code_generator.cc revision 38207af82afb6f99c687f64b15601ed20d82220a
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator.h"
18
19#include "code_generator_arm.h"
20#include "code_generator_arm64.h"
21#include "code_generator_x86.h"
22#include "code_generator_x86_64.h"
23#include "compiled_method.h"
24#include "dex/verified_method.h"
25#include "driver/dex_compilation_unit.h"
26#include "gc_map_builder.h"
27#include "leb128.h"
28#include "mapping_table.h"
29#include "mirror/array-inl.h"
30#include "mirror/object_array-inl.h"
31#include "mirror/object_reference.h"
32#include "ssa_liveness_analysis.h"
33#include "utils/assembler.h"
34#include "verifier/dex_gc_map.h"
35#include "vmap_table.h"
36
37namespace art {
38
39// Return whether a location is consistent with a type.
40static bool CheckType(Primitive::Type type, Location location) {
41  if (location.IsFpuRegister()
42      || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
43    return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble);
44  } else if (location.IsRegister() ||
45             (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
46    return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot);
47  } else if (location.IsRegisterPair()) {
48    return type == Primitive::kPrimLong;
49  } else if (location.IsFpuRegisterPair()) {
50    return type == Primitive::kPrimDouble;
51  } else if (location.IsStackSlot()) {
52    return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong)
53           || (type == Primitive::kPrimFloat)
54           || (type == Primitive::kPrimNot);
55  } else if (location.IsDoubleStackSlot()) {
56    return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
57  } else if (location.IsConstant()) {
58    if (location.GetConstant()->IsIntConstant()) {
59      return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong);
60    } else if (location.GetConstant()->IsNullConstant()) {
61      return type == Primitive::kPrimNot;
62    } else if (location.GetConstant()->IsLongConstant()) {
63      return type == Primitive::kPrimLong;
64    } else if (location.GetConstant()->IsFloatConstant()) {
65      return type == Primitive::kPrimFloat;
66    } else {
67      return location.GetConstant()->IsDoubleConstant()
68          && (type == Primitive::kPrimDouble);
69    }
70  } else {
71    return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
72  }
73}
74
75// Check that a location summary is consistent with an instruction.
76static bool CheckTypeConsistency(HInstruction* instruction) {
77  LocationSummary* locations = instruction->GetLocations();
78  if (locations == nullptr) {
79    return true;
80  }
81
82  if (locations->Out().IsUnallocated()
83      && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
84    DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
85        << instruction->GetType()
86        << " " << locations->InAt(0);
87  } else {
88    DCHECK(CheckType(instruction->GetType(), locations->Out()))
89        << instruction->GetType()
90        << " " << locations->Out();
91  }
92
93  for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
94    DCHECK(CheckType(instruction->InputAt(i)->GetType(), locations->InAt(i)))
95      << instruction->InputAt(i)->GetType()
96      << " " << locations->InAt(i);
97  }
98
99  HEnvironment* environment = instruction->GetEnvironment();
100  for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
101    if (environment->GetInstructionAt(i) != nullptr) {
102      Primitive::Type type = environment->GetInstructionAt(i)->GetType();
103      DCHECK(CheckType(type, environment->GetLocationAt(i)))
104        << type << " " << environment->GetLocationAt(i);
105    } else {
106      DCHECK(environment->GetLocationAt(i).IsInvalid())
107        << environment->GetLocationAt(i);
108    }
109  }
110  return true;
111}
112
113size_t CodeGenerator::GetCacheOffset(uint32_t index) {
114  return mirror::ObjectArray<mirror::Object>::OffsetOfElement(index).SizeValue();
115}
116
117size_t CodeGenerator::GetCachePointerOffset(uint32_t index) {
118  auto pointer_size = InstructionSetPointerSize(GetInstructionSet());
119  return mirror::Array::DataOffset(pointer_size).Uint32Value() + pointer_size * index;
120}
121
122void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) {
123  Initialize();
124  if (!is_leaf) {
125    MarkNotLeaf();
126  }
127  const bool is_64_bit = Is64BitInstructionSet(GetInstructionSet());
128  InitializeCodeGeneration(GetGraph()->GetNumberOfLocalVRegs()
129                             + GetGraph()->GetTemporariesVRegSlots()
130                             + 1 /* filler */,
131                           0, /* the baseline compiler does not have live registers at slow path */
132                           0, /* the baseline compiler does not have live registers at slow path */
133                           GetGraph()->GetMaximumNumberOfOutVRegs()
134                             + (is_64_bit ? 2 : 1) /* current method */,
135                           GetGraph()->GetBlocks());
136  CompileInternal(allocator, /* is_baseline */ true);
137}
138
139bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
140  DCHECK_EQ(block_order_->Get(current_block_index_), current);
141  return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
142}
143
144HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
145  for (size_t i = current_block_index_ + 1; i < block_order_->Size(); ++i) {
146    HBasicBlock* block = block_order_->Get(i);
147    if (!block->IsSingleGoto()) {
148      return block;
149    }
150  }
151  return nullptr;
152}
153
154HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
155  while (block->IsSingleGoto()) {
156    block = block->GetSuccessors().Get(0);
157  }
158  return block;
159}
160
161void CodeGenerator::CompileInternal(CodeAllocator* allocator, bool is_baseline) {
162  is_baseline_ = is_baseline;
163  HGraphVisitor* instruction_visitor = GetInstructionVisitor();
164  DCHECK_EQ(current_block_index_, 0u);
165  GenerateFrameEntry();
166  DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
167  for (size_t e = block_order_->Size(); current_block_index_ < e; ++current_block_index_) {
168    HBasicBlock* block = block_order_->Get(current_block_index_);
169    // Don't generate code for an empty block. Its predecessors will branch to its successor
170    // directly. Also, the label of that block will not be emitted, so this helps catch
171    // errors where we reference that label.
172    if (block->IsSingleGoto()) continue;
173    Bind(block);
174    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
175      HInstruction* current = it.Current();
176      if (is_baseline) {
177        InitLocationsBaseline(current);
178      }
179      DCHECK(CheckTypeConsistency(current));
180      current->Accept(instruction_visitor);
181    }
182  }
183
184  // Generate the slow paths.
185  for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) {
186    slow_paths_.Get(i)->EmitNativeCode(this);
187  }
188
189  // Finalize instructions in assember;
190  Finalize(allocator);
191}
192
193void CodeGenerator::CompileOptimized(CodeAllocator* allocator) {
194  // The register allocator already called `InitializeCodeGeneration`,
195  // where the frame size has been computed.
196  DCHECK(block_order_ != nullptr);
197  Initialize();
198  CompileInternal(allocator, /* is_baseline */ false);
199}
200
201void CodeGenerator::Finalize(CodeAllocator* allocator) {
202  size_t code_size = GetAssembler()->CodeSize();
203  uint8_t* buffer = allocator->Allocate(code_size);
204
205  MemoryRegion code(buffer, code_size);
206  GetAssembler()->FinalizeInstructions(code);
207}
208
209size_t CodeGenerator::FindFreeEntry(bool* array, size_t length) {
210  for (size_t i = 0; i < length; ++i) {
211    if (!array[i]) {
212      array[i] = true;
213      return i;
214    }
215  }
216  LOG(FATAL) << "Could not find a register in baseline register allocator";
217  UNREACHABLE();
218}
219
220size_t CodeGenerator::FindTwoFreeConsecutiveAlignedEntries(bool* array, size_t length) {
221  for (size_t i = 0; i < length - 1; i += 2) {
222    if (!array[i] && !array[i + 1]) {
223      array[i] = true;
224      array[i + 1] = true;
225      return i;
226    }
227  }
228  LOG(FATAL) << "Could not find a register in baseline register allocator";
229  UNREACHABLE();
230}
231
232void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
233                                             size_t maximum_number_of_live_core_registers,
234                                             size_t maximum_number_of_live_fp_registers,
235                                             size_t number_of_out_slots,
236                                             const GrowableArray<HBasicBlock*>& block_order) {
237  block_order_ = &block_order;
238  DCHECK(block_order_->Get(0) == GetGraph()->GetEntryBlock());
239  DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), block_order_->Get(1)));
240  ComputeSpillMask();
241  first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize;
242
243  if (number_of_spill_slots == 0
244      && !HasAllocatedCalleeSaveRegisters()
245      && IsLeafMethod()
246      && !RequiresCurrentMethod()) {
247    DCHECK_EQ(maximum_number_of_live_core_registers, 0u);
248    DCHECK_EQ(maximum_number_of_live_fp_registers, 0u);
249    SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
250  } else {
251    SetFrameSize(RoundUp(
252        number_of_spill_slots * kVRegSize
253        + number_of_out_slots * kVRegSize
254        + maximum_number_of_live_core_registers * GetWordSize()
255        + maximum_number_of_live_fp_registers * GetFloatingPointSpillSlotSize()
256        + FrameEntrySpillSize(),
257        kStackAlignment));
258  }
259}
260
261Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const {
262  uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs();
263  // The type of the previous instruction tells us if we need a single or double stack slot.
264  Primitive::Type type = temp->GetType();
265  int32_t temp_size = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble) ? 2 : 1;
266  // Use the temporary region (right below the dex registers).
267  int32_t slot = GetFrameSize() - FrameEntrySpillSize()
268                                - kVRegSize  // filler
269                                - (number_of_locals * kVRegSize)
270                                - ((temp_size + temp->GetIndex()) * kVRegSize);
271  return temp_size == 2 ? Location::DoubleStackSlot(slot) : Location::StackSlot(slot);
272}
273
274int32_t CodeGenerator::GetStackSlot(HLocal* local) const {
275  uint16_t reg_number = local->GetRegNumber();
276  uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs();
277  if (reg_number >= number_of_locals) {
278    // Local is a parameter of the method. It is stored in the caller's frame.
279    // TODO: Share this logic with StackVisitor::GetVRegOffsetFromQuickCode.
280    return GetFrameSize() + InstructionSetPointerSize(GetInstructionSet())  // ART method
281                          + (reg_number - number_of_locals) * kVRegSize;
282  } else {
283    // Local is a temporary in this method. It is stored in this method's frame.
284    return GetFrameSize() - FrameEntrySpillSize()
285                          - kVRegSize  // filler.
286                          - (number_of_locals * kVRegSize)
287                          + (reg_number * kVRegSize);
288  }
289}
290
291void CodeGenerator::CreateCommonInvokeLocationSummary(
292    HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
293  ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
294  LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCall);
295
296  for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
297    HInstruction* input = invoke->InputAt(i);
298    locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
299  }
300
301  locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
302
303  if (invoke->IsInvokeStaticOrDirect()) {
304    HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
305    if (call->IsStringInit()) {
306      locations->AddTemp(visitor->GetMethodLocation());
307    } else if (call->IsRecursive()) {
308      locations->SetInAt(call->GetCurrentMethodInputIndex(), visitor->GetMethodLocation());
309    } else {
310      locations->AddTemp(visitor->GetMethodLocation());
311      locations->SetInAt(call->GetCurrentMethodInputIndex(), Location::RequiresRegister());
312    }
313  } else {
314    locations->AddTemp(visitor->GetMethodLocation());
315  }
316}
317
318void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
319  // The DCHECKS below check that a register is not specified twice in
320  // the summary. The out location can overlap with an input, so we need
321  // to special case it.
322  if (location.IsRegister()) {
323    DCHECK(is_out || !blocked_core_registers_[location.reg()]);
324    blocked_core_registers_[location.reg()] = true;
325  } else if (location.IsFpuRegister()) {
326    DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
327    blocked_fpu_registers_[location.reg()] = true;
328  } else if (location.IsFpuRegisterPair()) {
329    DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
330    blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
331    DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
332    blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
333  } else if (location.IsRegisterPair()) {
334    DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
335    blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
336    DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
337    blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
338  }
339}
340
341void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const {
342  LocationSummary* locations = instruction->GetLocations();
343  if (locations == nullptr) return;
344
345  for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) {
346    blocked_core_registers_[i] = false;
347  }
348
349  for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) {
350    blocked_fpu_registers_[i] = false;
351  }
352
353  for (size_t i = 0, e = number_of_register_pairs_; i < e; ++i) {
354    blocked_register_pairs_[i] = false;
355  }
356
357  // Mark all fixed input, temp and output registers as used.
358  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
359    BlockIfInRegister(locations->InAt(i));
360  }
361
362  for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) {
363    Location loc = locations->GetTemp(i);
364    BlockIfInRegister(loc);
365  }
366  Location result_location = locations->Out();
367  if (locations->OutputCanOverlapWithInputs()) {
368    BlockIfInRegister(result_location, /* is_out */ true);
369  }
370
371  SetupBlockedRegisters(/* is_baseline */ true);
372
373  // Allocate all unallocated input locations.
374  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
375    Location loc = locations->InAt(i);
376    HInstruction* input = instruction->InputAt(i);
377    if (loc.IsUnallocated()) {
378      if ((loc.GetPolicy() == Location::kRequiresRegister)
379          || (loc.GetPolicy() == Location::kRequiresFpuRegister)) {
380        loc = AllocateFreeRegister(input->GetType());
381      } else {
382        DCHECK_EQ(loc.GetPolicy(), Location::kAny);
383        HLoadLocal* load = input->AsLoadLocal();
384        if (load != nullptr) {
385          loc = GetStackLocation(load);
386        } else {
387          loc = AllocateFreeRegister(input->GetType());
388        }
389      }
390      locations->SetInAt(i, loc);
391    }
392  }
393
394  // Allocate all unallocated temp locations.
395  for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) {
396    Location loc = locations->GetTemp(i);
397    if (loc.IsUnallocated()) {
398      switch (loc.GetPolicy()) {
399        case Location::kRequiresRegister:
400          // Allocate a core register (large enough to fit a 32-bit integer).
401          loc = AllocateFreeRegister(Primitive::kPrimInt);
402          break;
403
404        case Location::kRequiresFpuRegister:
405          // Allocate a core register (large enough to fit a 64-bit double).
406          loc = AllocateFreeRegister(Primitive::kPrimDouble);
407          break;
408
409        default:
410          LOG(FATAL) << "Unexpected policy for temporary location "
411                     << loc.GetPolicy();
412      }
413      locations->SetTempAt(i, loc);
414    }
415  }
416  if (result_location.IsUnallocated()) {
417    switch (result_location.GetPolicy()) {
418      case Location::kAny:
419      case Location::kRequiresRegister:
420      case Location::kRequiresFpuRegister:
421        result_location = AllocateFreeRegister(instruction->GetType());
422        break;
423      case Location::kSameAsFirstInput:
424        result_location = locations->InAt(0);
425        break;
426    }
427    locations->UpdateOut(result_location);
428  }
429}
430
431void CodeGenerator::InitLocationsBaseline(HInstruction* instruction) {
432  AllocateLocations(instruction);
433  if (instruction->GetLocations() == nullptr) {
434    if (instruction->IsTemporary()) {
435      HInstruction* previous = instruction->GetPrevious();
436      Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
437      Move(previous, temp_location, instruction);
438    }
439    return;
440  }
441  AllocateRegistersLocally(instruction);
442  for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
443    Location location = instruction->GetLocations()->InAt(i);
444    HInstruction* input = instruction->InputAt(i);
445    if (location.IsValid()) {
446      // Move the input to the desired location.
447      if (input->GetNext()->IsTemporary()) {
448        // If the input was stored in a temporary, use that temporary to
449        // perform the move.
450        Move(input->GetNext(), location, instruction);
451      } else {
452        Move(input, location, instruction);
453      }
454    }
455  }
456}
457
458void CodeGenerator::AllocateLocations(HInstruction* instruction) {
459  instruction->Accept(GetLocationBuilder());
460  DCHECK(CheckTypeConsistency(instruction));
461  LocationSummary* locations = instruction->GetLocations();
462  if (!instruction->IsSuspendCheckEntry()) {
463    if (locations != nullptr && locations->CanCall()) {
464      MarkNotLeaf();
465    }
466    if (instruction->NeedsCurrentMethod()) {
467      SetRequiresCurrentMethod();
468    }
469  }
470}
471
472CodeGenerator* CodeGenerator::Create(HGraph* graph,
473                                     InstructionSet instruction_set,
474                                     const InstructionSetFeatures& isa_features,
475                                     const CompilerOptions& compiler_options) {
476  switch (instruction_set) {
477    case kArm:
478    case kThumb2: {
479      return new arm::CodeGeneratorARM(graph,
480          *isa_features.AsArmInstructionSetFeatures(),
481          compiler_options);
482    }
483    case kArm64: {
484      return new arm64::CodeGeneratorARM64(graph,
485          *isa_features.AsArm64InstructionSetFeatures(),
486          compiler_options);
487    }
488    case kMips:
489      return nullptr;
490    case kX86: {
491      return new x86::CodeGeneratorX86(graph,
492           *isa_features.AsX86InstructionSetFeatures(),
493           compiler_options);
494    }
495    case kX86_64: {
496      return new x86_64::CodeGeneratorX86_64(graph,
497          *isa_features.AsX86_64InstructionSetFeatures(),
498          compiler_options);
499    }
500    default:
501      return nullptr;
502  }
503}
504
505void CodeGenerator::BuildNativeGCMap(
506    std::vector<uint8_t>* data, const DexCompilationUnit& dex_compilation_unit) const {
507  const std::vector<uint8_t>& gc_map_raw =
508      dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap();
509  verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]);
510
511  uint32_t max_native_offset = 0;
512  for (size_t i = 0; i < pc_infos_.Size(); i++) {
513    uint32_t native_offset = pc_infos_.Get(i).native_pc;
514    if (native_offset > max_native_offset) {
515      max_native_offset = native_offset;
516    }
517  }
518
519  GcMapBuilder builder(data, pc_infos_.Size(), max_native_offset, dex_gc_map.RegWidth());
520  for (size_t i = 0; i < pc_infos_.Size(); i++) {
521    struct PcInfo pc_info = pc_infos_.Get(i);
522    uint32_t native_offset = pc_info.native_pc;
523    uint32_t dex_pc = pc_info.dex_pc;
524    const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
525    CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc;
526    builder.AddEntry(native_offset, references);
527  }
528}
529
530void CodeGenerator::BuildSourceMap(DefaultSrcMap* src_map) const {
531  for (size_t i = 0; i < pc_infos_.Size(); i++) {
532    struct PcInfo pc_info = pc_infos_.Get(i);
533    uint32_t pc2dex_offset = pc_info.native_pc;
534    int32_t pc2dex_dalvik_offset = pc_info.dex_pc;
535    src_map->push_back(SrcMapElem({pc2dex_offset, pc2dex_dalvik_offset}));
536  }
537}
538
539void CodeGenerator::BuildMappingTable(std::vector<uint8_t>* data) const {
540  uint32_t pc2dex_data_size = 0u;
541  uint32_t pc2dex_entries = pc_infos_.Size();
542  uint32_t pc2dex_offset = 0u;
543  int32_t pc2dex_dalvik_offset = 0;
544  uint32_t dex2pc_data_size = 0u;
545  uint32_t dex2pc_entries = 0u;
546  uint32_t dex2pc_offset = 0u;
547  int32_t dex2pc_dalvik_offset = 0;
548
549  for (size_t i = 0; i < pc2dex_entries; i++) {
550    struct PcInfo pc_info = pc_infos_.Get(i);
551    pc2dex_data_size += UnsignedLeb128Size(pc_info.native_pc - pc2dex_offset);
552    pc2dex_data_size += SignedLeb128Size(pc_info.dex_pc - pc2dex_dalvik_offset);
553    pc2dex_offset = pc_info.native_pc;
554    pc2dex_dalvik_offset = pc_info.dex_pc;
555  }
556
557  // Walk over the blocks and find which ones correspond to catch block entries.
558  for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) {
559    HBasicBlock* block = graph_->GetBlocks().Get(i);
560    if (block->IsCatchBlock()) {
561      intptr_t native_pc = GetAddressOf(block);
562      ++dex2pc_entries;
563      dex2pc_data_size += UnsignedLeb128Size(native_pc - dex2pc_offset);
564      dex2pc_data_size += SignedLeb128Size(block->GetDexPc() - dex2pc_dalvik_offset);
565      dex2pc_offset = native_pc;
566      dex2pc_dalvik_offset = block->GetDexPc();
567    }
568  }
569
570  uint32_t total_entries = pc2dex_entries + dex2pc_entries;
571  uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries);
572  uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size;
573  data->resize(data_size);
574
575  uint8_t* data_ptr = &(*data)[0];
576  uint8_t* write_pos = data_ptr;
577
578  write_pos = EncodeUnsignedLeb128(write_pos, total_entries);
579  write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries);
580  DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size);
581  uint8_t* write_pos2 = write_pos + pc2dex_data_size;
582
583  pc2dex_offset = 0u;
584  pc2dex_dalvik_offset = 0u;
585  dex2pc_offset = 0u;
586  dex2pc_dalvik_offset = 0u;
587
588  for (size_t i = 0; i < pc2dex_entries; i++) {
589    struct PcInfo pc_info = pc_infos_.Get(i);
590    DCHECK(pc2dex_offset <= pc_info.native_pc);
591    write_pos = EncodeUnsignedLeb128(write_pos, pc_info.native_pc - pc2dex_offset);
592    write_pos = EncodeSignedLeb128(write_pos, pc_info.dex_pc - pc2dex_dalvik_offset);
593    pc2dex_offset = pc_info.native_pc;
594    pc2dex_dalvik_offset = pc_info.dex_pc;
595  }
596
597  for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) {
598    HBasicBlock* block = graph_->GetBlocks().Get(i);
599    if (block->IsCatchBlock()) {
600      intptr_t native_pc = GetAddressOf(block);
601      write_pos2 = EncodeUnsignedLeb128(write_pos2, native_pc - dex2pc_offset);
602      write_pos2 = EncodeSignedLeb128(write_pos2, block->GetDexPc() - dex2pc_dalvik_offset);
603      dex2pc_offset = native_pc;
604      dex2pc_dalvik_offset = block->GetDexPc();
605    }
606  }
607
608
609  DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size + pc2dex_data_size);
610  DCHECK_EQ(static_cast<size_t>(write_pos2 - data_ptr), data_size);
611
612  if (kIsDebugBuild) {
613    // Verify the encoded table holds the expected data.
614    MappingTable table(data_ptr);
615    CHECK_EQ(table.TotalSize(), total_entries);
616    CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
617    auto it = table.PcToDexBegin();
618    auto it2 = table.DexToPcBegin();
619    for (size_t i = 0; i < pc2dex_entries; i++) {
620      struct PcInfo pc_info = pc_infos_.Get(i);
621      CHECK_EQ(pc_info.native_pc, it.NativePcOffset());
622      CHECK_EQ(pc_info.dex_pc, it.DexPc());
623      ++it;
624    }
625    for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) {
626      HBasicBlock* block = graph_->GetBlocks().Get(i);
627      if (block->IsCatchBlock()) {
628        CHECK_EQ(GetAddressOf(block), it2.NativePcOffset());
629        CHECK_EQ(block->GetDexPc(), it2.DexPc());
630        ++it2;
631      }
632    }
633    CHECK(it == table.PcToDexEnd());
634    CHECK(it2 == table.DexToPcEnd());
635  }
636}
637
638void CodeGenerator::BuildVMapTable(std::vector<uint8_t>* data) const {
639  Leb128EncodingVector vmap_encoder;
640  // We currently don't use callee-saved registers.
641  size_t size = 0 + 1 /* marker */ + 0;
642  vmap_encoder.Reserve(size + 1u);  // All values are likely to be one byte in ULEB128 (<128).
643  vmap_encoder.PushBackUnsigned(size);
644  vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker);
645
646  *data = vmap_encoder.GetData();
647}
648
649void CodeGenerator::BuildStackMaps(std::vector<uint8_t>* data) {
650  uint32_t size = stack_map_stream_.PrepareForFillIn();
651  data->resize(size);
652  MemoryRegion region(data->data(), size);
653  stack_map_stream_.FillIn(region);
654}
655
656void CodeGenerator::RecordPcInfo(HInstruction* instruction,
657                                 uint32_t dex_pc,
658                                 SlowPathCode* slow_path) {
659  if (instruction != nullptr) {
660    // The code generated for some type conversions may call the
661    // runtime, thus normally requiring a subsequent call to this
662    // method.  However, the method verifier does not produce PC
663    // information for certain instructions, which are considered "atomic"
664    // (they cannot join a GC).
665    // Therefore we do not currently record PC information for such
666    // instructions.  As this may change later, we added this special
667    // case so that code generators may nevertheless call
668    // CodeGenerator::RecordPcInfo without triggering an error in
669    // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
670    // thereafter.
671    if (instruction->IsTypeConversion()) {
672      return;
673    }
674    if (instruction->IsRem()) {
675      Primitive::Type type = instruction->AsRem()->GetResultType();
676      if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) {
677        return;
678      }
679    }
680  }
681
682  uint32_t outer_dex_pc = dex_pc;
683  uint32_t outer_environment_size = 0;
684  uint32_t inlining_depth = 0;
685  if (instruction != nullptr) {
686    for (HEnvironment* environment = instruction->GetEnvironment();
687         environment != nullptr;
688         environment = environment->GetParent()) {
689      outer_dex_pc = environment->GetDexPc();
690      outer_environment_size = environment->Size();
691      if (environment != instruction->GetEnvironment()) {
692        inlining_depth++;
693      }
694    }
695  }
696
697  // Collect PC infos for the mapping table.
698  struct PcInfo pc_info;
699  pc_info.dex_pc = outer_dex_pc;
700  pc_info.native_pc = GetAssembler()->CodeSize();
701  pc_infos_.Add(pc_info);
702
703  if (instruction == nullptr) {
704    // For stack overflow checks.
705    stack_map_stream_.BeginStackMapEntry(pc_info.dex_pc, pc_info.native_pc, 0, 0, 0, 0);
706    stack_map_stream_.EndStackMapEntry();
707    return;
708  }
709  LocationSummary* locations = instruction->GetLocations();
710
711  uint32_t register_mask = locations->GetRegisterMask();
712  if (locations->OnlyCallsOnSlowPath()) {
713    // In case of slow path, we currently set the location of caller-save registers
714    // to register (instead of their stack location when pushed before the slow-path
715    // call). Therefore register_mask contains both callee-save and caller-save
716    // registers that hold objects. We must remove the caller-save from the mask, since
717    // they will be overwritten by the callee.
718    register_mask &= core_callee_save_mask_;
719  }
720  // The register mask must be a subset of callee-save registers.
721  DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
722  stack_map_stream_.BeginStackMapEntry(pc_info.dex_pc,
723                                       pc_info.native_pc,
724                                       register_mask,
725                                       locations->GetStackMask(),
726                                       outer_environment_size,
727                                       inlining_depth);
728
729  EmitEnvironment(instruction->GetEnvironment(), slow_path);
730  stack_map_stream_.EndStackMapEntry();
731}
732
733void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
734  if (environment == nullptr) return;
735
736  if (environment->GetParent() != nullptr) {
737    // We emit the parent environment first.
738    EmitEnvironment(environment->GetParent(), slow_path);
739    stack_map_stream_.BeginInlineInfoEntry(environment->GetMethodIdx(),
740                                           environment->GetDexPc(),
741                                           environment->GetInvokeType(),
742                                           environment->Size());
743  }
744
745  // Walk over the environment, and record the location of dex registers.
746  for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
747    HInstruction* current = environment->GetInstructionAt(i);
748    if (current == nullptr) {
749      stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
750      continue;
751    }
752
753    Location location = environment->GetLocationAt(i);
754    switch (location.GetKind()) {
755      case Location::kConstant: {
756        DCHECK_EQ(current, location.GetConstant());
757        if (current->IsLongConstant()) {
758          int64_t value = current->AsLongConstant()->GetValue();
759          stack_map_stream_.AddDexRegisterEntry(
760              DexRegisterLocation::Kind::kConstant, Low32Bits(value));
761          stack_map_stream_.AddDexRegisterEntry(
762              DexRegisterLocation::Kind::kConstant, High32Bits(value));
763          ++i;
764          DCHECK_LT(i, environment_size);
765        } else if (current->IsDoubleConstant()) {
766          int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
767          stack_map_stream_.AddDexRegisterEntry(
768              DexRegisterLocation::Kind::kConstant, Low32Bits(value));
769          stack_map_stream_.AddDexRegisterEntry(
770              DexRegisterLocation::Kind::kConstant, High32Bits(value));
771          ++i;
772          DCHECK_LT(i, environment_size);
773        } else if (current->IsIntConstant()) {
774          int32_t value = current->AsIntConstant()->GetValue();
775          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
776        } else if (current->IsNullConstant()) {
777          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0);
778        } else {
779          DCHECK(current->IsFloatConstant()) << current->DebugName();
780          int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
781          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
782        }
783        break;
784      }
785
786      case Location::kStackSlot: {
787        stack_map_stream_.AddDexRegisterEntry(
788            DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
789        break;
790      }
791
792      case Location::kDoubleStackSlot: {
793        stack_map_stream_.AddDexRegisterEntry(
794            DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
795        stack_map_stream_.AddDexRegisterEntry(
796            DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
797        ++i;
798        DCHECK_LT(i, environment_size);
799        break;
800      }
801
802      case Location::kRegister : {
803        int id = location.reg();
804        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
805          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
806          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
807          if (current->GetType() == Primitive::kPrimLong) {
808            stack_map_stream_.AddDexRegisterEntry(
809                DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
810            ++i;
811            DCHECK_LT(i, environment_size);
812          }
813        } else {
814          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
815          if (current->GetType() == Primitive::kPrimLong) {
816            stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
817            ++i;
818            DCHECK_LT(i, environment_size);
819          }
820        }
821        break;
822      }
823
824      case Location::kFpuRegister : {
825        int id = location.reg();
826        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
827          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
828          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
829          if (current->GetType() == Primitive::kPrimDouble) {
830            stack_map_stream_.AddDexRegisterEntry(
831                DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
832            ++i;
833            DCHECK_LT(i, environment_size);
834          }
835        } else {
836          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
837          if (current->GetType() == Primitive::kPrimDouble) {
838            stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
839            ++i;
840            DCHECK_LT(i, environment_size);
841          }
842        }
843        break;
844      }
845
846      case Location::kFpuRegisterPair : {
847        int low = location.low();
848        int high = location.high();
849        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
850          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
851          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
852        } else {
853          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low);
854        }
855        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
856          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
857          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
858          ++i;
859        } else {
860          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high);
861          ++i;
862        }
863        DCHECK_LT(i, environment_size);
864        break;
865      }
866
867      case Location::kRegisterPair : {
868        int low = location.low();
869        int high = location.high();
870        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
871          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
872          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
873        } else {
874          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low);
875        }
876        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
877          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
878          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
879        } else {
880          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high);
881        }
882        ++i;
883        DCHECK_LT(i, environment_size);
884        break;
885      }
886
887      case Location::kInvalid: {
888        stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
889        break;
890      }
891
892      default:
893        LOG(FATAL) << "Unexpected kind " << location.GetKind();
894    }
895  }
896
897  if (environment->GetParent() != nullptr) {
898    stack_map_stream_.EndInlineInfoEntry();
899  }
900}
901
902bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
903  HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
904
905  return (first_next_not_move != nullptr)
906      && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0));
907}
908
909void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
910  // If we are from a static path don't record the pc as we can't throw NPE.
911  // NB: having the checks here makes the code much less verbose in the arch
912  // specific code generators.
913  if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
914    return;
915  }
916
917  if (!compiler_options_.GetImplicitNullChecks()) {
918    return;
919  }
920
921  if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) {
922    return;
923  }
924
925  // Find the first previous instruction which is not a move.
926  HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
927
928  // If the instruction is a null check it means that `instr` is the first user
929  // and needs to record the pc.
930  if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
931    HNullCheck* null_check = first_prev_not_move->AsNullCheck();
932    // TODO: The parallel moves modify the environment. Their changes need to be reverted
933    // otherwise the stack maps at the throw point will not be correct.
934    RecordPcInfo(null_check, null_check->GetDexPc());
935  }
936}
937
938void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const {
939  LocationSummary* locations = suspend_check->GetLocations();
940  HBasicBlock* block = suspend_check->GetBlock();
941  DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
942  DCHECK(block->IsLoopHeader());
943
944  for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
945    HInstruction* current = it.Current();
946    LiveInterval* interval = current->GetLiveInterval();
947    // We only need to clear bits of loop phis containing objects and allocated in register.
948    // Loop phis allocated on stack already have the object in the stack.
949    if (current->GetType() == Primitive::kPrimNot
950        && interval->HasRegister()
951        && interval->HasSpillSlot()) {
952      locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize);
953    }
954  }
955}
956
957void CodeGenerator::EmitParallelMoves(Location from1,
958                                      Location to1,
959                                      Primitive::Type type1,
960                                      Location from2,
961                                      Location to2,
962                                      Primitive::Type type2) {
963  HParallelMove parallel_move(GetGraph()->GetArena());
964  parallel_move.AddMove(from1, to1, type1, nullptr);
965  parallel_move.AddMove(from2, to2, type2, nullptr);
966  GetMoveResolver()->EmitNativeCode(&parallel_move);
967}
968
969void SlowPathCode::RecordPcInfo(CodeGenerator* codegen, HInstruction* instruction, uint32_t dex_pc) {
970  codegen->RecordPcInfo(instruction, dex_pc, this);
971}
972
973void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
974  RegisterSet* register_set = locations->GetLiveRegisters();
975  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
976  for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
977    if (!codegen->IsCoreCalleeSaveRegister(i)) {
978      if (register_set->ContainsCoreRegister(i)) {
979        // If the register holds an object, update the stack mask.
980        if (locations->RegisterContainsObject(i)) {
981          locations->SetStackBit(stack_offset / kVRegSize);
982        }
983        DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
984        DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
985        saved_core_stack_offsets_[i] = stack_offset;
986        stack_offset += codegen->SaveCoreRegister(stack_offset, i);
987      }
988    }
989  }
990
991  for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
992    if (!codegen->IsFloatingPointCalleeSaveRegister(i)) {
993      if (register_set->ContainsFloatingPointRegister(i)) {
994        DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
995        DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
996        saved_fpu_stack_offsets_[i] = stack_offset;
997        stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
998      }
999    }
1000  }
1001}
1002
1003void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1004  RegisterSet* register_set = locations->GetLiveRegisters();
1005  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1006  for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
1007    if (!codegen->IsCoreCalleeSaveRegister(i)) {
1008      if (register_set->ContainsCoreRegister(i)) {
1009        DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1010        stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1011      }
1012    }
1013  }
1014
1015  for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
1016    if (!codegen->IsFloatingPointCalleeSaveRegister(i)) {
1017      if (register_set->ContainsFloatingPointRegister(i)) {
1018        DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1019        stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1020      }
1021    }
1022  }
1023}
1024
1025}  // namespace art
1026