likely to be machine generated initialization.
253  if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_)
254      && (number_of_branches == 0)) {
255    VLOG(compiler) << "Skip compilation of large method with no branch "
256                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
257                   << ": " << code_item.insns_size_in_code_units_ << " code units";
258    MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
259    return true;
260  }
261
262  return false;
263}
264
265void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) {
266  if (code_item.tries_size_ == 0) {
267    return;
268  }
269
270  // Create branch targets at the start/end of the TryItem range. These are
271  // places where the program might fall through into/out of the a block and
272  // where TryBoundary instructions will be inserted later. Other edges which
273  // enter/exit the try blocks are a result of branches/switches.
274  for (size_t idx = 0; idx < code_item.tries_size_; ++idx) {
275    const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx);
276    uint32_t dex_pc_start = try_item->start_addr_;
277    uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_;
278    FindOrCreateBlockStartingAt(dex_pc_start);
279    if (dex_pc_end < code_item.insns_size_in_code_units_) {
280      // TODO: Do not create block if the last instruction cannot fall through.
281      FindOrCreateBlockStartingAt(dex_pc_end);
282    } else {
283      // The TryItem spans until the very end of the CodeItem (or beyond if
284      // invalid) and therefore cannot have any code afterwards.
285    }
286  }
287
288  // Create branch targets for exception handlers.
289  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
290  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
291  for (uint32_t idx = 0; idx < handlers_size; ++idx) {
292    CatchHandlerIterator iterator(handlers_ptr);
293    for (; iterator.HasNext(); iterator.Next()) {
294      uint32_t address = iterator.GetHandlerAddress();
295      HBasicBlock* block = FindOrCreateBlockStartingAt(address);
296      block->SetTryCatchInformation(
297        new (arena_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
298    }
299    handlers_ptr = iterator.EndDataPointer();
300  }
301}
302
303// Returns the TryItem stored for `block` or nullptr if there is no info for it.
304static const DexFile::TryItem* GetTryItem(
305    HBasicBlock* block,
306    const ArenaSafeMap<uint32_t, const DexFile::TryItem*>& try_block_info) {
307  auto iterator = try_block_info.find(block->GetBlockId());
308  return (iterator == try_block_info.end()) ? nullptr : iterator->second;
309}
310
311void HGraphBuilder::LinkToCatchBlocks(HTryBoundary* try_boundary,
312                                      const DexFile::CodeItem& code_item,
313                                      const DexFile::TryItem* try_item) {
314  for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) {
315    try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress()));
316  }
317}
318
319void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) {
320  if (code_item.tries_size_ == 0) {
321    return;
322  }
323
324  // Keep a map of all try blocks and their respective TryItems. We do not use
325  // the block's pointer but rather its id to ensure deterministic iteration.
326  ArenaSafeMap<uint32_t, const DexFile::TryItem*> try_block_info(
327      std::less<uint32_t>(), arena_->Adapter(kArenaAllocGraphBuilder));
328
329  // Obtain TryItem information for blocks with throwing instructions, and split
330  // blocks which are both try & catch to simplify the graph.
331  // NOTE: We are appending new blocks inside the loop, so we need to use index
332  // because iterators can be invalidated. We remember the initial size to avoid
333  // iterating over the new blocks which cannot throw.
334  for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) {
335    HBasicBlock* block = graph_->GetBlocks()[i];
336
337    // Do not bother creating exceptional edges for try blocks which have no
338    // throwing instructions. In that case we simply assume that the block is
339    // not covered by a TryItem. This prevents us from creating a throw-catch
340    // loop for synchronized blocks.
341    if (block->HasThrowingInstructions()) {
342      // Try to find a TryItem covering the block.
343      DCHECK_NE(block->GetDexPc(), kNoDexPc) << "Block must have a dec_pc to find its TryItem.";
344      const int32_t try_item_idx = DexFile::FindTryItem(code_item, block->GetDexPc());
345      if (try_item_idx != -1) {
346        // Block throwing and in a TryItem. Store the try block information.
347        HBasicBlock* throwing_block = block;
348        if (block->IsCatchBlock()) {
349          // Simplify blocks which are both try and catch, otherwise we would
350          // need a strategy for splitting exceptional edges. We split the block
351          // after the move-exception (if present) and mark the first part not
352          // throwing. The normal-flow edge between them will be split later.
353          HInstruction* first_insn = block->GetFirstInstruction();
354          if (first_insn->IsLoadException()) {
355            // Catch block starts with a LoadException. Split the block after
356            // the StoreLocal and ClearException which must come after the load.
357            DCHECK(first_insn->GetNext()->IsStoreLocal());
358            DCHECK(first_insn->GetNext()->GetNext()->IsClearException());
359            throwing_block = block->SplitBefore(first_insn->GetNext()->GetNext()->GetNext());
360          } else {
361            // Catch block does not load the exception. Split at the beginning
362            // to create an empty catch block.
363            throwing_block = block->SplitBefore(first_insn);
364          }
365        }
366
367        try_block_info.Put(throwing_block->GetBlockId(),
368                           DexFile::GetTryItems(code_item, try_item_idx));
369      }
370    }
371  }
372
373  // Do a pass over the try blocks and insert entering TryBoundaries where at
374  // least one predecessor is not covered by the same TryItem as the try block.
375  // We do not split each edge separately, but rather create one boundary block
376  // that all predecessors are relinked to. This preserves loop headers (b/23895756).
377  for (auto entry : try_block_info) {
378    HBasicBlock* try_block = graph_->GetBlock(entry.first);
379    for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
380      if (GetTryItem(predecessor, try_block_info) != entry.second) {
381        // Found a predecessor not covered by the same TryItem. Insert entering
382        // boundary block.
383        HTryBoundary* try_entry =
384            new (arena_) HTryBoundary(HTryBoundary::kEntry, try_block->GetDexPc());
385        try_block->CreateImmediateDominator()->AddInstruction(try_entry);
386        LinkToCatchBlocks(try_entry, code_item, entry.second);
387        break;
388      }
389    }
390  }
391
392  // Do a second pass over the try blocks and insert exit TryBoundaries where
393  // the successor is not in the same TryItem.
394  for (auto entry : try_block_info) {
395    HBasicBlock* try_block = graph_->GetBlock(entry.first);
396    // NOTE: Do not use iterators because SplitEdge would invalidate them.
397    for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
398      HBasicBlock* successor = try_block->GetSuccessor(i);
399
400      // If the successor is a try block, all of its predecessors must be
401      // covered by the same TryItem. Otherwise the previous pass would have
402      // created a non-throwing boundary block.
403      if (GetTryItem(successor, try_block_info) != nullptr) {
404        DCHECK_EQ(entry.second, GetTryItem(successor, try_block_info));
405        continue;
406      }
407
408      // Preserve the invariant that Return(Void) always jumps to Exit by moving
409      // it outside the try block if necessary.
410      HInstruction* last_instruction = try_block->GetLastInstruction();
411      if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) {
412        DCHECK_EQ(successor, exit_block_);
413        successor = try_block->SplitBefore(last_instruction);
414      }
415
416      // Insert TryBoundary and link to catch blocks.
417      HTryBoundary* try_exit =
418          new (arena_) HTryBoundary(HTryBoundary::kExit, successor->GetDexPc());
419      graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
420      LinkToCatchBlocks(try_exit, code_item, entry.second);
421    }
422  }
423}
424
425bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
426  DCHECK(graph_->GetBlocks().empty());
427
428  const uint16_t* code_ptr = code_item.insns_;
429  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
430  code_start_ = code_ptr;
431
432  // Setup the graph with the entry block and exit block.
433  entry_block_ = new (arena_) HBasicBlock(graph_, 0);
434  graph_->AddBlock(entry_block_);
435  exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
436  graph_->SetEntryBlock(entry_block_);
437  graph_->SetExitBlock(exit_block_);
438
439  graph_->SetHasTryCatch(code_item.tries_size_ != 0);
440
441  InitializeLocals(code_item.registers_size_);
442  graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
443
444  // Compute the number of dex instructions, blocks, and branches. We will
445  // check these values against limits given to the compiler.
446  size_t number_of_branches = 0;
447
448  // To avoid splitting blocks, we compute ahead of time the instructions that
449  // start a new block, and create these blocks.
450  if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) {
451    MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode);
452    return false;
453  }
454
455  // Note that the compiler driver is null when unit testing.
456  if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) {
457    return false;
458  }
459
460  CreateBlocksForTryCatch(code_item);
461
462  InitializeParameters(code_item.ins_size_);
463
464  size_t dex_pc = 0;
465  while (code_ptr < code_end) {
466    // Update the current block if dex_pc starts a new block.
467    MaybeUpdateCurrentBlock(dex_pc);
468    const Instruction& instruction = *Instruction::At(code_ptr);
469    if (!AnalyzeDexInstruction(instruction, dex_pc)) {
470      return false;
471    }
472    dex_pc += instruction.SizeInCodeUnits();
473    code_ptr += instruction.SizeInCodeUnits();
474  }
475
476  // Add Exit to the exit block.
477  exit_block_->AddInstruction(new (arena_) HExit());
478  // Add the suspend check to the entry block.
479  entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
480  entry_block_->AddInstruction(new (arena_) HGoto());
481  // Add the exit block at the end.
482  graph_->AddBlock(exit_block_);
483
484  // Iterate over blocks covered by TryItems and insert TryBoundaries at entry
485  // and exit points. This requires all control-flow instructions and
486  // non-exceptional edges to have been created.
487  InsertTryBoundaryBlocks(code_item);
488
489  return true;
490}
491
492void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) {
493  HBasicBlock* block = FindBlockStartingAt(dex_pc);
494  if (block == nullptr) {
495    return;
496  }
497
498  if (current_block_ != nullptr) {
499    // Branching instructions clear current_block, so we know
500    // the last instruction of the current block is not a branching
501    // instruction. We add an unconditional goto to the found block.
502    current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
503    current_block_->AddSuccessor(block);
504  }
505  graph_->AddBlock(block);
506  current_block_ = block;
507}
508
509bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
510                                         const uint16_t* code_end,
511                                         size_t* number_of_branches) {
512  branch_targets_.resize(code_end - code_ptr, nullptr);
513
514  // Create the first block for the dex instructions, single successor of the entry block.
515  HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
516  branch_targets_[0] = block;
517  entry_block_->AddSuccessor(block);
518
519  // Iterate over all instructions and find branching instructions. Create blocks for
520  // the locations these instructions branch to.
521  uint32_t dex_pc = 0;
522  while (code_ptr < code_end) {
523    const Instruction& instruction = *Instruction::At(code_ptr);
524    if (instruction.IsBranch()) {
525      (*number_of_branches)++;
526      int32_t target = instruction.GetTargetOffset() + dex_pc;
527      // Create a block for the target instruction.
528      FindOrCreateBlockStartingAt(target);
529
530      dex_pc += instruction.SizeInCodeUnits();
531      code_ptr += instruction.SizeInCodeUnits();
532
533      if (instruction.CanFlowThrough()) {
534        if (code_ptr >= code_end) {
535          // In the normal case we should never hit this but someone can artificially forge a dex
536          // file to fall-through out the method code. In this case we bail out compilation.
537          return false;
538        } else {
539          FindOrCreateBlockStartingAt(dex_pc);
540        }
541      }
542    } else if (instruction.IsSwitch()) {
543      SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
544
545      uint16_t num_entries = table.GetNumEntries();
546
547      // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
548      // entry at index 0 is the first key, and values are after *all* keys.
549      size_t offset = table.GetFirstValueIndex();
550
551      // Use a larger loop counter type to avoid overflow issues.
552      for (size_t i = 0; i < num_entries; ++i) {
553        // The target of the case.
554        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
555        FindOrCreateBlockStartingAt(target);
556
557        // Create a block for the switch-case logic. The block gets the dex_pc
558        // of the SWITCH instruction because it is part of its semantics.
559        block = new (arena_) HBasicBlock(graph_, dex_pc);
560        branch_targets_[table.GetDexPcForIndex(i)] = block;
561      }
562
563      // Fall-through. Add a block if there is more code afterwards.
564      dex_pc += instruction.SizeInCodeUnits();
565      code_ptr += instruction.SizeInCodeUnits();
566      if (code_ptr >= code_end) {
567        // In the normal case we should never hit this but someone can artificially forge a dex
568        // file to fall-through out the method code. In this case we bail out compilation.
569        // (A switch can fall-through so we don't need to check CanFlowThrough().)
570        return false;
571      } else {
572        FindOrCreateBlockStartingAt(dex_pc);
573      }
574    } else {
575      code_ptr += instruction.SizeInCodeUnits();
576      dex_pc += instruction.SizeInCodeUnits();
577    }
578  }
579  return true;
580}
581
582HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const {
583  DCHECK_GE(dex_pc, 0);
584  DCHECK_LT(static_cast<size_t>(dex_pc), branch_targets_.size());
585  return branch_targets_[dex_pc];
586}
587
588HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) {
589  HBasicBlock* block = FindBlockStartingAt(dex_pc);
590  if (block == nullptr) {
591    block = new (arena_) HBasicBlock(graph_, dex_pc);
592    branch_targets_[dex_pc] = block;
593  }
594  return block;
595}
596
597template<typename T>
598void HGraphBuilder::Unop_12x(const Instruction& instruction,
599                             Primitive::Type type,
600                             uint32_t dex_pc) {
601  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
602  current_block_->AddInstruction(new (arena_) T(type, first, dex_pc));
603  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
604}
605
606void HGraphBuilder::Conversion_12x(const Instruction& instruction,
607                                   Primitive::Type input_type,
608                                   Primitive::Type result_type,
609                                   uint32_t dex_pc) {
610  HInstruction* first = LoadLocal(instruction.VRegB(), input_type, dex_pc);
611  current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
612  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
613}
614
615template<typename T>
616void HGraphBuilder::Binop_23x(const Instruction& instruction,
617                              Primitive::Type type,
618                              uint32_t dex_pc) {
619  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
620  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
621  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
622  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
623}
624
625template<typename T>
626void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
627                                    Primitive::Type type,
628                                    uint32_t dex_pc) {
629  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
630  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt, dex_pc);
631  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
632  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
633}
634
635void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
636                                  Primitive::Type type,
637                                  ComparisonBias bias,
638                                  uint32_t dex_pc) {
639  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
640  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
641  current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
642  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
643}
644
645template<typename T>
646void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type,
647                                    uint32_t dex_pc) {
648  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
649  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
650  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
651  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
652}
653
654template<typename T>
655void HGraphBuilder::Binop_12x(const Instruction& instruction,
656                              Primitive::Type type,
657                              uint32_t dex_pc) {
658  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
659  HInstruction* second = LoadLocal(instruction.VRegB(), type, dex_pc);
660  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
661  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
662}
663
664template<typename T>
665void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
666  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
667  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
668  if (reverse) {
669    std::swap(first, second);
670  }
671  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
672  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
673}
674
675template<typename T>
676void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
677  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
678  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
679  if (reverse) {
680    std::swap(first, second);
681  }
682  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
683  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
684}
685
686static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
687  Thread* self = Thread::Current();
688  return cu->IsConstructor()
689      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
690}
691
692void HGraphBuilder::BuildReturn(const Instruction& instruction,
693                                Primitive::Type type,
694                                uint32_t dex_pc) {
695  if (type == Primitive::kPrimVoid) {
696    if (graph_->ShouldGenerateConstructorBarrier()) {
697      // The compilation unit is null during testing.
698      if (dex_compilation_unit_ != nullptr) {
699        DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
700          << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
701      }
702      current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
703    }
704    current_block_->AddInstruction(new (arena_) HReturnVoid(dex_pc));
705  } else {
706    HInstruction* value = LoadLocal(instruction.VRegA(), type, dex_pc);
707    current_block_->AddInstruction(new (arena_) HReturn(value, dex_pc));
708  }
709  current_block_->AddSuccessor(exit_block_);
710  current_block_ = nullptr;
711}
712
713static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
714  switch (opcode) {
715    case Instruction::INVOKE_STATIC:
716    case Instruction::INVOKE_STATIC_RANGE:
717      return kStatic;
718    case Instruction::INVOKE_DIRECT:
719    case Instruction::INVOKE_DIRECT_RANGE:
720      return kDirect;
721    case Instruction::INVOKE_VIRTUAL:
722    case Instruction::INVOKE_VIRTUAL_QUICK:
723    case Instruction::INVOKE_VIRTUAL_RANGE:
724    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
725      return kVirtual;
726    case Instruction::INVOKE_INTERFACE:
727    case Instruction::INVOKE_INTERFACE_RANGE:
728      return kInterface;
729    case Instruction::INVOKE_SUPER_RANGE:
730    case Instruction::INVOKE_SUPER:
731      return kSuper;
732    default:
733      LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
734      UNREACHABLE();
735  }
736}
737
738bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
739                                uint32_t dex_pc,
740                                uint32_t method_idx,
741                                uint32_t number_of_vreg_arguments,
742                                bool is_range,
743                                uint32_t* args,
744                                uint32_t register_index) {
745  InvokeType original_invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
746  InvokeType optimized_invoke_type = original_invoke_type;
747  const char* descriptor = dex_file_->GetMethodShorty(method_idx);
748  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
749
750  // Remove the return type from the 'proto'.
751  size_t number_of_arguments = strlen(descriptor) - 1;
752  if (original_invoke_type != kStatic) {  // instance call
753    // One extra argument for 'this'.
754    number_of_arguments++;
755  }
756
757  MethodReference target_method(dex_file_, method_idx);
758  int32_t table_index = 0;
759  uintptr_t direct_code = 0;
760  uintptr_t direct_method = 0;
761
762  // Special handling for string init.
763  int32_t string_init_offset = 0;
764  bool is_string_init = compiler_driver_->IsStringInit(method_idx,
765                                                       dex_file_,
766                                                       &string_init_offset);
767  // Replace calls to String.<init> with StringFactory.
768  if (is_string_init) {
769    HInvokeStaticOrDirect::DispatchInfo dispatch_info = ComputeDispatchInfo(is_string_init,
770                                                                            string_init_offset,
771                                                                            target_method,
772                                                                            direct_method,
773                                                                            direct_code);
774    HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
775        arena_,
776        number_of_arguments - 1,
777        Primitive::kPrimNot /*return_type */,
778        dex_pc,
779        method_idx,
780        target_method,
781        dispatch_info,
782        original_invoke_type,
783        kStatic /* optimized_invoke_type */,
784        HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
785    return HandleStringInit(invoke,
786                            number_of_vreg_arguments,
787                            args,
788                            register_index,
789                            is_range,
790                            descriptor);
791  }
792
793  // Handle unresolved methods.
794  if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_,
795                                           dex_pc,
796                                           true /* update_stats */,
797                                           true /* enable_devirtualization */,
798                                           &optimized_invoke_type,
799                                           &target_method,
800                                           &table_index,
801                                           &direct_code,
802                                           &direct_method)) {
803    MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
804    HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
805                                                     number_of_arguments,
806                                                     return_type,
807                                                     dex_pc,
808                                                     method_idx,
809                                                     original_invoke_type);
810    return HandleInvoke(invoke,
811                        number_of_vreg_arguments,
812                        args,
813                        register_index,
814                        is_range,
815                        descriptor,
816                        nullptr /* clinit_check */);
817  }
818
819  // Handle resolved methods (non string init).
820
821  DCHECK(optimized_invoke_type != kSuper);
822
823  // Potential class initialization check, in the case of a static method call.
824  HClinitCheck* clinit_check = nullptr;
825  HInvoke* invoke = nullptr;
826
827  if (optimized_invoke_type == kDirect || optimized_invoke_type == kStatic) {
828    // By default, consider that the called method implicitly requires
829    // an initialization check of its declaring method.
830    HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
831        = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
832    if (optimized_invoke_type == kStatic) {
833      clinit_check = ProcessClinitCheckForInvoke(dex_pc, method_idx, &clinit_check_requirement);
834    }
835
836    HInvokeStaticOrDirect::DispatchInfo dispatch_info = ComputeDispatchInfo(is_string_init,
837                                                                            string_init_offset,
838                                                                            target_method,
839                                                                            direct_method,
840                                                                            direct_code);
841    invoke = new (arena_) HInvokeStaticOrDirect(arena_,
842                                                number_of_arguments,
843                                                return_type,
844                                                dex_pc,
845                                                method_idx,
846                                                target_method,
847                                                dispatch_info,
848                                                original_invoke_type,
849                                                optimized_invoke_type,
850                                                clinit_check_requirement);
851  } else if (optimized_invoke_type == kVirtual) {
852    invoke = new (arena_) HInvokeVirtual(arena_,
853                                         number_of_arguments,
854                                         return_type,
855                                         dex_pc,
856                                         method_idx,
857                                         table_index);
858  } else {
859    DCHECK_EQ(optimized_invoke_type, kInterface);
860    invoke = new (arena_) HInvokeInterface(arena_,
861                                           number_of_arguments,
862                                           return_type,
863                                           dex_pc,
864                                           method_idx,
865                                           table_index);
866  }
867
868  return HandleInvoke(invoke,
869                      number_of_vreg_arguments,
870                      args,
871                      register_index,
872                      is_range,
873                      descriptor,
874                      clinit_check);
875}
876
877HClinitCheck* HGraphBuilder::ProcessClinitCheckForInvoke(
878      uint32_t dex_pc,
879      uint32_t method_idx,
880      HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
881  ScopedObjectAccess soa(Thread::Current());
882  StackHandleScope<4> hs(soa.Self());
883  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
884      dex_compilation_unit_->GetClassLinker()->FindDexCache(
885          soa.Self(), *dex_compilation_unit_->GetDexFile())));
886  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
887      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
888  ArtMethod* resolved_method = compiler_driver_->ResolveMethod(
889      soa, dex_cache, class_loader, dex_compilation_unit_, method_idx, InvokeType::kStatic);
890
891  DCHECK(resolved_method != nullptr);
892
893  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
894  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
895      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
896  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
897
898  // The index at which the method's class is stored in the DexCache's type array.
899  uint32_t storage_index = DexFile::kDexNoIndex;
900  bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
901  if (is_outer_class) {
902    storage_index = outer_class->GetDexTypeIndex();
903  } else if (outer_dex_cache.Get() == dex_cache.Get()) {
904    // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
905    compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
906                                                               GetCompilingClass(),
907                                                               resolved_method,
908                                                               method_idx,
909                                                               &storage_index);
910  }
911
912  HClinitCheck* clinit_check = nullptr;
913
914  if (!outer_class->IsInterface()
915      && outer_class->IsSubClass(resolved_method->GetDeclaringClass())) {
916    // If the outer class is the declaring class or a subclass
917    // of the declaring class, no class initialization is needed
918    // before the static method call.
919    // Note that in case of inlining, we do not need to add clinit checks
920    // to calls that satisfy this subclass check with any inlined methods. This
921    // will be detected by the optimization passes.
922    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
923  } else if (storage_index != DexFile::kDexNoIndex) {
924    // If the method's class type index is available, check
925    // whether we should add an explicit class initialization
926    // check for its declaring class before the static method call.
927
928    // TODO: find out why this check is needed.
929    bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
930        *outer_compilation_unit_->GetDexFile(), storage_index);
931    bool is_initialized =
932        resolved_method->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
933
934    if (is_initialized) {
935      *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
936    } else {
937      *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
938      HLoadClass* load_class = new (arena_) HLoadClass(
939          graph_->GetCurrentMethod(),
940          storage_index,
941          *dex_compilation_unit_->GetDexFile(),
942          is_outer_class,
943          dex_pc);
944      current_block_->AddInstruction(load_class);
945      clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
946      current_block_->AddInstruction(clinit_check);
947    }
948  }
949  return clinit_check;
950}
951
952HInvokeStaticOrDirect::DispatchInfo HGraphBuilder::ComputeDispatchInfo(
953    bool is_string_init,
954    int32_t string_init_offset,
955    MethodReference target_method,
956    uintptr_t direct_method,
957    uintptr_t direct_code) {
958  HInvokeStaticOrDirect::MethodLoadKind method_load_kind;
959  HInvokeStaticOrDirect::CodePtrLocation code_ptr_location;
960  uint64_t method_load_data = 0u;
961  uint64_t direct_code_ptr = 0u;
962
963  if (is_string_init) {
964    // TODO: Use direct_method and direct_code for the appropriate StringFactory method.
965    method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kStringInit;
966    code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
967    method_load_data = string_init_offset;
968  } else if (target_method.dex_file == outer_compilation_unit_->GetDexFile() &&
969      target_method.dex_method_index == outer_compilation_unit_->GetDexMethodIndex()) {
970    method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kRecursive;
971    code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallSelf;
972  } else {
973    if (direct_method != 0u) {  // Should we use a direct pointer to the method?
974      if (direct_method != static_cast<uintptr_t>(-1)) {  // Is the method pointer known now?
975        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress;
976        method_load_data = direct_method;
977      } else {  // The direct pointer will be known at link time.
978        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup;
979      }
980    } else {  // Use dex cache.
981      DCHECK(target_method.dex_file == dex_compilation_unit_->GetDexFile());
982      DexCacheArraysLayout layout =
983          compiler_driver_->GetDexCacheArraysLayout(target_method.dex_file);
984      if (layout.Valid()) {  // Can we use PC-relative access to the dex cache arrays?
985        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative;
986        method_load_data = layout.MethodOffset(target_method.dex_method_index);
987      } else {  // We must go through the ArtMethod's pointer to resolved methods.
988        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
989      }
990    }
991    if (direct_code != 0u) {  // Should we use a direct pointer to the code?
992      if (direct_code != static_cast<uintptr_t>(-1)) {  // Is the code pointer known now?
993        code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallDirect;
994        direct_code_ptr = direct_code;
995      } else if (compiler_driver_->IsImage() ||
996          target_method.dex_file == dex_compilation_unit_->GetDexFile()) {
997        // Use PC-relative calls for invokes within a multi-dex oat file.
998        // TODO: Recognize when the target dex file is within the current oat file for
999        // app compilation. At the moment we recognize only the boot image as multi-dex.
1000        // NOTE: This will require changing the ARM backend which currently falls
1001        // through from kCallPCRelative to kDirectCodeFixup for different dex files.
1002        code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative;
1003      } else {  // The direct pointer will be known at link time.
1004        // NOTE: This is used for app->boot calls when compiling an app against
1005        // a relocatable but not yet relocated image.
1006        code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup;
1007      }
1008    } else {  // We must use the code pointer from the ArtMethod.
1009      code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
1010    }
1011  }
1012
1013  if (graph_->IsDebuggable()) {
1014    // For debuggable apps always use the code pointer from ArtMethod
1015    // so that we don't circumvent instrumentation stubs if installed.
1016    code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
1017  }
1018
1019  return HInvokeStaticOrDirect::DispatchInfo {
1020    method_load_kind, code_ptr_location, method_load_data, direct_code_ptr };
1021}
1022
1023bool HGraphBuilder::SetupInvokeArguments(HInvoke* invoke,
1024                                         uint32_t number_of_vreg_arguments,
1025                                         uint32_t* args,
1026                                         uint32_t register_index,
1027                                         bool is_range,
1028                                         const char* descriptor,
1029                                         size_t start_index,
1030                                         size_t* argument_index) {
1031  uint32_t descriptor_index = 1;  // Skip the return type.
1032  uint32_t dex_pc = invoke->GetDexPc();
1033
1034  for (size_t i = start_index;
1035       // Make sure we don't go over the expected arguments or over the number of
1036       // dex registers given. If the instruction was seen as dead by the verifier,
1037       // it hasn't been properly checked.
1038       (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
1039       i++, (*argument_index)++) {
1040    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
1041    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
1042    if (!is_range
1043        && is_wide
1044        && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
1045      // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1046      // reject any class where this is violated. However, the verifier only does these checks
1047      // on non trivially dead instructions, so we just bailout the compilation.
1048      VLOG(compiler) << "Did not compile "
1049                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1050                     << " because of non-sequential dex register pair in wide argument";
1051      MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1052      return false;
1053    }
1054    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1055    invoke->SetArgumentAt(*argument_index, arg);
1056    if (is_wide) {
1057      i++;
1058    }
1059  }
1060
1061  if (*argument_index != invoke->GetNumberOfArguments()) {
1062    VLOG(compiler) << "Did not compile "
1063                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1064                   << " because of wrong number of arguments in invoke instruction";
1065    MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1066    return false;
1067  }
1068
1069  if (invoke->IsInvokeStaticOrDirect()) {
1070    invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
1071    (*argument_index)++;
1072  }
1073
1074  return true;
1075}
1076
1077bool HGraphBuilder::HandleInvoke(HInvoke* invoke,
1078                                 uint32_t number_of_vreg_arguments,
1079                                 uint32_t* args,
1080                                 uint32_t register_index,
1081                                 bool is_range,
1082                                 const char* descriptor,
1083                                 HClinitCheck* clinit_check) {
1084  DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1085
1086  size_t start_index = 0;
1087  size_t argument_index = 0;
1088  if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call.
1089    Temporaries temps(graph_);
1090    HInstruction* arg = LoadLocal(
1091        is_range ? register_index : args[0], Primitive::kPrimNot, invoke->GetDexPc());
1092    HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc());
1093    current_block_->AddInstruction(null_check);
1094    temps.Add(null_check);
1095    invoke->SetArgumentAt(0, null_check);
1096    start_index = 1;
1097    argument_index = 1;
1098  }
1099
1100  if (!SetupInvokeArguments(invoke,
1101                            number_of_vreg_arguments,
1102                            args,
1103                            register_index,
1104                            is_range,
1105                            descriptor,
1106                            start_index,
1107                            &argument_index)) {
1108    return false;
1109  }
1110
1111  if (clinit_check != nullptr) {
1112    // Add the class initialization check as last input of `invoke`.
1113    DCHECK(invoke->IsInvokeStaticOrDirect());
1114    DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
1115        == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1116    invoke->SetArgumentAt(argument_index, clinit_check);
1117    argument_index++;
1118  }
1119
1120  current_block_->AddInstruction(invoke);
1121  latest_result_ = invoke;
1122
1123  return true;
1124}
1125
1126bool HGraphBuilder::HandleStringInit(HInvoke* invoke,
1127                                     uint32_t number_of_vreg_arguments,
1128                                     uint32_t* args,
1129                                     uint32_t register_index,
1130                                     bool is_range,
1131                                     const char* descriptor) {
1132  DCHECK(invoke->IsInvokeStaticOrDirect());
1133  DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1134
1135  size_t start_index = 1;
1136  size_t argument_index = 0;
1137  if (!SetupInvokeArguments(invoke,
1138                            number_of_vreg_arguments,
1139                            args,
1140                            register_index,
1141                            is_range,
1142                            descriptor,
1143                            start_index,
1144                            &argument_index)) {
1145    return false;
1146  }
1147
1148  // Add move-result for StringFactory method.
1149  uint32_t orig_this_reg = is_range ? register_index : args[0];
1150  HInstruction* fake_string = LoadLocal(orig_this_reg, Primitive::kPrimNot, invoke->GetDexPc());
1151  invoke->SetArgumentAt(argument_index, fake_string);
1152  current_block_->AddInstruction(invoke);
1153  PotentiallySimplifyFakeString(orig_this_reg, invoke->GetDexPc(), invoke);
1154
1155  latest_result_ = invoke;
1156
1157  return true;
1158}
1159
1160void HGraphBuilder::PotentiallySimplifyFakeString(uint16_t original_dex_register,
1161                                                  uint32_t dex_pc,
1162                                                  HInvoke* actual_string) {
1163  if (!graph_->IsDebuggable()) {
1164    // Notify that we cannot compile with baseline. The dex registers aliasing
1165    // with `original_dex_register` will be handled when we optimize
1166    // (see HInstructionSimplifer::VisitFakeString).
1167    can_use_baseline_for_string_init_ = false;
1168    return;
1169  }
1170  const VerifiedMethod* verified_method =
1171      compiler_driver_->GetVerifiedMethod(dex_file_, dex_compilation_unit_->GetDexMethodIndex());
1172  if (verified_method != nullptr) {
1173    UpdateLocal(original_dex_register, actual_string, dex_pc);
1174    const SafeMap<uint32_t, std::set<uint32_t>>& string_init_map =
1175        verified_method->GetStringInitPcRegMap();
1176    auto map_it = string_init_map.find(dex_pc);
1177    if (map_it != string_init_map.end()) {
1178      std::set<uint32_t> reg_set = map_it->second;
1179      for (auto set_it = reg_set.begin(); set_it != reg_set.end(); ++set_it) {
1180        HInstruction* load_local = LoadLocal(original_dex_register, Primitive::kPrimNot, dex_pc);
1181        UpdateLocal(*set_it, load_local, dex_pc);
1182      }
1183    }
1184  } else {
1185    can_use_baseline_for_string_init_ = false;
1186  }
1187}
1188
1189static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1190  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
1191  const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1192  return Primitive::GetType(type[0]);
1193}
1194
1195bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1196                                             uint32_t dex_pc,
1197                                             bool is_put) {
1198  uint32_t source_or_dest_reg = instruction.VRegA_22c();
1199  uint32_t obj_reg = instruction.VRegB_22c();
1200  uint16_t field_index;
1201  if (instruction.IsQuickened()) {
1202    if (!CanDecodeQuickenedInfo()) {
1203      return false;
1204    }
1205    field_index = LookupQuickenedInfo(dex_pc);
1206  } else {
1207    field_index = instruction.VRegC_22c();
1208  }
1209
1210  ScopedObjectAccess soa(Thread::Current());
1211  ArtField* resolved_field =
1212      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
1213
1214
1215  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot, dex_pc);
1216  HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc);
1217  current_block_->AddInstruction(null_check);
1218
1219  Primitive::Type field_type = (resolved_field == nullptr)
1220      ? GetFieldAccessType(*dex_file_, field_index)
1221      : resolved_field->GetTypeAsPrimitiveType();
1222  if (is_put) {
1223    Temporaries temps(graph_);
1224    // We need one temporary for the null check.
1225    temps.Add(null_check);
1226    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1227    HInstruction* field_set = nullptr;
1228    if (resolved_field == nullptr) {
1229      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1230      field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check,
1231                                                           value,
1232                                                           field_type,
1233                                                           field_index,
1234                                                           dex_pc);
1235    } else {
1236      field_set = new (arena_) HInstanceFieldSet(null_check,
1237                                                 value,
1238                                                 field_type,
1239                                                 resolved_field->GetOffset(),
1240                                                 resolved_field->IsVolatile(),
1241                                                 field_index,
1242                                                 *dex_file_,
1243                                                 dex_compilation_unit_->GetDexCache(),
1244                                                 dex_pc);
1245    }
1246    current_block_->AddInstruction(field_set);
1247  } else {
1248    HInstruction* field_get = nullptr;
1249    if (resolved_field == nullptr) {
1250      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1251      field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check,
1252                                                           field_type,
1253                                                           field_index,
1254                                                           dex_pc);
1255    } else {
1256      field_get = new (arena_) HInstanceFieldGet(null_check,
1257                                                 field_type,
1258                                                 resolved_field->GetOffset(),
1259                                                 resolved_field->IsVolatile(),
1260                                                 field_index,
1261                                                 *dex_file_,
1262                                                 dex_compilation_unit_->GetDexCache(),
1263                                                 dex_pc);
1264    }
1265    current_block_->AddInstruction(field_get);
1266    UpdateLocal(source_or_dest_reg, field_get, dex_pc);
1267  }
1268
1269  return true;
1270}
1271
1272static mirror::Class* GetClassFrom(CompilerDriver* driver,
1273                                   const DexCompilationUnit& compilation_unit) {
1274  ScopedObjectAccess soa(Thread::Current());
1275  StackHandleScope<2> hs(soa.Self());
1276  const DexFile& dex_file = *compilation_unit.GetDexFile();
1277  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1278      soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
1279  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1280      compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
1281
1282  return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
1283}
1284
1285mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const {
1286  return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
1287}
1288
1289mirror::Class* HGraphBuilder::GetCompilingClass() const {
1290  return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
1291}
1292
1293bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
1294  ScopedObjectAccess soa(Thread::Current());
1295  StackHandleScope<4> hs(soa.Self());
1296  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1297      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1298          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1299  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1300      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1301  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
1302      soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
1303  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1304
1305  return outer_class.Get() == cls.Get();
1306}
1307
1308bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1309                                           uint32_t dex_pc,
1310                                           bool is_put) {
1311  uint32_t source_or_dest_reg = instruction.VRegA_21c();
1312  uint16_t field_index = instruction.VRegB_21c();
1313
1314  ScopedObjectAccess soa(Thread::Current());
1315  StackHandleScope<4> hs(soa.Self());
1316  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1317      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1318          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1319  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1320      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1321  ArtField* resolved_field = compiler_driver_->ResolveField(
1322      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
1323
1324  if (resolved_field == nullptr) {
1325    MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1326    Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1327    if (is_put) {
1328      HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1329      current_block_->AddInstruction(
1330          new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1331    } else {
1332      current_block_->AddInstruction(
1333          new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1334      UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1335    }
1336    return true;
1337  }
1338
1339  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
1340  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
1341      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
1342  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1343
1344  // The index at which the field's class is stored in the DexCache's type array.
1345  uint32_t storage_index;
1346  bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
1347  if (is_outer_class) {
1348    storage_index = outer_class->GetDexTypeIndex();
1349  } else if (outer_dex_cache.Get() != dex_cache.Get()) {
1350    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
1351    return false;
1352  } else {
1353    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
1354        outer_dex_cache.Get(),
1355        GetCompilingClass(),
1356        resolved_field,
1357        field_index,
1358        &storage_index);
1359    bool can_easily_access = is_put ? pair.second : pair.first;
1360    if (!can_easily_access) {
1361      return false;
1362    }
1363  }
1364
1365  // TODO: find out why this check is needed.
1366  bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
1367      *outer_compilation_unit_->GetDexFile(), storage_index);
1368  bool is_initialized = resolved_field->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
1369
1370  HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
1371                                                 storage_index,
1372                                                 *dex_compilation_unit_->GetDexFile(),
1373                                                 is_outer_class,
1374                                                 dex_pc);
1375  current_block_->AddInstruction(constant);
1376
1377  HInstruction* cls = constant;
1378  if (!is_initialized && !is_outer_class) {
1379    cls = new (arena_) HClinitCheck(constant, dex_pc);
1380    current_block_->AddInstruction(cls);
1381  }
1382
1383  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
1384  if (is_put) {
1385    // We need to keep the class alive before loading the value.
1386    Temporaries temps(graph_);
1387    temps.Add(cls);
1388    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1389    DCHECK_EQ(value->GetType(), field_type);
1390    current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls,
1391                                                                value,
1392                                                                field_type,
1393                                                                resolved_field->GetOffset(),
1394                                                                resolved_field->IsVolatile(),
1395                                                                field_index,
1396                                                                *dex_file_,
1397                                                                dex_cache_,
1398                                                                dex_pc));
1399  } else {
1400    current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls,
1401                                                                field_type,
1402                                                                resolved_field->GetOffset(),
1403                                                                resolved_field->IsVolatile(),
1404                                                                field_index,
1405                                                                *dex_file_,
1406                                                                dex_cache_,
1407                                                                dex_pc));
1408    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1409  }
1410  return true;
1411}
1412
1413void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
1414                                       uint16_t first_vreg,
1415                                       int64_t second_vreg_or_constant,
1416                                       uint32_t dex_pc,
1417                                       Primitive::Type type,
1418                                       bool second_is_constant,
1419                                       bool isDiv) {
1420  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1421
1422  HInstruction* first = LoadLocal(first_vreg, type, dex_pc);
1423  HInstruction* second = nullptr;
1424  if (second_is_constant) {
1425    if (type == Primitive::kPrimInt) {
1426      second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
1427    } else {
1428      second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
1429    }
1430  } else {
1431    second = LoadLocal(second_vreg_or_constant, type, dex_pc);
1432  }
1433
1434  if (!second_is_constant
1435      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
1436      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
1437    second = new (arena_) HDivZeroCheck(second, dex_pc);
1438    Temporaries temps(graph_);
1439    current_block_->AddInstruction(second);
1440    temps.Add(current_block_->GetLastInstruction());
1441  }
1442
1443  if (isDiv) {
1444    current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
1445  } else {
1446    current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
1447  }
1448  UpdateLocal(out_vreg, current_block_->GetLastInstruction(), dex_pc);
1449}
1450
1451void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
1452                                     uint32_t dex_pc,
1453                                     bool is_put,
1454                                     Primitive::Type anticipated_type) {
1455  uint8_t source_or_dest_reg = instruction.VRegA_23x();
1456  uint8_t array_reg = instruction.VRegB_23x();
1457  uint8_t index_reg = instruction.VRegC_23x();
1458
1459  // We need one temporary for the null check, one for the index, and one for the length.
1460  Temporaries temps(graph_);
1461
1462  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot, dex_pc);
1463  object = new (arena_) HNullCheck(object, dex_pc);
1464  current_block_->AddInstruction(object);
1465  temps.Add(object);
1466
1467  HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
1468  current_block_->AddInstruction(length);
1469  temps.Add(length);
1470  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt, dex_pc);
1471  index = new (arena_) HBoundsCheck(index, length, dex_pc);
1472  current_block_->AddInstruction(index);
1473  temps.Add(index);
1474  if (is_put) {
1475    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type, dex_pc);
1476    // TODO: Insert a type check node if the type is Object.
1477    current_block_->AddInstruction(new (arena_) HArraySet(
1478        object, index, value, anticipated_type, dex_pc));
1479  } else {
1480    current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type, dex_pc));
1481    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1482  }
1483  graph_->SetHasBoundsChecks(true);
1484}
1485
1486void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
1487                                        uint32_t type_index,
1488                                        uint32_t number_of_vreg_arguments,
1489                                        bool is_range,
1490                                        uint32_t* args,
1491                                        uint32_t register_index) {
1492  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
1493  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
1494      ? kQuickAllocArrayWithAccessCheck
1495      : kQuickAllocArray;
1496  HInstruction* object = new (arena_) HNewArray(length,
1497                                                graph_->GetCurrentMethod(),
1498                                                dex_pc,
1499                                                type_index,
1500                                                *dex_compilation_unit_->GetDexFile(),
1501                                                entrypoint);
1502  current_block_->AddInstruction(object);
1503
1504  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1505  DCHECK_EQ(descriptor[0], '[') << descriptor;
1506  char primitive = descriptor[1];
1507  DCHECK(primitive == 'I'
1508      || primitive == 'L'
1509      || primitive == '[') << descriptor;
1510  bool is_reference_array = (primitive == 'L') || (primitive == '[');
1511  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
1512
1513  Temporaries temps(graph_);
1514  temps.Add(object);
1515  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
1516    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1517    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1518    current_block_->AddInstruction(
1519        new (arena_) HArraySet(object, index, value, type, dex_pc));
1520  }
1521  latest_result_ = object;
1522}
1523
1524template <typename T>
1525void HGraphBuilder::BuildFillArrayData(HInstruction* object,
1526                                       const T* data,
1527                                       uint32_t element_count,
1528                                       Primitive::Type anticipated_type,
1529                                       uint32_t dex_pc) {
1530  for (uint32_t i = 0; i < element_count; ++i) {
1531    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1532    HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
1533    current_block_->AddInstruction(new (arena_) HArraySet(
1534      object, index, value, anticipated_type, dex_pc));
1535  }
1536}
1537
1538void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1539  Temporaries temps(graph_);
1540  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot, dex_pc);
1541  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
1542  current_block_->AddInstruction(null_check);
1543  temps.Add(null_check);
1544
1545  HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc);
1546  current_block_->AddInstruction(length);
1547
1548  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1549  const Instruction::ArrayDataPayload* payload =
1550      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
1551  const uint8_t* data = payload->data;
1552  uint32_t element_count = payload->element_count;
1553
1554  // Implementation of this DEX instruction seems to be that the bounds check is
1555  // done before doing any stores.
1556  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
1557  current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
1558
1559  switch (payload->element_width) {
1560    case 1:
1561      BuildFillArrayData(null_check,
1562                         reinterpret_cast<const int8_t*>(data),
1563                         element_count,
1564                         Primitive::kPrimByte,
1565                         dex_pc);
1566      break;
1567    case 2:
1568      BuildFillArrayData(null_check,
1569                         reinterpret_cast<const int16_t*>(data),
1570                         element_count,
1571                         Primitive::kPrimShort,
1572                         dex_pc);
1573      break;
1574    case 4:
1575      BuildFillArrayData(null_check,
1576                         reinterpret_cast<const int32_t*>(data),
1577                         element_count,
1578                         Primitive::kPrimInt,
1579                         dex_pc);
1580      break;
1581    case 8:
1582      BuildFillWideArrayData(null_check,
1583                             reinterpret_cast<const int64_t*>(data),
1584                             element_count,
1585                             dex_pc);
1586      break;
1587    default:
1588      LOG(FATAL) << "Unknown element width for " << payload->element_width;
1589  }
1590  graph_->SetHasBoundsChecks(true);
1591}
1592
1593void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
1594                                           const int64_t* data,
1595                                           uint32_t element_count,
1596                                           uint32_t dex_pc) {
1597  for (uint32_t i = 0; i < element_count; ++i) {
1598    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1599    HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
1600    current_block_->AddInstruction(new (arena_) HArraySet(
1601      object, index, value, Primitive::kPrimLong, dex_pc));
1602  }
1603}
1604
1605static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
1606    SHARED_REQUIRES(Locks::mutator_lock_) {
1607  if (cls->IsInterface()) {
1608    return TypeCheckKind::kInterfaceCheck;
1609  } else if (cls->IsArrayClass()) {
1610    if (cls->GetComponentType()->IsObjectClass()) {
1611      return TypeCheckKind::kArrayObjectCheck;
1612    } else if (cls->CannotBeAssignedFromOtherTypes()) {
1613      return TypeCheckKind::kExactCheck;
1614    } else {
1615      return TypeCheckKind::kArrayCheck;
1616    }
1617  } else if (cls->IsFinal()) {
1618    return TypeCheckKind::kExactCheck;
1619  } else if (cls->IsAbstract()) {
1620    return TypeCheckKind::kAbstractClassCheck;
1621  } else {
1622    return TypeCheckKind::kClassHierarchyCheck;
1623  }
1624}
1625
1626bool HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
1627                                   uint8_t destination,
1628                                   uint8_t reference,
1629                                   uint16_t type_index,
1630                                   uint32_t dex_pc) {
1631  ScopedObjectAccess soa(Thread::Current());
1632  StackHandleScope<2> hs(soa.Self());
1633  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1634      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1635          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1636  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
1637
1638  if ((resolved_class.Get() == nullptr) ||
1639       // TODO: Remove this check once the compiler actually knows which
1640       // ArtMethod it is compiling.
1641      (GetCompilingClass() == nullptr) ||
1642      !GetCompilingClass()->CanAccess(resolved_class.Get())) {
1643    MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
1644    return false;
1645  }
1646
1647  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot, dex_pc);
1648  HLoadClass* cls = new (arena_) HLoadClass(
1649      graph_->GetCurrentMethod(),
1650      type_index,
1651      *dex_compilation_unit_->GetDexFile(),
1652      IsOutermostCompilingClass(type_index),
1653      dex_pc);
1654  current_block_->AddInstruction(cls);
1655
1656  // The class needs a temporary before being used by the type check.
1657  Temporaries temps(graph_);
1658  temps.Add(cls);
1659
1660  TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
1661  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1662    current_block_->AddInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
1663    UpdateLocal(destination, current_block_->GetLastInstruction(), dex_pc);
1664  } else {
1665    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1666    current_block_->AddInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
1667  }
1668  return true;
1669}
1670
1671bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index) const {
1672  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
1673      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index);
1674}
1675
1676void HGraphBuilder::BuildSwitchJumpTable(const SwitchTable& table,
1677                                         const Instruction& instruction,
1678                                         HInstruction* value,
1679                                         uint32_t dex_pc) {
1680  // Add the successor blocks to the current block.
1681  uint16_t num_entries = table.GetNumEntries();
1682  for (size_t i = 1; i <= num_entries; i++) {
1683    int32_t target_offset = table.GetEntryAt(i);
1684    HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1685    DCHECK(case_target != nullptr);
1686
1687    // Add the target block as a successor.
1688    current_block_->AddSuccessor(case_target);
1689  }
1690
1691  // Add the default target block as the last successor.
1692  HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1693  DCHECK(default_target != nullptr);
1694  current_block_->AddSuccessor(default_target);
1695
1696  // Now add the Switch instruction.
1697  int32_t starting_key = table.GetEntryAt(0);
1698  current_block_->AddInstruction(
1699      new (arena_) HPackedSwitch(starting_key, num_entries, value, dex_pc));
1700  // This block ends with control flow.
1701  current_block_ = nullptr;
1702}
1703
1704void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
1705  // Verifier guarantees that the payload for PackedSwitch contains:
1706  //   (a) number of entries (may be zero)
1707  //   (b) first and lowest switch case value (entry 0, always present)
1708  //   (c) list of target pcs (entries 1 <= i <= N)
1709  SwitchTable table(instruction, dex_pc, false);
1710
1711  // Value to test against.
1712  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1713
1714  // Starting key value.
1715  int32_t starting_key = table.GetEntryAt(0);
1716
1717  // Retrieve number of entries.
1718  uint16_t num_entries = table.GetNumEntries();
1719  if (num_entries == 0) {
1720    return;
1721  }
1722
1723  // Don't use a packed switch if there are very few entries.
1724  if (num_entries > kSmallSwitchThreshold) {
1725    BuildSwitchJumpTable(table, instruction, value, dex_pc);
1726  } else {
1727    // Chained cmp-and-branch, starting from starting_key.
1728    for (size_t i = 1; i <= num_entries; i++) {
1729      BuildSwitchCaseHelper(instruction,
1730                            i,
1731                            i == num_entries,
1732                            table,
1733                            value,
1734                            starting_key + i - 1,
1735                            table.GetEntryAt(i),
1736                            dex_pc);
1737    }
1738  }
1739}
1740
1741void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
1742  // Verifier guarantees that the payload for SparseSwitch contains:
1743  //   (a) number of entries (may be zero)
1744  //   (b) sorted key values (entries 0 <= i < N)
1745  //   (c) target pcs corresponding to the switch values (entries N <= i < 2*N)
1746  SwitchTable table(instruction, dex_pc, true);
1747
1748  // Value to test against.
1749  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1750
1751  uint16_t num_entries = table.GetNumEntries();
1752
1753  for (size_t i = 0; i < num_entries; i++) {
1754    BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
1755                          table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
1756  }
1757}
1758
1759void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
1760                                          bool is_last_case, const SwitchTable& table,
1761                                          HInstruction* value, int32_t case_value_int,
1762                                          int32_t target_offset, uint32_t dex_pc) {
1763  HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1764  DCHECK(case_target != nullptr);
1765  PotentiallyAddSuspendCheck(case_target, dex_pc);
1766
1767  // The current case's value.
1768  HInstruction* this_case_value = graph_->GetIntConstant(case_value_int, dex_pc);
1769
1770  // Compare value and this_case_value.
1771  HEqual* comparison = new (arena_) HEqual(value, this_case_value, dex_pc);
1772  current_block_->AddInstruction(comparison);
1773  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
1774  current_block_->AddInstruction(ifinst);
1775
1776  // Case hit: use the target offset to determine where to go.
1777  current_block_->AddSuccessor(case_target);
1778
1779  // Case miss: go to the next case (or default fall-through).
1780  // When there is a next case, we use the block stored with the table offset representing this
1781  // case (that is where we registered them in ComputeBranchTargets).
1782  // When there is no next case, we use the following instruction.
1783  // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
1784  if (!is_last_case) {
1785    HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
1786    DCHECK(next_case_target != nullptr);
1787    current_block_->AddSuccessor(next_case_target);
1788
1789    // Need to manually add the block, as there is no dex-pc transition for the cases.
1790    graph_->AddBlock(next_case_target);
1791
1792    current_block_ = next_case_target;
1793  } else {
1794    HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1795    DCHECK(default_target != nullptr);
1796    current_block_->AddSuccessor(default_target);
1797    current_block_ = nullptr;
1798  }
1799}
1800
1801void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) {
1802  int32_t target_offset = target->GetDexPc() - dex_pc;
1803  if (target_offset <= 0) {
1804    // DX generates back edges to the first encountered return. We can save
1805    // time of later passes by not adding redundant suspend checks.
1806    HInstruction* last_in_target = target->GetLastInstruction();
1807    if (last_in_target != nullptr &&
1808        (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) {
1809      return;
1810    }
1811
1812    // Add a suspend check to backward branches which may potentially loop. We
1813    // can remove them after we recognize loops in the graph.
1814    current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
1815  }
1816}
1817
1818bool HGraphBuilder::CanDecodeQuickenedInfo() const {
1819  return interpreter_metadata_ != nullptr;
1820}
1821
1822uint16_t HGraphBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
1823  DCHECK(interpreter_metadata_ != nullptr);
1824  uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
1825  DCHECK_EQ(dex_pc, dex_pc_in_map);
1826  return DecodeUnsignedLeb128(&interpreter_metadata_);
1827}
1828
1829bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1830  if (current_block_ == nullptr) {
1831    return true;  // Dead code
1832  }
1833
1834  switch (instruction.Opcode()) {
1835    case Instruction::CONST_4: {
1836      int32_t register_index = instruction.VRegA();
1837      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
1838      UpdateLocal(register_index, constant, dex_pc);
1839      break;
1840    }
1841
1842    case Instruction::CONST_16: {
1843      int32_t register_index = instruction.VRegA();
1844      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
1845      UpdateLocal(register_index, constant, dex_pc);
1846      break;
1847    }
1848
1849    case Instruction::CONST: {
1850      int32_t register_index = instruction.VRegA();
1851      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
1852      UpdateLocal(register_index, constant, dex_pc);
1853      break;
1854    }
1855
1856    case Instruction::CONST_HIGH16: {
1857      int32_t register_index = instruction.VRegA();
1858      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
1859      UpdateLocal(register_index, constant, dex_pc);
1860      break;
1861    }
1862
1863    case Instruction::CONST_WIDE_16: {
1864      int32_t register_index = instruction.VRegA();
1865      // Get 16 bits of constant value, sign extended to 64 bits.
1866      int64_t value = instruction.VRegB_21s();
1867      value <<= 48;
1868      value >>= 48;
1869      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1870      UpdateLocal(register_index, constant, dex_pc);
1871      break;
1872    }
1873
1874    case Instruction::CONST_WIDE_32: {
1875      int32_t register_index = instruction.VRegA();
1876      // Get 32 bits of constant value, sign extended to 64 bits.
1877      int64_t value = instruction.VRegB_31i();
1878      value <<= 32;
1879      value >>= 32;
1880      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1881      UpdateLocal(register_index, constant, dex_pc);
1882      break;
1883    }
1884
1885    case Instruction::CONST_WIDE: {
1886      int32_t register_index = instruction.VRegA();
1887      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
1888      UpdateLocal(register_index, constant, dex_pc);
1889      break;
1890    }
1891
1892    case Instruction::CONST_WIDE_HIGH16: {
1893      int32_t register_index = instruction.VRegA();
1894      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
1895      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1896      UpdateLocal(register_index, constant, dex_pc);
1897      break;
1898    }
1899
1900    // Note that the SSA building will refine the types.
1901    case Instruction::MOVE:
1902    case Instruction::MOVE_FROM16:
1903    case Instruction::MOVE_16: {
1904      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
1905      UpdateLocal(instruction.VRegA(), value, dex_pc);
1906      break;
1907    }
1908
1909    // Note that the SSA building will refine the types.
1910    case Instruction::MOVE_WIDE:
1911    case Instruction::MOVE_WIDE_FROM16:
1912    case Instruction::MOVE_WIDE_16: {
1913      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong, dex_pc);
1914      UpdateLocal(instruction.VRegA(), value, dex_pc);
1915      break;
1916    }
1917
1918    case Instruction::MOVE_OBJECT:
1919    case Instruction::MOVE_OBJECT_16:
1920    case Instruction::MOVE_OBJECT_FROM16: {
1921      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot, dex_pc);
1922      UpdateLocal(instruction.VRegA(), value, dex_pc);
1923      break;
1924    }
1925
1926    case Instruction::RETURN_VOID_NO_BARRIER:
1927    case Instruction::RETURN_VOID: {
1928      BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
1929      break;
1930    }
1931
1932#define IF_XX(comparison, cond) \
1933    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
1934    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
1935
1936    IF_XX(HEqual, EQ);
1937    IF_XX(HNotEqual, NE);
1938    IF_XX(HLessThan, LT);
1939    IF_XX(HLessThanOrEqual, LE);
1940    IF_XX(HGreaterThan, GT);
1941    IF_XX(HGreaterThanOrEqual, GE);
1942
1943    case Instruction::GOTO:
1944    case Instruction::GOTO_16:
1945    case Instruction::GOTO_32: {
1946      int32_t offset = instruction.GetTargetOffset();
1947      HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
1948      DCHECK(target != nullptr);
1949      PotentiallyAddSuspendCheck(target, dex_pc);
1950      current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
1951      current_block_->AddSuccessor(target);
1952      current_block_ = nullptr;
1953      break;
1954    }
1955
1956    case Instruction::RETURN: {
1957      BuildReturn(instruction, return_type_, dex_pc);
1958      break;
1959    }
1960
1961    case Instruction::RETURN_OBJECT: {
1962      BuildReturn(instruction, return_type_, dex_pc);
1963      break;
1964    }
1965
1966    case Instruction::RETURN_WIDE: {
1967      BuildReturn(instruction, return_type_, dex_pc);
1968      break;
1969    }
1970
1971    case Instruction::INVOKE_DIRECT:
1972    case Instruction::INVOKE_INTERFACE:
1973    case Instruction::INVOKE_STATIC:
1974    case Instruction::INVOKE_SUPER:
1975    case Instruction::INVOKE_VIRTUAL:
1976    case Instruction::INVOKE_VIRTUAL_QUICK: {
1977      uint16_t method_idx;
1978      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
1979        if (!CanDecodeQuickenedInfo()) {
1980          return false;
1981        }
1982        method_idx = LookupQuickenedInfo(dex_pc);
1983      } else {
1984        method_idx = instruction.VRegB_35c();
1985      }
1986      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
1987      uint32_t args[5];
1988      instruction.GetVarArgs(args);
1989      if (!BuildInvoke(instruction, dex_pc, method_idx,
1990                       number_of_vreg_arguments, false, args, -1)) {
1991        return false;
1992      }
1993      break;
1994    }
1995
1996    case Instruction::INVOKE_DIRECT_RANGE:
1997    case Instruction::INVOKE_INTERFACE_RANGE:
1998    case Instruction::INVOKE_STATIC_RANGE:
1999    case Instruction::INVOKE_SUPER_RANGE:
2000    case Instruction::INVOKE_VIRTUAL_RANGE:
2001    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2002      uint16_t method_idx;
2003      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2004        if (!CanDecodeQuickenedInfo()) {
2005          return false;
2006        }
2007        method_idx = LookupQuickenedInfo(dex_pc);
2008      } else {
2009        method_idx = instruction.VRegB_3rc();
2010      }
2011      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2012      uint32_t register_index = instruction.VRegC();
2013      if (!BuildInvoke(instruction, dex_pc, method_idx,
2014                       number_of_vreg_arguments, true, nullptr, register_index)) {
2015        return false;
2016      }
2017      break;
2018    }
2019
2020    case Instruction::NEG_INT: {
2021      Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
2022      break;
2023    }
2024
2025    case Instruction::NEG_LONG: {
2026      Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
2027      break;
2028    }
2029
2030    case Instruction::NEG_FLOAT: {
2031      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
2032      break;
2033    }
2034
2035    case Instruction::NEG_DOUBLE: {
2036      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
2037      break;
2038    }
2039
2040    case Instruction::NOT_INT: {
2041      Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
2042      break;
2043    }
2044
2045    case Instruction::NOT_LONG: {
2046      Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
2047      break;
2048    }
2049
2050    case Instruction::INT_TO_LONG: {
2051      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
2052      break;
2053    }
2054
2055    case Instruction::INT_TO_FLOAT: {
2056      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
2057      break;
2058    }
2059
2060    case Instruction::INT_TO_DOUBLE: {
2061      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
2062      break;
2063    }
2064
2065    case Instruction::LONG_TO_INT: {
2066      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
2067      break;
2068    }
2069
2070    case Instruction::LONG_TO_FLOAT: {
2071      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
2072      break;
2073    }
2074
2075    case Instruction::LONG_TO_DOUBLE: {
2076      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
2077      break;
2078    }
2079
2080    case Instruction::FLOAT_TO_INT: {
2081      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
2082      break;
2083    }
2084
2085    case Instruction::FLOAT_TO_LONG: {
2086      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
2087      break;
2088    }
2089
2090    case Instruction::FLOAT_TO_DOUBLE: {
2091      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
2092      break;
2093    }
2094
2095    case Instruction::DOUBLE_TO_INT: {
2096      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
2097      break;
2098    }
2099
2100    case Instruction::DOUBLE_TO_LONG: {
2101      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
2102      break;
2103    }
2104
2105    case Instruction::DOUBLE_TO_FLOAT: {
2106      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
2107      break;
2108    }
2109
2110    case Instruction::INT_TO_BYTE: {
2111      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
2112      break;
2113    }
2114
2115    case Instruction::INT_TO_SHORT: {
2116      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
2117      break;
2118    }
2119
2120    case Instruction::INT_TO_CHAR: {
2121      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
2122      break;
2123    }
2124
2125    case Instruction::ADD_INT: {
2126      Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2127      break;
2128    }
2129
2130    case Instruction::ADD_LONG: {
2131      Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2132      break;
2133    }
2134
2135    case Instruction::ADD_DOUBLE: {
2136      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2137      break;
2138    }
2139
2140    case Instruction::ADD_FLOAT: {
2141      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2142      break;
2143    }
2144
2145    case Instruction::SUB_INT: {
2146      Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2147      break;
2148    }
2149
2150    case Instruction::SUB_LONG: {
2151      Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2152      break;
2153    }
2154
2155    case Instruction::SUB_FLOAT: {
2156      Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2157      break;
2158    }
2159
2160    case Instruction::SUB_DOUBLE: {
2161      Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2162      break;
2163    }
2164
2165    case Instruction::ADD_INT_2ADDR: {
2166      Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2167      break;
2168    }
2169
2170    case Instruction::MUL_INT: {
2171      Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2172      break;
2173    }
2174
2175    case Instruction::MUL_LONG: {
2176      Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2177      break;
2178    }
2179
2180    case Instruction::MUL_FLOAT: {
2181      Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2182      break;
2183    }
2184
2185    case Instruction::MUL_DOUBLE: {
2186      Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2187      break;
2188    }
2189
2190    case Instruction::DIV_INT: {
2191      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2192                         dex_pc, Primitive::kPrimInt, false, true);
2193      break;
2194    }
2195
2196    case Instruction::DIV_LONG: {
2197      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2198                         dex_pc, Primitive::kPrimLong, false, true);
2199      break;
2200    }
2201
2202    case Instruction::DIV_FLOAT: {
2203      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2204      break;
2205    }
2206
2207    case Instruction::DIV_DOUBLE: {
2208      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2209      break;
2210    }
2211
2212    case Instruction::REM_INT: {
2213      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2214                         dex_pc, Primitive::kPrimInt, false, false);
2215      break;
2216    }
2217
2218    case Instruction::REM_LONG: {
2219      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2220                         dex_pc, Primitive::kPrimLong, false, false);
2221      break;
2222    }
2223
2224    case Instruction::REM_FLOAT: {
2225      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2226      break;
2227    }
2228
2229    case Instruction::REM_DOUBLE: {
2230      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2231      break;
2232    }
2233
2234    case Instruction::AND_INT: {
2235      Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2236      break;
2237    }
2238
2239    case Instruction::AND_LONG: {
2240      Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2241      break;
2242    }
2243
2244    case Instruction::SHL_INT: {
2245      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2246      break;
2247    }
2248
2249    case Instruction::SHL_LONG: {
2250      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2251      break;
2252    }
2253
2254    case Instruction::SHR_INT: {
2255      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2256      break;
2257    }
2258
2259    case Instruction::SHR_LONG: {
2260      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2261      break;
2262    }
2263
2264    case Instruction::USHR_INT: {
2265      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2266      break;
2267    }
2268
2269    case Instruction::USHR_LONG: {
2270      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2271      break;
2272    }
2273
2274    case Instruction::OR_INT: {
2275      Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2276      break;
2277    }
2278
2279    case Instruction::OR_LONG: {
2280      Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2281      break;
2282    }
2283
2284    case Instruction::XOR_INT: {
2285      Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2286      break;
2287    }
2288
2289    case Instruction::XOR_LONG: {
2290      Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2291      break;
2292    }
2293
2294    case Instruction::ADD_LONG_2ADDR: {
2295      Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2296      break;
2297    }
2298
2299    case Instruction::ADD_DOUBLE_2ADDR: {
2300      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2301      break;
2302    }
2303
2304    case Instruction::ADD_FLOAT_2ADDR: {
2305      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2306      break;
2307    }
2308
2309    case Instruction::SUB_INT_2ADDR: {
2310      Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2311      break;
2312    }
2313
2314    case Instruction::SUB_LONG_2ADDR: {
2315      Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2316      break;
2317    }
2318
2319    case Instruction::SUB_FLOAT_2ADDR: {
2320      Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2321      break;
2322    }
2323
2324    case Instruction::SUB_DOUBLE_2ADDR: {
2325      Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2326      break;
2327    }
2328
2329    case Instruction::MUL_INT_2ADDR: {
2330      Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2331      break;
2332    }
2333
2334    case Instruction::MUL_LONG_2ADDR: {
2335      Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2336      break;
2337    }
2338
2339    case Instruction::MUL_FLOAT_2ADDR: {
2340      Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2341      break;
2342    }
2343
2344    case Instruction::MUL_DOUBLE_2ADDR: {
2345      Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2346      break;
2347    }
2348
2349    case Instruction::DIV_INT_2ADDR: {
2350      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2351                         dex_pc, Primitive::kPrimInt, false, true);
2352      break;
2353    }
2354
2355    case Instruction::DIV_LONG_2ADDR: {
2356      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2357                         dex_pc, Primitive::kPrimLong, false, true);
2358      break;
2359    }
2360
2361    case Instruction::REM_INT_2ADDR: {
2362      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2363                         dex_pc, Primitive::kPrimInt, false, false);
2364      break;
2365    }
2366
2367    case Instruction::REM_LONG_2ADDR: {
2368      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2369                         dex_pc, Primitive::kPrimLong, false, false);
2370      break;
2371    }
2372
2373    case Instruction::REM_FLOAT_2ADDR: {
2374      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2375      break;
2376    }
2377
2378    case Instruction::REM_DOUBLE_2ADDR: {
2379      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2380      break;
2381    }
2382
2383    case Instruction::SHL_INT_2ADDR: {
2384      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2385      break;
2386    }
2387
2388    case Instruction::SHL_LONG_2ADDR: {
2389      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2390      break;
2391    }
2392
2393    case Instruction::SHR_INT_2ADDR: {
2394      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2395      break;
2396    }
2397
2398    case Instruction::SHR_LONG_2ADDR: {
2399      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2400      break;
2401    }
2402
2403    case Instruction::USHR_INT_2ADDR: {
2404      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2405      break;
2406    }
2407
2408    case Instruction::USHR_LONG_2ADDR: {
2409      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2410      break;
2411    }
2412
2413    case Instruction::DIV_FLOAT_2ADDR: {
2414      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2415      break;
2416    }
2417
2418    case Instruction::DIV_DOUBLE_2ADDR: {
2419      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2420      break;
2421    }
2422
2423    case Instruction::AND_INT_2ADDR: {
2424      Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2425      break;
2426    }
2427
2428    case Instruction::AND_LONG_2ADDR: {
2429      Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2430      break;
2431    }
2432
2433    case Instruction::OR_INT_2ADDR: {
2434      Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2435      break;
2436    }
2437
2438    case Instruction::OR_LONG_2ADDR: {
2439      Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2440      break;
2441    }
2442
2443    case Instruction::XOR_INT_2ADDR: {
2444      Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2445      break;
2446    }
2447
2448    case Instruction::XOR_LONG_2ADDR: {
2449      Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2450      break;
2451    }
2452
2453    case Instruction::ADD_INT_LIT16: {
2454      Binop_22s<HAdd>(instruction, false, dex_pc);
2455      break;
2456    }
2457
2458    case Instruction::AND_INT_LIT16: {
2459      Binop_22s<HAnd>(instruction, false, dex_pc);
2460      break;
2461    }
2462
2463    case Instruction::OR_INT_LIT16: {
2464      Binop_22s<HOr>(instruction, false, dex_pc);
2465      break;
2466    }
2467
2468    case Instruction::XOR_INT_LIT16: {
2469      Binop_22s<HXor>(instruction, false, dex_pc);
2470      break;
2471    }
2472
2473    case Instruction::RSUB_INT: {
2474      Binop_22s<HSub>(instruction, true, dex_pc);
2475      break;
2476    }
2477
2478    case Instruction::MUL_INT_LIT16: {
2479      Binop_22s<HMul>(instruction, false, dex_pc);
2480      break;
2481    }
2482
2483    case Instruction::ADD_INT_LIT8: {
2484      Binop_22b<HAdd>(instruction, false, dex_pc);
2485      break;
2486    }
2487
2488    case Instruction::AND_INT_LIT8: {
2489      Binop_22b<HAnd>(instruction, false, dex_pc);
2490      break;
2491    }
2492
2493    case Instruction::OR_INT_LIT8: {
2494      Binop_22b<HOr>(instruction, false, dex_pc);
2495      break;
2496    }
2497
2498    case Instruction::XOR_INT_LIT8: {
2499      Binop_22b<HXor>(instruction, false, dex_pc);
2500      break;
2501    }
2502
2503    case Instruction::RSUB_INT_LIT8: {
2504      Binop_22b<HSub>(instruction, true, dex_pc);
2505      break;
2506    }
2507
2508    case Instruction::MUL_INT_LIT8: {
2509      Binop_22b<HMul>(instruction, false, dex_pc);
2510      break;
2511    }
2512
2513    case Instruction::DIV_INT_LIT16:
2514    case Instruction::DIV_INT_LIT8: {
2515      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2516                         dex_pc, Primitive::kPrimInt, true, true);
2517      break;
2518    }
2519
2520    case Instruction::REM_INT_LIT16:
2521    case Instruction::REM_INT_LIT8: {
2522      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2523                         dex_pc, Primitive::kPrimInt, true, false);
2524      break;
2525    }
2526
2527    case Instruction::SHL_INT_LIT8: {
2528      Binop_22b<HShl>(instruction, false, dex_pc);
2529      break;
2530    }
2531
2532    case Instruction::SHR_INT_LIT8: {
2533      Binop_22b<HShr>(instruction, false, dex_pc);
2534      break;
2535    }
2536
2537    case Instruction::USHR_INT_LIT8: {
2538      Binop_22b<HUShr>(instruction, false, dex_pc);
2539      break;
2540    }
2541
2542    case Instruction::NEW_INSTANCE: {
2543      uint16_t type_index = instruction.VRegB_21c();
2544      if (compiler_driver_->IsStringTypeIndex(type_index, dex_file_)) {
2545        int32_t register_index = instruction.VRegA();
2546        HFakeString* fake_string = new (arena_) HFakeString(dex_pc);
2547        current_block_->AddInstruction(fake_string);
2548        UpdateLocal(register_index, fake_string, dex_pc);
2549      } else {
2550        QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
2551            ? kQuickAllocObjectWithAccessCheck
2552            : kQuickAllocObject;
2553
2554        current_block_->AddInstruction(new (arena_) HNewInstance(
2555            graph_->GetCurrentMethod(),
2556            dex_pc,
2557            type_index,
2558            *dex_compilation_unit_->GetDexFile(),
2559            entrypoint));
2560        UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
2561      }
2562      break;
2563    }
2564
2565    case Instruction::NEW_ARRAY: {
2566      uint16_t type_index = instruction.VRegC_22c();
2567      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt, dex_pc);
2568      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
2569          ? kQuickAllocArrayWithAccessCheck
2570          : kQuickAllocArray;
2571      current_block_->AddInstruction(new (arena_) HNewArray(length,
2572                                                            graph_->GetCurrentMethod(),
2573                                                            dex_pc,
2574                                                            type_index,
2575                                                            *dex_compilation_unit_->GetDexFile(),
2576                                                            entrypoint));
2577      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction(), dex_pc);
2578      break;
2579    }
2580
2581    case Instruction::FILLED_NEW_ARRAY: {
2582      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2583      uint32_t type_index = instruction.VRegB_35c();
2584      uint32_t args[5];
2585      instruction.GetVarArgs(args);
2586      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
2587      break;
2588    }
2589
2590    case Instruction::FILLED_NEW_ARRAY_RANGE: {
2591      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2592      uint32_t type_index = instruction.VRegB_3rc();
2593      uint32_t register_index = instruction.VRegC_3rc();
2594      BuildFilledNewArray(
2595          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
2596      break;
2597    }
2598
2599    case Instruction::FILL_ARRAY_DATA: {
2600      BuildFillArrayData(instruction, dex_pc);
2601      break;
2602    }
2603
2604    case Instruction::MOVE_RESULT:
2605    case Instruction::MOVE_RESULT_WIDE:
2606    case Instruction::MOVE_RESULT_OBJECT: {
2607      if (latest_result_ == nullptr) {
2608        // Only dead code can lead to this situation, where the verifier
2609        // does not reject the method.
2610      } else {
2611        // An Invoke/FilledNewArray and its MoveResult could have landed in
2612        // different blocks if there was a try/catch block boundary between
2613        // them. For Invoke, we insert a StoreLocal after the instruction. For
2614        // FilledNewArray, the local needs to be updated after the array was
2615        // filled, otherwise we might overwrite an input vreg.
2616        HStoreLocal* update_local =
2617            new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_, dex_pc);
2618        HBasicBlock* block = latest_result_->GetBlock();
2619        if (block == current_block_) {
2620          // MoveResult and the previous instruction are in the same block.
2621          current_block_->AddInstruction(update_local);
2622        } else {
2623          // The two instructions are in different blocks. Insert the MoveResult
2624          // before the final control-flow instruction of the previous block.
2625          DCHECK(block->EndsWithControlFlowInstruction());
2626          DCHECK(current_block_->GetInstructions().IsEmpty());
2627          block->InsertInstructionBefore(update_local, block->GetLastInstruction());
2628        }
2629        latest_result_ = nullptr;
2630      }
2631      break;
2632    }
2633
2634    case Instruction::CMP_LONG: {
2635      Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
2636      break;
2637    }
2638
2639    case Instruction::CMPG_FLOAT: {
2640      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
2641      break;
2642    }
2643
2644    case Instruction::CMPG_DOUBLE: {
2645      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
2646      break;
2647    }
2648
2649    case Instruction::CMPL_FLOAT: {
2650      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
2651      break;
2652    }
2653
2654    case Instruction::CMPL_DOUBLE: {
2655      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
2656      break;
2657    }
2658
2659    case Instruction::NOP:
2660      break;
2661
2662    case Instruction::IGET:
2663    case Instruction::IGET_QUICK:
2664    case Instruction::IGET_WIDE:
2665    case Instruction::IGET_WIDE_QUICK:
2666    case Instruction::IGET_OBJECT:
2667    case Instruction::IGET_OBJECT_QUICK:
2668    case Instruction::IGET_BOOLEAN:
2669    case Instruction::IGET_BOOLEAN_QUICK:
2670    case Instruction::IGET_BYTE:
2671    case Instruction::IGET_BYTE_QUICK:
2672    case Instruction::IGET_CHAR:
2673    case Instruction::IGET_CHAR_QUICK:
2674    case Instruction::IGET_SHORT:
2675    case Instruction::IGET_SHORT_QUICK: {
2676      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
2677        return false;
2678      }
2679      break;
2680    }
2681
2682    case Instruction::IPUT:
2683    case Instruction::IPUT_QUICK:
2684    case Instruction::IPUT_WIDE:
2685    case Instruction::IPUT_WIDE_QUICK:
2686    case Instruction::IPUT_OBJECT:
2687    case Instruction::IPUT_OBJECT_QUICK:
2688    case Instruction::IPUT_BOOLEAN:
2689    case Instruction::IPUT_BOOLEAN_QUICK:
2690    case Instruction::IPUT_BYTE:
2691    case Instruction::IPUT_BYTE_QUICK:
2692    case Instruction::IPUT_CHAR:
2693    case Instruction::IPUT_CHAR_QUICK:
2694    case Instruction::IPUT_SHORT:
2695    case Instruction::IPUT_SHORT_QUICK: {
2696      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
2697        return false;
2698      }
2699      break;
2700    }
2701
2702    case Instruction::SGET:
2703    case Instruction::SGET_WIDE:
2704    case Instruction::SGET_OBJECT:
2705    case Instruction::SGET_BOOLEAN:
2706    case Instruction::SGET_BYTE:
2707    case Instruction::SGET_CHAR:
2708    case Instruction::SGET_SHORT: {
2709      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
2710        return false;
2711      }
2712      break;
2713    }
2714
2715    case Instruction::SPUT:
2716    case Instruction::SPUT_WIDE:
2717    case Instruction::SPUT_OBJECT:
2718    case Instruction::SPUT_BOOLEAN:
2719    case Instruction::SPUT_BYTE:
2720    case Instruction::SPUT_CHAR:
2721    case Instruction::SPUT_SHORT: {
2722      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
2723        return false;
2724      }
2725      break;
2726    }
2727
2728#define ARRAY_XX(kind, anticipated_type)                                          \
2729    case Instruction::AGET##kind: {                                               \
2730      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
2731      break;                                                                      \
2732    }                                                                             \
2733    case Instruction::APUT##kind: {                                               \
2734      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
2735      break;                                                                      \
2736    }
2737
2738    ARRAY_XX(, Primitive::kPrimInt);
2739    ARRAY_XX(_WIDE, Primitive::kPrimLong);
2740    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
2741    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
2742    ARRAY_XX(_BYTE, Primitive::kPrimByte);
2743    ARRAY_XX(_CHAR, Primitive::kPrimChar);
2744    ARRAY_XX(_SHORT, Primitive::kPrimShort);
2745
2746    case Instruction::ARRAY_LENGTH: {
2747      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot, dex_pc);
2748      // No need for a temporary for the null check, it is the only input of the following
2749      // instruction.
2750      object = new (arena_) HNullCheck(object, dex_pc);
2751      current_block_->AddInstruction(object);
2752      current_block_->AddInstruction(new (arena_) HArrayLength(object, dex_pc));
2753      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction(), dex_pc);
2754      break;
2755    }
2756
2757    case Instruction::CONST_STRING: {
2758      current_block_->AddInstruction(
2759          new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_21c(), dex_pc));
2760      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2761      break;
2762    }
2763
2764    case Instruction::CONST_STRING_JUMBO: {
2765      current_block_->AddInstruction(
2766          new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_31c(), dex_pc));
2767      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction(), dex_pc);
2768      break;
2769    }
2770
2771    case Instruction::CONST_CLASS: {
2772      uint16_t type_index = instruction.VRegB_21c();
2773      bool type_known_final;
2774      bool type_known_abstract;
2775      bool dont_use_is_referrers_class;
2776      // `CanAccessTypeWithoutChecks` will tell whether the method being
2777      // built is trying to access its own class, so that the generated
2778      // code can optimize for this case. However, the optimization does not
2779      // work for inlining, so we use `IsOutermostCompilingClass` instead.
2780      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
2781          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
2782          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
2783      if (!can_access) {
2784        MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
2785        return false;
2786      }
2787      current_block_->AddInstruction(new (arena_) HLoadClass(
2788          graph_->GetCurrentMethod(),
2789          type_index,
2790          *dex_compilation_unit_->GetDexFile(),
2791          IsOutermostCompilingClass(type_index),
2792          dex_pc));
2793      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2794      break;
2795    }
2796
2797    case Instruction::MOVE_EXCEPTION: {
2798      current_block_->AddInstruction(new (arena_) HLoadException(dex_pc));
2799      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction(), dex_pc);
2800      current_block_->AddInstruction(new (arena_) HClearException(dex_pc));
2801      break;
2802    }
2803
2804    case Instruction::THROW: {
2805      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc);
2806      current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
2807      // A throw instruction must branch to the exit block.
2808      current_block_->AddSuccessor(exit_block_);
2809      // We finished building this block. Set the current block to null to avoid
2810      // adding dead instructions to it.
2811      current_block_ = nullptr;
2812      break;
2813    }
2814
2815    case Instruction::INSTANCE_OF: {
2816      uint8_t destination = instruction.VRegA_22c();
2817      uint8_t reference = instruction.VRegB_22c();
2818      uint16_t type_index = instruction.VRegC_22c();
2819      if (!BuildTypeCheck(instruction, destination, reference, type_index, dex_pc)) {
2820        return false;
2821      }
2822      break;
2823    }
2824
2825    case Instruction::CHECK_CAST: {
2826      uint8_t reference = instruction.VRegA_21c();
2827      uint16_t type_index = instruction.VRegB_21c();
2828      if (!BuildTypeCheck(instruction, -1, reference, type_index, dex_pc)) {
2829        return false;
2830      }
2831      break;
2832    }
2833
2834    case Instruction::MONITOR_ENTER: {
2835      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2836          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2837          HMonitorOperation::kEnter,
2838          dex_pc));
2839      break;
2840    }
2841
2842    case Instruction::MONITOR_EXIT: {
2843      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2844          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2845          HMonitorOperation::kExit,
2846          dex_pc));
2847      break;
2848    }
2849
2850    case Instruction::PACKED_SWITCH: {
2851      BuildPackedSwitch(instruction, dex_pc);
2852      break;
2853    }
2854
2855    case Instruction::SPARSE_SWITCH: {
2856      BuildSparseSwitch(instruction, dex_pc);
2857      break;
2858    }
2859
2860    default:
2861      VLOG(compiler) << "Did not compile "
2862                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
2863                     << " because of unhandled instruction "
2864                     << instruction.Name();
2865      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
2866      return false;
2867  }
2868  return true;
2869}  // NOLINT(readability/fn_size)
2870
2871HLocal* HGraphBuilder::GetLocalAt(uint32_t register_index) const {
2872  DCHECK_LT(register_index, locals_.size());
2873  return locals_[register_index];
2874}
2875
2876void HGraphBuilder::UpdateLocal(uint32_t register_index,
2877                                HInstruction* instruction,
2878                                uint32_t dex_pc) const {
2879  HLocal* local = GetLocalAt(register_index);
2880  current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction, dex_pc));
2881}
2882
2883HInstruction* HGraphBuilder::LoadLocal(uint32_t register_index,
2884                                       Primitive::Type type,
2885                                       uint32_t dex_pc) const {
2886  HLocal* local = GetLocalAt(register_index);
2887  current_block_->AddInstruction(new (arena_) HLoadLocal(local, type, dex_pc));
2888  return current_block_->GetLastInstruction();
2889}
2890
2891}  // namespace art
2892