code_generator.cc revision 3b7537bfc5a6b7ccb18b3970d8edf14b72464af7
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator.h"
18
19#ifdef ART_ENABLE_CODEGEN_arm
20#include "code_generator_arm.h"
21#endif
22
23#ifdef ART_ENABLE_CODEGEN_arm64
24#include "code_generator_arm64.h"
25#endif
26
27#ifdef ART_ENABLE_CODEGEN_x86
28#include "code_generator_x86.h"
29#endif
30
31#ifdef ART_ENABLE_CODEGEN_x86_64
32#include "code_generator_x86_64.h"
33#endif
34
35#ifdef ART_ENABLE_CODEGEN_mips
36#include "code_generator_mips.h"
37#endif
38
39#ifdef ART_ENABLE_CODEGEN_mips64
40#include "code_generator_mips64.h"
41#endif
42
43#include "bytecode_utils.h"
44#include "compiled_method.h"
45#include "dex/verified_method.h"
46#include "driver/compiler_driver.h"
47#include "graph_visualizer.h"
48#include "intrinsics.h"
49#include "leb128.h"
50#include "mirror/array-inl.h"
51#include "mirror/object_array-inl.h"
52#include "mirror/object_reference.h"
53#include "mirror/string.h"
54#include "parallel_move_resolver.h"
55#include "ssa_liveness_analysis.h"
56#include "utils/assembler.h"
57
58namespace art {
59
60// Return whether a location is consistent with a type.
61static bool CheckType(Primitive::Type type, Location location) {
62  if (location.IsFpuRegister()
63      || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
64    return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble);
65  } else if (location.IsRegister() ||
66             (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
67    return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot);
68  } else if (location.IsRegisterPair()) {
69    return type == Primitive::kPrimLong;
70  } else if (location.IsFpuRegisterPair()) {
71    return type == Primitive::kPrimDouble;
72  } else if (location.IsStackSlot()) {
73    return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong)
74           || (type == Primitive::kPrimFloat)
75           || (type == Primitive::kPrimNot);
76  } else if (location.IsDoubleStackSlot()) {
77    return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
78  } else if (location.IsConstant()) {
79    if (location.GetConstant()->IsIntConstant()) {
80      return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong);
81    } else if (location.GetConstant()->IsNullConstant()) {
82      return type == Primitive::kPrimNot;
83    } else if (location.GetConstant()->IsLongConstant()) {
84      return type == Primitive::kPrimLong;
85    } else if (location.GetConstant()->IsFloatConstant()) {
86      return type == Primitive::kPrimFloat;
87    } else {
88      return location.GetConstant()->IsDoubleConstant()
89          && (type == Primitive::kPrimDouble);
90    }
91  } else {
92    return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
93  }
94}
95
96// Check that a location summary is consistent with an instruction.
97static bool CheckTypeConsistency(HInstruction* instruction) {
98  LocationSummary* locations = instruction->GetLocations();
99  if (locations == nullptr) {
100    return true;
101  }
102
103  if (locations->Out().IsUnallocated()
104      && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
105    DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
106        << instruction->GetType()
107        << " " << locations->InAt(0);
108  } else {
109    DCHECK(CheckType(instruction->GetType(), locations->Out()))
110        << instruction->GetType()
111        << " " << locations->Out();
112  }
113
114  HConstInputsRef inputs = instruction->GetInputs();
115  for (size_t i = 0; i < inputs.size(); ++i) {
116    DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
117      << inputs[i]->GetType() << " " << locations->InAt(i);
118  }
119
120  HEnvironment* environment = instruction->GetEnvironment();
121  for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
122    if (environment->GetInstructionAt(i) != nullptr) {
123      Primitive::Type type = environment->GetInstructionAt(i)->GetType();
124      DCHECK(CheckType(type, environment->GetLocationAt(i)))
125        << type << " " << environment->GetLocationAt(i);
126    } else {
127      DCHECK(environment->GetLocationAt(i).IsInvalid())
128        << environment->GetLocationAt(i);
129    }
130  }
131  return true;
132}
133
134size_t CodeGenerator::GetCacheOffset(uint32_t index) {
135  return sizeof(GcRoot<mirror::Object>) * index;
136}
137
138size_t CodeGenerator::GetCachePointerOffset(uint32_t index) {
139  auto pointer_size = InstructionSetPointerSize(GetInstructionSet());
140  return static_cast<size_t>(pointer_size) * index;
141}
142
143uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
144  return array_length->IsStringLength()
145      ? mirror::String::CountOffset().Uint32Value()
146      : mirror::Array::LengthOffset().Uint32Value();
147}
148
149uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
150  DCHECK(array_get->GetType() == Primitive::kPrimChar || !array_get->IsStringCharAt());
151  return array_get->IsStringCharAt()
152      ? mirror::String::ValueOffset().Uint32Value()
153      : mirror::Array::DataOffset(Primitive::ComponentSize(array_get->GetType())).Uint32Value();
154}
155
156bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
157  DCHECK_EQ((*block_order_)[current_block_index_], current);
158  return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
159}
160
161HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
162  for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
163    HBasicBlock* block = (*block_order_)[i];
164    if (!block->IsSingleJump()) {
165      return block;
166    }
167  }
168  return nullptr;
169}
170
171HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
172  while (block->IsSingleJump()) {
173    block = block->GetSuccessors()[0];
174  }
175  return block;
176}
177
178class DisassemblyScope {
179 public:
180  DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
181      : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
182    if (codegen_.GetDisassemblyInformation() != nullptr) {
183      start_offset_ = codegen_.GetAssembler().CodeSize();
184    }
185  }
186
187  ~DisassemblyScope() {
188    // We avoid building this data when we know it will not be used.
189    if (codegen_.GetDisassemblyInformation() != nullptr) {
190      codegen_.GetDisassemblyInformation()->AddInstructionInterval(
191          instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
192    }
193  }
194
195 private:
196  const CodeGenerator& codegen_;
197  HInstruction* instruction_;
198  size_t start_offset_;
199};
200
201
202void CodeGenerator::GenerateSlowPaths() {
203  size_t code_start = 0;
204  for (const std::unique_ptr<SlowPathCode>& slow_path_unique_ptr : slow_paths_) {
205    SlowPathCode* slow_path = slow_path_unique_ptr.get();
206    current_slow_path_ = slow_path;
207    if (disasm_info_ != nullptr) {
208      code_start = GetAssembler()->CodeSize();
209    }
210    // Record the dex pc at start of slow path (required for java line number mapping).
211    MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
212    slow_path->EmitNativeCode(this);
213    if (disasm_info_ != nullptr) {
214      disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
215    }
216  }
217  current_slow_path_ = nullptr;
218}
219
220void CodeGenerator::Compile(CodeAllocator* allocator) {
221  // The register allocator already called `InitializeCodeGeneration`,
222  // where the frame size has been computed.
223  DCHECK(block_order_ != nullptr);
224  Initialize();
225
226  HGraphVisitor* instruction_visitor = GetInstructionVisitor();
227  DCHECK_EQ(current_block_index_, 0u);
228
229  size_t frame_start = GetAssembler()->CodeSize();
230  GenerateFrameEntry();
231  DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
232  if (disasm_info_ != nullptr) {
233    disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
234  }
235
236  for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
237    HBasicBlock* block = (*block_order_)[current_block_index_];
238    // Don't generate code for an empty block. Its predecessors will branch to its successor
239    // directly. Also, the label of that block will not be emitted, so this helps catch
240    // errors where we reference that label.
241    if (block->IsSingleJump()) continue;
242    Bind(block);
243    // This ensures that we have correct native line mapping for all native instructions.
244    // It is necessary to make stepping over a statement work. Otherwise, any initial
245    // instructions (e.g. moves) would be assumed to be the start of next statement.
246    MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc());
247    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
248      HInstruction* current = it.Current();
249      if (current->HasEnvironment()) {
250        // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
251        // Note that we need correct mapping for the native PC of the call instruction,
252        // so the runtime's stackmap is not sufficient since it is at PC after the call.
253        MaybeRecordNativeDebugInfo(current, block->GetDexPc());
254      }
255      DisassemblyScope disassembly_scope(current, *this);
256      DCHECK(CheckTypeConsistency(current));
257      current->Accept(instruction_visitor);
258    }
259  }
260
261  GenerateSlowPaths();
262
263  // Emit catch stack maps at the end of the stack map stream as expected by the
264  // runtime exception handler.
265  if (graph_->HasTryCatch()) {
266    RecordCatchBlockInfo();
267  }
268
269  // Finalize instructions in assember;
270  Finalize(allocator);
271}
272
273void CodeGenerator::Finalize(CodeAllocator* allocator) {
274  size_t code_size = GetAssembler()->CodeSize();
275  uint8_t* buffer = allocator->Allocate(code_size);
276
277  MemoryRegion code(buffer, code_size);
278  GetAssembler()->FinalizeInstructions(code);
279}
280
281void CodeGenerator::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
282  // No linker patches by default.
283}
284
285void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
286                                             size_t maximum_safepoint_spill_size,
287                                             size_t number_of_out_slots,
288                                             const ArenaVector<HBasicBlock*>& block_order) {
289  block_order_ = &block_order;
290  DCHECK(!block_order.empty());
291  DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
292  ComputeSpillMask();
293  first_register_slot_in_slow_path_ = RoundUp(
294      (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
295
296  if (number_of_spill_slots == 0
297      && !HasAllocatedCalleeSaveRegisters()
298      && IsLeafMethod()
299      && !RequiresCurrentMethod()) {
300    DCHECK_EQ(maximum_safepoint_spill_size, 0u);
301    SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
302  } else {
303    SetFrameSize(RoundUp(
304        first_register_slot_in_slow_path_
305        + maximum_safepoint_spill_size
306        + FrameEntrySpillSize(),
307        kStackAlignment));
308  }
309}
310
311void CodeGenerator::CreateCommonInvokeLocationSummary(
312    HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
313  ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
314  LocationSummary* locations = new (allocator) LocationSummary(invoke,
315                                                               LocationSummary::kCallOnMainOnly);
316
317  for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
318    HInstruction* input = invoke->InputAt(i);
319    locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
320  }
321
322  locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
323
324  if (invoke->IsInvokeStaticOrDirect()) {
325    HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
326    switch (call->GetMethodLoadKind()) {
327      case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
328        locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
329        break;
330      case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod:
331        locations->AddTemp(visitor->GetMethodLocation());
332        locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
333        break;
334      default:
335        locations->AddTemp(visitor->GetMethodLocation());
336        break;
337    }
338  } else {
339    locations->AddTemp(visitor->GetMethodLocation());
340  }
341}
342
343void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
344  MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
345
346  // Initialize to anything to silent compiler warnings.
347  QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
348  switch (invoke->GetOriginalInvokeType()) {
349    case kStatic:
350      entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
351      break;
352    case kDirect:
353      entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
354      break;
355    case kVirtual:
356      entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
357      break;
358    case kSuper:
359      entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
360      break;
361    case kInterface:
362      entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
363      break;
364  }
365  InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
366}
367
368void CodeGenerator::CreateUnresolvedFieldLocationSummary(
369    HInstruction* field_access,
370    Primitive::Type field_type,
371    const FieldAccessCallingConvention& calling_convention) {
372  bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
373      || field_access->IsUnresolvedInstanceFieldSet();
374  bool is_get = field_access->IsUnresolvedInstanceFieldGet()
375      || field_access->IsUnresolvedStaticFieldGet();
376
377  ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetArena();
378  LocationSummary* locations =
379      new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
380
381  locations->AddTemp(calling_convention.GetFieldIndexLocation());
382
383  if (is_instance) {
384    // Add the `this` object for instance field accesses.
385    locations->SetInAt(0, calling_convention.GetObjectLocation());
386  }
387
388  // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
389  // regardless of the the type. Because of that we forced to special case
390  // the access to floating point values.
391  if (is_get) {
392    if (Primitive::IsFloatingPointType(field_type)) {
393      // The return value will be stored in regular registers while register
394      // allocator expects it in a floating point register.
395      // Note We don't need to request additional temps because the return
396      // register(s) are already blocked due the call and they may overlap with
397      // the input or field index.
398      // The transfer between the two will be done at codegen level.
399      locations->SetOut(calling_convention.GetFpuLocation(field_type));
400    } else {
401      locations->SetOut(calling_convention.GetReturnLocation(field_type));
402    }
403  } else {
404     size_t set_index = is_instance ? 1 : 0;
405     if (Primitive::IsFloatingPointType(field_type)) {
406      // The set value comes from a float location while the calling convention
407      // expects it in a regular register location. Allocate a temp for it and
408      // make the transfer at codegen.
409      AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
410      locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
411    } else {
412      locations->SetInAt(set_index,
413          calling_convention.GetSetValueLocation(field_type, is_instance));
414    }
415  }
416}
417
418void CodeGenerator::GenerateUnresolvedFieldAccess(
419    HInstruction* field_access,
420    Primitive::Type field_type,
421    uint32_t field_index,
422    uint32_t dex_pc,
423    const FieldAccessCallingConvention& calling_convention) {
424  LocationSummary* locations = field_access->GetLocations();
425
426  MoveConstant(locations->GetTemp(0), field_index);
427
428  bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
429      || field_access->IsUnresolvedInstanceFieldSet();
430  bool is_get = field_access->IsUnresolvedInstanceFieldGet()
431      || field_access->IsUnresolvedStaticFieldGet();
432
433  if (!is_get && Primitive::IsFloatingPointType(field_type)) {
434    // Copy the float value to be set into the calling convention register.
435    // Note that using directly the temp location is problematic as we don't
436    // support temp register pairs. To avoid boilerplate conversion code, use
437    // the location from the calling convention.
438    MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
439                 locations->InAt(is_instance ? 1 : 0),
440                 (Primitive::Is64BitType(field_type) ? Primitive::kPrimLong : Primitive::kPrimInt));
441  }
442
443  QuickEntrypointEnum entrypoint = kQuickSet8Static;  // Initialize to anything to avoid warnings.
444  switch (field_type) {
445    case Primitive::kPrimBoolean:
446      entrypoint = is_instance
447          ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
448          : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
449      break;
450    case Primitive::kPrimByte:
451      entrypoint = is_instance
452          ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
453          : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
454      break;
455    case Primitive::kPrimShort:
456      entrypoint = is_instance
457          ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
458          : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
459      break;
460    case Primitive::kPrimChar:
461      entrypoint = is_instance
462          ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
463          : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
464      break;
465    case Primitive::kPrimInt:
466    case Primitive::kPrimFloat:
467      entrypoint = is_instance
468          ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
469          : (is_get ? kQuickGet32Static : kQuickSet32Static);
470      break;
471    case Primitive::kPrimNot:
472      entrypoint = is_instance
473          ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
474          : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
475      break;
476    case Primitive::kPrimLong:
477    case Primitive::kPrimDouble:
478      entrypoint = is_instance
479          ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
480          : (is_get ? kQuickGet64Static : kQuickSet64Static);
481      break;
482    default:
483      LOG(FATAL) << "Invalid type " << field_type;
484  }
485  InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
486
487  if (is_get && Primitive::IsFloatingPointType(field_type)) {
488    MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
489  }
490}
491
492// TODO: Remove argument `code_generator_supports_read_barrier` when
493// all code generators have read barrier support.
494void CodeGenerator::CreateLoadClassLocationSummary(HLoadClass* cls,
495                                                   Location runtime_type_index_location,
496                                                   Location runtime_return_location,
497                                                   bool code_generator_supports_read_barrier) {
498  ArenaAllocator* allocator = cls->GetBlock()->GetGraph()->GetArena();
499  LocationSummary::CallKind call_kind = cls->NeedsAccessCheck()
500      ? LocationSummary::kCallOnMainOnly
501      : (((code_generator_supports_read_barrier && kEmitCompilerReadBarrier) ||
502          cls->CanCallRuntime())
503            ? LocationSummary::kCallOnSlowPath
504            : LocationSummary::kNoCall);
505  LocationSummary* locations = new (allocator) LocationSummary(cls, call_kind);
506  if (cls->NeedsAccessCheck()) {
507    locations->SetInAt(0, Location::NoLocation());
508    locations->AddTemp(runtime_type_index_location);
509    locations->SetOut(runtime_return_location);
510  } else {
511    locations->SetInAt(0, Location::RequiresRegister());
512    locations->SetOut(Location::RequiresRegister());
513  }
514}
515
516
517void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
518  // The DCHECKS below check that a register is not specified twice in
519  // the summary. The out location can overlap with an input, so we need
520  // to special case it.
521  if (location.IsRegister()) {
522    DCHECK(is_out || !blocked_core_registers_[location.reg()]);
523    blocked_core_registers_[location.reg()] = true;
524  } else if (location.IsFpuRegister()) {
525    DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
526    blocked_fpu_registers_[location.reg()] = true;
527  } else if (location.IsFpuRegisterPair()) {
528    DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
529    blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
530    DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
531    blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
532  } else if (location.IsRegisterPair()) {
533    DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
534    blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
535    DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
536    blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
537  }
538}
539
540void CodeGenerator::AllocateLocations(HInstruction* instruction) {
541  instruction->Accept(GetLocationBuilder());
542  DCHECK(CheckTypeConsistency(instruction));
543  LocationSummary* locations = instruction->GetLocations();
544  if (!instruction->IsSuspendCheckEntry()) {
545    if (locations != nullptr) {
546      if (locations->CanCall()) {
547        MarkNotLeaf();
548      } else if (locations->Intrinsified() &&
549                 instruction->IsInvokeStaticOrDirect() &&
550                 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
551        // A static method call that has been fully intrinsified, and cannot call on the slow
552        // path or refer to the current method directly, no longer needs current method.
553        return;
554      }
555    }
556    if (instruction->NeedsCurrentMethod()) {
557      SetRequiresCurrentMethod();
558    }
559  }
560}
561
562void CodeGenerator::MaybeRecordStat(MethodCompilationStat compilation_stat, size_t count) const {
563  if (stats_ != nullptr) {
564    stats_->RecordStat(compilation_stat, count);
565  }
566}
567
568std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
569                                                     InstructionSet instruction_set,
570                                                     const InstructionSetFeatures& isa_features,
571                                                     const CompilerOptions& compiler_options,
572                                                     OptimizingCompilerStats* stats) {
573  ArenaAllocator* arena = graph->GetArena();
574  switch (instruction_set) {
575#ifdef ART_ENABLE_CODEGEN_arm
576    case kArm:
577    case kThumb2: {
578      return std::unique_ptr<CodeGenerator>(
579          new (arena) arm::CodeGeneratorARM(graph,
580                                            *isa_features.AsArmInstructionSetFeatures(),
581                                            compiler_options,
582                                            stats));
583    }
584#endif
585#ifdef ART_ENABLE_CODEGEN_arm64
586    case kArm64: {
587      return std::unique_ptr<CodeGenerator>(
588          new (arena) arm64::CodeGeneratorARM64(graph,
589                                                *isa_features.AsArm64InstructionSetFeatures(),
590                                                compiler_options,
591                                                stats));
592    }
593#endif
594#ifdef ART_ENABLE_CODEGEN_mips
595    case kMips: {
596      return std::unique_ptr<CodeGenerator>(
597          new (arena) mips::CodeGeneratorMIPS(graph,
598                                              *isa_features.AsMipsInstructionSetFeatures(),
599                                              compiler_options,
600                                              stats));
601    }
602#endif
603#ifdef ART_ENABLE_CODEGEN_mips64
604    case kMips64: {
605      return std::unique_ptr<CodeGenerator>(
606          new (arena) mips64::CodeGeneratorMIPS64(graph,
607                                                  *isa_features.AsMips64InstructionSetFeatures(),
608                                                  compiler_options,
609                                                  stats));
610    }
611#endif
612#ifdef ART_ENABLE_CODEGEN_x86
613    case kX86: {
614      return std::unique_ptr<CodeGenerator>(
615          new (arena) x86::CodeGeneratorX86(graph,
616                                            *isa_features.AsX86InstructionSetFeatures(),
617                                            compiler_options,
618                                            stats));
619    }
620#endif
621#ifdef ART_ENABLE_CODEGEN_x86_64
622    case kX86_64: {
623      return std::unique_ptr<CodeGenerator>(
624          new (arena) x86_64::CodeGeneratorX86_64(graph,
625                                                  *isa_features.AsX86_64InstructionSetFeatures(),
626                                                  compiler_options,
627                                                  stats));
628    }
629#endif
630    default:
631      return nullptr;
632  }
633}
634
635size_t CodeGenerator::ComputeStackMapsSize() {
636  return stack_map_stream_.PrepareForFillIn();
637}
638
639static void CheckCovers(uint32_t dex_pc,
640                        const HGraph& graph,
641                        const CodeInfo& code_info,
642                        const ArenaVector<HSuspendCheck*>& loop_headers,
643                        ArenaVector<size_t>* covered) {
644  CodeInfoEncoding encoding = code_info.ExtractEncoding();
645  for (size_t i = 0; i < loop_headers.size(); ++i) {
646    if (loop_headers[i]->GetDexPc() == dex_pc) {
647      if (graph.IsCompilingOsr()) {
648        DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid());
649      }
650      ++(*covered)[i];
651    }
652  }
653}
654
655// Debug helper to ensure loop entries in compiled code are matched by
656// dex branch instructions.
657static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
658                                            const CodeInfo& code_info,
659                                            const DexFile::CodeItem& code_item) {
660  if (graph.HasTryCatch()) {
661    // One can write loops through try/catch, which we do not support for OSR anyway.
662    return;
663  }
664  ArenaVector<HSuspendCheck*> loop_headers(graph.GetArena()->Adapter(kArenaAllocMisc));
665  for (HReversePostOrderIterator it(graph); !it.Done(); it.Advance()) {
666    if (it.Current()->IsLoopHeader()) {
667      HSuspendCheck* suspend_check = it.Current()->GetLoopInformation()->GetSuspendCheck();
668      if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
669        loop_headers.push_back(suspend_check);
670      }
671    }
672  }
673  ArenaVector<size_t> covered(loop_headers.size(), 0, graph.GetArena()->Adapter(kArenaAllocMisc));
674  const uint16_t* code_ptr = code_item.insns_;
675  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
676
677  size_t dex_pc = 0;
678  while (code_ptr < code_end) {
679    const Instruction& instruction = *Instruction::At(code_ptr);
680    if (instruction.IsBranch()) {
681      uint32_t target = dex_pc + instruction.GetTargetOffset();
682      CheckCovers(target, graph, code_info, loop_headers, &covered);
683    } else if (instruction.IsSwitch()) {
684      DexSwitchTable table(instruction, dex_pc);
685      uint16_t num_entries = table.GetNumEntries();
686      size_t offset = table.GetFirstValueIndex();
687
688      // Use a larger loop counter type to avoid overflow issues.
689      for (size_t i = 0; i < num_entries; ++i) {
690        // The target of the case.
691        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
692        CheckCovers(target, graph, code_info, loop_headers, &covered);
693      }
694    }
695    dex_pc += instruction.SizeInCodeUnits();
696    code_ptr += instruction.SizeInCodeUnits();
697  }
698
699  for (size_t i = 0; i < covered.size(); ++i) {
700    DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
701  }
702}
703
704void CodeGenerator::BuildStackMaps(MemoryRegion region, const DexFile::CodeItem& code_item) {
705  stack_map_stream_.FillIn(region);
706  if (kIsDebugBuild) {
707    CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(region), code_item);
708  }
709}
710
711void CodeGenerator::RecordPcInfo(HInstruction* instruction,
712                                 uint32_t dex_pc,
713                                 SlowPathCode* slow_path) {
714  if (instruction != nullptr) {
715    // The code generated for some type conversions
716    // may call the runtime, thus normally requiring a subsequent
717    // call to this method. However, the method verifier does not
718    // produce PC information for certain instructions, which are
719    // considered "atomic" (they cannot join a GC).
720    // Therefore we do not currently record PC information for such
721    // instructions.  As this may change later, we added this special
722    // case so that code generators may nevertheless call
723    // CodeGenerator::RecordPcInfo without triggering an error in
724    // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
725    // thereafter.
726    if (instruction->IsTypeConversion()) {
727      return;
728    }
729    if (instruction->IsRem()) {
730      Primitive::Type type = instruction->AsRem()->GetResultType();
731      if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) {
732        return;
733      }
734    }
735  }
736
737  uint32_t outer_dex_pc = dex_pc;
738  uint32_t outer_environment_size = 0;
739  uint32_t inlining_depth = 0;
740  if (instruction != nullptr) {
741    for (HEnvironment* environment = instruction->GetEnvironment();
742         environment != nullptr;
743         environment = environment->GetParent()) {
744      outer_dex_pc = environment->GetDexPc();
745      outer_environment_size = environment->Size();
746      if (environment != instruction->GetEnvironment()) {
747        inlining_depth++;
748      }
749    }
750  }
751
752  // Collect PC infos for the mapping table.
753  uint32_t native_pc = GetAssembler()->CodePosition();
754
755  if (instruction == nullptr) {
756    // For stack overflow checks and native-debug-info entries without dex register
757    // mapping (i.e. start of basic block or start of slow path).
758    stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0);
759    stack_map_stream_.EndStackMapEntry();
760    return;
761  }
762  LocationSummary* locations = instruction->GetLocations();
763
764  uint32_t register_mask = locations->GetRegisterMask();
765  DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
766  if (locations->OnlyCallsOnSlowPath()) {
767    // In case of slow path, we currently set the location of caller-save registers
768    // to register (instead of their stack location when pushed before the slow-path
769    // call). Therefore register_mask contains both callee-save and caller-save
770    // registers that hold objects. We must remove the spilled caller-save from the
771    // mask, since they will be overwritten by the callee.
772    uint32_t spills = GetSlowPathSpills(locations, /* core_registers */ true);
773    register_mask &= ~spills;
774  } else {
775    // The register mask must be a subset of callee-save registers.
776    DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
777  }
778  stack_map_stream_.BeginStackMapEntry(outer_dex_pc,
779                                       native_pc,
780                                       register_mask,
781                                       locations->GetStackMask(),
782                                       outer_environment_size,
783                                       inlining_depth);
784
785  EmitEnvironment(instruction->GetEnvironment(), slow_path);
786  stack_map_stream_.EndStackMapEntry();
787
788  HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
789  if (instruction->IsSuspendCheck() &&
790      (info != nullptr) &&
791      graph_->IsCompilingOsr() &&
792      (inlining_depth == 0)) {
793    DCHECK_EQ(info->GetSuspendCheck(), instruction);
794    // We duplicate the stack map as a marker that this stack map can be an OSR entry.
795    // Duplicating it avoids having the runtime recognize and skip an OSR stack map.
796    DCHECK(info->IsIrreducible());
797    stack_map_stream_.BeginStackMapEntry(
798        dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0);
799    EmitEnvironment(instruction->GetEnvironment(), slow_path);
800    stack_map_stream_.EndStackMapEntry();
801    if (kIsDebugBuild) {
802      HEnvironment* environment = instruction->GetEnvironment();
803      for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
804        HInstruction* in_environment = environment->GetInstructionAt(i);
805        if (in_environment != nullptr) {
806          DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
807          Location location = environment->GetLocationAt(i);
808          DCHECK(location.IsStackSlot() ||
809                 location.IsDoubleStackSlot() ||
810                 location.IsConstant() ||
811                 location.IsInvalid());
812          if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
813            DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
814          }
815        }
816      }
817    }
818  } else if (kIsDebugBuild) {
819    // Ensure stack maps are unique, by checking that the native pc in the stack map
820    // last emitted is different than the native pc of the stack map just emitted.
821    size_t number_of_stack_maps = stack_map_stream_.GetNumberOfStackMaps();
822    if (number_of_stack_maps > 1) {
823      DCHECK_NE(stack_map_stream_.GetStackMap(number_of_stack_maps - 1).native_pc_offset,
824                stack_map_stream_.GetStackMap(number_of_stack_maps - 2).native_pc_offset);
825    }
826  }
827}
828
829bool CodeGenerator::HasStackMapAtCurrentPc() {
830  uint32_t pc = GetAssembler()->CodeSize();
831  size_t count = stack_map_stream_.GetNumberOfStackMaps();
832  return count > 0 && stack_map_stream_.GetStackMap(count - 1).native_pc_offset == pc;
833}
834
835void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
836                                               uint32_t dex_pc,
837                                               SlowPathCode* slow_path) {
838  if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
839    if (HasStackMapAtCurrentPc()) {
840      // Ensure that we do not collide with the stack map of the previous instruction.
841      GenerateNop();
842    }
843    RecordPcInfo(instruction, dex_pc, slow_path);
844  }
845}
846
847void CodeGenerator::RecordCatchBlockInfo() {
848  ArenaAllocator* arena = graph_->GetArena();
849
850  for (HBasicBlock* block : *block_order_) {
851    if (!block->IsCatchBlock()) {
852      continue;
853    }
854
855    uint32_t dex_pc = block->GetDexPc();
856    uint32_t num_vregs = graph_->GetNumberOfVRegs();
857    uint32_t inlining_depth = 0;  // Inlining of catch blocks is not supported at the moment.
858    uint32_t native_pc = GetAddressOf(block);
859    uint32_t register_mask = 0;   // Not used.
860
861    // The stack mask is not used, so we leave it empty.
862    ArenaBitVector* stack_mask =
863        ArenaBitVector::Create(arena, 0, /* expandable */ true, kArenaAllocCodeGenerator);
864
865    stack_map_stream_.BeginStackMapEntry(dex_pc,
866                                         native_pc,
867                                         register_mask,
868                                         stack_mask,
869                                         num_vregs,
870                                         inlining_depth);
871
872    HInstruction* current_phi = block->GetFirstPhi();
873    for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
874    while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
875      HInstruction* next_phi = current_phi->GetNext();
876      DCHECK(next_phi == nullptr ||
877             current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
878          << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
879      current_phi = next_phi;
880    }
881
882      if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
883        stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
884      } else {
885        Location location = current_phi->GetLiveInterval()->ToLocation();
886        switch (location.GetKind()) {
887          case Location::kStackSlot: {
888            stack_map_stream_.AddDexRegisterEntry(
889                DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
890            break;
891          }
892          case Location::kDoubleStackSlot: {
893            stack_map_stream_.AddDexRegisterEntry(
894                DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
895            stack_map_stream_.AddDexRegisterEntry(
896                DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
897            ++vreg;
898            DCHECK_LT(vreg, num_vregs);
899            break;
900          }
901          default: {
902            // All catch phis must be allocated to a stack slot.
903            LOG(FATAL) << "Unexpected kind " << location.GetKind();
904            UNREACHABLE();
905          }
906        }
907      }
908    }
909
910    stack_map_stream_.EndStackMapEntry();
911  }
912}
913
914void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
915  if (environment == nullptr) return;
916
917  if (environment->GetParent() != nullptr) {
918    // We emit the parent environment first.
919    EmitEnvironment(environment->GetParent(), slow_path);
920    stack_map_stream_.BeginInlineInfoEntry(environment->GetMethodIdx(),
921                                           environment->GetDexPc(),
922                                           environment->GetInvokeType(),
923                                           environment->Size());
924  }
925
926  // Walk over the environment, and record the location of dex registers.
927  for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
928    HInstruction* current = environment->GetInstructionAt(i);
929    if (current == nullptr) {
930      stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
931      continue;
932    }
933
934    Location location = environment->GetLocationAt(i);
935    switch (location.GetKind()) {
936      case Location::kConstant: {
937        DCHECK_EQ(current, location.GetConstant());
938        if (current->IsLongConstant()) {
939          int64_t value = current->AsLongConstant()->GetValue();
940          stack_map_stream_.AddDexRegisterEntry(
941              DexRegisterLocation::Kind::kConstant, Low32Bits(value));
942          stack_map_stream_.AddDexRegisterEntry(
943              DexRegisterLocation::Kind::kConstant, High32Bits(value));
944          ++i;
945          DCHECK_LT(i, environment_size);
946        } else if (current->IsDoubleConstant()) {
947          int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
948          stack_map_stream_.AddDexRegisterEntry(
949              DexRegisterLocation::Kind::kConstant, Low32Bits(value));
950          stack_map_stream_.AddDexRegisterEntry(
951              DexRegisterLocation::Kind::kConstant, High32Bits(value));
952          ++i;
953          DCHECK_LT(i, environment_size);
954        } else if (current->IsIntConstant()) {
955          int32_t value = current->AsIntConstant()->GetValue();
956          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
957        } else if (current->IsNullConstant()) {
958          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0);
959        } else {
960          DCHECK(current->IsFloatConstant()) << current->DebugName();
961          int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
962          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
963        }
964        break;
965      }
966
967      case Location::kStackSlot: {
968        stack_map_stream_.AddDexRegisterEntry(
969            DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
970        break;
971      }
972
973      case Location::kDoubleStackSlot: {
974        stack_map_stream_.AddDexRegisterEntry(
975            DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
976        stack_map_stream_.AddDexRegisterEntry(
977            DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
978        ++i;
979        DCHECK_LT(i, environment_size);
980        break;
981      }
982
983      case Location::kRegister : {
984        int id = location.reg();
985        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
986          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
987          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
988          if (current->GetType() == Primitive::kPrimLong) {
989            stack_map_stream_.AddDexRegisterEntry(
990                DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
991            ++i;
992            DCHECK_LT(i, environment_size);
993          }
994        } else {
995          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
996          if (current->GetType() == Primitive::kPrimLong) {
997            stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id);
998            ++i;
999            DCHECK_LT(i, environment_size);
1000          }
1001        }
1002        break;
1003      }
1004
1005      case Location::kFpuRegister : {
1006        int id = location.reg();
1007        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1008          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1009          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1010          if (current->GetType() == Primitive::kPrimDouble) {
1011            stack_map_stream_.AddDexRegisterEntry(
1012                DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
1013            ++i;
1014            DCHECK_LT(i, environment_size);
1015          }
1016        } else {
1017          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
1018          if (current->GetType() == Primitive::kPrimDouble) {
1019            stack_map_stream_.AddDexRegisterEntry(
1020                DexRegisterLocation::Kind::kInFpuRegisterHigh, id);
1021            ++i;
1022            DCHECK_LT(i, environment_size);
1023          }
1024        }
1025        break;
1026      }
1027
1028      case Location::kFpuRegisterPair : {
1029        int low = location.low();
1030        int high = location.high();
1031        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1032          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1033          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1034        } else {
1035          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low);
1036        }
1037        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1038          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1039          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1040          ++i;
1041        } else {
1042          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high);
1043          ++i;
1044        }
1045        DCHECK_LT(i, environment_size);
1046        break;
1047      }
1048
1049      case Location::kRegisterPair : {
1050        int low = location.low();
1051        int high = location.high();
1052        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1053          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1054          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1055        } else {
1056          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low);
1057        }
1058        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1059          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1060          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1061        } else {
1062          stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high);
1063        }
1064        ++i;
1065        DCHECK_LT(i, environment_size);
1066        break;
1067      }
1068
1069      case Location::kInvalid: {
1070        stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1071        break;
1072      }
1073
1074      default:
1075        LOG(FATAL) << "Unexpected kind " << location.GetKind();
1076    }
1077  }
1078
1079  if (environment->GetParent() != nullptr) {
1080    stack_map_stream_.EndInlineInfoEntry();
1081  }
1082}
1083
1084bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1085  HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
1086
1087  return (first_next_not_move != nullptr)
1088      && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0));
1089}
1090
1091void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1092  if (!compiler_options_.GetImplicitNullChecks()) {
1093    return;
1094  }
1095
1096  // If we are from a static path don't record the pc as we can't throw NPE.
1097  // NB: having the checks here makes the code much less verbose in the arch
1098  // specific code generators.
1099  if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
1100    return;
1101  }
1102
1103  if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) {
1104    return;
1105  }
1106
1107  // Find the first previous instruction which is not a move.
1108  HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
1109
1110  // If the instruction is a null check it means that `instr` is the first user
1111  // and needs to record the pc.
1112  if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
1113    HNullCheck* null_check = first_prev_not_move->AsNullCheck();
1114    // TODO: The parallel moves modify the environment. Their changes need to be
1115    // reverted otherwise the stack maps at the throw point will not be correct.
1116    RecordPcInfo(null_check, null_check->GetDexPc());
1117  }
1118}
1119
1120LocationSummary* CodeGenerator::CreateNullCheckLocations(HNullCheck* null_check) {
1121  // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1122  // HSuspendCheck from entry block). However, it will still get a valid stack frame
1123  // because the HNullCheck needs an environment.
1124  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1125  // When throwing from a try block, we may need to retrieve dalvik registers from
1126  // physical registers and we also need to set up stack mask for GC. This is
1127  // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1128  bool can_throw_into_catch_block = null_check->CanThrowIntoCatchBlock();
1129  if (can_throw_into_catch_block) {
1130    call_kind = LocationSummary::kCallOnSlowPath;
1131  }
1132  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(null_check, call_kind);
1133  if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1134    locations->SetCustomSlowPathCallerSaves(RegisterSet());  // No caller-save registers.
1135  }
1136  locations->SetInAt(0, Location::RequiresRegister());
1137  DCHECK(!null_check->HasUses());
1138  return locations;
1139}
1140
1141void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1142  if (compiler_options_.GetImplicitNullChecks()) {
1143    MaybeRecordStat(kImplicitNullCheckGenerated);
1144    GenerateImplicitNullCheck(instruction);
1145  } else {
1146    MaybeRecordStat(kExplicitNullCheckGenerated);
1147    GenerateExplicitNullCheck(instruction);
1148  }
1149}
1150
1151void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const {
1152  LocationSummary* locations = suspend_check->GetLocations();
1153  HBasicBlock* block = suspend_check->GetBlock();
1154  DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1155  DCHECK(block->IsLoopHeader());
1156
1157  for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1158    HInstruction* current = it.Current();
1159    LiveInterval* interval = current->GetLiveInterval();
1160    // We only need to clear bits of loop phis containing objects and allocated in register.
1161    // Loop phis allocated on stack already have the object in the stack.
1162    if (current->GetType() == Primitive::kPrimNot
1163        && interval->HasRegister()
1164        && interval->HasSpillSlot()) {
1165      locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize);
1166    }
1167  }
1168}
1169
1170void CodeGenerator::EmitParallelMoves(Location from1,
1171                                      Location to1,
1172                                      Primitive::Type type1,
1173                                      Location from2,
1174                                      Location to2,
1175                                      Primitive::Type type2) {
1176  HParallelMove parallel_move(GetGraph()->GetArena());
1177  parallel_move.AddMove(from1, to1, type1, nullptr);
1178  parallel_move.AddMove(from2, to2, type2, nullptr);
1179  GetMoveResolver()->EmitNativeCode(&parallel_move);
1180}
1181
1182void CodeGenerator::ValidateInvokeRuntime(HInstruction* instruction, SlowPathCode* slow_path) {
1183  // Ensure that the call kind indication given to the register allocator is
1184  // coherent with the runtime call generated, and that the GC side effect is
1185  // set when required.
1186  if (slow_path == nullptr) {
1187    DCHECK(instruction->GetLocations()->WillCall())
1188        << "instruction->DebugName()=" << instruction->DebugName();
1189    DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1190        << "instruction->DebugName()=" << instruction->DebugName()
1191        << " instruction->GetSideEffects().ToString()=" << instruction->GetSideEffects().ToString();
1192  } else {
1193    DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1194        << "instruction->DebugName()=" << instruction->DebugName()
1195        << " slow_path->GetDescription()=" << slow_path->GetDescription();
1196    DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1197           // When (non-Baker) read barriers are enabled, some instructions
1198           // use a slow path to emit a read barrier, which does not trigger
1199           // GC.
1200           (kEmitCompilerReadBarrier &&
1201            !kUseBakerReadBarrier &&
1202            (instruction->IsInstanceFieldGet() ||
1203             instruction->IsStaticFieldGet() ||
1204             instruction->IsArrayGet() ||
1205             instruction->IsLoadClass() ||
1206             instruction->IsLoadString() ||
1207             instruction->IsInstanceOf() ||
1208             instruction->IsCheckCast() ||
1209             (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1210        << "instruction->DebugName()=" << instruction->DebugName()
1211        << " instruction->GetSideEffects().ToString()=" << instruction->GetSideEffects().ToString()
1212        << " slow_path->GetDescription()=" << slow_path->GetDescription();
1213  }
1214
1215  // Check the coherency of leaf information.
1216  DCHECK(instruction->IsSuspendCheck()
1217         || ((slow_path != nullptr) && slow_path->IsFatal())
1218         || instruction->GetLocations()->CanCall()
1219         || !IsLeafMethod())
1220      << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1221}
1222
1223void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1224                                                                SlowPathCode* slow_path) {
1225  DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1226      << "instruction->DebugName()=" << instruction->DebugName()
1227      << " slow_path->GetDescription()=" << slow_path->GetDescription();
1228  // Only the Baker read barrier marking slow path used by certains
1229  // instructions is expected to invoke the runtime without recording
1230  // PC-related information.
1231  DCHECK(kUseBakerReadBarrier);
1232  DCHECK(instruction->IsInstanceFieldGet() ||
1233         instruction->IsStaticFieldGet() ||
1234         instruction->IsArrayGet() ||
1235         instruction->IsArraySet() ||
1236         instruction->IsLoadClass() ||
1237         instruction->IsLoadString() ||
1238         instruction->IsInstanceOf() ||
1239         instruction->IsCheckCast() ||
1240         (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
1241         (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
1242      << "instruction->DebugName()=" << instruction->DebugName()
1243      << " slow_path->GetDescription()=" << slow_path->GetDescription();
1244}
1245
1246void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1247  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1248
1249  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
1250  for (uint32_t i : LowToHighBits(core_spills)) {
1251    // If the register holds an object, update the stack mask.
1252    if (locations->RegisterContainsObject(i)) {
1253      locations->SetStackBit(stack_offset / kVRegSize);
1254    }
1255    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1256    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1257    saved_core_stack_offsets_[i] = stack_offset;
1258    stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1259  }
1260
1261  const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
1262  for (size_t i : LowToHighBits(fp_spills)) {
1263    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1264    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1265    saved_fpu_stack_offsets_[i] = stack_offset;
1266    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1267  }
1268}
1269
1270void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1271  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1272
1273  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
1274  for (uint32_t i : LowToHighBits(core_spills)) {
1275    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1276    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1277    stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1278  }
1279
1280  const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
1281  for (size_t i : LowToHighBits(fp_spills)) {
1282    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1283    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1284    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1285  }
1286}
1287
1288void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1289  // Check to see if we have known failures that will cause us to have to bail out
1290  // to the runtime, and just generate the runtime call directly.
1291  HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1292  HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1293
1294  // The positions must be non-negative.
1295  if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1296      (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1297    // We will have to fail anyways.
1298    return;
1299  }
1300
1301  // The length must be >= 0.
1302  HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1303  if (length != nullptr) {
1304    int32_t len = length->GetValue();
1305    if (len < 0) {
1306      // Just call as normal.
1307      return;
1308    }
1309  }
1310
1311  SystemArrayCopyOptimizations optimizations(invoke);
1312
1313  if (optimizations.GetDestinationIsSource()) {
1314    if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1315      // We only support backward copying if source and destination are the same.
1316      return;
1317    }
1318  }
1319
1320  if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1321    // We currently don't intrinsify primitive copying.
1322    return;
1323  }
1324
1325  ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
1326  LocationSummary* locations = new (allocator) LocationSummary(invoke,
1327                                                               LocationSummary::kCallOnSlowPath,
1328                                                               kIntrinsified);
1329  // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1330  locations->SetInAt(0, Location::RequiresRegister());
1331  locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1332  locations->SetInAt(2, Location::RequiresRegister());
1333  locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1334  locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1335
1336  locations->AddTemp(Location::RequiresRegister());
1337  locations->AddTemp(Location::RequiresRegister());
1338  locations->AddTemp(Location::RequiresRegister());
1339}
1340
1341uint32_t CodeGenerator::GetReferenceSlowFlagOffset() const {
1342  ScopedObjectAccess soa(Thread::Current());
1343  mirror::Class* klass = mirror::Reference::GetJavaLangRefReference();
1344  DCHECK(klass->IsInitialized());
1345  return klass->GetSlowPathFlagOffset().Uint32Value();
1346}
1347
1348uint32_t CodeGenerator::GetReferenceDisableFlagOffset() const {
1349  ScopedObjectAccess soa(Thread::Current());
1350  mirror::Class* klass = mirror::Reference::GetJavaLangRefReference();
1351  DCHECK(klass->IsInitialized());
1352  return klass->GetDisableIntrinsicFlagOffset().Uint32Value();
1353}
1354
1355}  // namespace art
1356