builder.cc revision e6e3beaf2d35d18a79f5e7b60a21e75fac9fd15d
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "builder.h"
18
19#include "art_field-inl.h"
20#include "base/logging.h"
21#include "class_linker.h"
22#include "dex/verified_method.h"
23#include "dex_file-inl.h"
24#include "dex_instruction-inl.h"
25#include "dex/verified_method.h"
26#include "driver/compiler_driver-inl.h"
27#include "driver/compiler_options.h"
28#include "mirror/class_loader.h"
29#include "mirror/dex_cache.h"
30#include "nodes.h"
31#include "primitive.h"
32#include "scoped_thread_state_change.h"
33#include "thread.h"
34#include "utils/dex_cache_arrays_layout-inl.h"
35
36namespace art {
37
38/**
39 * Helper class to add HTemporary instructions. This class is used when
40 * converting a DEX instruction to multiple HInstruction, and where those
41 * instructions do not die at the following instruction, but instead spans
42 * multiple instructions.
43 */
44class Temporaries : public ValueObject {
45 public:
46  explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
47
48  void Add(HInstruction* instruction) {
49    HInstruction* temp = new (graph_->GetArena()) HTemporary(index_, instruction->GetDexPc());
50    instruction->GetBlock()->AddInstruction(temp);
51
52    DCHECK(temp->GetPrevious() == instruction);
53
54    size_t offset;
55    if (instruction->GetType() == Primitive::kPrimLong
56        || instruction->GetType() == Primitive::kPrimDouble) {
57      offset = 2;
58    } else {
59      offset = 1;
60    }
61    index_ += offset;
62
63    graph_->UpdateTemporariesVRegSlots(index_);
64  }
65
66 private:
67  HGraph* const graph_;
68
69  // Current index in the temporary stack, updated by `Add`.
70  size_t index_;
71};
72
73class SwitchTable : public ValueObject {
74 public:
75  SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
76      : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
77    int32_t table_offset = instruction.VRegB_31t();
78    const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
79    if (sparse) {
80      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
81    } else {
82      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
83    }
84    num_entries_ = table[1];
85    values_ = reinterpret_cast<const int32_t*>(&table[2]);
86  }
87
88  uint16_t GetNumEntries() const {
89    return num_entries_;
90  }
91
92  void CheckIndex(size_t index) const {
93    if (sparse_) {
94      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
95      DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
96    } else {
97      // In a packed table, we have the starting key and num_entries_ values.
98      DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
99    }
100  }
101
102  int32_t GetEntryAt(size_t index) const {
103    CheckIndex(index);
104    return values_[index];
105  }
106
107  uint32_t GetDexPcForIndex(size_t index) const {
108    CheckIndex(index);
109    return dex_pc_ +
110        (reinterpret_cast<const int16_t*>(values_ + index) -
111         reinterpret_cast<const int16_t*>(&instruction_));
112  }
113
114  // Index of the first value in the table.
115  size_t GetFirstValueIndex() const {
116    if (sparse_) {
117      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
118      return num_entries_;
119    } else {
120      // In a packed table, we have the starting key and num_entries_ values.
121      return 1;
122    }
123  }
124
125 private:
126  const Instruction& instruction_;
127  const uint32_t dex_pc_;
128
129  // Whether this is a sparse-switch table (or a packed-switch one).
130  const bool sparse_;
131
132  // This can't be const as it needs to be computed off of the given instruction, and complicated
133  // expressions in the initializer list seemed very ugly.
134  uint16_t num_entries_;
135
136  const int32_t* values_;
137
138  DISALLOW_COPY_AND_ASSIGN(SwitchTable);
139};
140
141void HGraphBuilder::InitializeLocals(uint16_t count) {
142  graph_->SetNumberOfVRegs(count);
143  locals_.resize(count);
144  for (int i = 0; i < count; i++) {
145    HLocal* local = new (arena_) HLocal(i);
146    entry_block_->AddInstruction(local);
147    locals_[i] = local;
148  }
149}
150
151void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
152  // dex_compilation_unit_ is null only when unit testing.
153  if (dex_compilation_unit_ == nullptr) {
154    return;
155  }
156
157  graph_->SetNumberOfInVRegs(number_of_parameters);
158  const char* shorty = dex_compilation_unit_->GetShorty();
159  int locals_index = locals_.size() - number_of_parameters;
160  int parameter_index = 0;
161
162  const DexFile::MethodId& referrer_method_id =
163      dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
164  if (!dex_compilation_unit_->IsStatic()) {
165    // Add the implicit 'this' argument, not expressed in the signature.
166    HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
167                                                              referrer_method_id.class_idx_,
168                                                              parameter_index++,
169                                                              Primitive::kPrimNot,
170                                                              true);
171    entry_block_->AddInstruction(parameter);
172    HLocal* local = GetLocalAt(locals_index++);
173    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
174    number_of_parameters--;
175  }
176
177  const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
178  const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
179  for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
180    HParameterValue* parameter = new (arena_) HParameterValue(
181        *dex_file_,
182        arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
183        parameter_index++,
184        Primitive::GetType(shorty[shorty_pos]),
185        false);
186    ++shorty_pos;
187    entry_block_->AddInstruction(parameter);
188    HLocal* local = GetLocalAt(locals_index++);
189    // Store the parameter value in the local that the dex code will use
190    // to reference that parameter.
191    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
192    bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
193        || (parameter->GetType() == Primitive::kPrimDouble);
194    if (is_wide) {
195      i++;
196      locals_index++;
197      parameter_index++;
198    }
199  }
200}
201
202template<typename T>
203void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
204  int32_t target_offset = instruction.GetTargetOffset();
205  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
206  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
207  DCHECK(branch_target != nullptr);
208  DCHECK(fallthrough_target != nullptr);
209  PotentiallyAddSuspendCheck(branch_target, dex_pc);
210  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
211  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
212  T* comparison = new (arena_) T(first, second, dex_pc);
213  current_block_->AddInstruction(comparison);
214  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
215  current_block_->AddInstruction(ifinst);
216  current_block_->AddSuccessor(branch_target);
217  current_block_->AddSuccessor(fallthrough_target);
218  current_block_ = nullptr;
219}
220
221template<typename T>
222void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
223  int32_t target_offset = instruction.GetTargetOffset();
224  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
225  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
226  DCHECK(branch_target != nullptr);
227  DCHECK(fallthrough_target != nullptr);
228  PotentiallyAddSuspendCheck(branch_target, dex_pc);
229  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
230  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
231  current_block_->AddInstruction(comparison);
232  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
233  current_block_->AddInstruction(ifinst);
234  current_block_->AddSuccessor(branch_target);
235  current_block_->AddSuccessor(fallthrough_target);
236  current_block_ = nullptr;
237}
238
239void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
240  if (compilation_stats_ != nullptr) {
241    compilation_stats_->RecordStat(compilation_stat);
242  }
243}
244
245bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item,
246                                    size_t number_of_branches) {
247  const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
248  CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
249  if (compiler_filter == CompilerOptions::kEverything) {
250    return false;
251  }
252
253  if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) {
254    VLOG(compiler) << "Skip compilation of huge method "
255                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
256                   << ": " << code_item.insns_size_in_code_units_ << " code units";
257    MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
258    return true;
259  }
260
261  // If it's large and contains no branches, it's likely to be machine generated initialization.
262  if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_)
263      && (number_of_branches == 0)) {
264    VLOG(compiler) << "Skip compilation of large method with no branch "
265                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
266                   << ": " << code_item.insns_size_in_code_units_ << " code units";
267    MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
268    return true;
269  }
270
271  return false;
272}
273
274void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) {
275  if (code_item.tries_size_ == 0) {
276    return;
277  }
278
279  // Create branch targets at the start/end of the TryItem range. These are
280  // places where the program might fall through into/out of the a block and
281  // where TryBoundary instructions will be inserted later. Other edges which
282  // enter/exit the try blocks are a result of branches/switches.
283  for (size_t idx = 0; idx < code_item.tries_size_; ++idx) {
284    const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx);
285    uint32_t dex_pc_start = try_item->start_addr_;
286    uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_;
287    FindOrCreateBlockStartingAt(dex_pc_start);
288    if (dex_pc_end < code_item.insns_size_in_code_units_) {
289      // TODO: Do not create block if the last instruction cannot fall through.
290      FindOrCreateBlockStartingAt(dex_pc_end);
291    } else {
292      // The TryItem spans until the very end of the CodeItem (or beyond if
293      // invalid) and therefore cannot have any code afterwards.
294    }
295  }
296
297  // Create branch targets for exception handlers.
298  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
299  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
300  for (uint32_t idx = 0; idx < handlers_size; ++idx) {
301    CatchHandlerIterator iterator(handlers_ptr);
302    for (; iterator.HasNext(); iterator.Next()) {
303      uint32_t address = iterator.GetHandlerAddress();
304      HBasicBlock* block = FindOrCreateBlockStartingAt(address);
305      block->SetTryCatchInformation(
306        new (arena_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
307    }
308    handlers_ptr = iterator.EndDataPointer();
309  }
310}
311
312// Returns the TryItem stored for `block` or nullptr if there is no info for it.
313static const DexFile::TryItem* GetTryItem(
314    HBasicBlock* block,
315    const ArenaSafeMap<uint32_t, const DexFile::TryItem*>& try_block_info) {
316  auto iterator = try_block_info.find(block->GetBlockId());
317  return (iterator == try_block_info.end()) ? nullptr : iterator->second;
318}
319
320void HGraphBuilder::LinkToCatchBlocks(HTryBoundary* try_boundary,
321                                      const DexFile::CodeItem& code_item,
322                                      const DexFile::TryItem* try_item) {
323  for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) {
324    try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress()));
325  }
326}
327
328void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) {
329  if (code_item.tries_size_ == 0) {
330    return;
331  }
332
333  // Keep a map of all try blocks and their respective TryItems. We do not use
334  // the block's pointer but rather its id to ensure deterministic iteration.
335  ArenaSafeMap<uint32_t, const DexFile::TryItem*> try_block_info(
336      std::less<uint32_t>(), arena_->Adapter(kArenaAllocGraphBuilder));
337
338  // Obtain TryItem information for blocks with throwing instructions, and split
339  // blocks which are both try & catch to simplify the graph.
340  // NOTE: We are appending new blocks inside the loop, so we need to use index
341  // because iterators can be invalidated. We remember the initial size to avoid
342  // iterating over the new blocks which cannot throw.
343  for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) {
344    HBasicBlock* block = graph_->GetBlocks()[i];
345
346    // Do not bother creating exceptional edges for try blocks which have no
347    // throwing instructions. In that case we simply assume that the block is
348    // not covered by a TryItem. This prevents us from creating a throw-catch
349    // loop for synchronized blocks.
350    if (block->HasThrowingInstructions()) {
351      // Try to find a TryItem covering the block.
352      DCHECK_NE(block->GetDexPc(), kNoDexPc) << "Block must have a dec_pc to find its TryItem.";
353      const int32_t try_item_idx = DexFile::FindTryItem(code_item, block->GetDexPc());
354      if (try_item_idx != -1) {
355        // Block throwing and in a TryItem. Store the try block information.
356        HBasicBlock* throwing_block = block;
357        if (block->IsCatchBlock()) {
358          // Simplify blocks which are both try and catch, otherwise we would
359          // need a strategy for splitting exceptional edges. We split the block
360          // after the move-exception (if present) and mark the first part not
361          // throwing. The normal-flow edge between them will be split later.
362          HInstruction* first_insn = block->GetFirstInstruction();
363          if (first_insn->IsLoadException()) {
364            // Catch block starts with a LoadException. Split the block after
365            // the StoreLocal and ClearException which must come after the load.
366            DCHECK(first_insn->GetNext()->IsStoreLocal());
367            DCHECK(first_insn->GetNext()->GetNext()->IsClearException());
368            throwing_block = block->SplitBefore(first_insn->GetNext()->GetNext()->GetNext());
369          } else {
370            // Catch block does not load the exception. Split at the beginning
371            // to create an empty catch block.
372            throwing_block = block->SplitBefore(first_insn);
373          }
374        }
375
376        try_block_info.Put(throwing_block->GetBlockId(),
377                           DexFile::GetTryItems(code_item, try_item_idx));
378      }
379    }
380  }
381
382  // Do a pass over the try blocks and insert entering TryBoundaries where at
383  // least one predecessor is not covered by the same TryItem as the try block.
384  // We do not split each edge separately, but rather create one boundary block
385  // that all predecessors are relinked to. This preserves loop headers (b/23895756).
386  for (auto entry : try_block_info) {
387    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
388    for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
389      if (GetTryItem(predecessor, try_block_info) != entry.second) {
390        // Found a predecessor not covered by the same TryItem. Insert entering
391        // boundary block.
392        HTryBoundary* try_entry =
393            new (arena_) HTryBoundary(HTryBoundary::kEntry, try_block->GetDexPc());
394        try_block->CreateImmediateDominator()->AddInstruction(try_entry);
395        LinkToCatchBlocks(try_entry, code_item, entry.second);
396        break;
397      }
398    }
399  }
400
401  // Do a second pass over the try blocks and insert exit TryBoundaries where
402  // the successor is not in the same TryItem.
403  for (auto entry : try_block_info) {
404    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
405    // NOTE: Do not use iterators because SplitEdge would invalidate them.
406    for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
407      HBasicBlock* successor = try_block->GetSuccessors()[i];
408
409      // If the successor is a try block, all of its predecessors must be
410      // covered by the same TryItem. Otherwise the previous pass would have
411      // created a non-throwing boundary block.
412      if (GetTryItem(successor, try_block_info) != nullptr) {
413        DCHECK_EQ(entry.second, GetTryItem(successor, try_block_info));
414        continue;
415      }
416
417      // Preserve the invariant that Return(Void) always jumps to Exit by moving
418      // it outside the try block if necessary.
419      HInstruction* last_instruction = try_block->GetLastInstruction();
420      if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) {
421        DCHECK_EQ(successor, exit_block_);
422        successor = try_block->SplitBefore(last_instruction);
423      }
424
425      // Insert TryBoundary and link to catch blocks.
426      HTryBoundary* try_exit =
427          new (arena_) HTryBoundary(HTryBoundary::kExit, successor->GetDexPc());
428      graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
429      LinkToCatchBlocks(try_exit, code_item, entry.second);
430    }
431  }
432}
433
434bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
435  DCHECK(graph_->GetBlocks().empty());
436
437  const uint16_t* code_ptr = code_item.insns_;
438  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
439  code_start_ = code_ptr;
440
441  // Setup the graph with the entry block and exit block.
442  entry_block_ = new (arena_) HBasicBlock(graph_, 0);
443  graph_->AddBlock(entry_block_);
444  exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
445  graph_->SetEntryBlock(entry_block_);
446  graph_->SetExitBlock(exit_block_);
447
448  graph_->SetHasTryCatch(code_item.tries_size_ != 0);
449
450  InitializeLocals(code_item.registers_size_);
451  graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
452
453  // Compute the number of dex instructions, blocks, and branches. We will
454  // check these values against limits given to the compiler.
455  size_t number_of_branches = 0;
456
457  // To avoid splitting blocks, we compute ahead of time the instructions that
458  // start a new block, and create these blocks.
459  if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) {
460    MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode);
461    return false;
462  }
463
464  // Note that the compiler driver is null when unit testing.
465  if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) {
466    return false;
467  }
468
469  CreateBlocksForTryCatch(code_item);
470
471  InitializeParameters(code_item.ins_size_);
472
473  size_t dex_pc = 0;
474  while (code_ptr < code_end) {
475    // Update the current block if dex_pc starts a new block.
476    MaybeUpdateCurrentBlock(dex_pc);
477    const Instruction& instruction = *Instruction::At(code_ptr);
478    if (!AnalyzeDexInstruction(instruction, dex_pc)) {
479      return false;
480    }
481    dex_pc += instruction.SizeInCodeUnits();
482    code_ptr += instruction.SizeInCodeUnits();
483  }
484
485  // Add Exit to the exit block.
486  exit_block_->AddInstruction(new (arena_) HExit());
487  // Add the suspend check to the entry block.
488  entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
489  entry_block_->AddInstruction(new (arena_) HGoto());
490  // Add the exit block at the end.
491  graph_->AddBlock(exit_block_);
492
493  // Iterate over blocks covered by TryItems and insert TryBoundaries at entry
494  // and exit points. This requires all control-flow instructions and
495  // non-exceptional edges to have been created.
496  InsertTryBoundaryBlocks(code_item);
497
498  return true;
499}
500
501void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) {
502  HBasicBlock* block = FindBlockStartingAt(dex_pc);
503  if (block == nullptr) {
504    return;
505  }
506
507  if (current_block_ != nullptr) {
508    // Branching instructions clear current_block, so we know
509    // the last instruction of the current block is not a branching
510    // instruction. We add an unconditional goto to the found block.
511    current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
512    current_block_->AddSuccessor(block);
513  }
514  graph_->AddBlock(block);
515  current_block_ = block;
516}
517
518bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
519                                         const uint16_t* code_end,
520                                         size_t* number_of_branches) {
521  branch_targets_.resize(code_end - code_ptr, nullptr);
522
523  // Create the first block for the dex instructions, single successor of the entry block.
524  HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
525  branch_targets_[0] = block;
526  entry_block_->AddSuccessor(block);
527
528  // Iterate over all instructions and find branching instructions. Create blocks for
529  // the locations these instructions branch to.
530  uint32_t dex_pc = 0;
531  while (code_ptr < code_end) {
532    const Instruction& instruction = *Instruction::At(code_ptr);
533    if (instruction.IsBranch()) {
534      (*number_of_branches)++;
535      int32_t target = instruction.GetTargetOffset() + dex_pc;
536      // Create a block for the target instruction.
537      FindOrCreateBlockStartingAt(target);
538
539      dex_pc += instruction.SizeInCodeUnits();
540      code_ptr += instruction.SizeInCodeUnits();
541
542      if (instruction.CanFlowThrough()) {
543        if (code_ptr >= code_end) {
544          // In the normal case we should never hit this but someone can artificially forge a dex
545          // file to fall-through out the method code. In this case we bail out compilation.
546          return false;
547        } else {
548          FindOrCreateBlockStartingAt(dex_pc);
549        }
550      }
551    } else if (instruction.IsSwitch()) {
552      SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
553
554      uint16_t num_entries = table.GetNumEntries();
555
556      // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
557      // entry at index 0 is the first key, and values are after *all* keys.
558      size_t offset = table.GetFirstValueIndex();
559
560      // Use a larger loop counter type to avoid overflow issues.
561      for (size_t i = 0; i < num_entries; ++i) {
562        // The target of the case.
563        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
564        FindOrCreateBlockStartingAt(target);
565
566        // Create a block for the switch-case logic. The block gets the dex_pc
567        // of the SWITCH instruction because it is part of its semantics.
568        block = new (arena_) HBasicBlock(graph_, dex_pc);
569        branch_targets_[table.GetDexPcForIndex(i)] = block;
570      }
571
572      // Fall-through. Add a block if there is more code afterwards.
573      dex_pc += instruction.SizeInCodeUnits();
574      code_ptr += instruction.SizeInCodeUnits();
575      if (code_ptr >= code_end) {
576        // In the normal case we should never hit this but someone can artificially forge a dex
577        // file to fall-through out the method code. In this case we bail out compilation.
578        // (A switch can fall-through so we don't need to check CanFlowThrough().)
579        return false;
580      } else {
581        FindOrCreateBlockStartingAt(dex_pc);
582      }
583    } else {
584      code_ptr += instruction.SizeInCodeUnits();
585      dex_pc += instruction.SizeInCodeUnits();
586    }
587  }
588  return true;
589}
590
591HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const {
592  DCHECK_GE(dex_pc, 0);
593  return branch_targets_[dex_pc];
594}
595
596HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) {
597  HBasicBlock* block = FindBlockStartingAt(dex_pc);
598  if (block == nullptr) {
599    block = new (arena_) HBasicBlock(graph_, dex_pc);
600    branch_targets_[dex_pc] = block;
601  }
602  return block;
603}
604
605template<typename T>
606void HGraphBuilder::Unop_12x(const Instruction& instruction,
607                             Primitive::Type type,
608                             uint32_t dex_pc) {
609  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
610  current_block_->AddInstruction(new (arena_) T(type, first, dex_pc));
611  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
612}
613
614void HGraphBuilder::Conversion_12x(const Instruction& instruction,
615                                   Primitive::Type input_type,
616                                   Primitive::Type result_type,
617                                   uint32_t dex_pc) {
618  HInstruction* first = LoadLocal(instruction.VRegB(), input_type, dex_pc);
619  current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
620  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
621}
622
623template<typename T>
624void HGraphBuilder::Binop_23x(const Instruction& instruction,
625                              Primitive::Type type,
626                              uint32_t dex_pc) {
627  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
628  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
629  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
630  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
631}
632
633template<typename T>
634void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
635                                    Primitive::Type type,
636                                    uint32_t dex_pc) {
637  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
638  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt, dex_pc);
639  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
640  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
641}
642
643void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
644                                  Primitive::Type type,
645                                  ComparisonBias bias,
646                                  uint32_t dex_pc) {
647  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
648  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
649  current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
650  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
651}
652
653template<typename T>
654void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type,
655                                    uint32_t dex_pc) {
656  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
657  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
658  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
659  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
660}
661
662template<typename T>
663void HGraphBuilder::Binop_12x(const Instruction& instruction,
664                              Primitive::Type type,
665                              uint32_t dex_pc) {
666  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
667  HInstruction* second = LoadLocal(instruction.VRegB(), type, dex_pc);
668  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
669  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
670}
671
672template<typename T>
673void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
674  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
675  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
676  if (reverse) {
677    std::swap(first, second);
678  }
679  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
680  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
681}
682
683template<typename T>
684void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
685  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
686  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
687  if (reverse) {
688    std::swap(first, second);
689  }
690  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
691  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
692}
693
694static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
695  Thread* self = Thread::Current();
696  return cu->IsConstructor()
697      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
698}
699
700void HGraphBuilder::BuildReturn(const Instruction& instruction,
701                                Primitive::Type type,
702                                uint32_t dex_pc) {
703  if (type == Primitive::kPrimVoid) {
704    if (graph_->ShouldGenerateConstructorBarrier()) {
705      // The compilation unit is null during testing.
706      if (dex_compilation_unit_ != nullptr) {
707        DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
708          << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
709      }
710      current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
711    }
712    current_block_->AddInstruction(new (arena_) HReturnVoid(dex_pc));
713  } else {
714    HInstruction* value = LoadLocal(instruction.VRegA(), type, dex_pc);
715    current_block_->AddInstruction(new (arena_) HReturn(value, dex_pc));
716  }
717  current_block_->AddSuccessor(exit_block_);
718  current_block_ = nullptr;
719}
720
721static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
722  switch (opcode) {
723    case Instruction::INVOKE_STATIC:
724    case Instruction::INVOKE_STATIC_RANGE:
725      return kStatic;
726    case Instruction::INVOKE_DIRECT:
727    case Instruction::INVOKE_DIRECT_RANGE:
728      return kDirect;
729    case Instruction::INVOKE_VIRTUAL:
730    case Instruction::INVOKE_VIRTUAL_QUICK:
731    case Instruction::INVOKE_VIRTUAL_RANGE:
732    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
733      return kVirtual;
734    case Instruction::INVOKE_INTERFACE:
735    case Instruction::INVOKE_INTERFACE_RANGE:
736      return kInterface;
737    case Instruction::INVOKE_SUPER_RANGE:
738    case Instruction::INVOKE_SUPER:
739      return kSuper;
740    default:
741      LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
742      UNREACHABLE();
743  }
744}
745
746bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
747                                uint32_t dex_pc,
748                                uint32_t method_idx,
749                                uint32_t number_of_vreg_arguments,
750                                bool is_range,
751                                uint32_t* args,
752                                uint32_t register_index) {
753  InvokeType original_invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
754  InvokeType optimized_invoke_type = original_invoke_type;
755  const char* descriptor = dex_file_->GetMethodShorty(method_idx);
756  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
757
758  // Remove the return type from the 'proto'.
759  size_t number_of_arguments = strlen(descriptor) - 1;
760  if (original_invoke_type != kStatic) {  // instance call
761    // One extra argument for 'this'.
762    number_of_arguments++;
763  }
764
765  MethodReference target_method(dex_file_, method_idx);
766  int32_t table_index = 0;
767  uintptr_t direct_code = 0;
768  uintptr_t direct_method = 0;
769
770  // Special handling for string init.
771  int32_t string_init_offset = 0;
772  bool is_string_init = compiler_driver_->IsStringInit(method_idx,
773                                                       dex_file_,
774                                                       &string_init_offset);
775  // Replace calls to String.<init> with StringFactory.
776  if (is_string_init) {
777    HInvokeStaticOrDirect::DispatchInfo dispatch_info = ComputeDispatchInfo(is_string_init,
778                                                                            string_init_offset,
779                                                                            target_method,
780                                                                            direct_method,
781                                                                            direct_code);
782    HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
783        arena_,
784        number_of_arguments - 1,
785        Primitive::kPrimNot /*return_type */,
786        dex_pc,
787        method_idx,
788        target_method,
789        dispatch_info,
790        original_invoke_type,
791        kStatic /* optimized_invoke_type */,
792        HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
793    return HandleStringInit(invoke,
794                            number_of_vreg_arguments,
795                            args,
796                            register_index,
797                            is_range,
798                            descriptor);
799  }
800
801  // Handle unresolved methods.
802  if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_,
803                                           dex_pc,
804                                           true /* update_stats */,
805                                           true /* enable_devirtualization */,
806                                           &optimized_invoke_type,
807                                           &target_method,
808                                           &table_index,
809                                           &direct_code,
810                                           &direct_method)) {
811    MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
812    HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
813                                                     number_of_arguments,
814                                                     return_type,
815                                                     dex_pc,
816                                                     method_idx,
817                                                     original_invoke_type);
818    return HandleInvoke(invoke,
819                        number_of_vreg_arguments,
820                        args,
821                        register_index,
822                        is_range,
823                        descriptor,
824                        nullptr /* clinit_check */);
825  }
826
827  // Handle resolved methods (non string init).
828
829  DCHECK(optimized_invoke_type != kSuper);
830
831  // Potential class initialization check, in the case of a static method call.
832  HClinitCheck* clinit_check = nullptr;
833  HInvoke* invoke = nullptr;
834
835  if (optimized_invoke_type == kDirect || optimized_invoke_type == kStatic) {
836    // By default, consider that the called method implicitly requires
837    // an initialization check of its declaring method.
838    HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
839        = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
840    if (optimized_invoke_type == kStatic) {
841      clinit_check = ProcessClinitCheckForInvoke(dex_pc, method_idx, &clinit_check_requirement);
842    }
843
844    HInvokeStaticOrDirect::DispatchInfo dispatch_info = ComputeDispatchInfo(is_string_init,
845                                                                            string_init_offset,
846                                                                            target_method,
847                                                                            direct_method,
848                                                                            direct_code);
849    invoke = new (arena_) HInvokeStaticOrDirect(arena_,
850                                                number_of_arguments,
851                                                return_type,
852                                                dex_pc,
853                                                method_idx,
854                                                target_method,
855                                                dispatch_info,
856                                                original_invoke_type,
857                                                optimized_invoke_type,
858                                                clinit_check_requirement);
859  } else if (optimized_invoke_type == kVirtual) {
860    invoke = new (arena_) HInvokeVirtual(arena_,
861                                         number_of_arguments,
862                                         return_type,
863                                         dex_pc,
864                                         method_idx,
865                                         table_index);
866  } else {
867    DCHECK_EQ(optimized_invoke_type, kInterface);
868    invoke = new (arena_) HInvokeInterface(arena_,
869                                           number_of_arguments,
870                                           return_type,
871                                           dex_pc,
872                                           method_idx,
873                                           table_index);
874  }
875
876  return HandleInvoke(invoke,
877                      number_of_vreg_arguments,
878                      args,
879                      register_index,
880                      is_range,
881                      descriptor,
882                      clinit_check);
883}
884
885HClinitCheck* HGraphBuilder::ProcessClinitCheckForInvoke(
886      uint32_t dex_pc,
887      uint32_t method_idx,
888      HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
889  ScopedObjectAccess soa(Thread::Current());
890  StackHandleScope<4> hs(soa.Self());
891  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
892      dex_compilation_unit_->GetClassLinker()->FindDexCache(
893          soa.Self(), *dex_compilation_unit_->GetDexFile())));
894  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
895      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
896  ArtMethod* resolved_method = compiler_driver_->ResolveMethod(
897      soa, dex_cache, class_loader, dex_compilation_unit_, method_idx, InvokeType::kStatic);
898
899  DCHECK(resolved_method != nullptr);
900
901  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
902  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
903      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
904  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
905
906  // The index at which the method's class is stored in the DexCache's type array.
907  uint32_t storage_index = DexFile::kDexNoIndex;
908  bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
909  if (is_outer_class) {
910    storage_index = outer_class->GetDexTypeIndex();
911  } else if (outer_dex_cache.Get() == dex_cache.Get()) {
912    // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
913    compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
914                                                               GetCompilingClass(),
915                                                               resolved_method,
916                                                               method_idx,
917                                                               &storage_index);
918  }
919
920  HClinitCheck* clinit_check = nullptr;
921
922  if (!outer_class->IsInterface()
923      && outer_class->IsSubClass(resolved_method->GetDeclaringClass())) {
924    // If the outer class is the declaring class or a subclass
925    // of the declaring class, no class initialization is needed
926    // before the static method call.
927    // Note that in case of inlining, we do not need to add clinit checks
928    // to calls that satisfy this subclass check with any inlined methods. This
929    // will be detected by the optimization passes.
930    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
931  } else if (storage_index != DexFile::kDexNoIndex) {
932    // If the method's class type index is available, check
933    // whether we should add an explicit class initialization
934    // check for its declaring class before the static method call.
935
936    // TODO: find out why this check is needed.
937    bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
938        *outer_compilation_unit_->GetDexFile(), storage_index);
939    bool is_initialized =
940        resolved_method->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
941
942    if (is_initialized) {
943      *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
944    } else {
945      *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
946      HLoadClass* load_class = new (arena_) HLoadClass(
947          graph_->GetCurrentMethod(),
948          storage_index,
949          *dex_compilation_unit_->GetDexFile(),
950          is_outer_class,
951          dex_pc,
952          /*needs_access_check*/ false);
953      current_block_->AddInstruction(load_class);
954      clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
955      current_block_->AddInstruction(clinit_check);
956    }
957  }
958  return clinit_check;
959}
960
961HInvokeStaticOrDirect::DispatchInfo HGraphBuilder::ComputeDispatchInfo(
962    bool is_string_init,
963    int32_t string_init_offset,
964    MethodReference target_method,
965    uintptr_t direct_method,
966    uintptr_t direct_code) {
967  HInvokeStaticOrDirect::MethodLoadKind method_load_kind;
968  HInvokeStaticOrDirect::CodePtrLocation code_ptr_location;
969  uint64_t method_load_data = 0u;
970  uint64_t direct_code_ptr = 0u;
971
972  if (is_string_init) {
973    // TODO: Use direct_method and direct_code for the appropriate StringFactory method.
974    method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kStringInit;
975    code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
976    method_load_data = string_init_offset;
977  } else if (target_method.dex_file == outer_compilation_unit_->GetDexFile() &&
978      target_method.dex_method_index == outer_compilation_unit_->GetDexMethodIndex()) {
979    method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kRecursive;
980    code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallSelf;
981  } else {
982    if (direct_method != 0u) {  // Should we use a direct pointer to the method?
983      if (direct_method != static_cast<uintptr_t>(-1)) {  // Is the method pointer known now?
984        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress;
985        method_load_data = direct_method;
986      } else {  // The direct pointer will be known at link time.
987        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup;
988      }
989    } else {  // Use dex cache.
990      DCHECK(target_method.dex_file == dex_compilation_unit_->GetDexFile());
991      DexCacheArraysLayout layout =
992          compiler_driver_->GetDexCacheArraysLayout(target_method.dex_file);
993      if (layout.Valid()) {  // Can we use PC-relative access to the dex cache arrays?
994        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative;
995        method_load_data = layout.MethodOffset(target_method.dex_method_index);
996      } else {  // We must go through the ArtMethod's pointer to resolved methods.
997        method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
998      }
999    }
1000    if (direct_code != 0u) {  // Should we use a direct pointer to the code?
1001      if (direct_code != static_cast<uintptr_t>(-1)) {  // Is the code pointer known now?
1002        code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallDirect;
1003        direct_code_ptr = direct_code;
1004      } else if (compiler_driver_->IsImage() ||
1005          target_method.dex_file == dex_compilation_unit_->GetDexFile()) {
1006        // Use PC-relative calls for invokes within a multi-dex oat file.
1007        // TODO: Recognize when the target dex file is within the current oat file for
1008        // app compilation. At the moment we recognize only the boot image as multi-dex.
1009        // NOTE: This will require changing the ARM backend which currently falls
1010        // through from kCallPCRelative to kDirectCodeFixup for different dex files.
1011        code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative;
1012      } else {  // The direct pointer will be known at link time.
1013        // NOTE: This is used for app->boot calls when compiling an app against
1014        // a relocatable but not yet relocated image.
1015        code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup;
1016      }
1017    } else {  // We must use the code pointer from the ArtMethod.
1018      code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
1019    }
1020  }
1021
1022  if (graph_->IsDebuggable()) {
1023    // For debuggable apps always use the code pointer from ArtMethod
1024    // so that we don't circumvent instrumentation stubs if installed.
1025    code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
1026  }
1027
1028  return HInvokeStaticOrDirect::DispatchInfo {
1029    method_load_kind, code_ptr_location, method_load_data, direct_code_ptr };
1030}
1031
1032bool HGraphBuilder::SetupInvokeArguments(HInvoke* invoke,
1033                                         uint32_t number_of_vreg_arguments,
1034                                         uint32_t* args,
1035                                         uint32_t register_index,
1036                                         bool is_range,
1037                                         const char* descriptor,
1038                                         size_t start_index,
1039                                         size_t* argument_index) {
1040  uint32_t descriptor_index = 1;  // Skip the return type.
1041  uint32_t dex_pc = invoke->GetDexPc();
1042
1043  for (size_t i = start_index;
1044       // Make sure we don't go over the expected arguments or over the number of
1045       // dex registers given. If the instruction was seen as dead by the verifier,
1046       // it hasn't been properly checked.
1047       (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
1048       i++, (*argument_index)++) {
1049    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
1050    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
1051    if (!is_range
1052        && is_wide
1053        && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
1054      // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1055      // reject any class where this is violated. However, the verifier only does these checks
1056      // on non trivially dead instructions, so we just bailout the compilation.
1057      VLOG(compiler) << "Did not compile "
1058                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1059                     << " because of non-sequential dex register pair in wide argument";
1060      MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1061      return false;
1062    }
1063    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1064    invoke->SetArgumentAt(*argument_index, arg);
1065    if (is_wide) {
1066      i++;
1067    }
1068  }
1069
1070  if (*argument_index != invoke->GetNumberOfArguments()) {
1071    VLOG(compiler) << "Did not compile "
1072                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1073                   << " because of wrong number of arguments in invoke instruction";
1074    MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1075    return false;
1076  }
1077
1078  if (invoke->IsInvokeStaticOrDirect()) {
1079    invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
1080    (*argument_index)++;
1081  }
1082
1083  return true;
1084}
1085
1086bool HGraphBuilder::HandleInvoke(HInvoke* invoke,
1087                                 uint32_t number_of_vreg_arguments,
1088                                 uint32_t* args,
1089                                 uint32_t register_index,
1090                                 bool is_range,
1091                                 const char* descriptor,
1092                                 HClinitCheck* clinit_check) {
1093  DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1094
1095  size_t start_index = 0;
1096  size_t argument_index = 0;
1097  if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call.
1098    Temporaries temps(graph_);
1099    HInstruction* arg = LoadLocal(
1100        is_range ? register_index : args[0], Primitive::kPrimNot, invoke->GetDexPc());
1101    HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc());
1102    current_block_->AddInstruction(null_check);
1103    temps.Add(null_check);
1104    invoke->SetArgumentAt(0, null_check);
1105    start_index = 1;
1106    argument_index = 1;
1107  }
1108
1109  if (!SetupInvokeArguments(invoke,
1110                            number_of_vreg_arguments,
1111                            args,
1112                            register_index,
1113                            is_range,
1114                            descriptor,
1115                            start_index,
1116                            &argument_index)) {
1117    return false;
1118  }
1119
1120  if (clinit_check != nullptr) {
1121    // Add the class initialization check as last input of `invoke`.
1122    DCHECK(invoke->IsInvokeStaticOrDirect());
1123    DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
1124        == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1125    invoke->SetArgumentAt(argument_index, clinit_check);
1126    argument_index++;
1127  }
1128
1129  current_block_->AddInstruction(invoke);
1130  latest_result_ = invoke;
1131
1132  return true;
1133}
1134
1135bool HGraphBuilder::HandleStringInit(HInvoke* invoke,
1136                                     uint32_t number_of_vreg_arguments,
1137                                     uint32_t* args,
1138                                     uint32_t register_index,
1139                                     bool is_range,
1140                                     const char* descriptor) {
1141  DCHECK(invoke->IsInvokeStaticOrDirect());
1142  DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1143
1144  size_t start_index = 1;
1145  size_t argument_index = 0;
1146  if (!SetupInvokeArguments(invoke,
1147                            number_of_vreg_arguments,
1148                            args,
1149                            register_index,
1150                            is_range,
1151                            descriptor,
1152                            start_index,
1153                            &argument_index)) {
1154    return false;
1155  }
1156
1157  // Add move-result for StringFactory method.
1158  uint32_t orig_this_reg = is_range ? register_index : args[0];
1159  HInstruction* fake_string = LoadLocal(orig_this_reg, Primitive::kPrimNot, invoke->GetDexPc());
1160  invoke->SetArgumentAt(argument_index, fake_string);
1161  current_block_->AddInstruction(invoke);
1162  PotentiallySimplifyFakeString(orig_this_reg, invoke->GetDexPc(), invoke);
1163
1164  latest_result_ = invoke;
1165
1166  return true;
1167}
1168
1169void HGraphBuilder::PotentiallySimplifyFakeString(uint16_t original_dex_register,
1170                                                  uint32_t dex_pc,
1171                                                  HInvoke* actual_string) {
1172  if (!graph_->IsDebuggable()) {
1173    // Notify that we cannot compile with baseline. The dex registers aliasing
1174    // with `original_dex_register` will be handled when we optimize
1175    // (see HInstructionSimplifer::VisitFakeString).
1176    can_use_baseline_for_string_init_ = false;
1177    return;
1178  }
1179  const VerifiedMethod* verified_method =
1180      compiler_driver_->GetVerifiedMethod(dex_file_, dex_compilation_unit_->GetDexMethodIndex());
1181  if (verified_method != nullptr) {
1182    UpdateLocal(original_dex_register, actual_string, dex_pc);
1183    const SafeMap<uint32_t, std::set<uint32_t>>& string_init_map =
1184        verified_method->GetStringInitPcRegMap();
1185    auto map_it = string_init_map.find(dex_pc);
1186    if (map_it != string_init_map.end()) {
1187      std::set<uint32_t> reg_set = map_it->second;
1188      for (auto set_it = reg_set.begin(); set_it != reg_set.end(); ++set_it) {
1189        HInstruction* load_local = LoadLocal(original_dex_register, Primitive::kPrimNot, dex_pc);
1190        UpdateLocal(*set_it, load_local, dex_pc);
1191      }
1192    }
1193  } else {
1194    can_use_baseline_for_string_init_ = false;
1195  }
1196}
1197
1198static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1199  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
1200  const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1201  return Primitive::GetType(type[0]);
1202}
1203
1204bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1205                                             uint32_t dex_pc,
1206                                             bool is_put) {
1207  uint32_t source_or_dest_reg = instruction.VRegA_22c();
1208  uint32_t obj_reg = instruction.VRegB_22c();
1209  uint16_t field_index;
1210  if (instruction.IsQuickened()) {
1211    if (!CanDecodeQuickenedInfo()) {
1212      return false;
1213    }
1214    field_index = LookupQuickenedInfo(dex_pc);
1215  } else {
1216    field_index = instruction.VRegC_22c();
1217  }
1218
1219  ScopedObjectAccess soa(Thread::Current());
1220  ArtField* resolved_field =
1221      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
1222
1223
1224  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot, dex_pc);
1225  HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc);
1226  current_block_->AddInstruction(null_check);
1227
1228  Primitive::Type field_type = (resolved_field == nullptr)
1229      ? GetFieldAccessType(*dex_file_, field_index)
1230      : resolved_field->GetTypeAsPrimitiveType();
1231  if (is_put) {
1232    Temporaries temps(graph_);
1233    // We need one temporary for the null check.
1234    temps.Add(null_check);
1235    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1236    HInstruction* field_set = nullptr;
1237    if (resolved_field == nullptr) {
1238      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1239      field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check,
1240                                                           value,
1241                                                           field_type,
1242                                                           field_index,
1243                                                           dex_pc);
1244    } else {
1245      field_set = new (arena_) HInstanceFieldSet(null_check,
1246                                                 value,
1247                                                 field_type,
1248                                                 resolved_field->GetOffset(),
1249                                                 resolved_field->IsVolatile(),
1250                                                 field_index,
1251                                                 *dex_file_,
1252                                                 dex_compilation_unit_->GetDexCache(),
1253                                                 dex_pc);
1254    }
1255    current_block_->AddInstruction(field_set);
1256  } else {
1257    HInstruction* field_get = nullptr;
1258    if (resolved_field == nullptr) {
1259      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1260      field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check,
1261                                                           field_type,
1262                                                           field_index,
1263                                                           dex_pc);
1264    } else {
1265      field_get = new (arena_) HInstanceFieldGet(null_check,
1266                                                 field_type,
1267                                                 resolved_field->GetOffset(),
1268                                                 resolved_field->IsVolatile(),
1269                                                 field_index,
1270                                                 *dex_file_,
1271                                                 dex_compilation_unit_->GetDexCache(),
1272                                                 dex_pc);
1273    }
1274    current_block_->AddInstruction(field_get);
1275    UpdateLocal(source_or_dest_reg, field_get, dex_pc);
1276  }
1277
1278  return true;
1279}
1280
1281static mirror::Class* GetClassFrom(CompilerDriver* driver,
1282                                   const DexCompilationUnit& compilation_unit) {
1283  ScopedObjectAccess soa(Thread::Current());
1284  StackHandleScope<2> hs(soa.Self());
1285  const DexFile& dex_file = *compilation_unit.GetDexFile();
1286  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1287      soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
1288  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1289      compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
1290
1291  return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
1292}
1293
1294mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const {
1295  return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
1296}
1297
1298mirror::Class* HGraphBuilder::GetCompilingClass() const {
1299  return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
1300}
1301
1302bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
1303  ScopedObjectAccess soa(Thread::Current());
1304  StackHandleScope<4> hs(soa.Self());
1305  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1306      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1307          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1308  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1309      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1310  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
1311      soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
1312  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1313
1314  return outer_class.Get() == cls.Get();
1315}
1316
1317void HGraphBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1318                                                     uint32_t dex_pc,
1319                                                     bool is_put,
1320                                                     Primitive::Type field_type) {
1321  uint32_t source_or_dest_reg = instruction.VRegA_21c();
1322  uint16_t field_index = instruction.VRegB_21c();
1323
1324  if (is_put) {
1325    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1326    current_block_->AddInstruction(
1327        new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1328  } else {
1329    current_block_->AddInstruction(
1330        new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1331    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1332  }
1333}
1334bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1335                                           uint32_t dex_pc,
1336                                           bool is_put) {
1337  uint32_t source_or_dest_reg = instruction.VRegA_21c();
1338  uint16_t field_index = instruction.VRegB_21c();
1339
1340  ScopedObjectAccess soa(Thread::Current());
1341  StackHandleScope<4> hs(soa.Self());
1342  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1343      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1344          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1345  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1346      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1347  ArtField* resolved_field = compiler_driver_->ResolveField(
1348      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
1349
1350  if (resolved_field == nullptr) {
1351    MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1352    Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1353    BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1354    return true;
1355  }
1356
1357  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
1358  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
1359  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
1360      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
1361  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1362
1363  // The index at which the field's class is stored in the DexCache's type array.
1364  uint32_t storage_index;
1365  bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
1366  if (is_outer_class) {
1367    storage_index = outer_class->GetDexTypeIndex();
1368  } else if (outer_dex_cache.Get() != dex_cache.Get()) {
1369    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
1370    return false;
1371  } else {
1372    // TODO: This is rather expensive. Perf it and cache the results if needed.
1373    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
1374        outer_dex_cache.Get(),
1375        GetCompilingClass(),
1376        resolved_field,
1377        field_index,
1378        &storage_index);
1379    bool can_easily_access = is_put ? pair.second : pair.first;
1380    if (!can_easily_access) {
1381      MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1382      BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1383      return true;
1384    }
1385  }
1386
1387  // TODO: find out why this check is needed.
1388  bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
1389      *outer_compilation_unit_->GetDexFile(), storage_index);
1390  bool is_initialized = resolved_field->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
1391
1392  HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
1393                                                 storage_index,
1394                                                 *dex_compilation_unit_->GetDexFile(),
1395                                                 is_outer_class,
1396                                                 dex_pc,
1397                                                 /*needs_access_check*/ false);
1398  current_block_->AddInstruction(constant);
1399
1400  HInstruction* cls = constant;
1401  if (!is_initialized && !is_outer_class) {
1402    cls = new (arena_) HClinitCheck(constant, dex_pc);
1403    current_block_->AddInstruction(cls);
1404  }
1405  if (is_put) {
1406    // We need to keep the class alive before loading the value.
1407    Temporaries temps(graph_);
1408    temps.Add(cls);
1409    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1410    DCHECK_EQ(value->GetType(), field_type);
1411    current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls,
1412                                                                value,
1413                                                                field_type,
1414                                                                resolved_field->GetOffset(),
1415                                                                resolved_field->IsVolatile(),
1416                                                                field_index,
1417                                                                *dex_file_,
1418                                                                dex_cache_,
1419                                                                dex_pc));
1420  } else {
1421    current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls,
1422                                                                field_type,
1423                                                                resolved_field->GetOffset(),
1424                                                                resolved_field->IsVolatile(),
1425                                                                field_index,
1426                                                                *dex_file_,
1427                                                                dex_cache_,
1428                                                                dex_pc));
1429    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1430  }
1431  return true;
1432}
1433
1434void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
1435                                       uint16_t first_vreg,
1436                                       int64_t second_vreg_or_constant,
1437                                       uint32_t dex_pc,
1438                                       Primitive::Type type,
1439                                       bool second_is_constant,
1440                                       bool isDiv) {
1441  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1442
1443  HInstruction* first = LoadLocal(first_vreg, type, dex_pc);
1444  HInstruction* second = nullptr;
1445  if (second_is_constant) {
1446    if (type == Primitive::kPrimInt) {
1447      second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
1448    } else {
1449      second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
1450    }
1451  } else {
1452    second = LoadLocal(second_vreg_or_constant, type, dex_pc);
1453  }
1454
1455  if (!second_is_constant
1456      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
1457      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
1458    second = new (arena_) HDivZeroCheck(second, dex_pc);
1459    Temporaries temps(graph_);
1460    current_block_->AddInstruction(second);
1461    temps.Add(current_block_->GetLastInstruction());
1462  }
1463
1464  if (isDiv) {
1465    current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
1466  } else {
1467    current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
1468  }
1469  UpdateLocal(out_vreg, current_block_->GetLastInstruction(), dex_pc);
1470}
1471
1472void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
1473                                     uint32_t dex_pc,
1474                                     bool is_put,
1475                                     Primitive::Type anticipated_type) {
1476  uint8_t source_or_dest_reg = instruction.VRegA_23x();
1477  uint8_t array_reg = instruction.VRegB_23x();
1478  uint8_t index_reg = instruction.VRegC_23x();
1479
1480  // We need one temporary for the null check, one for the index, and one for the length.
1481  Temporaries temps(graph_);
1482
1483  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot, dex_pc);
1484  object = new (arena_) HNullCheck(object, dex_pc);
1485  current_block_->AddInstruction(object);
1486  temps.Add(object);
1487
1488  HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
1489  current_block_->AddInstruction(length);
1490  temps.Add(length);
1491  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt, dex_pc);
1492  index = new (arena_) HBoundsCheck(index, length, dex_pc);
1493  current_block_->AddInstruction(index);
1494  temps.Add(index);
1495  if (is_put) {
1496    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type, dex_pc);
1497    // TODO: Insert a type check node if the type is Object.
1498    current_block_->AddInstruction(new (arena_) HArraySet(
1499        object, index, value, anticipated_type, dex_pc));
1500  } else {
1501    current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type, dex_pc));
1502    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1503  }
1504  graph_->SetHasBoundsChecks(true);
1505}
1506
1507void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
1508                                        uint32_t type_index,
1509                                        uint32_t number_of_vreg_arguments,
1510                                        bool is_range,
1511                                        uint32_t* args,
1512                                        uint32_t register_index) {
1513  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
1514  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
1515      ? kQuickAllocArrayWithAccessCheck
1516      : kQuickAllocArray;
1517  HInstruction* object = new (arena_) HNewArray(length,
1518                                                graph_->GetCurrentMethod(),
1519                                                dex_pc,
1520                                                type_index,
1521                                                *dex_compilation_unit_->GetDexFile(),
1522                                                entrypoint);
1523  current_block_->AddInstruction(object);
1524
1525  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1526  DCHECK_EQ(descriptor[0], '[') << descriptor;
1527  char primitive = descriptor[1];
1528  DCHECK(primitive == 'I'
1529      || primitive == 'L'
1530      || primitive == '[') << descriptor;
1531  bool is_reference_array = (primitive == 'L') || (primitive == '[');
1532  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
1533
1534  Temporaries temps(graph_);
1535  temps.Add(object);
1536  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
1537    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1538    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1539    current_block_->AddInstruction(
1540        new (arena_) HArraySet(object, index, value, type, dex_pc));
1541  }
1542  latest_result_ = object;
1543}
1544
1545template <typename T>
1546void HGraphBuilder::BuildFillArrayData(HInstruction* object,
1547                                       const T* data,
1548                                       uint32_t element_count,
1549                                       Primitive::Type anticipated_type,
1550                                       uint32_t dex_pc) {
1551  for (uint32_t i = 0; i < element_count; ++i) {
1552    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1553    HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
1554    current_block_->AddInstruction(new (arena_) HArraySet(
1555      object, index, value, anticipated_type, dex_pc));
1556  }
1557}
1558
1559void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1560  Temporaries temps(graph_);
1561  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot, dex_pc);
1562  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
1563  current_block_->AddInstruction(null_check);
1564  temps.Add(null_check);
1565
1566  HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc);
1567  current_block_->AddInstruction(length);
1568
1569  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1570  const Instruction::ArrayDataPayload* payload =
1571      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
1572  const uint8_t* data = payload->data;
1573  uint32_t element_count = payload->element_count;
1574
1575  // Implementation of this DEX instruction seems to be that the bounds check is
1576  // done before doing any stores.
1577  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
1578  current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
1579
1580  switch (payload->element_width) {
1581    case 1:
1582      BuildFillArrayData(null_check,
1583                         reinterpret_cast<const int8_t*>(data),
1584                         element_count,
1585                         Primitive::kPrimByte,
1586                         dex_pc);
1587      break;
1588    case 2:
1589      BuildFillArrayData(null_check,
1590                         reinterpret_cast<const int16_t*>(data),
1591                         element_count,
1592                         Primitive::kPrimShort,
1593                         dex_pc);
1594      break;
1595    case 4:
1596      BuildFillArrayData(null_check,
1597                         reinterpret_cast<const int32_t*>(data),
1598                         element_count,
1599                         Primitive::kPrimInt,
1600                         dex_pc);
1601      break;
1602    case 8:
1603      BuildFillWideArrayData(null_check,
1604                             reinterpret_cast<const int64_t*>(data),
1605                             element_count,
1606                             dex_pc);
1607      break;
1608    default:
1609      LOG(FATAL) << "Unknown element width for " << payload->element_width;
1610  }
1611  graph_->SetHasBoundsChecks(true);
1612}
1613
1614void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
1615                                           const int64_t* data,
1616                                           uint32_t element_count,
1617                                           uint32_t dex_pc) {
1618  for (uint32_t i = 0; i < element_count; ++i) {
1619    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1620    HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
1621    current_block_->AddInstruction(new (arena_) HArraySet(
1622      object, index, value, Primitive::kPrimLong, dex_pc));
1623  }
1624}
1625
1626static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
1627    SHARED_REQUIRES(Locks::mutator_lock_) {
1628  if (cls.Get() == nullptr) {
1629    return TypeCheckKind::kUnresolvedCheck;
1630  } else if (cls->IsInterface()) {
1631    return TypeCheckKind::kInterfaceCheck;
1632  } else if (cls->IsArrayClass()) {
1633    if (cls->GetComponentType()->IsObjectClass()) {
1634      return TypeCheckKind::kArrayObjectCheck;
1635    } else if (cls->CannotBeAssignedFromOtherTypes()) {
1636      return TypeCheckKind::kExactCheck;
1637    } else {
1638      return TypeCheckKind::kArrayCheck;
1639    }
1640  } else if (cls->IsFinal()) {
1641    return TypeCheckKind::kExactCheck;
1642  } else if (cls->IsAbstract()) {
1643    return TypeCheckKind::kAbstractClassCheck;
1644  } else {
1645    return TypeCheckKind::kClassHierarchyCheck;
1646  }
1647}
1648
1649void HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
1650                                   uint8_t destination,
1651                                   uint8_t reference,
1652                                   uint16_t type_index,
1653                                   uint32_t dex_pc) {
1654  bool type_known_final, type_known_abstract, use_declaring_class;
1655  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
1656      dex_compilation_unit_->GetDexMethodIndex(),
1657      *dex_compilation_unit_->GetDexFile(),
1658      type_index,
1659      &type_known_final,
1660      &type_known_abstract,
1661      &use_declaring_class);
1662
1663  ScopedObjectAccess soa(Thread::Current());
1664  StackHandleScope<2> hs(soa.Self());
1665  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1666      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1667          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1668  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
1669
1670  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot, dex_pc);
1671  HLoadClass* cls = new (arena_) HLoadClass(
1672      graph_->GetCurrentMethod(),
1673      type_index,
1674      *dex_compilation_unit_->GetDexFile(),
1675      IsOutermostCompilingClass(type_index),
1676      dex_pc,
1677      !can_access);
1678  current_block_->AddInstruction(cls);
1679
1680  // The class needs a temporary before being used by the type check.
1681  Temporaries temps(graph_);
1682  temps.Add(cls);
1683
1684  TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
1685  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1686    current_block_->AddInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
1687    UpdateLocal(destination, current_block_->GetLastInstruction(), dex_pc);
1688  } else {
1689    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1690    current_block_->AddInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
1691  }
1692}
1693
1694bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index) const {
1695  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
1696      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index);
1697}
1698
1699void HGraphBuilder::BuildSwitchJumpTable(const SwitchTable& table,
1700                                         const Instruction& instruction,
1701                                         HInstruction* value,
1702                                         uint32_t dex_pc) {
1703  // Add the successor blocks to the current block.
1704  uint16_t num_entries = table.GetNumEntries();
1705  for (size_t i = 1; i <= num_entries; i++) {
1706    int32_t target_offset = table.GetEntryAt(i);
1707    HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1708    DCHECK(case_target != nullptr);
1709
1710    // Add the target block as a successor.
1711    current_block_->AddSuccessor(case_target);
1712  }
1713
1714  // Add the default target block as the last successor.
1715  HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1716  DCHECK(default_target != nullptr);
1717  current_block_->AddSuccessor(default_target);
1718
1719  // Now add the Switch instruction.
1720  int32_t starting_key = table.GetEntryAt(0);
1721  current_block_->AddInstruction(
1722      new (arena_) HPackedSwitch(starting_key, num_entries, value, dex_pc));
1723  // This block ends with control flow.
1724  current_block_ = nullptr;
1725}
1726
1727void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
1728  // Verifier guarantees that the payload for PackedSwitch contains:
1729  //   (a) number of entries (may be zero)
1730  //   (b) first and lowest switch case value (entry 0, always present)
1731  //   (c) list of target pcs (entries 1 <= i <= N)
1732  SwitchTable table(instruction, dex_pc, false);
1733
1734  // Value to test against.
1735  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1736
1737  // Starting key value.
1738  int32_t starting_key = table.GetEntryAt(0);
1739
1740  // Retrieve number of entries.
1741  uint16_t num_entries = table.GetNumEntries();
1742  if (num_entries == 0) {
1743    return;
1744  }
1745
1746  // Don't use a packed switch if there are very few entries.
1747  if (num_entries > kSmallSwitchThreshold) {
1748    BuildSwitchJumpTable(table, instruction, value, dex_pc);
1749  } else {
1750    // Chained cmp-and-branch, starting from starting_key.
1751    for (size_t i = 1; i <= num_entries; i++) {
1752      BuildSwitchCaseHelper(instruction,
1753                            i,
1754                            i == num_entries,
1755                            table,
1756                            value,
1757                            starting_key + i - 1,
1758                            table.GetEntryAt(i),
1759                            dex_pc);
1760    }
1761  }
1762}
1763
1764void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
1765  // Verifier guarantees that the payload for SparseSwitch contains:
1766  //   (a) number of entries (may be zero)
1767  //   (b) sorted key values (entries 0 <= i < N)
1768  //   (c) target pcs corresponding to the switch values (entries N <= i < 2*N)
1769  SwitchTable table(instruction, dex_pc, true);
1770
1771  // Value to test against.
1772  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1773
1774  uint16_t num_entries = table.GetNumEntries();
1775
1776  for (size_t i = 0; i < num_entries; i++) {
1777    BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
1778                          table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
1779  }
1780}
1781
1782void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
1783                                          bool is_last_case, const SwitchTable& table,
1784                                          HInstruction* value, int32_t case_value_int,
1785                                          int32_t target_offset, uint32_t dex_pc) {
1786  HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1787  DCHECK(case_target != nullptr);
1788  PotentiallyAddSuspendCheck(case_target, dex_pc);
1789
1790  // The current case's value.
1791  HInstruction* this_case_value = graph_->GetIntConstant(case_value_int, dex_pc);
1792
1793  // Compare value and this_case_value.
1794  HEqual* comparison = new (arena_) HEqual(value, this_case_value, dex_pc);
1795  current_block_->AddInstruction(comparison);
1796  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
1797  current_block_->AddInstruction(ifinst);
1798
1799  // Case hit: use the target offset to determine where to go.
1800  current_block_->AddSuccessor(case_target);
1801
1802  // Case miss: go to the next case (or default fall-through).
1803  // When there is a next case, we use the block stored with the table offset representing this
1804  // case (that is where we registered them in ComputeBranchTargets).
1805  // When there is no next case, we use the following instruction.
1806  // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
1807  if (!is_last_case) {
1808    HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
1809    DCHECK(next_case_target != nullptr);
1810    current_block_->AddSuccessor(next_case_target);
1811
1812    // Need to manually add the block, as there is no dex-pc transition for the cases.
1813    graph_->AddBlock(next_case_target);
1814
1815    current_block_ = next_case_target;
1816  } else {
1817    HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1818    DCHECK(default_target != nullptr);
1819    current_block_->AddSuccessor(default_target);
1820    current_block_ = nullptr;
1821  }
1822}
1823
1824void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) {
1825  int32_t target_offset = target->GetDexPc() - dex_pc;
1826  if (target_offset <= 0) {
1827    // DX generates back edges to the first encountered return. We can save
1828    // time of later passes by not adding redundant suspend checks.
1829    HInstruction* last_in_target = target->GetLastInstruction();
1830    if (last_in_target != nullptr &&
1831        (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) {
1832      return;
1833    }
1834
1835    // Add a suspend check to backward branches which may potentially loop. We
1836    // can remove them after we recognize loops in the graph.
1837    current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
1838  }
1839}
1840
1841bool HGraphBuilder::CanDecodeQuickenedInfo() const {
1842  return interpreter_metadata_ != nullptr;
1843}
1844
1845uint16_t HGraphBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
1846  DCHECK(interpreter_metadata_ != nullptr);
1847  uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
1848  DCHECK_EQ(dex_pc, dex_pc_in_map);
1849  return DecodeUnsignedLeb128(&interpreter_metadata_);
1850}
1851
1852bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1853  if (current_block_ == nullptr) {
1854    return true;  // Dead code
1855  }
1856
1857  switch (instruction.Opcode()) {
1858    case Instruction::CONST_4: {
1859      int32_t register_index = instruction.VRegA();
1860      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
1861      UpdateLocal(register_index, constant, dex_pc);
1862      break;
1863    }
1864
1865    case Instruction::CONST_16: {
1866      int32_t register_index = instruction.VRegA();
1867      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
1868      UpdateLocal(register_index, constant, dex_pc);
1869      break;
1870    }
1871
1872    case Instruction::CONST: {
1873      int32_t register_index = instruction.VRegA();
1874      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
1875      UpdateLocal(register_index, constant, dex_pc);
1876      break;
1877    }
1878
1879    case Instruction::CONST_HIGH16: {
1880      int32_t register_index = instruction.VRegA();
1881      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
1882      UpdateLocal(register_index, constant, dex_pc);
1883      break;
1884    }
1885
1886    case Instruction::CONST_WIDE_16: {
1887      int32_t register_index = instruction.VRegA();
1888      // Get 16 bits of constant value, sign extended to 64 bits.
1889      int64_t value = instruction.VRegB_21s();
1890      value <<= 48;
1891      value >>= 48;
1892      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1893      UpdateLocal(register_index, constant, dex_pc);
1894      break;
1895    }
1896
1897    case Instruction::CONST_WIDE_32: {
1898      int32_t register_index = instruction.VRegA();
1899      // Get 32 bits of constant value, sign extended to 64 bits.
1900      int64_t value = instruction.VRegB_31i();
1901      value <<= 32;
1902      value >>= 32;
1903      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1904      UpdateLocal(register_index, constant, dex_pc);
1905      break;
1906    }
1907
1908    case Instruction::CONST_WIDE: {
1909      int32_t register_index = instruction.VRegA();
1910      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
1911      UpdateLocal(register_index, constant, dex_pc);
1912      break;
1913    }
1914
1915    case Instruction::CONST_WIDE_HIGH16: {
1916      int32_t register_index = instruction.VRegA();
1917      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
1918      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1919      UpdateLocal(register_index, constant, dex_pc);
1920      break;
1921    }
1922
1923    // Note that the SSA building will refine the types.
1924    case Instruction::MOVE:
1925    case Instruction::MOVE_FROM16:
1926    case Instruction::MOVE_16: {
1927      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
1928      UpdateLocal(instruction.VRegA(), value, dex_pc);
1929      break;
1930    }
1931
1932    // Note that the SSA building will refine the types.
1933    case Instruction::MOVE_WIDE:
1934    case Instruction::MOVE_WIDE_FROM16:
1935    case Instruction::MOVE_WIDE_16: {
1936      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong, dex_pc);
1937      UpdateLocal(instruction.VRegA(), value, dex_pc);
1938      break;
1939    }
1940
1941    case Instruction::MOVE_OBJECT:
1942    case Instruction::MOVE_OBJECT_16:
1943    case Instruction::MOVE_OBJECT_FROM16: {
1944      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot, dex_pc);
1945      UpdateLocal(instruction.VRegA(), value, dex_pc);
1946      break;
1947    }
1948
1949    case Instruction::RETURN_VOID_NO_BARRIER:
1950    case Instruction::RETURN_VOID: {
1951      BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
1952      break;
1953    }
1954
1955#define IF_XX(comparison, cond) \
1956    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
1957    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
1958
1959    IF_XX(HEqual, EQ);
1960    IF_XX(HNotEqual, NE);
1961    IF_XX(HLessThan, LT);
1962    IF_XX(HLessThanOrEqual, LE);
1963    IF_XX(HGreaterThan, GT);
1964    IF_XX(HGreaterThanOrEqual, GE);
1965
1966    case Instruction::GOTO:
1967    case Instruction::GOTO_16:
1968    case Instruction::GOTO_32: {
1969      int32_t offset = instruction.GetTargetOffset();
1970      HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
1971      DCHECK(target != nullptr);
1972      PotentiallyAddSuspendCheck(target, dex_pc);
1973      current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
1974      current_block_->AddSuccessor(target);
1975      current_block_ = nullptr;
1976      break;
1977    }
1978
1979    case Instruction::RETURN: {
1980      BuildReturn(instruction, return_type_, dex_pc);
1981      break;
1982    }
1983
1984    case Instruction::RETURN_OBJECT: {
1985      BuildReturn(instruction, return_type_, dex_pc);
1986      break;
1987    }
1988
1989    case Instruction::RETURN_WIDE: {
1990      BuildReturn(instruction, return_type_, dex_pc);
1991      break;
1992    }
1993
1994    case Instruction::INVOKE_DIRECT:
1995    case Instruction::INVOKE_INTERFACE:
1996    case Instruction::INVOKE_STATIC:
1997    case Instruction::INVOKE_SUPER:
1998    case Instruction::INVOKE_VIRTUAL:
1999    case Instruction::INVOKE_VIRTUAL_QUICK: {
2000      uint16_t method_idx;
2001      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
2002        if (!CanDecodeQuickenedInfo()) {
2003          return false;
2004        }
2005        method_idx = LookupQuickenedInfo(dex_pc);
2006      } else {
2007        method_idx = instruction.VRegB_35c();
2008      }
2009      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2010      uint32_t args[5];
2011      instruction.GetVarArgs(args);
2012      if (!BuildInvoke(instruction, dex_pc, method_idx,
2013                       number_of_vreg_arguments, false, args, -1)) {
2014        return false;
2015      }
2016      break;
2017    }
2018
2019    case Instruction::INVOKE_DIRECT_RANGE:
2020    case Instruction::INVOKE_INTERFACE_RANGE:
2021    case Instruction::INVOKE_STATIC_RANGE:
2022    case Instruction::INVOKE_SUPER_RANGE:
2023    case Instruction::INVOKE_VIRTUAL_RANGE:
2024    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2025      uint16_t method_idx;
2026      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2027        if (!CanDecodeQuickenedInfo()) {
2028          return false;
2029        }
2030        method_idx = LookupQuickenedInfo(dex_pc);
2031      } else {
2032        method_idx = instruction.VRegB_3rc();
2033      }
2034      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2035      uint32_t register_index = instruction.VRegC();
2036      if (!BuildInvoke(instruction, dex_pc, method_idx,
2037                       number_of_vreg_arguments, true, nullptr, register_index)) {
2038        return false;
2039      }
2040      break;
2041    }
2042
2043    case Instruction::NEG_INT: {
2044      Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
2045      break;
2046    }
2047
2048    case Instruction::NEG_LONG: {
2049      Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
2050      break;
2051    }
2052
2053    case Instruction::NEG_FLOAT: {
2054      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
2055      break;
2056    }
2057
2058    case Instruction::NEG_DOUBLE: {
2059      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
2060      break;
2061    }
2062
2063    case Instruction::NOT_INT: {
2064      Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
2065      break;
2066    }
2067
2068    case Instruction::NOT_LONG: {
2069      Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
2070      break;
2071    }
2072
2073    case Instruction::INT_TO_LONG: {
2074      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
2075      break;
2076    }
2077
2078    case Instruction::INT_TO_FLOAT: {
2079      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
2080      break;
2081    }
2082
2083    case Instruction::INT_TO_DOUBLE: {
2084      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
2085      break;
2086    }
2087
2088    case Instruction::LONG_TO_INT: {
2089      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
2090      break;
2091    }
2092
2093    case Instruction::LONG_TO_FLOAT: {
2094      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
2095      break;
2096    }
2097
2098    case Instruction::LONG_TO_DOUBLE: {
2099      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
2100      break;
2101    }
2102
2103    case Instruction::FLOAT_TO_INT: {
2104      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
2105      break;
2106    }
2107
2108    case Instruction::FLOAT_TO_LONG: {
2109      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
2110      break;
2111    }
2112
2113    case Instruction::FLOAT_TO_DOUBLE: {
2114      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
2115      break;
2116    }
2117
2118    case Instruction::DOUBLE_TO_INT: {
2119      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
2120      break;
2121    }
2122
2123    case Instruction::DOUBLE_TO_LONG: {
2124      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
2125      break;
2126    }
2127
2128    case Instruction::DOUBLE_TO_FLOAT: {
2129      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
2130      break;
2131    }
2132
2133    case Instruction::INT_TO_BYTE: {
2134      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
2135      break;
2136    }
2137
2138    case Instruction::INT_TO_SHORT: {
2139      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
2140      break;
2141    }
2142
2143    case Instruction::INT_TO_CHAR: {
2144      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
2145      break;
2146    }
2147
2148    case Instruction::ADD_INT: {
2149      Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2150      break;
2151    }
2152
2153    case Instruction::ADD_LONG: {
2154      Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2155      break;
2156    }
2157
2158    case Instruction::ADD_DOUBLE: {
2159      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2160      break;
2161    }
2162
2163    case Instruction::ADD_FLOAT: {
2164      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2165      break;
2166    }
2167
2168    case Instruction::SUB_INT: {
2169      Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2170      break;
2171    }
2172
2173    case Instruction::SUB_LONG: {
2174      Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2175      break;
2176    }
2177
2178    case Instruction::SUB_FLOAT: {
2179      Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2180      break;
2181    }
2182
2183    case Instruction::SUB_DOUBLE: {
2184      Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2185      break;
2186    }
2187
2188    case Instruction::ADD_INT_2ADDR: {
2189      Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2190      break;
2191    }
2192
2193    case Instruction::MUL_INT: {
2194      Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2195      break;
2196    }
2197
2198    case Instruction::MUL_LONG: {
2199      Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2200      break;
2201    }
2202
2203    case Instruction::MUL_FLOAT: {
2204      Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2205      break;
2206    }
2207
2208    case Instruction::MUL_DOUBLE: {
2209      Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2210      break;
2211    }
2212
2213    case Instruction::DIV_INT: {
2214      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2215                         dex_pc, Primitive::kPrimInt, false, true);
2216      break;
2217    }
2218
2219    case Instruction::DIV_LONG: {
2220      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2221                         dex_pc, Primitive::kPrimLong, false, true);
2222      break;
2223    }
2224
2225    case Instruction::DIV_FLOAT: {
2226      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2227      break;
2228    }
2229
2230    case Instruction::DIV_DOUBLE: {
2231      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2232      break;
2233    }
2234
2235    case Instruction::REM_INT: {
2236      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2237                         dex_pc, Primitive::kPrimInt, false, false);
2238      break;
2239    }
2240
2241    case Instruction::REM_LONG: {
2242      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2243                         dex_pc, Primitive::kPrimLong, false, false);
2244      break;
2245    }
2246
2247    case Instruction::REM_FLOAT: {
2248      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2249      break;
2250    }
2251
2252    case Instruction::REM_DOUBLE: {
2253      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2254      break;
2255    }
2256
2257    case Instruction::AND_INT: {
2258      Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2259      break;
2260    }
2261
2262    case Instruction::AND_LONG: {
2263      Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2264      break;
2265    }
2266
2267    case Instruction::SHL_INT: {
2268      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2269      break;
2270    }
2271
2272    case Instruction::SHL_LONG: {
2273      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2274      break;
2275    }
2276
2277    case Instruction::SHR_INT: {
2278      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2279      break;
2280    }
2281
2282    case Instruction::SHR_LONG: {
2283      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2284      break;
2285    }
2286
2287    case Instruction::USHR_INT: {
2288      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2289      break;
2290    }
2291
2292    case Instruction::USHR_LONG: {
2293      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2294      break;
2295    }
2296
2297    case Instruction::OR_INT: {
2298      Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2299      break;
2300    }
2301
2302    case Instruction::OR_LONG: {
2303      Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2304      break;
2305    }
2306
2307    case Instruction::XOR_INT: {
2308      Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2309      break;
2310    }
2311
2312    case Instruction::XOR_LONG: {
2313      Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2314      break;
2315    }
2316
2317    case Instruction::ADD_LONG_2ADDR: {
2318      Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2319      break;
2320    }
2321
2322    case Instruction::ADD_DOUBLE_2ADDR: {
2323      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2324      break;
2325    }
2326
2327    case Instruction::ADD_FLOAT_2ADDR: {
2328      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2329      break;
2330    }
2331
2332    case Instruction::SUB_INT_2ADDR: {
2333      Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2334      break;
2335    }
2336
2337    case Instruction::SUB_LONG_2ADDR: {
2338      Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2339      break;
2340    }
2341
2342    case Instruction::SUB_FLOAT_2ADDR: {
2343      Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2344      break;
2345    }
2346
2347    case Instruction::SUB_DOUBLE_2ADDR: {
2348      Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2349      break;
2350    }
2351
2352    case Instruction::MUL_INT_2ADDR: {
2353      Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2354      break;
2355    }
2356
2357    case Instruction::MUL_LONG_2ADDR: {
2358      Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2359      break;
2360    }
2361
2362    case Instruction::MUL_FLOAT_2ADDR: {
2363      Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2364      break;
2365    }
2366
2367    case Instruction::MUL_DOUBLE_2ADDR: {
2368      Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2369      break;
2370    }
2371
2372    case Instruction::DIV_INT_2ADDR: {
2373      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2374                         dex_pc, Primitive::kPrimInt, false, true);
2375      break;
2376    }
2377
2378    case Instruction::DIV_LONG_2ADDR: {
2379      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2380                         dex_pc, Primitive::kPrimLong, false, true);
2381      break;
2382    }
2383
2384    case Instruction::REM_INT_2ADDR: {
2385      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2386                         dex_pc, Primitive::kPrimInt, false, false);
2387      break;
2388    }
2389
2390    case Instruction::REM_LONG_2ADDR: {
2391      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2392                         dex_pc, Primitive::kPrimLong, false, false);
2393      break;
2394    }
2395
2396    case Instruction::REM_FLOAT_2ADDR: {
2397      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2398      break;
2399    }
2400
2401    case Instruction::REM_DOUBLE_2ADDR: {
2402      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2403      break;
2404    }
2405
2406    case Instruction::SHL_INT_2ADDR: {
2407      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2408      break;
2409    }
2410
2411    case Instruction::SHL_LONG_2ADDR: {
2412      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2413      break;
2414    }
2415
2416    case Instruction::SHR_INT_2ADDR: {
2417      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2418      break;
2419    }
2420
2421    case Instruction::SHR_LONG_2ADDR: {
2422      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2423      break;
2424    }
2425
2426    case Instruction::USHR_INT_2ADDR: {
2427      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2428      break;
2429    }
2430
2431    case Instruction::USHR_LONG_2ADDR: {
2432      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2433      break;
2434    }
2435
2436    case Instruction::DIV_FLOAT_2ADDR: {
2437      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2438      break;
2439    }
2440
2441    case Instruction::DIV_DOUBLE_2ADDR: {
2442      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2443      break;
2444    }
2445
2446    case Instruction::AND_INT_2ADDR: {
2447      Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2448      break;
2449    }
2450
2451    case Instruction::AND_LONG_2ADDR: {
2452      Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2453      break;
2454    }
2455
2456    case Instruction::OR_INT_2ADDR: {
2457      Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2458      break;
2459    }
2460
2461    case Instruction::OR_LONG_2ADDR: {
2462      Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2463      break;
2464    }
2465
2466    case Instruction::XOR_INT_2ADDR: {
2467      Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2468      break;
2469    }
2470
2471    case Instruction::XOR_LONG_2ADDR: {
2472      Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2473      break;
2474    }
2475
2476    case Instruction::ADD_INT_LIT16: {
2477      Binop_22s<HAdd>(instruction, false, dex_pc);
2478      break;
2479    }
2480
2481    case Instruction::AND_INT_LIT16: {
2482      Binop_22s<HAnd>(instruction, false, dex_pc);
2483      break;
2484    }
2485
2486    case Instruction::OR_INT_LIT16: {
2487      Binop_22s<HOr>(instruction, false, dex_pc);
2488      break;
2489    }
2490
2491    case Instruction::XOR_INT_LIT16: {
2492      Binop_22s<HXor>(instruction, false, dex_pc);
2493      break;
2494    }
2495
2496    case Instruction::RSUB_INT: {
2497      Binop_22s<HSub>(instruction, true, dex_pc);
2498      break;
2499    }
2500
2501    case Instruction::MUL_INT_LIT16: {
2502      Binop_22s<HMul>(instruction, false, dex_pc);
2503      break;
2504    }
2505
2506    case Instruction::ADD_INT_LIT8: {
2507      Binop_22b<HAdd>(instruction, false, dex_pc);
2508      break;
2509    }
2510
2511    case Instruction::AND_INT_LIT8: {
2512      Binop_22b<HAnd>(instruction, false, dex_pc);
2513      break;
2514    }
2515
2516    case Instruction::OR_INT_LIT8: {
2517      Binop_22b<HOr>(instruction, false, dex_pc);
2518      break;
2519    }
2520
2521    case Instruction::XOR_INT_LIT8: {
2522      Binop_22b<HXor>(instruction, false, dex_pc);
2523      break;
2524    }
2525
2526    case Instruction::RSUB_INT_LIT8: {
2527      Binop_22b<HSub>(instruction, true, dex_pc);
2528      break;
2529    }
2530
2531    case Instruction::MUL_INT_LIT8: {
2532      Binop_22b<HMul>(instruction, false, dex_pc);
2533      break;
2534    }
2535
2536    case Instruction::DIV_INT_LIT16:
2537    case Instruction::DIV_INT_LIT8: {
2538      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2539                         dex_pc, Primitive::kPrimInt, true, true);
2540      break;
2541    }
2542
2543    case Instruction::REM_INT_LIT16:
2544    case Instruction::REM_INT_LIT8: {
2545      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2546                         dex_pc, Primitive::kPrimInt, true, false);
2547      break;
2548    }
2549
2550    case Instruction::SHL_INT_LIT8: {
2551      Binop_22b<HShl>(instruction, false, dex_pc);
2552      break;
2553    }
2554
2555    case Instruction::SHR_INT_LIT8: {
2556      Binop_22b<HShr>(instruction, false, dex_pc);
2557      break;
2558    }
2559
2560    case Instruction::USHR_INT_LIT8: {
2561      Binop_22b<HUShr>(instruction, false, dex_pc);
2562      break;
2563    }
2564
2565    case Instruction::NEW_INSTANCE: {
2566      uint16_t type_index = instruction.VRegB_21c();
2567      if (compiler_driver_->IsStringTypeIndex(type_index, dex_file_)) {
2568        int32_t register_index = instruction.VRegA();
2569        HFakeString* fake_string = new (arena_) HFakeString(dex_pc);
2570        current_block_->AddInstruction(fake_string);
2571        UpdateLocal(register_index, fake_string, dex_pc);
2572      } else {
2573        QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
2574            ? kQuickAllocObjectWithAccessCheck
2575            : kQuickAllocObject;
2576
2577        current_block_->AddInstruction(new (arena_) HNewInstance(
2578            graph_->GetCurrentMethod(),
2579            dex_pc,
2580            type_index,
2581            *dex_compilation_unit_->GetDexFile(),
2582            entrypoint));
2583        UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
2584      }
2585      break;
2586    }
2587
2588    case Instruction::NEW_ARRAY: {
2589      uint16_t type_index = instruction.VRegC_22c();
2590      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt, dex_pc);
2591      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
2592          ? kQuickAllocArrayWithAccessCheck
2593          : kQuickAllocArray;
2594      current_block_->AddInstruction(new (arena_) HNewArray(length,
2595                                                            graph_->GetCurrentMethod(),
2596                                                            dex_pc,
2597                                                            type_index,
2598                                                            *dex_compilation_unit_->GetDexFile(),
2599                                                            entrypoint));
2600      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction(), dex_pc);
2601      break;
2602    }
2603
2604    case Instruction::FILLED_NEW_ARRAY: {
2605      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2606      uint32_t type_index = instruction.VRegB_35c();
2607      uint32_t args[5];
2608      instruction.GetVarArgs(args);
2609      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
2610      break;
2611    }
2612
2613    case Instruction::FILLED_NEW_ARRAY_RANGE: {
2614      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2615      uint32_t type_index = instruction.VRegB_3rc();
2616      uint32_t register_index = instruction.VRegC_3rc();
2617      BuildFilledNewArray(
2618          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
2619      break;
2620    }
2621
2622    case Instruction::FILL_ARRAY_DATA: {
2623      BuildFillArrayData(instruction, dex_pc);
2624      break;
2625    }
2626
2627    case Instruction::MOVE_RESULT:
2628    case Instruction::MOVE_RESULT_WIDE:
2629    case Instruction::MOVE_RESULT_OBJECT: {
2630      if (latest_result_ == nullptr) {
2631        // Only dead code can lead to this situation, where the verifier
2632        // does not reject the method.
2633      } else {
2634        // An Invoke/FilledNewArray and its MoveResult could have landed in
2635        // different blocks if there was a try/catch block boundary between
2636        // them. For Invoke, we insert a StoreLocal after the instruction. For
2637        // FilledNewArray, the local needs to be updated after the array was
2638        // filled, otherwise we might overwrite an input vreg.
2639        HStoreLocal* update_local =
2640            new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_, dex_pc);
2641        HBasicBlock* block = latest_result_->GetBlock();
2642        if (block == current_block_) {
2643          // MoveResult and the previous instruction are in the same block.
2644          current_block_->AddInstruction(update_local);
2645        } else {
2646          // The two instructions are in different blocks. Insert the MoveResult
2647          // before the final control-flow instruction of the previous block.
2648          DCHECK(block->EndsWithControlFlowInstruction());
2649          DCHECK(current_block_->GetInstructions().IsEmpty());
2650          block->InsertInstructionBefore(update_local, block->GetLastInstruction());
2651        }
2652        latest_result_ = nullptr;
2653      }
2654      break;
2655    }
2656
2657    case Instruction::CMP_LONG: {
2658      Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
2659      break;
2660    }
2661
2662    case Instruction::CMPG_FLOAT: {
2663      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
2664      break;
2665    }
2666
2667    case Instruction::CMPG_DOUBLE: {
2668      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
2669      break;
2670    }
2671
2672    case Instruction::CMPL_FLOAT: {
2673      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
2674      break;
2675    }
2676
2677    case Instruction::CMPL_DOUBLE: {
2678      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
2679      break;
2680    }
2681
2682    case Instruction::NOP:
2683      break;
2684
2685    case Instruction::IGET:
2686    case Instruction::IGET_QUICK:
2687    case Instruction::IGET_WIDE:
2688    case Instruction::IGET_WIDE_QUICK:
2689    case Instruction::IGET_OBJECT:
2690    case Instruction::IGET_OBJECT_QUICK:
2691    case Instruction::IGET_BOOLEAN:
2692    case Instruction::IGET_BOOLEAN_QUICK:
2693    case Instruction::IGET_BYTE:
2694    case Instruction::IGET_BYTE_QUICK:
2695    case Instruction::IGET_CHAR:
2696    case Instruction::IGET_CHAR_QUICK:
2697    case Instruction::IGET_SHORT:
2698    case Instruction::IGET_SHORT_QUICK: {
2699      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
2700        return false;
2701      }
2702      break;
2703    }
2704
2705    case Instruction::IPUT:
2706    case Instruction::IPUT_QUICK:
2707    case Instruction::IPUT_WIDE:
2708    case Instruction::IPUT_WIDE_QUICK:
2709    case Instruction::IPUT_OBJECT:
2710    case Instruction::IPUT_OBJECT_QUICK:
2711    case Instruction::IPUT_BOOLEAN:
2712    case Instruction::IPUT_BOOLEAN_QUICK:
2713    case Instruction::IPUT_BYTE:
2714    case Instruction::IPUT_BYTE_QUICK:
2715    case Instruction::IPUT_CHAR:
2716    case Instruction::IPUT_CHAR_QUICK:
2717    case Instruction::IPUT_SHORT:
2718    case Instruction::IPUT_SHORT_QUICK: {
2719      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
2720        return false;
2721      }
2722      break;
2723    }
2724
2725    case Instruction::SGET:
2726    case Instruction::SGET_WIDE:
2727    case Instruction::SGET_OBJECT:
2728    case Instruction::SGET_BOOLEAN:
2729    case Instruction::SGET_BYTE:
2730    case Instruction::SGET_CHAR:
2731    case Instruction::SGET_SHORT: {
2732      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
2733        return false;
2734      }
2735      break;
2736    }
2737
2738    case Instruction::SPUT:
2739    case Instruction::SPUT_WIDE:
2740    case Instruction::SPUT_OBJECT:
2741    case Instruction::SPUT_BOOLEAN:
2742    case Instruction::SPUT_BYTE:
2743    case Instruction::SPUT_CHAR:
2744    case Instruction::SPUT_SHORT: {
2745      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
2746        return false;
2747      }
2748      break;
2749    }
2750
2751#define ARRAY_XX(kind, anticipated_type)                                          \
2752    case Instruction::AGET##kind: {                                               \
2753      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
2754      break;                                                                      \
2755    }                                                                             \
2756    case Instruction::APUT##kind: {                                               \
2757      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
2758      break;                                                                      \
2759    }
2760
2761    ARRAY_XX(, Primitive::kPrimInt);
2762    ARRAY_XX(_WIDE, Primitive::kPrimLong);
2763    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
2764    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
2765    ARRAY_XX(_BYTE, Primitive::kPrimByte);
2766    ARRAY_XX(_CHAR, Primitive::kPrimChar);
2767    ARRAY_XX(_SHORT, Primitive::kPrimShort);
2768
2769    case Instruction::ARRAY_LENGTH: {
2770      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot, dex_pc);
2771      // No need for a temporary for the null check, it is the only input of the following
2772      // instruction.
2773      object = new (arena_) HNullCheck(object, dex_pc);
2774      current_block_->AddInstruction(object);
2775      current_block_->AddInstruction(new (arena_) HArrayLength(object, dex_pc));
2776      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction(), dex_pc);
2777      break;
2778    }
2779
2780    case Instruction::CONST_STRING: {
2781      current_block_->AddInstruction(
2782          new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_21c(), dex_pc));
2783      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2784      break;
2785    }
2786
2787    case Instruction::CONST_STRING_JUMBO: {
2788      current_block_->AddInstruction(
2789          new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_31c(), dex_pc));
2790      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction(), dex_pc);
2791      break;
2792    }
2793
2794    case Instruction::CONST_CLASS: {
2795      uint16_t type_index = instruction.VRegB_21c();
2796      bool type_known_final;
2797      bool type_known_abstract;
2798      bool dont_use_is_referrers_class;
2799      // `CanAccessTypeWithoutChecks` will tell whether the method being
2800      // built is trying to access its own class, so that the generated
2801      // code can optimize for this case. However, the optimization does not
2802      // work for inlining, so we use `IsOutermostCompilingClass` instead.
2803      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
2804          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
2805          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
2806      current_block_->AddInstruction(new (arena_) HLoadClass(
2807          graph_->GetCurrentMethod(),
2808          type_index,
2809          *dex_compilation_unit_->GetDexFile(),
2810          IsOutermostCompilingClass(type_index),
2811          dex_pc,
2812          !can_access));
2813      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2814      break;
2815    }
2816
2817    case Instruction::MOVE_EXCEPTION: {
2818      current_block_->AddInstruction(new (arena_) HLoadException(dex_pc));
2819      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction(), dex_pc);
2820      current_block_->AddInstruction(new (arena_) HClearException(dex_pc));
2821      break;
2822    }
2823
2824    case Instruction::THROW: {
2825      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc);
2826      current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
2827      // A throw instruction must branch to the exit block.
2828      current_block_->AddSuccessor(exit_block_);
2829      // We finished building this block. Set the current block to null to avoid
2830      // adding dead instructions to it.
2831      current_block_ = nullptr;
2832      break;
2833    }
2834
2835    case Instruction::INSTANCE_OF: {
2836      uint8_t destination = instruction.VRegA_22c();
2837      uint8_t reference = instruction.VRegB_22c();
2838      uint16_t type_index = instruction.VRegC_22c();
2839      BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
2840      break;
2841    }
2842
2843    case Instruction::CHECK_CAST: {
2844      uint8_t reference = instruction.VRegA_21c();
2845      uint16_t type_index = instruction.VRegB_21c();
2846      BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
2847      break;
2848    }
2849
2850    case Instruction::MONITOR_ENTER: {
2851      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2852          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2853          HMonitorOperation::kEnter,
2854          dex_pc));
2855      break;
2856    }
2857
2858    case Instruction::MONITOR_EXIT: {
2859      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2860          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2861          HMonitorOperation::kExit,
2862          dex_pc));
2863      break;
2864    }
2865
2866    case Instruction::PACKED_SWITCH: {
2867      BuildPackedSwitch(instruction, dex_pc);
2868      break;
2869    }
2870
2871    case Instruction::SPARSE_SWITCH: {
2872      BuildSparseSwitch(instruction, dex_pc);
2873      break;
2874    }
2875
2876    default:
2877      VLOG(compiler) << "Did not compile "
2878                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
2879                     << " because of unhandled instruction "
2880                     << instruction.Name();
2881      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
2882      return false;
2883  }
2884  return true;
2885}  // NOLINT(readability/fn_size)
2886
2887HLocal* HGraphBuilder::GetLocalAt(uint32_t register_index) const {
2888  return locals_[register_index];
2889}
2890
2891void HGraphBuilder::UpdateLocal(uint32_t register_index,
2892                                HInstruction* instruction,
2893                                uint32_t dex_pc) const {
2894  HLocal* local = GetLocalAt(register_index);
2895  current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction, dex_pc));
2896}
2897
2898HInstruction* HGraphBuilder::LoadLocal(uint32_t register_index,
2899                                       Primitive::Type type,
2900                                       uint32_t dex_pc) const {
2901  HLocal* local = GetLocalAt(register_index);
2902  current_block_->AddInstruction(new (arena_) HLoadLocal(local, type, dex_pc));
2903  return current_block_->GetLastInstruction();
2904}
2905
2906}  // namespace art
2907